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Electrical conductivity functions in the
magnetotelluric and magnetovariation methods
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]
[ RESUME. -~ Les auteurs développen! une théorie établissant une relation fonctionnelle inéaire entre {es composantes du champ élec-
tromagnétique terresire, Ces relutions existent i les champs observés sont bien représentds pur des modéles de classes spéciales
appelées classes al.gébriques. Ces demisres sont créées par les champs de dipoles magnétigues et électriques, des ondes pianes,
. iles c.hamps magnetique et dlectrique uniformes. Les coefficients des relations lindaires dans une classe algeébrique ne dépendent
4 pas de la polarisution et de Vintensité des sources du champ er peuven! étre considérés comme des fonctions de la condutcnivité
I G{ectr'rquc qui reflétent la distribution de conductivité dans la Terre, Ces coefficients forment les matrices magnéto-telluriques

(impédance, admittance, tellurique et magnétique) utilisées en sandages ot profils de magnétotellurique ou de magnétovariation
et dans la m‘ét!mde des courants telluriques, La jorme de ces matrices dépend de la dimension de I'espace des vecrors caractéris-
tiques qui déterminent les courants extrinséques ou les champs primaires.

e

ABSTRACT. - The wuthors develop a theory establishing a functional lincar relationship benween the corponents of the Larth's
electromagnetic field. These relationships exist if the observed fields can be well approximuted by model fields of speciod viasses
called f{w algebraic classes. The algebraic classes are created by the fields of electrical and magnetic dipoles, plane waves, uniform
magnetic and electrical fields. The coefficients of the linear relations within an algebraic class do not deperd on the polarisation

/ and tntensity of the field sources and can be looked upon as the electrical conductivity functions which refleci the conductivity

! distribution in the Eurth. These coefficients compose the mugnetoteliuric matrices (impedance, admittance, telluric, nagnetic)

variation sounding or profiling, and in telluric current methods.

and incuction marrices used in the magnetoteliuric and magnero
limension of the space of the olaracieristic vectors

, Tlu.: shape of the magnetotelluric and induction matrices depemlds on the ¢
which determine the extrinsic currents or the primary fields.

1 Part 1 tivity functions as they indicate the conductivity
MAGNETOTELLURIC MATRICES distribution in the Earth. The main drawback js that
the observations at one or a few stations form a

rather too narrow space window allowing the deter-
mination of the type of excitation bul not its detai-
led structure. Therefore for specifying the electrical
conductivity functions we have (0 take resort to
stochastic method which docs not need any detailed
information about Lhe canfiguration of the external
field. This method is directed toward the linear corre-
lation between the field components and lics in the
calculation of the electrical conductlivity functions
regression  coefficients

Introduction

Mugnetotelluric and magnetovariation methods
are generally used for studying the Earth’s electrical
conduclivity. They are based on the determination of
the transfer functions which connect different
components of a variablc electromagnetic field exci-
ted by ionospheric und magnetospheric currents.
These functions will be called the electrical conduc- as the multiple linear
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(Schmucker, 1970). We know well that practical
experience justifics such an approach, nevertheless,
its onc weak point is the Jack of an adequate theory
which could expose the functional nature of the
linear relationships boetween the field components.
Only some scattcred [ragments of this theory have
been touched upon in the ueophysical literature
(Cantwell, 1960 ; Berdichewski, 1958, 1960, 1961,
1964, 1968 ; Wicse, 1965 ; Schmucker, 1964, 1970 ;
Untiedt, 1964 . Adam, 1964 ; Jankowski, 1972
Lilley and Bennet, 1973). Imperfection of the theory
gives rise to many puzzles and disputes. In this paper
an atlempt has been made to develop 2 self-consistent
theory establishing the functional linear relationship
between Lhe components of the Earths electro-
magnetic feld in a wide range of its variations (from
the pulsations to world magnetic storms). The paper
is in two sepurate parts : the first is devoted to the
mapnetotelluric matrices and the second to the in-
duction matrices and the main geophysical
applications.

Algebraic classes of electromagnetic fields

Maxwell s equations though lineur. nonctheless,
give a differential but not an algebraic relationship
beiween the components of the electromagnetic
field. Thereforc, in considering some ficld, say,
the polar electrojet field, we have no right to assume
that the field components are interrelated by a func-
tional linear relationship with coefficients not depen-
dent on the position of the electrojut. Postulation
of such relationships needs to impose certain restric-
tions on the structure of the field sources. These
restrictions lead to special classes of electromagnetic
fields which constitute the subject matter of our
paper,

We shall confine ourselves to the consideration
of the frequency domain supposing that Fourier
analysis of the tvansient electromagnetic field (pul-
sations, bays, solar diurnal variations, world storms)
has been carried ouf, At the frequency w an elec-
tromagnetic field B, H satisfies the equations :

rot H = o*f-(-)_';
rotE= iwpﬁ

where 0% is lhe complex elcctrlgal conduetivity,
p is the magnetic permeability and j,, is the density
of extrinsic electrical current.

The starfing-point of our theory is the field
source, ie. the extrinsic current. The function J
can always be rcpresented by means ul_'>u lincur
operator @ acting on some fres vector M (reul or

complex) :
- o ~» =3

e (=@ @AM (1a)
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This vector Jffl’ does not depend on the space
coordinates. It characterizes the polarisation und the
intensity of (hc extrinsic current and will be culled
the characteristic vector of the field. The cperator
& does depend on the space coordinates and deter-
mines the geometry of cxtrinsic current, ie. the
type of excitation. We shall call it the excitation
aperator or simply the excilation,

In peneral the choice of representation (la) is
arbitrary. Considcring some model field, we shall
choose the represcntation providing the maximum
simplicity and the physical lucidity.

Lef’s take some sequence of the extrinsic curronts

" with the same geometry but different polarisation

and jntensity;}To these extringic currents correspond
distributions j,. , oblained by the action of the sume
excitation operator on different characteristic vec-
tors. In the following pages we shall show that in
a given moedium the components of the electro-
magnetic ticlds excited by such extrinsic currents
are interconnected by linear algebraic relationships,
whose coefficients are the same for all distributions
Jex under consiceralion. These coefficicrts are
connected with the typc of excitation and depend

© on the frequency, the observation site and the pro-

perties of the medium, The set ol such electro-
mugnetic fields will be called the algebraic class.

Thus, the electromagnetic ficlds whose churac-
teristic vectors are transformed into exirinsic cuirents
by the same excitation operator form the algebraic
class. To each cxcitation operator @ corresponds ifs
own ulgebraic clg;s witl the associated set of clurac-
teristic vectors M which compose some lirncar space
L, of dimension . The value N can vary frum'l to
3 depending on the polarisation of the extrinsic
current, In every /_ space diy there are N linearly inde-
pendent vectors M corresponding to extrinsic currents
with different polarisation.

In geoelectrics we of_t_en_’dcal with the models
where the primary fields £, H® but not the extrinsic
currents are given. Any primary field can likewise b.e
expl"essgg as a linear transform of the characteristic
veclor M

ErP) = bEGH M HEG = 67 (M, (1)

where b%¥ and b7 are the excitation operators, The
set of eleclromagnetic fields whose characteristic
veclors are transformed into primary fields by the
sanie excitation operators forms an algebraic class.

Lat us give some examples of fields which form
the algebraic classes.

1/ All electromagnetic fields excited by extrinsic
currents of identical geometry and polarisation
form un algebraic class with one-dimensional cha-
racteristic vector spuce. For example, let’s consider

—
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the field of an infinitely long rectilincar current J
flowing along the axis x, of a Cartesian system
Xy XpX5. The x,-direction is defined by the unit
vector d, . In this model

-> - -
Jax (r) = JB(x2)d8(x3)d,

where 8 is the Dirac function. According Lo (1a)
we set

- - —

M =J0d, QA(r)= 6(x,)8x;)

Ti i M
L characleristic vectors M determine the current

sirength and are always parallel wilh the current
line, The ex.citatlon @ depends on the position of
the gtlrrent {ine. All fields excited in a heterogencous
med{um by an infinitely Jong rectilinear current
flowing along a given linc belong to the sane algebraic
class with the spaced, .

‘2;' Consider now an example of algebraic class
with the space 9T ,. Let the model consist of outer
homogeneous and inner heterogencous domains. Take
tf\c primary field in the form of an arbitrarily pola-
rized uniform or non-uniform plane wave with

amplitudes Ey , H, and wave vector ¥ :
- - =y - - B
= . — - - = b
Ef(r) = Eo e kv HP(r) = Hye™ Ken

7o . -> =

The equation rot HY =g* EP gives E)o = Zf_;'o,
tvl!crc o"‘. is the conductivity of the outer domain and
Z is the impedance with the matrix Z;(i,j = 1,2,3).
In an arbitrary Cartesian basis Z,, = Z,; = Z33 =0,
le = "'sz = k; /0*, Zlg = —ZJI = - kz/O*.

Thus, according to (1b) we can write
— - = - =5
H=Hy, 8¢ =2e "7 W) =e*r

. lee characteristic vectors M determine the pola-
"‘EU:IIOI‘I and intensity of the waves. The excitation
b*F dependy on the wave vector k. For a given K,
the vectqrs M are the glements ol the t\y_p—dimcnsional
Slmce_gﬁ-z_). Indeed, the equation _givH’ = 0 shows
thut M. k = 0, i.e. lhe vectors M are orthogonal to
t_!le conjugatc wave vector. Thus, all electromagnetic
hulc}s excited in a heterogeneous medium by arbi-
u'smly polgtnzed uniform or non-uniform plane waves
with identical wave vector belong to the sume algebraic
class with the spacedlc, .

3/ The fields of clectrical or magnetic dipoles
located at a given point and primarily uniform
n\agngtic or electrical fizlds are examples of algebraic
class in which the characteristic vectors may cOmpose
a three-dimensional space.

Let us place an arbitrarily oriented electricul

dipole of momesnt P at a given point 7p in a hetero-
aeneous medium. In this model

() = 8(r - [8Y4

LLECTRICAL CONDUCTIVITY FUNCTIONS S

-> o

Hence, we can choose the vector M = P as the
characteristic veclor with the excitation & = &( P 7?0 X
Evidently, the characteristic vectors are arbitrarily
oriented and the excitation depends on the position
of the dipole ventre. Consequently, all electromagnetic
ficlds excited in u heterogeneous medium by arbi-
trarily oriented electrical dipoles with & common
centre belong to the same algebraic class with the
spuce N .

Fields of magnetic dipoles form an analogous
algebraic class. This can be easily demonstrated by
substituting the magnetic currents for the extrinsic
electrical currents.

Models with primarily uniform magnetic ficlds are
used for investigating the electromagnetic induction
in conducting bodies surrounded by a non-conducting

medium, In these models
= -
H'(r) = H,,
2 .
where H, is a comstant vector. We shall take that
— - -
M=H, bi(r)=1
The characteristic vectors aré arbitrarily oriented
and the excitation is consiant. Consequently, all
slectromagnetic  ficlds excited in a hcterogeneous
conducting body by a uniform magnetic field belong
to the sume alpebraic class with the space iy,
A similat algebraic class is generated by the prima-

rily uniform electrical fields with w = 0.

The algebraic classes With the space JlL; may
also be generated by more complex [fislls. lor
instance, the following example descrves our attention.
Let an arbitrarily oriented electricul dipolc of moment
}?(t) = fl (t)? move with constant velocity ¥ along
the axis x, where f(£) is some time function, and
;7is 4 constant unit vector. In this maodel

T R G LICTIRR L 8(x ) B(x )P

After applying the Fourier transform we obtain the
extrinsic current in frequency domain :

- - +‘t-> -
P =7, G oerar
L ) B s
o 14 Vv = ( 2) 3) P
- .
For the characteristic vector we shall mkeﬁ = P(fp)
where fo Is the time so chosen that P(¢) ¥ 0.
In this case :
VAN
e §(x,) 8(x,)
Viity) f( V) 2 2
Thus, the characteristic vectors determine the arien-

tation and the intensity of the dipole. The excitation
depends on the position of the trajectory. velocity of

-
ad(r) =
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the dipole, and the law of relative variation of its
moment. Conscquently, the electromagnetic ficlds
excited in a heterogenerous medium by arbitrarily
oriented electrical dipoles moving along a given
straight trajectory with a given vclocity and a given
law for the relative variation of its moment generate
an algebraic class with the space 91T;. An analogous
class is obtained in case of magnetic dipoles.

It is obvious that we can reduce the dimension of
the characteristic vector space for each algebraic
class. For example, the horizonlal dipoles generate
a class with the space OW ,, whereas the lincarly
polarized plane waves create a class with the space

"‘l'

We shall confine ourselves to these examples of
algebraic classes which are very suitable for the
simulation of the Earth’s electromagnetic field,

Electromagnetic field as a linear transform of
characteristic vectors

Electromagnetic field is a linear transform of the
extrinsic current &

EY = GEF - T [ ()
Hi = 628G =TT @,

where the asterisk denotes convolution with respect
to the variable 7,, and G®, G¥ ure derived Green’s
functions. They obviously depend on the frequency
w and the distribution of electromagnetic properties
of the medium.

Let the field belong to some algebraic class with
the excitation @. Then by virtue of (la) we have

> - = = = - =
E(r) = e(rM (a) H(r) = h()M (b)) ()
where

e} = GE(r—7)) *&{,)
hr) = 67 G - F) e

The rclationship (2) virtually means that the
electrodynamic problem can be broken down into
several independent problems whose number is
exactly equal to the dimension of the space Oy .

We shall call the linear operators e and h the
characteristic operators of the field, Analagous
operators associated with the excitation operators
b® and b¥ are obtained in the models with given
primary fields (the action of primary field through
linear operations can be reduced to the aclion of
real or fictitious extrinsic cusrents).

To each algebraic class correspond its own operators
e and h which depend on the frequency, the obser-
vation site and the distribution of the electromagnetic
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properties of the medium, By means of the operaturs
e >zmd h we can transform at every point Fthe veeor
11_4’ whicg is an element of the spaccdiL j into vectors
E and H which are the elsments of the spaces &, und
d€,,, respectively. where K, L are the dimension f
these spaces. To each point 7 there correspeml i1%
own spaces & g and #2;..

Depending on the properties of the medium the |
spaces &g and @; may retain the dimension of the

space QT (mutually unique transformation) ar have
Icsser dimensicn (degenerate transforination),

The mutually unigue transformation is citrriey out
by reversible operators, In this case N chazneteristiv
vectors ﬁ from the spacedy corresponding Lo tle
extrinsic currents or primary fields with diffvrent
polarisation arc linearly independenl and peneral¢
N linearly independent vectors from the spave,
&k (K = N) and N linearly independent vecrors f
from the spacesey, (L = N).

The degenerate transformation is carried cut by
irreversible operators. In thig_’ casc__)the number of
lincarly independent vectors £ or H is _Less than the
number of lirearly independent vectors M.

We shall give two examples of degenerate transtor-
mation.

Let a quasi-stationary electromagnetic field rom
the algebraic class with the space Oz excile a body
of finite conductivity surrounded by an i_gs_l’llslmr.
At the inncr surface of the body we llngﬁ E.n =
where 7 is the unit nognnl yector, At the points ol
this surface the field E is always polarized in the
tangent plane and generates the space 8, . Therclore,
the mapping of N, into &, is a degenerate transivrm,
ard consequently the operator e is irreversible,

Now consider a modelin which & perfect condiictor
is surrounded by a medium of finite conductivily,
Let this model be excited by an electromagnetic
field from (he algebraic class with the space, 9. On
the surface of the conductor we have A.u = 0

- — S At .
and 1 x [n x ﬂ = 0. At the points of this surlace
the ficld H is always polarized in the tangent plunc
and generates the space J8,, while the field & Is
polarized normal to the conductor surface and genc-
rates the space &,. Therefore, the mapping ol 91U,
into ¥¢, and &, is degenerale and the operztors ¢ ind
h are irreversible.

The characteristic operators of the field can be
cxpressed in the form of matrices, which we shatl
call as the fundamental characteristic matrices. By
deleting one or two rows from these fundamental
matrices we obtuin the so-called reduced matrives
which will be more convenient for investigating the
flelds with the characteristic vector spaces L, dnd
AL, .

. bt M - & @ W
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Magnetotelluric operators

We spaa]\ take an clectromagnetic field from some
algebraic class and examine three cases.

. 1/ Let the operators e and & be both reversible
in some domain ¥ (ie. the inverse operators e
aid Ji! exist). Then from (2) we get
K bt b =
= Ve ' () E(r) @
A‘i o 1 - = )
(R CHHGEY )
Substituting (3h) into (2a) and {3a) into (2b)
we oblain

(3)

- —

>
EG) = zGH B ) HE = YO E(P ©) @)

where Z and Y are operators which represent the
impedance und admittance respectively :

ZR) = eIy Y = k(e () (5)

i = =g s 4
- Consxdgzrmg E apd H at different points 7, and
¥> belonging to the domain Y, we get
= > e e
f(r)) = try,ry)) E(r,)  (2)
= (6)
H(r)) = m(, ) H(r;) (0)

where ¢ and m are the felluric and magnetic ope-
rators :
A e N W
0, .r;) = elr,) e L)
- = -
m@, ) = hREIYR () O
The operators Z. Y, m, t will be called the magne-
totelturic operators. These four operators transform
the electrical field into the magnetic field and vice
versu. To cach algebraic class there carrespond ifs

own operators Z, Y, t, m which depend on the
frequency, the observation site and the medium.

. Evidently, all magnetotelluric operators are revers
sible in the domain V:

zH = Yv@ Ye =270
e =¥ R - - - =
10,1 =17 (ry,1,) mir, 1) = m™ () (8)

The following relations hold between the magneto-
telluric operators ¢

Z@&) = 1.7 20 mEy )

Y7 = m(P, 1) YT 10 77)

z("r’,,;:):z(r’,)m(r"l,r';) Y(@,) @)
w7y = Y (. FE)

2/ If one of the characteristic operators of the
ficld is reversible and the other is irreversible in the

ELFCTRICAL CONDUCTIVITY FUNCIIONS

domain ¥, then only iwo magnetotelluric operators
exist ; we have the operators Y and ¢ when e is rever-
sible, or otherwisc the oporators Z and m when /i
is reversible. Consequently the systems (4) and (6)
of direct and inverse transTormations are partially
decayed. The transforms (4b) and (6a) hold true
when e is reversible, whereas the transforms {4a)
and (6b) hold true when h is reversible, Impedanc:
und admittance operators become irreversible and
the relationship (9) ceases to be valid.

3/ If both the characteristic operators of the
field are irreyersible in the domain ¥, then the
magnetotclluric  operators do not exist and the
systems of transformations (4) and (6) completely
decay.

The conditions for the existence and the rever-
sibility of the magnetolelluric operators are tabu-
lated below.

Table 1

Conditions for the existence and the reversibility
of magnelotelluric operators
Irreversible

......

Reversible

€
e L i — g oo o
Reversible " Reversiole operators Irreversible operatac i
Lot Y and reversibie i
oxist ppezator £ exist i
' preversible {rrevuersible operatars Mupnetotelluzic vperators ’
#£ und reversibie . do not 2xi5t '

crator m exist

Lo o e e . 5 el

The matrices of magnetotelluric operators will
be called the fundumental magnetotelluric matrices.
By delcting one or two rows from these malrices
we obtuin the reduced magnetotelluric matrices, The
ghape of the magnetotelluric matrices depends on
the dimension of the characteristic vector space.
The elements of the magnetotelluric natrices are
the electrical conductivity functions.

Magnetotelluric matrices in the class with
the space JIG

The characteristic operators e and A uct from the
space dLa into the spaces &y and e, (K, L < 3).
We shall embed the spaces JTa. &x, J¢ into a
three-dimensional physical space @s. Now the ope-
rators ¢ and h act in the space @, In an arbitrury
Cartesian basis {dl‘d,.ds} of this space they are
described by [he fundamantal matrices ; and lz‘.’.
@j=1,2,3)ie by the square matrices otl order 3.

The operators e and h are reversible if the deter-
minants of their matrices are non-zero. This is the
necessary condition for the existence of the magne-
totelluric matrices (Table 0.

w
o
h
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Let ¢ und A be reversible operators. Using the
elements ey and hy; it is a simple matter to get the
clements of the magnetotelluric matrices. By virtue
of (5} and (7) we can writc

Z,() = e, Y3,
=
¥, = by, (Pegt ()
4 ->
0T = e () ez () (10)
=5 - —
myr, ';:) = by () B} (1)

L}, &= 1,23,
Thus, we have four fundamental magnetotelluric
square matrices of order 3 (impedance, admittance,
telluric and magnetic matrices) ;

ZU., Y_,.’. » By 1y 7= 1,2 3).

These matrices are reversible as their determinants
are equal to the product of the non-zero determinants
of the corresponding direci and inverse characteristic
matrices. The elements of the magnetotelluric matrices
depend on the frequency, the observation site and
the distribution of the electromagnetic properties
of the medium. Within a given class they can be
treated us the electrical conductivity functions which
indicate the geoclectrical structure of the medinm,.

Impedunce, admittance, telluric and magnetic
fensors correspond ta the fundamental magnetotelluric
matrices. These tensors act in the space @;. From
(4) aridd (6) we have

E(F) = Z, (Y H,@)
H(® = ¥, &)
E(R) = t, (. ) EG,) (n

() = my @, A, )
oy N s

where £, And age the Cartesian components of the

vectors E and /1. The tensors are interconnecied
aceording to (8) and (9).

If only one of the characteristic operators s
reversible then there exist only two magnetotelluric
matrices, namely, the binpedance and the magnetic
matrices when /1 is reversible or the admittance and
the telluric matrices when e is reversible, For example,
let the operator  be reversible, then we have the
irreversible  (degenerate) impedance matrix with a
rank equal to the dimension of the space & g, and
the reversible magnetic matrix,

Finally, if both the characleristic operators are
lrrcversiblg, then the magnetotelturic matrices do
not exist. Fortunately, such an unf; avourable situation

does not occur in the practical geophysical investi-
gations,
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Thus, we can find the electrical corductivity
functions if the magnetotelluric malrices exist.
These matrices, irrespective of their ranks, ¢an ke

- determined uniquely. As an exumple consider the

impedance matrix. At the p_oint_r":take three linearly
independent vectors K\, H), H®) with the corns-
ponding vectors £, E2) EG) (linearly independen!
or dependent). Then by (11) we get

EX) () = Z (D) H® ()
i if i
i,/,k=123
Obviousty the matrix H,(“) fanned by the componens

- of three linearly independent vectors is nomdegenerats.

L.e. its inverse [Ii’(") " exists, Theretore,
2,00 = EM (DD i0,k=123 (2
Other magnetoteturic matrices (matrices of ele-

trical conductivity functions) are determnined in 3
similar manner.

Magnetotelluric matrices in the class with
the space I,

When the spaces O, and &5, ¥, (K. L <2)
are embedded into the three-dimensionul physica_{
space @3 we formally obluin square matrices of
order 3, These matrices cannot be determined uni-
quely and may prove to be degencrate even if lI{c
operators are reversible, We shall overcome this
difficulty by_}expreg)sing the relationship between
the vectors £ and H in terms ol the [undamental
rectangular matrice 3 x 2 and  reduced  square
matrices of order 2 acting on lincarly independent
veetor componcats.

Let {1, iy} b_& the basls of the space T, and
expand the vector M in terms of this basis :

—r -
M= Mm j=1,2
Then embed the spaces & x and 3¢ (K, L <,2)
nto a threc-dimensional physical space @ 5 with
X . E - = =
arbitrary Cartesion basis {d,, d, , dy}. Expunding
the vectors £ and H in terms ol this basis, we rin
wrile :
> - > —
E = Ed H= Hd =123
Now the characleristic operators ¢ and A act from
the spacedll, into the space @Dy

-~
EG) = eV = MeGym, = M,e () ®
-> =y ; =)
HO = (M = Mh(Dmy = Mhlr) ()

i= 12

g ke A P

B, Xy T

o G,
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where
§7) = e(Dm, K@) = hEm,.

- - .

The vectors ¢; and By are the elements of Lhe space

i I . -

@, and thus cun be expressed in terms of the basis

. d, .4
e = e,(Md, KO = by (13,
t= 1,43 J=12
Thus. we have
£ = e, (M, H,G) =1, (M,
i= 1,23 =12

where ¢ and #,; are the fundamentual characteristic
mutrices 3 x 2 of the operators ¢ and % in the bascs

{Ffl .Zf,,_(fa} and

If the operators e und h are reversible, the rank
af their rectanpular matrices is 2.

Now return to the Table 1 which shows the condi-
tions for the existence and the reversibility of the
magnetotelluric operators.

Let the operators e and % be reversible, ie, the
rank of their matricesis 2. Then from cach rectangular
snatrix by deleting some one row we can form at
teust one reduced square matrix of order 2 with a
non-zero  determinant. Assume that such matrices
are ey oand Ry (f,}’ = 1, 2). These matrices are
formed by the {irst and the second rows of the
rectangular matrices eg and Ay Their determinants
are the basic minors g¢ and gl of the matrices ¢;
and /iy (the subscript in the wminor indicates the
number of the delsted row).

— - .
{m] NI

The reduced matrices ez and fp correspond to the
e Snd . ¥
operatars ¢ gnd h wgich transform the vector M into
the veclors £, and H, ¢
- - P T ~—
E,(r) =elr)M H,)=h()M
. L ‘_> '
~ Obviously, the vectors E;; und Hyy have linearly
mdependcu_t_’comp_(gnents and are the projections of
the vectors £ and H on the plane x, x, ¢

- - > - - - = ..
E,(r)=Erydy I,r)=1h(r)dp =12
The operators ¢ and h are reversible because

45 0 and g% # 0. Therefore,
> {&1AOE,® @

= 14
| FDE, T O o

ELECTRICAL CONDUCTIVITY FUNCTIONS

Substituting (14b) into (13a) and (14a) into (13b)
we get
-—

a (1)

- -~

B = 200, HO = ¥

=4

where

ZD) = PR D YD = a0
Similarly,
=)

5 —
r )E12 (r)

e
"ioh — - 5 = e =
H(r) = mlr,r,) H, (1r;)

=
&)=

where

() = () e ()

Mm@, 1) = k() RN

The operators Z, Y, ¢ and m act from the plane
X, X, into the threc-dimensional space, and transform
the projections of the electrical or magnetic ficlds
into the total electrical or magnetic field,

: wed T3
[n the Curtesian basis (d, , d,,d,} we hive

—

EG) =z, BE  HE) = Y0 EC)

g - - —
Ll(rl)= rl'l‘(l‘l\r-;)E,(rQ) (15)
S -+ = —
Hi(r)) = mu(ry,ry)H; (1))
i=1,23 [=12
where

- - -
Z;;(;3 =es (7);;;5} (7) Y,i.(,T’) = ny (7) exs (1)

>~ -
150, 1h) = e (1) egd (7y) a6
- -~
m,;\(;': W7y = he(n ]!zé:?(rz)
i=1,23 jk=12

The matrices Zj, Yy, i, (i = 1,2,357 = 1,2)
are the fundamental magnetotelluric matrices 3 X 2
in the class with the space bo) T

On deleting the third row from each matrix we
obtain the reduced matrices Zg;, Yy, &35, my (1,7 = 1,2).
The operators E, ?, ;: m comrespond to these square
mutrices of order 2. They are reversible, and conse-
quently satisfy the relationships (8) and (9). They
act in the plane x,x, and transform the I, 77 pro-
jections into the E, # projections. The imp:dan.cu.
admittance, telluric and magnetic tensors acting
in the same plane x; X, correspond to these ope-
ra{ors |
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B®) = ZyD B 150 = 16 5@
— - = —
Ex(r)) = 0 1)) Ey (1) (17)

Hy () = my (7, 75) B, (7))

Li=12

The magretotelluric matrices (fundomental or
reduced) can be determined uniquely, As an example,
let us consider the impedance matrix, At the point
7 take two linearly independent vectors 75V Hi2)
with the corresponding vectors £ W, o {lincarly
independent or dependent), By virtue ol (15) we
liave

EN G = 2, IO
i=123 Jjik=12

The matrix H}E) formed by the components of

two lincarly independent vectors is non-degenerate,
i.e. itsinverse [H,i “)1-1 exists. Therefore

Z47) = BB @y 1D (-

i=1,23 k=12

Thus, four fundamental ragnetotelluric (impe-
dance, admittance, telluric, and magnetic) mirices
3 x 2 exists for the reversible charucleristic operi-
tors e und A. Each of these matricss can be reduced
to a tensor matrix of order 2.

If only one of the characteristic operators is
reversible, then there exist only two matrices, namely,
the impedance and the magnetic matrices when the
operator /i is reversible or (he admittance and the
telluric matrices when the operator e is reversible.

No magnetotelluric matrices exist if both the
characteristic operators are irreversible.

(1R}

Magnetotelluric matrices in the class with the
space 01T,

This case is so_ simple that it does not require
any analysis. Il £ # 0 and A # 0, the characte-
ristic op2ralors e and 4 are always reversihle. Their
fundamental magnetotelluric matrices Z, Y, tand
m are only column matrices.

On redusing the fundamenta) matrices we obtuin
the scalar proportivnality coefficicnts :

Er(?) = Z,,(B”,ﬁ) H,-(?) =Y, @ E/(?)
E ) = 1, T E) (19
- i
Hy(r) = mylr v 1, (1))
i,/ =1,2,3
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where the summation is nol carried out with respest {
to the imlexe_s’ 4 and_j. Any two Cartesian components
ol the fields £ and H are lineurly dependent.
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PART I ‘]
INDUCTION MATRICES AND MAIN !

GEOPHYSICAL APPLICATIONS

Introduction

Wa shall recall the basic propositions of the Parl [ ,!
used in this Part. Al the events are considered in' the ;
frequency domain, A characteristic vector is defined |
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= -
10 l;e a free vector M which is transformed into
cxtrl_usnc current or primary field by a linear operator
(cxcitation operator), The set of all electromagnetic

_{ields whosz characteristic vectors are transforrmced
. inlo extrinsic current or primary field by one and
the same excitation operator is called an algehraic

»

! oo ;
- class. Within a given algebraic class H = hM where

H is the magnetic field, and A is a linear operator
called the characteristic operator. The charucteristic

. operator 1 is connected with the type of excitation

i

-

and depends on the frequency, the observation site
and the distribution of electromagnetic propertics
gf the medium. The operator i transforms the vector
M being an _glument of the linear space 91T, into
the vector H an element of the lincar space &€

where N and L are the dimensions of the spaces, The

mutually unique transformation (I = N) is carricd

; out by the rpvursiblc operator, whereas the degencrate
, translorrr_natmn (L < N) by an irreversible operator.
- The matrix of the operator A is called the fundamental

chamcter!&tic maérix. This matrix can be reduced
by deleting one or two rows.

5 For the sake of uniformity in presentation the
formutas in parls [ and [1 have common numeration.

Magnetic field and its parts
We shall construct a model consisting of an ouler

non-cpndgcting domain ¥, and inner conducting
domain %; containing local heterogencitics. The

~extrinsic curtent is distributed in the outer domain

%%, ov a primary ficld is given in it. The secondary

field appears due to the clectromagnetic induction

in the inner domain ¥, The primary and secondary

2 Ix_clds may he regarded as external and intcrnal fields.

- It the domain VY, is homogeneous, then the total field

. will be reckoned as a normal field. The local hetero-

; %_:cll)sities in the inner domain ‘U,. create an anamalous
ield.

We shali confine ourselves to a consideration of

. the relationships between the components of the

magnetic fields though such relationships can also

“be derived for the components of electrical fields

as well.

Let B be the total magnetic field observed in our
model. Decompose ﬁ’ into prirnary and secondary or
normal and anomalous parts :

( PO D

[ B -85

o
where A" is the primary field (ic. the ficld that

H@¢) =

~ exists when there is no inner domain %), A" is the

normal field (i.e. the field that exists when there

ELECTRICAL CONDUCTIVITY FUNCTIONS

are no local heterogeneities in the domain ¥;), 7
and H* arc the secondary and anomalous fields res-
pectively. The methods and difficulties of such a
decomposition  are  described in the literature
{Chapman and Barlels, 1940 ; Rikitake, 1966 .
Schmucker, 1970, 1971 ; Berdichewski and Zhdanov,
1973, 1974 . Zhdanoy, 1973 ; Berdichewski,
Zhdanov, Zhdanova, 1974).

The fields &7, ﬁ’, 7" and B (orm the linear
spaces aeﬁp, gy, ¥ey, and B £, whose dimen-
sions, senerally speaking, may differ from the di-
mension of the linear space €/ . For instancc, the
primary magnetic field of an Yarbitrarily oriented
eleclrical dipole has no radial component, and
consequently the dimension of the space ffeﬁ does
not exceed 2. At the same time the dimension L
ol the space Z—JC,{J and conscquently the dimension
L, of the space 3¢ , can be equal to 3. The situa-
tions are also possible wherc the dimensions of
the spaces #¢f and B€] exceed the dimension
of the space #¢/ (for example, on the surface of
a perfect conductor).

We shall now introduce the characteristic ope-
rators A%, kP, hS A" and k* which ',tmnsform tlll!
vector M into the vectors 7, fP &, H"and H*
as follows :

o =
e (—;) =M w=tpsna (20
The operator A® acts from the space 0T, into
the space €7 . If il s reversible then the dimen-
sions of the spaces 0, and J€; arc the sume

Lo =M.

Induction opetators

We shall take a magnefic ficld from some algebraic
class and examine three cases.
1) At a given point 7 let all the operators W@ =
i, p, 5, n, @) be reversible. Then
=
M=t B0 (1)
(summation is not carrivd out with respect to ).
Substituting (21) into (20) we obtain linear rela-

tionships between any pairs of the magnetic tields
under consideration :

PR=HPE «f=rpsmna (22)
where i o
g H=n" @O (23)

The linear operatorsd @6 will be called the induc-
tion operators of the magnetic field. These operators
trunsform the total magnetic field and its parts one
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irto the other. To each ul cbraic class there corres-
pond its own operators 37 whick depend on the fre-
Quency, the observation site gnd the distribution of
the electromagnetic properties of the mediun
Within a given algebraic class the induction operators
can be regurded as the characteristics of the medium.

In the case considered above all the induction
operators are roversible

I ) = g &) (24)

More often the geophysicists deal with the ope-
rator ¥ that interconmects the anomalous field
with the norma| field {Schmucker, 1970). We shall
reckon this induction operator as the basic operator.

2) i some of the characteristic operators A4* 8=
L p, s n a) are irreversible, then the number of
induction operators decreases, 1'ar example, if the
operator /i is irreversible, then the operators & **
and 7 vanisk, whereas the operators 42 ynd /7
become irreversible. Consequently, the system of
transformations (22) is partially decayed and the
relationships (24) ceasss to be valid.

3 all the characteristic operators K@=
Y p. 8 n a) are irreversible, then the induction
operators do not exist and the system of transtor-
mations (22) completely decays,

ANNALES ni: GEQPHYSIGUE

sical space ®,. Expressing the fundan_lenml M-
trices of the churscteristic and induction _)opg}a-
tors in an arbitrary Curtesian basis {;7 185t
of this space we obtain the square matrices ol
order 3 :

3 af
hig o Wy 4

By virtue of (23) we have
= == -' 2 — =1 34"
gyt = ns (R, ()] (25)
ol k= 1.2.3

The induction tensors acting in thEa spuce .(O, I
correspond (0 the furdumental induction matrices.
According to (22) we have

T =955 5@ (26)
i,7=1,2,3

3
(summation is not carried out with respect o B). ]

The induction matrices 7 *® exist if the characte- [
ristic operators 4® are reversible, ie. the determi-

nants of their matrices are non-zero. For cxampl.c.
let the operator A" be reversible. Then (he matrix
I exists and consequently any component of the
field &% can be expressed as a linear combinmiop
of three components of the field A”. The coeffi-

(,7=1.2,3).

o, B=tpsna

a,=tps na

The conditions for the existence and the rever- cients of this linear combination are the clectrical

g%
i
R

o) sibility of the induction operutors are tabulated conductivity functions. a’
'-o:' below. The irreversibility of the characteristic operators
wee

Tuble IT

Conditions for the existznce and (4e reversibility

of the induction operators
ne |

i >_Reversible opcrators |Irreversible operators
Rever- I* ana g8 I exist :

exist

reduce the number of linear combinaﬁons’ asluused j
by the existence of the induction matrices &, but '
generates new lincar combinations owing to the
degencracy of the characteristic matrices /. i
Let the operator 4* (8 =1, p, 5. n, a) be irrever- i
sible, and the dimension of the space #ef be 2. |
Therefore, the degenerate matrix hf; of rank 2 has at |
least one basic minor of order 2, for exumple, the
minor

G

Reversible Irreversihle

Qi q
RS i AL Y ETS)

| sible

|—[rrever- Irreversible operators Induction operators
sivle A ayist J do not exist

The matrices of the induction operators will be
called the fundamental induction atrices. These
matrices muy be reduced by deleting one or two
rows. The shape of the induction matrices, uas in
the case of the magnetotelluric matrices, depends
on the dimension of the characteristic vector space.
The elements of the induction matrices are the

1
qga = hf hg, - "fz /hﬂl 1'

at the upper left-hand corner of the matrix (the
first subscript indicates the number of the deleted
row, while the s:cond the number of the clclult:l‘l '
column). According to the theorem on the h;ls[u
minors, the third row of the matrix is a liaear combi-
nation of the first and second rows :

sz,- = ng "‘f; i wgzhg/ j=123

electrical con ductivity functions, where
# ey
W = 413 e _ G
Induction matrices in the class with tie spuce O, ! a 24
We shall embed the spaces AL, and e . und

- ;] B —pf B B 8
aeLﬂ (Lo, L;<3) into a three-dimensional phy- ‘Il:s"’gn s — hap a3 = Wy By — Highy
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[{ence
HQ =18,O M, = w8, O, M, +
F W), M, =
=W DHPH+WLO D), 2D

i:c. u!c component 1]5 is Lthe Jinear combination of
llllc:llrlly ipdependent components H{’ and Hg. These
r_ulauqnslnps are cualled the Wiese-Parkinson relution
(P‘;':rkknson, 1959 ; Wiese, 1965). The matrices
Wap (=1, 2) will be called the Wiese-Parkinson
matrices.

The matrix W4s reflects the polurization of the
primary lield. All other matrices Wﬂ; B=1ts n a
are assoctiiled with the pelarization of the induced
field and thus may be referred to the induction
matrices. Their elements Wi, and WS, are expressed
in terms of the minors of the characteristic matrices,
and consequently, they depend only on the frequen-
¢y. the observation sile and the distribution of the
clcgtronmgnctic properties of the medium. Within
a given algebraic class the elements W5, and Wg, can
be regarded as the electrical conductivity functions.
The complex vector

— g = (Y
g _ -

Wi =Wy d, + Wyd, (28)
lving in the plane x,x, corresponds to them. This
vector.may be culled the Wiese-Parkinson vector
or the induction vector (induction arrow).

The matric;:s ‘ch* exist if the dimension L, of
the space B'GL’_, is ‘é IF Ly = 1, the matrix h',’}. has
no bfmin minong of order 2 and the Wiese-Parkinson
relation for hy, # 0 and Ay, #* 0 reduces to the
scalur relationship

HE) =W DG =W, DT (29)

where
a #
wi, =¥t LTS
: 32
nf, hgl

We shelt give an cxumple where the matrices 5"
anl ng gxist simultancously. Let the operator A”
be reversible, whereas A* and A% be irreversible (the
dimension of the spaces 3¢/ and J€] is 2). Conse-
quently, the fundamental induction matricesd’..}’ and
I3 exist, and therefore any componeni of the field
" or B can be regarded as a linear combination of
three components of the field H?. Moreover, the
Wiese-Parkinson matrices w;’,a and w;’? exist, there-
fore one of the components of the [ield A or
can be represented as a linear combination of two
other components of the same field.

The fundamental induction matrices and the
Wiese-Parkinson matrices can be uniquely deter-

1LECTRICAL CONDUCTIVITY FUNCTIONS
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mined. As an example consider the matrices & &'
and .W;y'(the operalor K is irrevorsible, and Lhe
space J€f is of dimension 2). Tuke tirec linearily
- 4 ) @) pm)

independent vectors A" A" I with the

corresponding  vectors B 7O . Then
by (26) we have
0B = 5
i,j.k=1,2.3.
hence
yeH=EOPHEOHT 6o
1. k=1,2,3

where [H}’“‘)]" is the inverse of the matrix H}
[ormed by the componenls of three linearly indepe-
dent vectors H"\).

For determining Wi; we shall take two vectors
Y ana B with Jinearly independent compa-
nents A and A} By virtue of (27) we have

(%)

5 -~ L S
o () = OO0 L& =02

hence
Wi = BH® Ga®orr e

where [H]'@’]‘l is the inverse of the mafrix H‘}.(E’
formed by the linsarly in(leg;:qdcnt components
A" and H;m of two vectors H ).

The matrix W;» is a special matrix among the
Wiese-Parkinson matrices as it does not need the
decomposition of the magnetic ficld into primary
and secondary or normal and anomalous parts,

Induction matrices in the class with the spaceJIC,

Consider the churacleristic operators A% and
3. B =t, p, s, i a) which act from the space
9, into the spaces Fef, and Hegp (Ly, Ly < 2)
transforming the vector M into the vectors H* and

B8 .

H ) - = =9 N = .
He(r) = h®(r)M (a)
(32)
-+ - -> >
Hf(r) = WB(r)M (b)

Embed the spaces gei’a and Heﬂ_,, into a three-
di_n_wns_i‘onal physical spuce @4. Introduce the basis
iy, M} for the spacc O, und the Cartesian basis
1d, . dy , dyHor the space @y, In these bases,

—> -+ - —
H(r) = h‘i’}(r)M? Hi(r) = Ix:’;s (r) My

1= 1,23 =12
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The matrices F:ga ard hf; are the fundemental
charucteristic matrices 3 x 2,

II' the operator A is reversible, then by deleting
some row from its rectangular matrix h we can form

at least one reduced square matrix \Vlth a non-zero
determinant. We shali take the matrix h{}(z,] ,2)

as such a one, This matrix is formed by the erst and
the second rows of the rcctdngular matrix h lis
dut\.rmmdnt is the basic minor q3 of lhe fundumeuml

matrix h;\ The roduced matrix h,. corresponds
ta the ncvemble operator A which transforms the
vector M into the vector H“

~ -
Hu (r) = B M

=

Obviously, the vectorflﬁ has linearly independent
components and is the projsction of the vector
HP on the plune x, x5 :

7@ = Hdy T=1.2
By virtue of the reversibility of the aperator h we
have :
M= WG (33)
(sunimation s not carried out with respect to f).
Substituting (33) into (32) we obtain

H@ = a0 DHL ) a,p=t.p.5,0,0034)
where

I = pe () (R (35)
In the Cartesian basis :

He (Y =4 YHEC)

J

(36)
1 =123 =12

where
2D = 1y () (DI

37
i=1,2,3 fi=1,.2

Thus we get the induction operators &*? with the
fundarnental rectangular 3 x 2 matrices

a

Jg"(a,ﬁ =tpSa.a i =1,2,3:7=1,2).

These operators act [rom the plane x, x, into a three-
dimensionaLspace and tra.nsfcy;m the projections of
the field H? into the ficld H*. The third row of
their matrices can be represented by the complex
vector §ly1ng in the plane x; x, :

> - _
Ses = Igfd +9% 4 (38)

L
—
tJ
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This induction vector may be callcd_t}m.S'nhmuckt‘r
vector. The basic Schmucker vector is $77:

The relationships (36) contain the Wiese-Parkinson
relation, Fori = 3 and a = 3 we have

HEG) = WECHREG) + W8, (b ()
where

we =upe wo =ym

31

Thus we huve the Wiese-Parkinson matrix W,"? = 1.2)

whose elements could be expressed in terms of tie
minors of the characteristic matrix hff

PR |
w3| ) _H; 32
3

-Q|-Q
we | e

where

= == B
q? y hgl hgz _hgz hgn ‘Iz“"‘L }’3 kn 31

= g 5o
Qg =5 hfl hnﬁz = kn k‘ZI

Furthemore, we have the induction opcmturs?j“"
with the reduced square maltrices J’}" of order 2
(«,8 = t,p,s,n,a; ,) 1, 2). These operators act
in (he plane X, X and trdncform the pmjecgous of
the field /7® into the prolectjons of the field A*. The
induction tensors acling in the same plane XX,
correspond to them :

HE () = 988 () HE D)
71=1,2

(39)

The induction matrices are determined in the same
manner as(30) or (31). For ¢xample

73 ¢) = m® G 1ap® -
Wo) = O AP O @)

i=1,2,3 = L

where [H,L'“')J‘1 and [H,i‘k)]" are the inverse of the -

matrices A7) and H{®) which are formed by the
linearly _igdepep’dent components H, and H, o tvo
ectors H" or H'.

Thus, the induction matrices §2f and W“A exist if
the characteristic operators h*are rcverslblc ie. if
the rank of their matrices is 2, Bach of the 1ectarguhr
matrices g]‘,’? can be reduced to a tensor matrix of
order 2. For instance, let the operator h" De rever-
sible. Then thc matrices d;a and 31 exist causing
the existence of appropriate linear cembinations.
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.Thc irreversibility of the charactcristic operators
dlminishes the number of linear combinations. For
instance, if A" is irreversible, the linear combinations
associated whh the existence of the matrices 57?"
vanish, whereas the Wicse-Parkinson relation reduces
to a li_qcnr depcndence of any two components of the
ficld H"-

Induction matrices in the clasg with the space J1T

'l‘h'e fundamental induction matrices are column
mutr;ces. On reducing the fundamental matrices, we
obtain the scalar proportionalily coefficients

- — —
HX(r) = 3 (NH] ()
41)

i,j=1,2,3

where the summation is not carried out with respect
t_&))ai,ﬁ. P_.g)y two Cartesian components of the ficlds
H® and I/? are linearly dependent, [f & = § then this
dependence gives Lhe Wiese-Parkinson relation.

Main geophysical applications

.Fields with different cxcitation mechanisms and
qu'ferent spatial configurations are generally studicd
in the magnetotelluric and magnetovariation methods.
These Ticlds can be classified into four basic types :
a) pulsations, b) polar substorms (bays), ¢) quiet
solar diurnal variations, ) world storms. We shall
show that all thesc fields can be reduced to thec
model fields of the algebraic classes discussed in our
{:n:)er (Part T). These model fields are tabulated

elow.

The !nagngtotelluric and induction matrices will
be conmde}-ed in points on the Burth’s surlace with
2 local basis consisting of two ho_rjzonta] unit vectors

d, , d; and a vertical unit vector ds.-

The Earth is reckoned heterogeneous. Since the
atmosphere has very low elggtrical conductivity, wc
shall zssume that the field £ has no vertical compo-
nent on theinnerside of the Earth’s surface (Eckhardt
et al. 1963 ; Swift, 1967 ; Berdichewski, Dmitricv,
Van’ yan, 1971), j.e. the dimension of the space &
does not exceed 2. Simple models show that in this
case there are no such restrictions for the magnetic
field. Therefore we shall suppose that the space 8¢,
has the same dimcnsion as the space Iy except in
special situations.

In this paper we shall confine ourselves only to a
brief remarks on the nature of the investigated fields,
their models, the shape of the magnetotelluric and
induction matrices.

ELECTRICAL CONDUCTIVITY FUNCTIONS
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Pulsations. Today it is believed that the pulsations
are developed as a result of the transformation of
Alfven waves or inagneto-sound waves generaled in
the magnetosphere (Van’yan, Abramov et al, 1973
Gokhberg etal. 1973). In the middle and low latitudes
the pulsations are approximated by the field of an
arbitrarily oriented horizontal electrical dipole
localized in the polar ionosphere (Berdichewski,
Van'yan, OQsipova, 1972, 1973), or by an arbitrarily
polarized non-uniform plane wave consisting of TE
and TM modes (Madden, Swift, 1969). By neglecting
the displacement of the ionospheric dipole or the
yariations in thc wave vector we obtain the model 1
or IV. Following Madden and Swifl, we shall eliminata
the conduction mode TM from model TV and thus
pass on to the model with the induction mode TE
which if needed can be reduced fo the Cagniard’s
model with uniform plane wavc falling vertically
(Cagniard, 1953). The Cagniard’s model is very
convenient in practice since it does nol require any
information about the ficld source geometry and gives
the electrical conductivily functions depending only
on the frequency, the observalion site and the pro-
perties of the medium. Its shortcoming is that the
vertical component of the primary mugnetic ficld
is ncglected. All these model fields form the ulgebraic
class with the space NG, . Thus, for reversible operators
¢ and h, and linearily independent horizontal compo-
nents of the field, the fundamental magnetotelluric
and induction matrices 3 X 2 ate Zg, Yi, ti. mif
andJ%f where i = 1,2.3:;/=1,2.a8 =100,
s, n. a and Zgl = Zn = 0,‘!3| = 13 = Q. The
Wiese-Parkinson matrix is Wf?(/ =1,2:8=tsma)
where WS, =758 Wi, =4% . The fundamental
magnetotelluric and induction matrices are teduced
to tensor matrices Zi7, Yi, i, miy andU?j" (=2
a,f=1t p S n a)acting m the horizontal plane.

[t would be interesting (o study some special
cases, for instance, the linear polarization of the
field caused by the action of enlongated non-
conducting structure (Berdichewski et al 1970).
In this case the operator e is irreversible and Lhe
matrices Y',.,', i do not exist.

Another example is associated with the action
of enlongated conducting structures (Schmucker,
1970). This case is characterized by the lineur pola-
rization of the anamolous field . Therefore the
operator h® is irreversible and the matrices gy, Wi,
do not exist.

Polar substorms. Polar substorms are manifested
in the form of baylike perturbations caused Dy the
electrojet in the auroral zone (Isaev, Pudovkin, 1972).
The drift of the electrojet along the auroral zone
provokes a complex geometry of the primary field.
Directly under the electrojet the bays can be simu-
lated by an infinite rectilincar ionospheric current
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Table 3
Model and Simulated Fields
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| Characteristic Dimerision of Lo :
Muodel 5 . Simulated field
vector M space Iy
1. Motionless electrical ﬁ " i,’ N =2 Pulsations in the middle and
dipole with Lorizontal ; i low latitudes
moment
IL Electricul or magnetic
dipole with momcntlf( 3]
moving along a given -
rectilinear path with a M = P(lo)
given velocily and a given
law for relative variation
of moment :
2) horizontal dipole N =2 Bays in the middle and
moment low latitudes
b} arbitrarily oriented N =3 Sudden commencement of :
dipole moment world magnelic storms :
1. Infinitely long rectilinear Bays in high latitudcs
ourcent & flowing along A s ",
4 piver line in t]1gdirection M =144, e
of a unit vector d,
IV. Arbitrarily polarized non- Pulsations and bays in the
uniform or uniform plane middle and low latitudes
wave
7 o= 7 a-k.r -
HP—[[OEk’ M=H0 ]\’..’72
e =y o =
EP =F, g k-7
. =
with a given waye vector &
V. Mationless currcnt eddy of o Quiet solar diurnal variations
constant configuration wily M= N =1 in the middle latitudcs |
a total magnetic moment L :
V1. Arbitrarily oriented i, D Main phase of the world
upiform magnetic field M= H, N=3 magnetic storm
Hy J

(Van'yan, 1965), and it corresponds to the model 111
which generates the algebraic class with the space
I, - In this model any two components of £ and
H are linsarly dependent according to (19) and (41).
Evidently, the accuracy of such an approximation
decreases in moving off from the electrojet.

In the middle and low latitudes the bays can be
approximated by a plane wave falling vertically
(model IV). Besides, by neglecting the various forms
cf bays, curvature of the auroral zone and the varia-
tions in the electrojet drift velocity we can take the
model with horizontal electrical dipole moving along
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a rectilinear path (model ITa). Both these two models
generate (he algebraic class with the space JT,.
Consequently, in the middle and low latitudes the
transition from the pulsations to bays docs not
change the structure of the magnetotzlluric and
induction matrices.

Quiet solar diurnal variations. These variations
are caused by the Earth’s rotation in the magnetic
field of the ionospheric current eddies (Chapmun,
Bartels, 1940). The eddy centres are localized in
latitudes of about 30°. By ncglecting the changes
ol cddy geometry and using a Jaboratory reference
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frame we can represent the ionospheric current as
a sct of motionless monoharmenic eddies of cons-
tank configuration (model V). In such a model the
time harmonics of the quiet solar diurnal variations
form the algebraic class willi the space J1C, which
zives rise to a linear dependence of any (wo compo-
nents of E and ﬁ These relationships are found to
be valid in the middle lutitudes (40-60°) where the
changes of the ionospheric current geometry have
hardly any icfluence.

World magnetic storms. We shall confine our-
selves {o 4 consideration of two phases of the world
magnetic storms, namely, the sudden commencement
and the main phasec.

The sudden commencement of magnetic stroms is
generally simulated by the motion of a fictilious
magnetic dipole obtained as a result of reflection
of the main dipole field of the Earth at the deformed
surface of thc magnctospherc (Ferrara, 1952). A
dipole at u distunce ol 10-20 radii from the Earth
moves from the Sun towards the Earth and on the
average is normal to the magnetic equatorial plane.
From one storm to the other the oricntation of
the dipole may vary in any dircction within the
limits of some tens of degrees. Neglecting the diffe-
!'ent durations of the process and the variations
in the dipole trajectory and velocity we obtain
the model 11h. Therefore, we can refer the sudden
commencement of magnetic storms to the algebraic
class witl) the space T,

The main phuse of the magnetic storm is developed
as a result of the formation of ring current flowing in
a plane close to the equatorial one and its radius is
about five Earth’s radii (Ben’kova, 1952). The orien-
tation of the ring current plane may vary from storm to
storm within the limits of some tens of degrees. 'Thus,
the main phase of the magnetic storm is satistactorily
approximated by an arbitrarily orlented uniform
magnetic Jleld (model VI). and consequently, it
belongs to the algebraic class with the space 91¢;.

As we see, both these phases aof the magnetic
storm generate the algebrajc class with the space
NT,, In this class the operator e is always irre-
versible as E, = 0. Consequently, when the ope-
rator h is reversible, the following fundamental
square matrices of order 3 exist :

Zy my O (.7= 1,23 ;a,8=tp s na)

i

where Zy, = Z;, = Z;; = 0. The impedance, ma-
gljeuc and induction tensors acting in the three-
dimensional space correspond to them.

We must emphasize here that only for the world
magnetic storms it is possible to determine the ma-
gnetotelluric and induction matrices of order 3
(provided the changes in the polarization of the
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magnetic fickl are sufficiently strong). [n this case
Lhe Wiese-Parkinson relations may exist only under
certain special concitions. For instance, if the ano-
malous field ﬁ" caused by conducting structure is
of the conductive type and weak!y_*assocjatcd with
the vertical companent of the ficld A" (Rokityanski,
1972), then we have
f_1 9
HY () =250 HY " ;§= }5 3

hency
= = =, s
Hy (r) = Wy; NHT =1 4
wherz
ai prin Haen an 2 2N pr QN an sgan
Wé = 997 "-{21‘ Ec N VT =’{_11 32,,'._4..‘7.1.1_ 3l
a1 RN

ANy AT ar &N pp AT oW Qi apen yan
"7!1‘92’.! = I’IJII Jll"l 22 JIZJZI

A second example is also very interesting. Let
us assume (hat the anomalous ficld A3 is much
stronger than the normal one : |H3| > [yl e,
HY = 11}, Then from the relationship

HO=8OHO =123
tordyy # 1 we obtain
HED~wyhmtd =12

where
gal ga‘t
IS (W - T
31 1 adf 32 ]'—J"
— a3 a3

Magnetic field on the Moon. The interplanetary
magnelic field is almost unifarm at distances af the
order of one Moon's diameter. Its oricntation may
vary over rather a wide range (Sonell et al. 1974).
Thus, we obtain the model VI with an ngitrarily
oriented primary uniform magnelic field H filling
the Moon and its cavity (Van'yen et al. 1973). This
mode! generates the algebraic class with the space
M. The secondary field H is genesated as a result
of induction in the Moon.

On the day side subjected to the conducting solar
wind we have A5 =0 and Hy = 0. Conssquently,
the operators 2” and A°® are irreversible which restricts
the choice of the induction matrices. In fact, only
the following matrices may exist :

J;;"(z',j= 1,2,3 ;a=tpsma;f=4Lpn)

where J&f = J38 = J3¥ =0 il a=s, a The induc-
tion temsors acting in the three-dimensional space
correspond to these matrices.

There are no such restrictions for the dark side of
the Moon.
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Discussion

An example of empirical approach may be found
in the monograph by Rokityanski (1972). The
author establishes the shape of the magretotelluric
and induction mafrices irrespective of (he variation
type and introduces the Wiesz-Parkinson relation vo-
luntarily. These short-comings clearly demonstrate
tae difficultics that arise because of neglecting the
functional nature of the linear relationships between
the components of the electromagnstic fiald,

The paper by Lillcy and Bennet (1972) belongs .

to thz most inieresting ones. The Wiese-Parkinson
relation is discussed in detail in it. The authors believe
that only the degeneration of the induction matrix
of order 3 (i.e. the irreversibility of the operator £
in the algebraic class with the space 91 is respon-
sible for the appearance of the Wiese-Parkinson
relation. The models which we c¢xamined herz do
not refute such a possibility, but we think that it
is more of an exception than of a rule, Lilley and
Bennet reject the second cause associated with the
linear dependence of the primary field components
(i.e. with the transition to the algebrajc class with
the space 91C,). Assuming the cxistence of the ma-
trix Wip (f=1, 2) they come to conclusion “that
a we!imstaohshcd Parkinson vector, formed from
an ensemble of events by a consistent correlation
of HY with some horizontal component of the
pnmary field would require a consistent H"/H"
ratio™ which contradicts the structuse of thc pri-
mary ficld because “there is no consistent repca-
tibility of the ionospheric currents”. But this rea-
soning seems to be wrong since the good determi-
nation of a Puarkinson vector testifies to consistent
corrclation between H and some horizontal compo-
nent of the tatal fJeld but not between HY and
some horizontal component of the primary f1eld
Our models, for example, the model of a hetero-
geneous medium excited by planc wave show that
just the lincar dependence of the primary [ield
components is the main cause of the Wiese-Parkinson
relation (at least for bays und pulsations).

Conclusions

We can thus assume that the linear relationships
between the components of the Euarth’s (or the
Moon's) electromagnetic field arc functional rather
than stochastic in nature. If it is true, the magneto-
telluric process will consist of two parts : a) the main
part corresponding Lo Lhe model field of the ajgebraic
class, this part is an ideal linear system with constant
parameters  (electrival conductivity functions),
t) noiscs arising duc fo the discrepancics between
the rcal and model fields. Hence, the statistical calcu-
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lation of the clectrical conductivity functions reduces
to spectral analysis of the field, and th: deténnina-
tion of its lincar part (an idcal system) correspandiag
to the model field of the algebraic cluss. The structure
of the ideal linear system (hence, the shape of fae
magnetotelluric and induction mafrices) may be eslu-
blished a priory by the type of the variatians &and
dimension of the charucteristic vector space of the
proposed model field. I the errors of the myeastre-
ment and spectral analysis are negligibly small, the
deviation of the multiple cokerence function from
unity {or the normalized residual of the multiple
regression fram zero) characterizes the degree of the
discrepancies between the real and model fields.

We believe that such an approach gives a clear
iden of the problem, at lecast, in studying tha busic
types of electromagnetic variations.

In what measure is the functional naturc of the
linear relationships between Earth’s clectromagnetic
field components verified in practice 7 This should
bz the matter of special article, and we can cite here
only some typical fucts : '

— according to Porstendorfer (1961), Berdichewski
(1961, 1965), Keller and Frischknecht (1966), the
scatter of points on relative ellipses applied for the
determination of the telluric and magnetic matrices
in the telluric current method and by the magncto-
variation profiling is rather small (5§ - 15 %).

— according to Berdichewski (1968), Vladimirov
and Krylov (1969), the scatter of elements of the
impedance matrix hand-calculated from individual
quasi-sinusoidal pulsations is rather small, too
{10-15 % in modulus).

— according to Berdichewski, Bezruk, Chinarcya
(1973) und Berdichewski, Kohmanski, Ozerov
(1974), the scatter of elements of the impedance
matrix obtained from short series of pulsations by
mathematical filtration or by disclosure of hidden
periodicity is us a rule small (5-10 % in moculus),

— according to Reddy and Rankin (1974), the
multiple coherence function exceeds 0.9 - 0.95 in
the range of periods from 35 to 2200 sec ; therefore
the linear part of the field predominates over the
nonlinear.

All this correborates the validity of our assump-
tions.

The results obtaincd for the induction matrices
are less convincing. The points on the Wiesc graphs
are greally scattered (50 % and even more) and the
normalized residuals veach 0.5-0,7 (Rokityanski,
1972 ; Schmucker, 1970). But what is the reason
of sucll poor corrclation ! Is it the slight functicnal
connection, or non-adequacy of the graphical
methods and errors of spectral analysis ? The quas-
tion seems not to be clear,
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Wz understand that our hypotheses about the
structare of the external field are schematical and
some episodic breaking of the funclional relation
betweeri the field components may occur, especialy
when dzaling with pulsations and bays in high lati-
tudes, But we would like to finish our paper with
the following optimistic suggestion : let’s seck the
reason “of instability of the magnetotelluric and
induction matrices first of all in the imperfection
of the analysis technique because only in this way
we shall be able to improve the accuracy of the
magnetotelluric and magnetovariation methods.
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