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CAUCHY INTEGRAL ANALOGUES FOR THE SEPARATION AND
COMTINUATION OF ELECTROMAGNETIC FIELDS WITHIN

CONDUCTING MATTET

M.S. ZHDANOV

lnsticute of Terresiriai Magnetism, lonosphere and Radio Wave Propagation, U.S.5.R. Academy
of Sciences (IZMIRAN), U.S.S.R.

Abstract, The muain results in the theory of the interpretation of geopotential ficlds are gencralized to
she cuse of arbitrary variable electromagnetic fields by means of elaborating electrodynamic analogues
"ar ddie integral of the Cauchy type.

The generalized Kertz method tor separating a variable electromagnetic ficld into parts related to
=he cources Jocated in different regions of space is elaborated on the basis of this technique. The
zereralized Kertz method allows the selection of external and intemal. normal and anomalous parts of
reomagnetic field, as well as the separation ot 2eomagnetic anomalics into the surface and deep
onents caused by conductivity inhomogeneities in the Farth's crust and upper mantle.
> theory of analytical continuation of variable electromagnetic fields in a conducting medium
is also developed in the present work using the technique of analogues for the integral ot the Cauchy
tvpe. It is shown that analytical continuation of a field downwards permits the determination ot the

lecation and form of deep geoelectric inhomogeneities according to the contiguration of the isolines
a0 flux functions for magnetic and electric tields.

1. Introduction

Elaboration of effective methods for the interpretation of electromagnetic anomalies
caused by inhomogeneities in the structure of the Earth's crust and upper mantle is the
challenge in today’s geoelectric methods. Solution to this interesting problem meets a
variety of difficulties related to the necessity to divide beforehand the fields into the

external and internal, normal and anomalous, surface and deep parts, as well as to the

A

rmination of the parameters of deep geoelectric inhomogeneities. Various approaches

tc the solution of these questions have been discussed in the following publications:
Rikitake, 1966; Schmucker, 1970; Rokityansky, 1972, and in numerous other papers.
However, there is a long way to go to finish the problem. If the degree of perfection of
the methods for solving the inverse problem in geoelectric sciences could be compared
with that, for example, in gravimetry and magnetometry, then. without any doubts, the
Somiparison would be in favour of the latter. At the same time, there are a variety of
orodlems in the geoelectric sciences which can be successtully soived using principles
ogous to those well developed in gravimetry and magnetometry. The problem con-
cerns the separation of anomalous tields and the determination of the geometry of the

forming the anomalies. The majority of the results in the theory of potentiul

L

f@ravitational and static magnetic) tields have been obtained using the technique of

the inteoral of the Cauchy type for complex-analyiical functions. In the nresent review
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116 M.S. ZHDANOV

these results are generalized to variable electromagnetic fields by elaborating certain
analogues for the integral of the Cauchy type.

2. Electrodynamic Analogues for the Integral of the Cauchy Type

It is worth remembering, first of all, how the concept of the integral of the Cauchy type
is introduced in the theory of the functions of a complex variable. For functions of 3
complex variable the Cauchy integral formula is known, according to which from the
values of the analytical function f{{) at the boundary C of a region D it is possible to
determine f(z) everywhere in D:

_ 1 f§)ds
fz)= 2—7”7?*_—2’Z€D (1)

where z denotes any internal point of the region D confined by the contour C. If, on the
contrary, the point z lies outside the region D, then according to Cauchy’s theorem:

1 A)dE
— == =0;z€D
2ni (ﬁ [ @)
(D = D + C is the region D with the boundary C). The Cauchy integral (1) gives a repren-
tation of the function f{z), analytical in the region D, through its boundary values.
However, this integral will make sense also in the case when an arbitrary contour C and
a certain continuous function ¢({):

14 e6)
K= — O == di; 3
@ 2mi g) §'—z S ®)
c
on it are given in the complex plane.
The integral (3) is called the integral of the Cauchy type, and the function ¢({) is its
density. The function K(z) defined by the integral of the Cauchy type has a number of

remarkable features, the basics of which are the following
(1) K(z) is analytic at any point z which does not lie on the contour C.

(2) If ¢({) are the boundary values on C of the function y(z),analytic everywhere in -

D, then K(z) = (z) within D and K(z) =0 outside D.
(3) Limiting values of the function K(z) exist when z tends to a point on C from

within and from outside the region D, however these limiting values are different, since @ _

jump takes place when passing across C; the value of the jump is equal to the density
¢($) of the integral of the Cauchy type (the well-known formulas of Sokhotsky—Plemelj).

In the theory of two-dimensional potential fields the integrals of the Cauchy type
are of exceptional importance. With the help of these, methods of the separation of fields
(Kertz, 1954) and those of analytical continuation (Strakhov, 1972) are elaborated,
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sroblems concerning the ambiguity in solving inverse problems (Tsirulsky, 1569) are

svestigated and the location and form of the field sources (Strakhov, 1970) are deter-

mined,
We shail demonstrate that a theory similar to some extent to the theory of the integral

¢ the Cauchy type for complex-analytical functions can also be developed for variable

wonochromatic quasi-steady electromagnetic fields.
losed surface contining the region D in the space. Introduce the

He a smooth ¢

)

Let

moratuons

28 6 (G r:f_‘_ T 5 = f 7 o M.
FS (7.6, U)= - _é{ (n, U)gAad“(J+{L11XLJXgradu(J dsH;

PS4 G U= L [f [n X UIGdSH )

]
S

i3 the unit vector of the normal external to S. G = G(r?, r* is the fundamental

vhere n2 3t

yreen's function for the Helmholtz equation:

AGHY. M= K2GE Yy — 4as(rT - M) (3)
3 is the Dirac function), i.e.

. . 1 g
G, y= - exp(=K| A —rH ).
17—t
We call the electrodynamic analogues for the integral of the Cauchy type the following

xpressions:

H(i"-’) =F54, G, U) + aPs(r?. G, V).

. (6)
E(r?) =R G V) + iwuP(r?, G U);

. 3 < 5% q . - 2.y
Mere . w4, 0 are certain positive constants subject to the condition: —iwuo = K=y, ¥V
re vector functions defined on S called the densities of the integrals of the Cauchy type

1d related to each other by:

(U.n)= - div_ [nX V]

Wi

P B .

(V.u) = - —div [n X U]
P

Ry

i
i

re divg 1 the symbol for the surtace divergence,
principal features of integrals (6) allowiag us to call these analogues lor the

ety

reoral ol the Cauchy type. are the following:

e e e e e
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(1) Everywhere in the space, except on the surface S, expressions (6) describe the
functions satisfying Maxwell’s equations for a quasi-steady monochromatic field ; assuming

a time factor exp(—iwt):

curl H =of
@)
curl £ = iwuH

Therefore, the constant ¢ and u introduced earlier are identified with the electrical
conductivity and magnetic permeability for a homogeneous conducting medium, and w is
identified with the circular frequency of field oscillations.

(2) If densities (6) are the limiting values on S of the functions / and e satisfying over

the region D confined by S Maxwell’s equations

curl h = ge ,
()

curl e = iwph ,

then outside S analogues for the integral of the Cauchy type are equal to zero, and within
S are equal to & and e:

_|0:9¢D _|0;9¢D;
Hi%)= h(r?);q €D Eirty= e(r?);q €D; ®)

If the fundamental Green’s function G is substituted in expressions (6) by an arbitrary
solution g of the Helmholtz equation in D, then

FS(r9, g h) +oP5(r?,g,€)=0,
(10)
FS(rd, g e)+ iwpPS(rd, g, h) =0,

where
Ag(r?y=K?g(r%) ;9 €D.

(3) For the limiting values of electrodynamic analogues for the integral of the Cauchy
type at the surface of integration.S, formulas similar to the conventional Sokhotsky—Plemelj
formulas in the theory of the integral of the Cauchy type are valid, namely

H*(r°) = lim H(r9) =F5(-°,G. U) + oPS(:°, G, V) + Ly an
ik 5 Ut \
q&€D
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H(r%) = lim #(rT) =FS(°, G U)+oP5(/°. G, V)w”l&'(ro}‘
([—»(‘ =
4%5

where 7% 1 the ~adius-vector of the point O situated on the surface 5. The same relation-

5 held for the function £779 ).

From the latter formulas it follews that:
HY(2) —H ()= U,
EXPY —~E°(r°%)= V(7).

(Cansequently, when passing across the surface S analogues for the integral of the Cauchy
e nnderzo a jump, the value of the jump being proportional to the corresponding

Jensities.

The aforementioned properties of analogues for the integral of the Cauchy tvpe allow
15 o0 solve the problems of separating a variable electromagnetic field into different parts
ind of continuing it into arbitrary regions of a conducting medium, i.e. the fundamental

sroblems in the theory of interpretation of 2eomagnetic fields.

3. Separation of Variable Electromagnetic Field into the External and
Internal Parts (The Generalized Keriz Method)

>re of the first problems resulting from an analysis of the natural variable electromag-
12tic field ot the Earth, is its separation into external and internal parts. The separation
>f the tield into external and internal parts, first of all, allows us to determine whether the
1eterogenceity observed in the distribution of the variable gecomagnetic field at the surface

flae By

orents exciting an externai field, or to the hererogeneity in the structure of the Earth’s

Farth (the geomagnetic anomaly) is related to the inhomogeneity of ionospheric

vierior. Thus the separated internal part of the geomagnetic field is the principal object

s further investigations.

The fundamentals of the procedure of separating the geomagnetic field into external
nd internal parts was claborated in the classical works ot Gauss in application to the
nalysis of a ficld on a sphere.

These investigations have been developed lately in the following works (Vestine, 1941
vz 1954 and Nedyaikov, 1965), where methods have boen presented for the separa-

n of the potential tields prescribed on an arbitrary surface of observation S The
> chnigue elaborated above lor the analogues for the integral of the Cauchy tyne penmnits
i o extend these methods to variable electromagnetic fields.

Ler & and /7 be clectric and magneric fields excited m o hormogencous unbounded space
: nature locared within the

stemis ol sources o

h conductivity o hy two g

s Dy and /25 iTigure 1), The fields £ and & can be represented in the form of the
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sum of two fields:

E=EM+g® g=p0) 1y (13)

Fig. 1. The generalized Kertz method for separating a field into the external and internal parts,

where the components EM), H(1) are related to the sources in D, and EG), H) with
the sources in D, . The electromagnetic field at infinity satisfies the radiation condition.

We formulate the problem of the determination of the fields £(1), (1) g(2) ang g(2)
from the given values of A and E at the surface S, i.e. we formulate the problem for the
separation of the electromagnetic field into partsrelated to the sourceslocated on different
sides of the surface S (the positive direction of the normal to S is from the region D, to
D, ; the region confined by S we denote as D).

We calculate the integral of the Cauchy type:

H(r)=F509, G, H)+ oPS(H, G, E). (14)
In conformity to (9):

HO ) ;qeD

q =

H(r?) —H(])(I‘q) gD (15)
Since the fields #1) and H(®) are continuous in the neighbourhood of S, then

B () =10,

H(r°) = H(), (16)
Substituting formulas (11) into (16) we obtain:

HO®) = LHOO)—~ FS(°, G, H) - oPS(°, G, ),

(17)

HOE) = L) + B¢, 6, 1) + oS00, 6, 1)

and in a similar manner for the electric fields:
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(VSR

|

ey = LEeoy 800 6. B) - iwowpSi0. G, ),

=5

i

(18)

I(0) = ZEG) + FS(°, G, E) + iwpPS(7°. G, 1.

[

siion.
The method developed {which may be called the generaliz:d Kertz method) can be
>d widely in solving inverse problems in the geoelectric sciences; for separating the total
;orromagnetic field of the Earth into the external and internal parts or into the contri-

tions from various conducting zones within the Earth.

4. Separation of a Field into its Normal and Anomalcus Parts

is problem is one of the central problems for the analysis of a field. In the electrical
onaissance methods using artificial fields the abovementioned problem is solve!
tively easily since the prescribed source normal field can always be calculated, and the
ymalous field is obtained by subtracting the latter from the observed field. In studying
iations in the natural electromagnetic field of the Earth such an approach cannot be
d, since our concepts of the sources of the field are very schematic. At the same time,
separating a variable geomagnetic field into normal and anomalous parts a method
be used representing a development of the Kertz method and based on the difference
the space distribution of the normal and anomalous fields caused by the fact that the
izces of the normal and anomalous components of the field are disposed on different
es of the surface of observation,
To illustrate this method we consider a model consisting of two half-spaces [I” (the
oer) and 117 (the lower) divided by a piecewise smooth surface S (Figure 2). The half-
rees 1T and 117 are characterized by conductivities

rrﬂ), I=1,2
ere the index / = [ refers to 117, and / = 2 to [1*, and each has constant magnetic

ineability g .
nothe lower half-space rthere is a region of inhomogeneity £ with some conductivity

—

o(r?y= 0B+ Mo(r9), g €0, (19

“erent from that in I, where ¢ is the point of observation. The electromagnetic field
~eited in the medim by an arbitrary system of sources located in the region 2, in the

e’ boa BF . s a.d
2T nait-soace.,

Considering a quasi-steady monochromatic ficld we shall write the main equations for
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n+ 6-(2)

N

Y

Fig. 2. The model of the medium consisting of two homogeneous half-spaces [T and IT” separated by
the surface S. There is a region of inhomogeneity Q in I,

the vectors of the electric £ and magnetic H fields.
At any point of the space, except the points belonging to the regions P and Q the
Maxwell equations are valid:

curl H= olVE

curl E = iwpoH (20)
where
I=1atq€ll” —P, and!=2atqgEN’ — Q.
In the region P:
curl H=WE+7, ,
curl £ = iwpnoH, @1
where /© is the density of external currents.
In the region Q:
curl H=0C)E + AcE = dPE+j€
(22)

curl £ =iwueH,

where ,:‘Q is the density of excessive electric currents in the region Q.

Thus, relationship (22) makes it possible to consider the lower half-space 11" as every-
where uniform, the presence of the region Q being taken into account by means of the
excessive currents and charges.

e —.
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The electric and magnetic fields can be represented in the form of the sum of two

jelds. i.e. the normal and anomalous fields:

E=f +& H=H +H (23)

n a4 1 a ‘

The normal part describes the field excited by external currents in the absence of an

shomogeneity {Ao = 0} and the anomalous part — the field caused by the inhomogeneity.

» other words, the anomalous {ield can be regarded as that of the charges and currents
¢ distributed over the region ¢, This field propagates in a two-layered medium.

The normal field is represented in the form of two fields — the primary ('1“1[);1,(5.1 ) and

. 1)
;condary (H ,‘g’z):

i

.

=H +H £ =

il e En Tt £
12re the primary normal field characterizes a field of external currents in the homoge-
ous space with the parameter 0(‘), and the secondary field — a field of the currents
Zuced in the half-space 117, In a similar way, the anomalous field can be represented in
» form of the sum of the ‘primary’ (‘{',{a, (%“a) and ‘secondary’ ((f],a‘(E ) tields:

2)d
- + . = ~
Ha “l,[zz T|‘3[,{a’ [zz (5a +(-§a ? (-“D)

z2re the primary anomalous field characterizes the field of the charges and currents
iuced in the region Q and propuagating in the homogeneous space with the parameter
) and the secondary field is the anomalous field resulting from the interface S. Conse-
antly, the ‘primary’ anomalous field is that excited by the inhomogeneity Q in the
sounded homogeneous space with the parameter 0(2), ie. it is ‘pure anomaly’, which
1ot complicated either by the external sources, or by the influence of the interfuce S,
refore the separation of this field considerably simplifies the solution of the problem
erning the determination of the heterogeneity region (). From Equations (23),
y and (25) it follows that the field observed at the surface S can be represented in the

2

11 of the sum

H=/ +§1 +1 +H (26)
@ fig e
similary tor the electric fields. Now we consider methods for the separation of the
i electromagnetic field into che normal and anemalous parts and for the separation of
orimary normal and anomalous ficlds under the condition that the parameters ot the
spaces T and 117 (6 o)) are known.

T i casy o obuiin g selution o this problem using the general method of separating

Jields outlined in Section 3. Specitically, by using formulas {(17) for the (ields pres-

=d at the upper (marked by the index ") and lower {marked by the index =7 sides

e surface S, we obtain:
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¢ = 27507, 6, ) + 2000P5(7, (), £,

HY(r7) = —2F5(:9, 6, iy - 2000P5¢%, 6D, ) @7

where g € S. (Indices (1) and (2) at the Green functions denote that the latter are taken
either for the upper half-space with the wave number K, or for the lower one with the
wave number K, respectively). Similar formulas for the electric field are obtained by
interchanging # and E and replacing o{1:2) by iwilg.

At the interface the following conditions are fulfilled:

OO
ET=F"+ —0@7—(E ,mn,

where n is the unit vector of the normal to the surface S directed to the lower half-space.

With allowance for (28), Equation (27) can be reduced to the form:

HY) = —2FS¢9, 60 0 —n)+ 2759, 6O 1) -
~20P5¢9, GG E— E ) +200pS¢9, 61D, E ). (29)

H*=H", (28)

An expression of similar form is also obtained for the electric field.

These vector equalities form a system of 6 integral equations involving 6 unknown
functions (£, Eya' E,  H,, Hya, Hza). So, the problem of the separation of the total
field into normal and anomalous parts is, in the general case, reduced to the solution of a
system of integral equations. Methods for solving this problem for plane and spherical
surfaces S are described in the following works: Zhdanov (1973b), Berdichevsky and
Zhdanov (1973, 1974).

At the same time, the problem of selecting the primary normal and anomalous fields is

solved directly using integrals (17):

1,0 = 0D~ FS2, GO, 1y — oDpS(r2, 60D, B,
1 :

) = LHE ) +FSG9, GO, 1) + 659, 60, ),
1

(30)

and by analogy for the electrical fields.

For example, if S is the surface separating the non-conductive atmosphere (o(‘) =0)
from the homogeneous conductive Earth (0(2) = o) containing the heterogeneity region
0, then formulas (30) can be written as:

1 1 )
7 D= SHED+ | {(n, Hgrad Go + [[n X H) X grad Gol}ds,
s (31

11{[1(,,4)= %H(rq) == 4% :Q'l(n, H)grad, G + [[nX H]X gradu(]J l dsH —

(I [ X E]GdsH

4m --
S
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here Gy = 1/ W9 — | is the Green’s function for the Laplace equation and where

~

P=exp(— K17 — rHD/1r? — #H] is the Green’s function for the Helmholtz equation.

Thus, the primary normal magnetic field is determined directly from the magnetic
old at S without any additional information, and to obtain the primary anomalous
cunetic field it is necessary to know the conductivity o of the homogeneous part of the

zrchand, in the general case the electrical field at an arbitrarily shaped surface S.

5. Separation of Geomagnetic Anomalies into the Surface and Deep Parts

ectromagnetic anomalies can be subdivided in accordance with the nature of their
terogeneities into two groups: (1) the surface anomalies caused by electrical inhomoge-
ity of the near-surface layer of the Earth; (2) the deep anomalies related to the action
—onductive zones in the Earth’s crust and upper mantle*).

In interpreting electromagnetic anomalies one has, first of all, to determine to which
e above groups they belong. Most frequently, in practice both types of anomalies

observed simultaneously. i.e. the anomalous field represents the effect of two source

ctromagnetically interrelated. The latter circumstance leads to essential difficulties in
taining results from depth, since shallow inhomogeneities distort the field under
servation. Therefore, the separation of electromagnetic anomalies into the surface and
>p part is the challenge in the theory of interpretation. The principles of solving this
solem are later set-forth on the basis of the general theory for the separation of ficlds
-cribed above. The main idea of this method consists in the fact that the electromag-
-ic field being observed is related to three systems of extrinsic currents: (a) a system
Ionospherical currents, (b) a system of the currents induced in the near-surface inho-
rgeneous layer, (¢) a system of the excessive currents filling the deep geoelectric inho-
rgencities. The separation of these tields occurs by means of separate determination
<he components stipulated by every one of these sources.

To illustrate the method we change the model of the Earth considered in Szction 4
‘nosing that at the interface. ie. at the surface S there is a thin conductive Price sheet

the surface conductivity £(r"), uES continuously vurying along § (Figure 3). The

~or half-space IT7 is an insulator. As in Section -+, we suppose that the medium below
sheet S is homogencous., but that in D the conductivity varies according to an arbitrary

fo=const, g& D .
o+ Au(rty g =D,

:s classification ditfers from that of Schmucker {Schimucker. 1964) by the fact that transitional
Aeep anomaties awe united inoone class of deep anemalies. Such a unilication is stipulated by the
1od For the mterpretation of rransttional and deep anomaldics that can be eluborated using the same
stples and ditfers from the miethod lor the interpretation of suitace anomalics.
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Fig. 3. (a) The model of the Earth containing surface and deep geoelectric inhomogeneities and
excited by the currents ]P (b) the model of the homogeneous Earth excited by the currentsf'P, jD’]S‘

In such a model the region D models a deep geoelectric inhomogeneity, and the sheet
S approximates the near-surface inhomogeneous layer of the Earth. As above, a field in
the model is excited by the external currents jP in the region P CII". The electromagnetic
field in the model satisfies the equations:
(Din ™

curl H =jP ,  curl E=iwugH . (32)
(2)in IT*

cul H= o DE | curl E=iwuoH . (33)
At the sheet S the boundary conditions

[nX (H*—H)] =~ £E_,
[nX (E*—E7)]=0. (34)
are fulfilled, where the indices ‘" and ‘+’ denote the field components on the upper and
lower side of the surface S, E_ is the electric field tangential component on S, n is the
unit vector of the normal to S directed downwards. The tangential components of the
electric and magnetic fields are continuous at the surface £ confining the region D (Figure
3(a)). At infinity the fields satisfy the radiation condition.
Equations (33) and the boundary conditions (34) can be presented in the form

cul H=oE +jP,  cull E = iwu, H, - (9
(nX@H*~H)]==J5,  |(aX(E*-E)]=0; . (36)

where ;¥ and J° are the volume and surface densitics of the excessive currents in the-
region D and sheet S, respectively:

-
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jD=_\GE, JS='§T.

|
o
~J

. i 3 a5 % s < 1 o P
herefore, the model of the inhomoueneous Earth excited by the currents;l

s ¥ - 5 ] LD S
o) is equivalent to that of the homogeneous Earth excited by the currents /, /=, /°. All
srerogeneities are substituted by these excessive currents (Figure 3(b)). Consequently

i

(Figure

v electromagnetic tield in the model can be represented in the form of the sum of the
. D and S-components caused by the excessive currents in the regions P, D and sheet S,

wspectively:
H=H? +HP + HS, E=EF +ED +FS . (38)

scording to the terminology accepted above the P-component of field represents the

zmal field and the sum of the D and S components gives the anomalous field
A =HP  H =HP+HS,

Elzgpy Ea:ED'f'ES,

7

(39)

us the D-component can naturally be identified with deep anomalics, and the S-compo-
1t with surface anomalies. The problem describing the separation of electromagnetic
smalies into the surface and deep ones is therefore reduced to the separate determina-
n of the D and S components. Let us solve this problem.
_f the total fields on the upper side of the surface S7, viz.: [, £ are known, then it
I be possible to separate the total field into the normal and anomalous parts using the
seedure set forth in Section 4, in so far as the sources of the corresponding components
on different sides of the surface of observation §7. Further, under the condition that
sheet conductance £ can be assigned, it is possible to select the D and S field components.
using the boundary conditions (36) it is possible to calculate the fields /" and £% on
lower side S of the sheet. After mapping the field on the surface S*, the P and S

7 es turn out to be over the surface of observation S*, and the D-saurces under it.
soequently, it we use the method of separating the lields described in Section 4 to the
and £7 fields, then we shall obtain the ‘anomalous’ field A%, £* consisting only of the
Smponent:

*

11": _ }[{) - ]]S’ E” - EP + ES. H; _ 1.1]) E’E‘ = ED. (}O)

N 5

S-cemponent of the field in accordance with £39) and (40) is determined by simple

traction:

HS =H -

n

H. ES=E —F (1)

ar the purnose of ational convenience, it is useful w select the primary
: : 72
doanomalies 7Y

»e . N _f' . .
the tieids excited by the currents ]‘) in a hemoye-
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neous unbounded medium with the parameters o, y. This problem is solved directly
using quadrature formulas of the type (30), if the fields #”, £ are known on the lower
side of the sheet.

What is the physical sense and practical meaning of the operation of separating the
primary deep anomalies HD“), ED(I)?

According to definition, the primary deep anomaly is the field excited by the currentg
72 in a homogeneous isotropic medium. The density of currents /P is defined not only
by the parameters of the deep inhomogeneity, but also by the external currents j© and
the surface inhomogeneity S. However, the currents jD are localized in the space exclys.
ively within the region D, therefore, the field HD(U, ED(I) allows us in principle tq
determine the geometry of deep inhomogeneities and their location in space. Thus, the
effect of /¥ and S on the field is preserved, but their sources are as if transferred in the
space and are concentrated within region 0. Consequently, we can consider the primary
deep field as an anomaly in its ‘pure’ form, complicated neither by external sources (in
the sense mentioned above), nor by the surface heterogeneities S. The selection of such
a field is of convenience from the viewpoint of searching for the deep inhomogeneities

2,

6. Analytic Continuation of Variable Electromagnetic Fields in a Conductive Medium

In interpreting gravitational and static magnetic anomalies the methods of analytic
continuation are widely used and consist of the reconstruction of the field distribution
within a domain from its values known at the surface of observation, These methods are
a powerful tool for solving a number of inverse problems in gravimetry and magneto-
metry.

The possibility of transferring the ideas and methods of analytical continuation of
potential fields to variable electromagnetic fields was first considered in the works of the
Indian geophysicist Roy (Roy, 1968, 1969). We give below the general solution to this
problem based on the technique of analogues for the integral of the Cauchy type.

The problem of the continuation of electromagnetic fields is, in the general case,
formulated in the following manner.

Let D be a region in the half-space confined by two surfaces S and Z. The following
situations are possible:

(a) The surfaces S and X are closed, Z being entirely within S (Figure 4(a)).

(b) The surface S is of infinite extent, separating the whole space into the lower
{I* and upper [ half-space, and 2 is closed, = being entirely situated in I1* not inter-
secting with § (Figure 4(b)).

(c) Both the surfaces S and T are of infinite extent, ¥ lying entirely in I1" not inter-
secting with S (Figure 4(c)).

Let the magnetic field H and electric field £ satisfy everywhere in [ the Helmholtz

equations:
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AH — K=o, (42)
AE - K*E =0. (43)
where K% = — iy 0 = const,

a) <)

Fig. 4. On formulation of the problem on the continuation of electromagnetic field.

We assume that at the surface S the values of the H, F fields and their normal derivatives
3i4j0n, 0E[On, are known.

At infinity the radiation condition is fuifilled. It is necessary to determine the H, F,
jelds everywhere within D.

In such a formulation the problem of the continuation of electromagnetic field is
-educed to the Cauchy boundary-value problem, the uniqueness of solution of which is
wve'l known. However, of importance in the continuation problem in the geoelectric
sciznce is the circumstance that the boundary T of the region D, within which the field
satisties Equations (42) and (43). is usually unknown. Moreover, the aim of continuation
s frequently just the determination of this boundary.

Note, too, that the problem formulated above is related to the class of incorrecily
sosed problems of mathematical physics, in so tar as infinitely large variations in solutions
nay result from small variations in the initial data. Therefore in the numerical continua-
‘icn of electromagnetic fields the use of corresponding regularizing algorithms is needed.

Zhdanov (1973a) shows that the continuation probiem can be reduced for a number
>i important cases to the spatial transtormations of a field. Here we give the general
cazme for elaborating such methods.

Note, first of all, that as a result of Maxwell’s equations, the normal derivative of the
nagnetic feld can be expressed in terms of the electric field and tangential derivatives
of the magnetic field, and vice versa, the normal derivative of the electric tield can be
letermined from the values of the magnetic ficld and the tangential derivatives of the
‘lectric field on S.

it is therefore possible to formulate the continuation problem just for the 2iectromag-
1o fields &, /7 given on S and continued in D, and this problem possesses a unique

TTTERT m T S ST L
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For obtaining the integral representations of the analvtically continued electromagnetic
field we shall use the technique of electromagnetic analogues for the integral of the
Cauchy type. Consider the point ¢ from D. In accordance with (9):

H() = F5¢ .G, H)+oP5(r?. G, E) + \
+F2(r9 G, H) + oP~(. G, E) , (44)

where G is defined by formula (5) with the wavenumber A’ from (42) and (43).

Thus, for solving the problem of electromagnetic field continuation it is sufficien: to
calculate the integrals F> and P in terms of field values at the surface S.

Suppose, that such a region y(¢), ZCy(g) exists, where the expansion:

Gre M= [ fr, Q) g (2, rhaQ (45)
Q

is valid, the functions g(£2, ™) everywhere in v(q) satisfying the Helmholtz equation:

AL, rt) — Kg(@. ¥y =0. (46)

Substituting (45) into the integrals F“v, P~ and changing the order of integration
we obtain:
FX04, G, B) + aP=(r9, G, E)
N o S . (47)
= | fr?, Q). {F2(Q, g H) + oP~(Q, g E) 1 dQ.

During this instant, according to (10) and under the radiation conditions to be fulfilled

at infinity, by virtue of (46),

FX7S(Q, g Hy+oP~"5(Q, g, £) = Q.

Hence:
FU(Q, g H) +0P=(Q g, F)y= — F5(Q, g, H) — aPS(1 g E°
Consequently, expression (44) may be written in the form:
Hr = FS(r9, G i)+ oPS(r?, G E) — o
- f(rq_,mfl"FS(Q, g H)+aP5(Q. g E_)!- g . N
Q ‘

oo = ~ o C Y 1 o 3 .. X . o
A simnilar formula for the elecuric field is obtained from (49} by substituting £ 1< H,
F/ for E and o for iwpg. It is formula (49) that solves the problem for the anal yiic con

tiruatior: of the field into the region D.
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Therefore, the continuation problem is reduced to the search for the expressions of
‘the type (45) that allow us to represent the Green’s function in the form of a sum of
products of two functions depending on the coordinates of the point of observation ¢
and the coordinates of the point of integration u. As is known, such expansions are in
practice realized in those orthogonal coordinate systems, in which the variables in the
Helmholtz equation are separable (Morse and Feshbach, 1953).

In the three-dimensional case there are 11 basic separable coordinate systems for the
Helmholtz equation: (1) rectangular, (2) circular cylindrical, (3) elliptical cylindrical,
(4) parabolic cylindrical, (5) spherical, (6) conical, (7) parabolic, (8) elongated spheroidal,
(9) oblate spheroidal, (10) ellipsoidal, and (11) paraboloidal.

In the two-dimensional case for the Laplace equation (K = 0) all the coordinates
obtained by conformal transformation of the rectangular coordinates are separable, and
for the Helmholtz equation those coordinate systems are separable that are formed by
confocal conical sections.

For v(q) it is therefore possible to take any region confined by the coordinate surfaces
(or by the lines in the two-dimensional case) of that coordinate system, in which the
variables in the Helmholtz equation are separable.

As an example, we consider a three-dimensional situation (c) with the surface §
extended to infinity and with £ — the horizontal plane (Figure 4(c)). In the rectangular
Cartesian coordinate system expansion (45) for the Green’s function takes the form

(Morse and Feshbach, 1953),

Gird, iy = —L— exp(-KIrI—rH))
T
+ oo
1 Tri g 3
=[] —explila(x® — x*) + B(r? — Y] T0(27-2H) | dadg

(50)

Where v =+/a? + 8% +K?, Rer>0.

The sign ‘—’ in expansion (50) is taken under the condition Z9 > ZH and the sign +
under the condition Z¢ < Z*. For our case Z9 > ZH (the Z axis is directed dow nwards)
By comparing (45) to (50) we assume:

f09,Q)= s explilax? +BY7) - »29]
2Ty
(51
g, )= exp[—i(ax™ + gYH) +pzH).
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Substituting (51) into (49) we obtain:
Hr?) = FS(¢9, G H)+oPS(r?, G, E) +

8'1 ff lexp( vZq) expli(aX? +BY9)] X

X [[ln, H)Q + [ [n X HX Q] +io[n X E]} X (52)
S

X exp[—i(aXM + BYH)] exp(vZ¥)dSHdads,

where Q = (o, B, iv), n is directed into the lower half-space.

A similar formula for the electric field can be obtained by replacing £ by H, H by E
and o by iwp,. These are the formulas that solve the problem of the electromagnetic
field continuation from an arbitrary surface S into the region D up to the horizontal
plane Z.

Formulas (49) and (52) give only the formal solution to the problem in the sense that
for using these it is necessary to know the accurate and continuous values of the fields
at the surface of observation. For a practical application of these formulas it is necessary
to extend them by their regularized approximated representations. The simplest, but at
the same time rather effective, method of regularization consists in limiting the range of
interpretation of the ‘frequencies’ « and 8 by a finite cut-off frequency Q. Expression
(52) thus takes the form:

H(r )~ Hreg("q) =F51, G, H(B)) +aPS(r9, G, E(‘s)) +

Q
T f I ff{(n, HOVQ+[[n x HO x Q)+ io[n x £ | x
81, -, s |

X%exp[——v(Zq—Z“)] exp{i[a(Xq~X“) HB(YI-vHt dSHdadB, (53)

where o ), EG) are approximate values of the electromagnetic fields assigned at the
surface S:

1}

H® )(r“)

E(‘S )(r“)

H(r™) + 5H(rM),

E(H) +8E(rH),

6 H, 8F are observational errors.
The cut-off SZb can serve as a regularization parameter. To determine the optimum
value of ‘Qb’ it is necessary to know about a value of interference:
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ISHI<S,  oSE/KISS, (34)
where
sl =/ 16 H(rHy i dsH (55)

N

The optimum frequency Q, can then be found on the basis ot the Tikhonov—Ivanov
ontimum principle (Ivanov, 1966; Strakhov, 1569):

(L3 dy — greegpty)2 5212 = min, (56)

[t is easy to work out formulas similar to (49)--(56) for analytical expressions for the
continuation of electromagnetic fields into the regions confined by the coordinate
surraces of the other separable coordinate systems enumerated above.,

he aim of analytic continuation is, first of all, the detection of singular points, lines
and surfaces, which by analogy with the methods of gravimetry and magnetometry can
be regarded as effective sources of the anomalous field. The distribution of these effective
sources reflects the geometry of the bodies with an excessive electrical conductivity.

Zhdanov {1975) shows that the type and position of singular points, lines and surfaces
of the analytically continued electromagnetic field are closely related to the form of the
surface of deep inhomogeneities. It is known that under certain simple situations they
may coincide with the elements of these surfaces. In particular, the ribs of conducting
insertions or the edges of infinitely thin screens are the branch lines of the field.

As a typical example, results could be presented for the continuation of the variable
magnetic field in the model of Dmitriev and Zakharov (1968). The model consists of the
nonconductive atmosphere in contact at Z = 0 with the conducting Earth, where an ideal
conducting infinitely thin vertical strip exists at a certain depth. The field in the model
is excited by a plane E-polarized wave propagating from above downwards. We give
diagrams of the anomalous magnetic field vertical component real part and the field
isolines in the vertical plane that are analytically continued into the lower half-space
“Tizure S) (the diagrams for the imaginary part have similar form). As is clear, the field
:oolines are focused at the top of the conducting strip. This result corresponds to the
zzneral theory set forth Zhdanov (1975) in conformity to which the infinitely thin ideal
conducting screen edges represent the singularities for the analytically continued electro-
magnetic field.

Thus, the analysis of the spatial distribution of variable geomagnetic ficlds permits us
to determine the location and character of sources for the field under study. Therefore,
the procedure for the interpretation of analytically continued values for deep electro-
vragnetic anomalies is similar to those methods that are of use already for analyzing
Seopotential fields. In interpreting the analytically continued electromagnetic field values
12 is at the same time possible to use a number of important and very useful features that

are the property of efectromagnetic fields only.

TR ST
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GRrAPHS OF THE REHza(za)
FOR THE DIFFERENT LEVELS
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Fig. 5. The analytical continuation of the anomalies of variable magnetic field over an infinitely thin
ideal conducting strip (the graphs and isolines of Re Hy). 1 is the anomaly of variable magnetic field;
7 are the isolines of anomalous field in the vertical plane obtained as a result of analytical continuation.

As an example illustrating some of those features we shall consider the two following
limiting cases.

(1) We form the streamlines for the electrical field in a homogeneous conducting
medium containing a nonconductive insertion (as an example of such a model the section
can consist of a conductive cover and a nonconductive base). Then-by virtue of elliptical -
polarization of the field vectors (with dependence on time as: exp(—iw?)) the streamlines -
at any point of the conducting medium will be in different directions at various moments )
of time, except for those coinciding with the nonconductive insertion contour (e~
current at the conductor-insulator interface is parallel to the insulator surface). It is
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xpressed seometrically by the fact that streamlines for the real and imaginary parts of
se £ vectors describing the electrical field, are mutually intersecting and coincide only
1 the contour of a nonconductive body.

{2y A similar pattern occurs in the streamlines drawn for the magnetic field in a
niform conducting (or nonconductive) medium having insertions of infinitely large
en-ductivity {the conducting zones in the Earth’s crust and upper mantle may serve as
s 2xample of such a model). In this case the streamlines constructed for the real and
paginary parts of the & vectors describing the magnetic field are mutually intersecting
erywhere in the conducting medium, except those streamlines which coincide with the
ynducting bodv contour (since the vector of magnetic induction directed along the
yrmal to the surface of a conductor with infinitely large conductivity is equal to zero).

As an example, results will be given for the system of vector lines for a model, in
hich a well-conducting body buried in a conducting half-space is excited by a plane
polarized wave that propagates from above downwards (Figure 6). As is clear from the
rure, the isolines of the real and imaginary parts of the stream function ¢ of the
agnetic field # (i.e. the real and imaginary vector lines H) are reciprocally intersected
ervwhere in the conducting Earth and coincide only in the vicinity of the surface of
e well-conducting body.

The examples considered here allow us to conclude that the interpretation of the
alytically continued values of variable electromagnetic fields under the present approach
n be made in the following two stages: (a) the construction of the streamlines for the
21 and imaginary parts of the vectors # and £ (the ‘real’ and ‘imaginary’ streamlines),
i the search for those curves (or surface in the three-dimensional case), where the ‘real’
< ‘imaginary’ streamlines coincide. It is thus desirable to continue the fields of various

aco?s
Fhe
fe
4. The isolines of the real and imaginary parts of the stream function woand magnetic field 47 tor

model, in witich a well-conducting body immersed into the conducting hali-space, is excited by a
plane clectromagnetic wave,
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frequencies and to study the frequency dependence of the continued field streamlipe
systems. This produces a more stable determination of the contours of conducting apq
insulating bodies, and minimises the observation and transformation errors. Note, ﬁnally,
that by means of the continuation methods it is possible to recalculate downwards not
only the values of the measured fields and stream functions, but also various parameterg
of the electromagnetic field (impedance, apparent resistance, etc.). Such calculations may
be useful in the study of heterogeneous media.

As a result of the present review we may conclude that the technique of analogues for
the integral of the Cauchy type allows us to extend a number of achievementsin the theory
of geopotential (gravitational and static magnetic) fields to time-variable electromagnetiq
fields. This opens a way for elaborating a unified approach to the problem of the intey.
pretation of anomalies of gravitational, magnetic and variable electromagnetic fields of
the Earth.
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