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Use of cauchy integral analogs

in the geopotential field theory l;‘_

M.S. ZHDANOV (*) % ! '('

ABSTRACT. — A new technique of vector Cauchy integral analogs has been developed for three-dimensional potential fields which ex-
tends the basic principles of the classical theory of Cauchy integrals to three-dimensional cases. Representations have been derived ; E
for gravitational and magnetic fields of three-dimensional perturbing bodies with arbitrary density or magnetization distribution in g
the form of certain vector Cauchy integral analogs over the surface of bodies. Several important questions in the theory of analy-
tical continuation of three-dimensional geopotential fields inside masses and the interrelations between the singular points and X
the geometry of the surface of perturbing bodies and the density or magnetization distribution inside these bodies have been ] .
investigated with the help of these representations. Thus, it has been shown that the basic results of the two-dimensional geopo- :
tential field theory can be extended to three-dimensional cases with the help of the Cauchy integral analog technique. ;
ny
¥

RESUME. — On développe une nouvelle technique d'analogues vectoriels a l'intégrale de Cauchy pour des champs potentiels tridimen- :
sionnels, qui étend les principes de base de la théorie classique des intégrales de Cauchy aux cas tridimensionnels. On dérive des ) M
représentations pour les champs gravitationnel et magnétique de corps perturbateurs tridimensionnels de densité ou d'‘aimantation . 1
quelconques sous la forme de certains analogues vectoriels de l'intégrale de Cauchy sur la surface des corps. On étudie par ces repré-
sentations diverses questions importantes de la théorie du prolongement analytique des champs géopotentiels tridimensionnels a

lintérieur des masses et les relations entre les points singuliers, la géométrie de la surface des corps perturbateurs et la distribution &1

de densité ou l'aimantation d l'intérieur de ces corps. On a ainsi montré que les résultats de base de la théorie du champ géopotne- 4 ! ‘

¥

tiel bidimensionnel peuvent étre étendus aux cas tridimensionnels grdce d la technique de lanalogue de l'intégrale de Cauchy.

The importance and the need for generalizing the i
results of the two-dimensional theory to three-dimen- kit
sional case are quite evident. These problems were in-
vestigated first by V.N. Strakhov (Strakhov, 1970 ;
1974) who also studied an important particular case
of axisymmetric problem (Strakhov, 1976).

Introduction

Most of the advances made during the last twenty
years in the interpretation of two-dimensional poten-
tial fields have been achieved due to the use of the
techniques of the theory of functions of a complex

A

variable. This approach has been developed in detail
by V.N. Strakhov, G.M. Voskoboinikov, G.Ya. Golizdra,
A.V. Tsirulskiy and many others.

Cauchy type integrals play an exceptionally impor-
tant part in the theory of logarithmic potential (as in
the theory of functions of a complex variable). They
are used in the analytical continuation of fields, in
finding the location and properties of their singular
points and in determining the uniqueness of the so-
lution of the inverse problem.

(*) Institute of Terrestrial Magnetism, lonosphere and Ra-
i1i)wave Propagation, The USSR Academy of Sciences, Moscow
resion. Troitsk 142092 USSR.

In the papers (Zhdanov, 1973 ; 1974 ; 1975 ; 1976)
it has been shown that several results of the logarithmic
potential theory can be extended to three-dimensional
case, using certain analogs of the Cauchy type integrals
for the three-dimensional fields which are the modifica-
tions of the integrals introduced by Moisil, Teodoresko
and Bitsadze (Bitsadze, 1953 ; 1972(**). In the present
paper a new approach, in our opinion, much simpler
than that used in the Moisil-Teodoresko-Bitsadze theory,

(**) A similar approach to solve this problem has also been
used by T. Kolbenheyer (1976 ; 1978), E. Vargova (1977), and
L. Sitarova (1977) who investigated the three-dimensional po-
tential problems, using the four-vectors analytical in the sense
of Moisil and Teodoresko.
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is proposed for constructing the three-dimensional ana-
logs of Cauchy integrals. The three-dimensional pro-
blems of gravimetry and magnetometry both in the
case of uniformly perturbing bodies as well as in the
case of arbitrary density or magnetization distribution
have been studied with the help of this technique. A
striking feature of the relationships thus obtained is
that in the case of two-dimensional fields these ex-
pressions readily reduce to the corresponding expres-
sions of the complex theory of logarithmic potential.
This feature of our approach to solve the three-dimen-
sional problems of the potential theory is quite essentiel
and useful in generalizing the techniques of the theory
of functions of a complex variable to three-dimensional
cases. Note that a similar technique can be developed
for transient electromagnetic fields as well. Some re-
sults of such a generalizations were reported at the
1V Workshop on Electromagnetic Induction in the
Earth and Moon held at Murnau (Zhdanov, 1980).

1. Three-dimensional Analogs of Cauchy Integrals

First we shall recall how the Cauchy type integral
is defined in the theory of functions of a complex
variable.

The Cauchy integral theorem is formulated as fol-
lows : If f(¢) is a function analytical inside a domain
D bounded by a contour L and continuous in D (where
D is the closure of D), then from the values of f({)
on L, its value anywhere inside D can be determined
by means of the expression :

LT N
=55 [ sopds Yep @

(The orientation of the contour L is such that the do-
main D remains on the left).

If the point {’ lies outside D, then

1 f 1) _
— § 22 oy e
dm L ¢ ¢ $E€CD  (1b)
(where CD is the complement of D with respect to the
whole space).

Note that the Cauchy integral (1) exists also in the
case where an arbitrarily piecewise smooth closed or
open contour L is given on the complex plane and an
arbitrary continuous function ¢(¢) is defined on L :

1

' o &p(i') dt
K =
© 2mi ]1

-t

Integral (2) is called Cauchy type integral, and the func-
tion ¢({), its densizy. Cauchy type integral has certain
remarkable properties, of which the main are (Bitsadze,
1972):

)
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1) The function K defined by the Cauchy type m

tegral is analytical everywhere outside the contour L¥

Fs

Sk

2) If L is a closed contour bounding a domain D, and ‘
the function y is the limit on L of some function analy-
tical in D, then

K({')=“¢(§'); teD;

{o; {'€ECD; ®

3) If the density of Cauchy type integral satisfies
the Holder boundary condition on L, then the func.
tion K has both left-hand and right-hand limits, when
¢’ tends to any point {, belonging to the smooth part
of the contour L and the limiting values are found
from the Sokhotskiy-Plemel formulas :

) 1 re@dd 1
K+ = lim K¢)=— — :
&) {,in;o &) P s + 5 (o) 5
{'€D; (@)
_ " 1 re@)ds 1
K = lim K@¢") = — _ :
(§o) f'—l’r?o (@] ikt 2 o) 5
{echD; @

We shall now show that a theory somowhat similar
to the theory of Cauchy type integral can be developed
for three-dimensional fields as well.

First we shall derive the three-dimensional analogs of
the Cauchy integral formula. Let S denote a piecewise
smooth surface ‘bouding a domain D in a three-dimen-
sional space. If A is a vector function continuously dif-
ferentiable every-where on D, then

fDl/ divAdv=/Sj(A,n)ds (s)

where n is a unit vector along the outer normal to S.

Suppose that the vector-function A is expressed in
the form :

A=(C . VR Vf+[Vfx[VhxC]], (6)
where 4, ¢ are arbitrary functions twice continuously
differentiable in D. and C is an arbitrary constant vector.

Substituting (6) in (5), and since the choice of C is arbi-
trary, we obtain the Gauss theorem in a vectorial form :

[ @rn+ AnYf)dVv
\/Lu
=JS.JA {(n,VHVA+[[nx Vf]xVh]} dS =

=ff{(n VR) Vf + [[n x Vh] x V/]}dS. (1)
S
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In (6) assume that A is a function harmonic in D, and
f=8@ - r') — is the Green function for the Laplace
equation :

Ah=0; r€D
Af=0g=—4ns5( —1) ®)
, 1
g(r_r)= ) N
r—r|

where & (r — r') is the Dirac delta function.

Hence

1 { 1
‘F-U((n’vh)vlr_ﬂ

1 1), V@),
+ [nXVh]xv_—:r—r'I]SdS_(O;
r' €D )(9)
r'ECI_)s

Differentiation and integration on the left-hand side of
(9) are carried out with respect to r, while r' is taken to
be a fixed point. In structure this expression is quite
similar to the Cauchy integral formula. Indeed, just
| ze the later, it is useful in reconstructing a field inside
L from its values on the boundary, while the integral
vanished outside D. Moreover, the apparent exterior
resemblance reflects the internal unity of these expres-
sions, because Eq. (9) reduces to (1) in two-dimensional
case. It can, therefore, be called the analog of Cauchy
formula. Proof of this fact is given in appendix A.

Now, using the expression (9), we shall construct
the three-dimensional analog of the Cauchy type inte-
c-al, First, we shall recall how the two-dimensional dif-
;:rentiation operators of fields on a surface S are
defined :

Vh= lm — govhdl;
as—0 AS € ’

1
S .h)= lim —$§, (h, ,v)dl; 10
( » Asrgwsfc(, ) . (10)

1
lim — nth_,Ddl;
AS—0AS Sc nh,. 1)

(VS x h,] =
where h is a scalar field, h_ is a vector field tengential
to S, C is a contour bounding a part AS of the surface
S, n is a unit vector normal to S, /-is a unit vector of
the extrernal normal to C, belonging to S, /-is a unit
vector along the tangent to C, and the vectors n, v, 1
form a right-handed triplet, i.e [n x v] = 1. Now,on S
define a continuously differentiable vector field
v =y, + ¢, satisfying the condition :

[Vs x9,]=0 (11)
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where ¢ and ¢, are the tangential and normal compo-
nents of ¢, respectively.

Write the following expression :

se ym—— [ [} L
K0 == [ [ 1097

: ] ) ds.
e—rl] )
(12)

Evidently, (12) exists at all points of the space not
belonging to S.

We shall transform (12), using the obvious equality :
, 1

t—1']"

+ [[nxw]xv

It —r']

(where V' shows an operating with respect to r)
e 1, 1
K9 =—7 [ [ @,9)—ds

4n S Ir —r|

1 re 1
-t ng 0 x gl —rdS] (13)

This expression can be used to derive the equation
vesgified by the vector field K% . Indeed, the divergence of
K" is

@ &)= [ Jown &

1
_dS =0 (14)
r—r]

' €S
(where V' , A" operates with respect tor').
We shall now calculate [V x K%]:

,X s=_—1 'X ,X X 1 }
[\7 K] = — (V' x [V fsf[n o) = d5]

=_#v’£f (v',[;x_f,’ﬂ)ds (15)
' ¢S
And we have

, [nx,] )
(V ’ E-_‘i'| )= (V |rjr'|’[nX¢T]):

S X
_ (¥ [n %])—(Vs[nx

=i
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By virtue of (10) and (11)

(vS,[nx g )= 1m10 A_S% ([n x ¢,],v)dl

1
=— lim B§C(¢T ,1)d1=—([vsx\p.,],n)50

AS—0
17)
Similarly,

(¢ [z 5] -
=_<[ Il’-— ]n) (18)

Substituting (17) and (18) into (16) and then into
(15), weget :

1 1 y ! =
[V xKﬁ=;;V‘£[<[v%nf41}"0ds=8%
'gs

(because the surface integral on the right-hand side of
(19), due to the Stokes theorem, reduces to a curvilinear
integral over the boundary of § which is a closed sur-
face).

Thus, everywhere outside S the function KS describes
a Laplace vector field :

v, K5=0 ; [vxK’]=0 ; res, (20)

and the scalar components of K are harmonic functions
(in general, different on different sides of S). This pro-
perty of (12) and the fact that in a two-dimensional
case the right-hand side of (12) reduces to a complex
Cauchy integral gives us ground to call (12) the three-
dimensional Cauchy integral analog, and the function
@, its vector density.

2. Properties of Three-dimensional Cauchy
Integral Analogs

Similarity of integrals (12) and (2) is manifested
in the commonness of their properties. Indeed, simple
calculations show that the Cauchy integral analogs have
the same properties as the classical integrals. The follo-
wing are the most important properties.

1st property fol]ows from (20), i.e everywhere outside
S the function K¥ (r' , ) can be expressed as the gra-
dient of some harmonic functions ¥* (r') (different
on different sides of ) :

K5 (' ,p) = v¥* (r) (1)
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(where the “+” sign relates to the domain D, while “_» ‘,1
to CD). By means of simple transformations, we can ‘
derive an explicit expression for ¥. Indeed, by virtye
of (11)

0, =75 (2) -
where ¢ is some function twice continuously differen-
tiable on §, which we shall call the scalar density of the
Cauchy integral. Using the Stokes theorem, and since

S is a closed surface, we can transform the second in-
tegral in (13) as follows :

1 , 1
—;I:V xffs [nx%]lr—r'lds}z
<[ o]

(23)
v Jf (e
Let us introduce the following notations :
95 =—(n,¢,) (24)
mS=—¢.n

Now, substituting (23) into (13), by virtue of (24),
we obtain :

K¢ ,9=7 |-
(25)
1 1
—ﬂffs (v—!r_r,l ,ms)dS=
Hence
vE(r

(26)

ff (V=)

Thus, the three-dimensional Cauchy integral analog
can be expressed as the sum of a field of a simple layer
of surface density ¢5 = (n, ¢,) and a field of a double
layer of dipole moment mS = — ¢ .n. This represen-
tation is analogous to the representation of real and
imaginary parts of the classical Cauchy integral in the
form of superposition of simple and double layer fields
(Gakhov 1963).

2nd property

If a point r' lies on the surface S, ie. r =r°ES
the Cauchy integral is an improper mtegral because
the integrand tends to infinity when r =%, It can
be calculated as the limit :

3
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S
K5(%,p) = lim K 21, p) (27)

vhere S, is a part of S outside a sphere O, of radius p
ind center at the point r®. This limit is called the sin-
n:lar integral in the sense of Cauchy principle value.

It has been shown (Zhdanov, 1974) that if S is a
Lyapunov smooth surface and if the vector density
»f a Cauchy integral satisfies the Hoélder boundary
sondition on S, ie. if there exist positive constants
[ and A (0 < /& < 1) such that

o) —p@I<L|f —r", r,reSs (28)

then the limit (27) exists and is equal to
1
K@, 0) = K200, 0 — o) + 7 0®) (29)

where Ks(r°,¢ — ¢(r%) is calculated as an ordinary
ntegral (because the integrand does not tend to infinity
it any point).

3rd property

The behaviour of three-dimensional Cauchy integral
u.alogs near the integration surface is quite important
in the theory of potentials. We can show that in those
cases where the density g satisfies the Holder boundary
condition, there do exist limits for the Cauchy integral
analog on approaching the surface S from either side :

, 1
K'@® )= lim_ K5, 0) = K5(:%, 9) + EWO);
Ir—rI

I'eD 1 (30)
A0 9 = lim KU 0) = KOG, — 2 p(r°)

r—r

I'g¢D

These limits are, however, different on different sides ;
therefore a jump in value takes place on crossing the sur-
face. The jump is equal to the density in magnitude :

K'(r%, ¢) - K™(r°,9) = o(r°) @31)

Egs. (30) and (31) are the analogs of the Sokhotskiy-
Pt2mel formula (*).

4th property

If ¢ is the limit on S of the gradient of a function
everywhere harmonic in D, then by the Cauchy integral
formula :

U
Syt ( o(r); 'eD
K°(r'p) = P (32)
(*) The second and the third properties may be considered
to be the corollaries of (21) and (26) and the well known pro-
Perties of simple and double layer potentials (Tikhonov,
Samarskiy, 1953).

Sth property

In order that a function ¢(r) be the limit on S of the
gradient of a certain function harmonic in D, it is neces-
sary and sufficient that

K5(',0)=0; ré¢b (33)
These properties of the Cauchy integral analogs are
similar to the properties of the usual Cauchy type
integral. Moreover, it is not difficult to show, as we
have done in Appendix A for the Cauchy integral
theorem, that in two-dimensional cases (where
¢ = (¢, ,0,¢,) is not dependent on y) the integral
(12) simply reduces to the classical Cauchy type in-
tegral (2), when ¢(§) = — ¢, (x , 1) + ip (x,1).

3. Analytical Continuation of Three-dimensional
Cauchy Integral Analogs through Integration
Surface

The integration surface is, as already mentioned, a
special surface for the functions described by Cauchy
type integrals. In many cases, however, the Cauchy type
integral can be analytically continued beyond the inte-
gration surface. This problem has important significance
in geophysical applications. Consider a certain analytical
part I" of a surface S on which the Cauchy integral ana-
log (12) of vector density ¢(r) is defined. We shall as-
sume that the components of ¢(r) on I' are described
by analytical functions of coordinates and that they
satisfy the Holder boundary condition (28). Take a
certain fixed point r® €T. Then, according to the
Cauchy theorem (Smirnov, Sretenskiy, 1946), in the
neighbourhood of r° there exists a harmonic function
& (r) satisfying the condition :

ae

=¢.; Plr=9, 34
anr“Pn |r‘p (34)

on I', where p is the scalar density of the Cauchy type
integral which is related to the vector density by Eq.
(22) ; hence

Vel =y (35)

Now we shall use the Sokhotskiy — Plemel formula for
the Cauchy integral analogs. By virtue of (31) and (35),
we have

K (%, 0) =K% ¢) - vo® r°€r (36)

Obviously, the right-hand side of (36) is the boundary
value on I' of the gradients of functions harmonic in
some domain D" adjacent to I" and wholly lying inside
D. The left-hand side describes the boundary value of
the gradients of fields everywhere harmonic outside D.
Consequently, the right-hand side is, according to the
Stal theorem (Sretenskiy, 1946), the analytical conti-
nuation of the left-hand side through the surface I.
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6 M.S. ZHDANOV

Analytical continuation of Cauchy type integrals from
inside to outside of an analytical part of the surface
I is demonstrated in a similar manner.

From (36) it is seen that K™ (r,y), which are
the values of the Cauchy integral analogs continued
across the surface, differ from the integrals by a quan-
tity equal to — V& (r) :

K" (r,p) — K(r,p) = — v&(r) (37)

Hence, we obtain two corollaries : first, the singular
points of K™ are the same as the singular points of
v® (r). Second, the joining lines of different analyti-
cal parts of the surface S are the branching lines of
the Cauchy integral analogs. These properties of the
Cauchy integral analogs give us a means to study the
analytical continuation of external geopotential fields
inside perturbing masses.

4. Representation of Gravitational Fields in the form
of Three-dimensional Cauchy Integral Analogs

Remarkable advances made in theoretical analysis
of plane problems of gravimetry and magnetometry
have been achieved, as already mentioned elsewhere,
due to the representation of gravitational and magnetic
fields in the form of Cauchy type integrals. These re-
presentations were first derived by A.V. Tsirulskiy
(1963) and were then further developed and genera-
lized by G. Ya. Golizdra (1966), and V.N. Strakhov
(1970, ; 3). In this connection, it is quite tempting
to derive similar representations for three-dimensional
fields. These problems were first solved by Zhdanov
(1973, 1974) who, using matrix formalism, gave the
representation for gravitational fields of uniformly
perturbed bodies in the form of Cauchy integral ana-
logs. Later T. Kolbenheyer (1976, 1978) studied the
description of gravitational field of a body with an
arbitrary density distribution o(r), using the Moisil-
Teodoresko theory (Bitsadze, 1953, 1972). In the
present paper we shall solve this problem with the help
of vector representation of Cauchy type integral deve-
loped in the previous pages.

We shall begin our analysis with gravitational fields.
The intensity of gravitational fields of a domain D
bounded by a piecewise smooth surface S and filled
with masses distributed in D with an arbitrarily conti-
nuous density a(r), as is known, has the form :

u@') =4« j:[/; o(r) v e _1 v dv,  (38)

where 7 is the gravitational constant. We shall now re-
duce the volume integral in (38) to a Cauchy type in-
tegral defined on the surface S bounding the domain
D. For this purpose, using the Kolbenheyer technique

452

(1978), we shall extend the definition of the functioﬁ'
a(r) into some domain D* wholly containing the suf*.
face S and the domain D (D C D* ;S C D*), such that
o(r) is continuous in D*.

Let h(r), r€D* be an arbitrary particular solution
of the Poisson equation :

Ah(r) = —4nyo(r) (39)
and

1
Flry = = (40)

It —r'|

the Green function. Substituting (39) and (40) into ),
we obtain the representation for the external gravita.
tional field of the domain D in the form of Cauchy
integral analog :

' d 1 Y

U(r)=-—7ffj o(r) v ———dV, =Kt~ vh)
D [r—r] (@1
where r' € CD.

Now we shall introduce analogous representations
for the inner gravitational field W(r') of the domain
D. Obviously,

W({r') = v'p(r') (42)
where

Ap@d')=—4nya(f') rE€D 43) -

By virtue of (39), the difference ¢ (r') — A (r') is a func-
tion harmonic in D :

Alp —h)=0 rep

Hence, by the fourth property of the Cauchy integral
analog, we have

W) — Th() =KS(d ,W(r) — Vh(r) = 44)
=K5(' , W) + KS (t'— va(®) ;
for ' €D

We know that the intensity of a gravitational field due
to continuously distributed masses is a everywhere
continuous function. Consequently,

U(r) = W(r)
for r€S
and
KS@ W) =K', U@)=0;  (45)
for €D

because U(r) is harmonic outside D). Substituting (45)
into (44), we can rewrite

13
W) =7h)+KS (', ~vh@);  (46)
r €D

|
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‘'ow consider the function :

x(@) =(r,vh({r")) (47)
bviously,
Vx(r) = V'h(r)

Ax(5) =0 r€D (48)

fence, by the fourth property of the Cauchy type inte-
rals, we have
S, vx(0)=K5 @, vh(r))
(0 ; Yech ;
= ? ' ’ (49)
(vh(r) : Ff€D

ty virtue of (49), Egs. (41) and (46) can be combined
110 one expression :
(u@); rech
(Wi, rebp

(50)

KS(,[Vh(E) - vh(D)]) =

hus, we have derived expressions for gravitational
ields both inside and outside the perturbing masses
1 terms of the same Cauchy type integral (50). These
«pressions extend the Strakhov formula (1970) to
* ree-dimensional case.

Now we shall examine how these expression (41) and
50) can be simplified for an important particular case
if bodies with a uniform or linear density. Let

a(r) = 0, = const .

‘hen, we can take

g
=—21r73—0r2 (51)

s the particular solution of Eq. (39). Accordingly,
:q. (41) can be rewritten as

, 4n
U(r) =K’ (r ,3—700r> (52)

This expression extends the Tsirulskiy formula for a
iane field (Tsirulskiy, 1963), to three-dimensional
:ase

U(;')z_L : Mdg (53)

2m Yo =t

vhere ¢* is the conjugate of { ,C is the cross-section
»f a two-dimensional body extended along Y-axis,
U(¢") is the complex intensity of the gravitation field
~lated to U(U, , O, U;) by means of the expression :

Ugh=—-U,(",r)y+iu, (x",r) (54)

USE OF CAUCHY INTEGRAL ANALOGS IN THE GEOPOTENTIAL FIELD THEORY 7

By virtue of the results stated in Append. A, the expres-
sion (52) in two-dimensional cases is readily converted
into (53) when 27 is substituted for 4n/3 (because a
finite three-dimensional domain is converted into a
two-dimensional region, i.e. infiinitely extended along
Y-axis).
Expression (50) for a uniform body is written as :
4n (UE); ¥eco
KS(r' ,— voo(r — 1)) = ’ (55
3 0 (WE):; r €D )

On expanding the left-hand side, with the help of (12),
we can finally obtain :

2 _’
.ﬂ[[?.ﬁ.—%(n,r—r')— n ?dS:
S

3 [t ] I e ]

{u@); rfecop
_(_ wWi); rebp
(56)

Now consider a case where the density o(r) varies
according to a linear law :

a(r)=(C,r)+ 0, (57)

where : 41yC = — (C, ,Cy ,C,), 0, are certain arbi-
trary constant vector and scalar, respectively. Here we
have to take

1 2m1yo
h(r)=g(Cx.x3 +ny3 +1Co .23)—#”2 -
(58)

as the particular solution of (39). Consequently, Eq.
(41) has to be rewritten as

1
u@) = Ks(z' : : —;[szxex +y2Ce, +22C,e, ]+

4n )
+ 3— Yo, 1 ) > (59)

while (50) takes the form :

, | 4n . ‘
Ks(r (? 70, (r—r)—;[(x2 — %) C; 8,

+ 0% —y?).Cpe, +(F - 27) Cre,] i)
u@): reco v
- v (60)

[W({); reD

This expression is the threedimensional analog of
Strakhov’s formula (Strakhov, 1970). Evidently, using
similar arguments, we can easily construct the represen-
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tation for gravitational fields in the form of Cauchy
integral analogs for bodies whose density changes ac-
cording to any polynomial low.

Such a representation may be quite useful in solving
the direct problems of gravimetry, because by means
of these representations we can easily convert the
volume integrals into surface integrals even for nonu-
niform bodies. They have, however, the greatest value
in theoretical investigations or in studying the analyti-
cal continuation of gravitational fields inside or outside
masses.

5. Representation of a Magnetic Field in the Form
of Cauchy Integral Analog

The intensity of magnetic field of a domain D, in
which the magnetic masses of arbitrarily continuous
magnetization J(r) are distributed, is of the form :

H@) = 7 ff(;(z) V-

Proceeding as in the previous Section, we can reduce
the volume integral in (61) to a Cauchy integral analog
over a surface § bouding the domain D. For this pur-
pose transform (61) by the usual technique :

H()= V]f/%vj) [f("”‘ =

~Zw/](v J)v
+‘/f(n J)v

The magnetization J being potential in D, we can
take :

)dV 61)

dVJ-

dS (62)

J=—vh (63)

Hence, with the help of (7) we can rewrite the first
integral in (62) as follows :

—f[)f(v,.l)vlr_l _ 4V, =
=A]S'f(n,1) v r—lr'ldS' _

_/'[[[nxj]x v”—lr ,] ds, (64)

S
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Substituting (64) into (62), we obtain :

H(r)—-—f/[[nx]]xv }ds y

=KS(d ,4n3,),  (69)

where J_ is the component of J tangential to S.

The expression (65) shows that for a wide class
of magnetization distributions inside D, the magnetic
field of D can be expressed in the form of a Cauchy
integral analog over the surface of S.

In a particular case, where the function A in (63) is
harmonic in D, by virtue of (62) and (65), we have ;

H(r) =£f(n.]) v — :

dS=KS5(' ,4nln) = ¢
r| %
¥

=KS(r',4nJ) (66)
where J, is the component of J normal to the surface
S. The expressions (65) and (66), just like (41), give
a basis with which we can solve the problem of analy-

tical continuation of external field inside a magnetized
body.

6. Analytical Continuation of An External Gravitational
Or Magnetic Field inside a Three-diemensional Domain
containing the Field Sources

The representations derived in the previous Section
for external gravitational and magnetic fields in the form
of Cauchy integral analogs lie at the base of the theory
of analytical continuation of fields inside and outside

masses. ¢

Let I be some analytical part of the surface S and
let the density o (r) and magnetization J (r) be analytical
functions of coordinates everywhere inside D (domain
D along with its boundary §). The functions V4| and
J | are evidently analytical on I'. Hence, by the

Cauchy theorem, in the neighbourhood of I' there-§

exist such harmonic functions Y (r) and & (r) that
on[:

veY ()l = — vhlp (673) ,

Vo (1)l = 4nJ |y (67)

For example, if the domain D is filled with masses -

of uniform density o, Eq. (67a), by virtue of (51), +
can be rewritten as :

47
V‘Du(r)'r =—3—700r (68)

¥
It is called the equation of the surface I' in a har- t
monic form (Zhdanov, 1974). In a two-dimensional ;»
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ase, where S is a cylindrical surface with its generator
arallel to Y-axis, Eq. (68) is converted into the equa-
on of a plane curve in the form of Tsirulskiy (1963) :

-% = = 3 l:a_q)ij 7 ach )}
’ —‘1’({)—477700 d9x (X’Z)—l_a—r_‘(x,-
(69)

/here ¢* is the conjugate of { =x+iz, ¥() is a
omplex analytical function.

Owing to Eq. (67) which defines the equation of
he analytical part I' of the surface S, we can make
se of the properties of the Cauchy integral analog

* Vh and J_ satisfy the H" older boundary condi-
ion on I'), accordmg to which external gravitational
nd magnetic fields (described by the Cauchy integral
nalogs) can be extended within the masses. Moreover,
y virtue of (37), (41) and (65), the continued field
alues are given by the formulas :

U(r) = — voY(r) + FY(r) (70a)
H(r) = — Vo (r) + FA(r) (70b)

/here

FU(r) = K5(r, — vh) = K5(r, V&Y) ; ot

FP() = K5(r, 471 ) = K5(r, v@")
‘his expression gives a comprehensive means to study
he analytical continuation of external field into the
omain D. In particular, if the whole surface S is ana-
ytical, and the distributions of a(r), J(r) are described
y analytical functions, then the following theorems,
/hich extend the theorem of Strakhov (1970)(*) to
I ‘ee-dimensional case, hold true.

7zeorem 1:1f S is a closed anaJytlcal surface given

y Eq. (67), the functions ®Y(r) and @(r) have ne-
essanly singular points inside S, and the number of
heir singularities is equal to the number of singula-
ities of the function U(r) or H(r) which are the ana-
ytical continuations into S.

"heorem 2 : In order that two different domains D,
rd D, field with masses of different analytical dis-
r:butions of densities g,(r) and o, (r) or magnetizations
,(r) and J,(r), and bounded by analytical surfaces S,
nd S,, may create identically equal external ﬁelds

o Wn=u®wm;  (729)
re
° HYm=®@);  (72b)

t is necessary and sufficient that the domains D, and
). intersect and the functions ®Y) and ®V@ or

(*) For a domain of uniform density or magnetization
hese theorems were first derived and demonstrated for a two-
imensional case by A.V. Tsirulskiy (1963 ; 1969), and extend-
d to three-dimensional case by Zhdanov (1973)

HD and &7 defining the surfaces S, and S, have
singularities only in the intersection Dy =D, ND, ;

moreover, the differences YN _ CIJU(z) sV or
W _ ¢H(2) 8@ be functions harmonic in D,.

The truth of Theorem 1 follows directly from Eqgs.
(70) and (71). We shall prove Theorem 2 in Appendix
B.

In the general case where the boundary S of the
domain is a piecewise analytical surface, the following
statements which are the generalizations of Strakhov
theorem (1970) for plane fields to three-dimensional
case are true :

Theorem 3 : An external gravitational or magnetic field
generated by analytical distributions of density or ma-
gnetization inside a domain D (such that J =—Vh
in D and the functions VA |g and J_ |g satisfy the Holder
boundary condition on the boundary S of D) admits
analytical continuation through any analytical part I’
of the surface S, besides, perhaps, its boundary. The
singular points of the continued field are the same as
the singular points of functions describing the equation
of the surfaces I in the form (67).

Theorem 4 : If the boundary S of a domain D consists
of a finite number of different analytical parts I}
(i=123,...,N) (“different” in the sense that dif-
ferent ana.lytlca.l functions & )(r) i=123,...,N)
occur in the equations of these surfaces (67)) then
for any analytical distribution of the density or magne-
tization inside D (such that J = — Vh in D and Vh|g
and J_|g satisfy the Hélder boundary condition on
S) the joining lines of different analytical parts I'; and
I; are the branching lines of the external field.

The proofs of Theorems 3 and 4 follow directly
from (70) and (71). These expressions (70) and (71)
can also be used in solving certain inverse problems
of gravimetry and magnetometry, employing the prin-
ciples of analytical continuation. Such problems were
first studied by A.A. Zamorev (1941 ; 1942) and A.V.
Tsirulskiy (1964) for uniform two-dimensional bodies,
and were later extended by Strakhov (1970,) to two-
dimensional bodies of arbitrary analytical magnetization
distribution. Zhdanov (1974) applied a similar technique
to solve the three<limensional inverse problems in the
theory of potentials for bodies of uniform density. It
should, however, be noted that the use of these methods
for solving the inverse problems is rather cumbersome
due to the instability of the analytical continuation
procedure. They have their main significance in theo-
retical investigations because they reveal the conditions
under which the solution of the inverse problem is
unique. We shall extend these results to a three-dimen-
sional body of arbitrary analytical density distribution.

Let a surface S be composed of several analytical
parts I; (i=1.23,...,N) and assume that we know
the analytical density distribution inside S (which is
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such that the gradient of the corresponding function
h(r), a particular solution of Eq. (39), satisfies the
Hélder boundary condition on ). Besides, we shall
assume that the analytical function v defining
the equation of the surface I'; in the form (67a) is
known. It is assumed that this function is analytical
everywhere inside D (except, perhaps, at certain finite
number of isolated singular points). The problem is
to find the whole surface S from the external gravi-
tational field U(r), using the analytical continuation
technique.

The solution of this problem follows from (70a).
Indeed, let U(')(r) denote the analytical continuation
of the external gravitational field across the surface
;. Then

FVe)=UV@) + vy, i=12,....N (73)
In particular, for a known part I' of the surface S :

FUr) = uP(r) + vaVr) (74)
Equating the right-hand sides of (73) and (74), we get

v0Y0(r) = v Oy — U0 + UV (75)

Consequently, the equation of the surface T';, by virtue
of (67), takes the form :

Vd)U(l)(r) _ U(')(r) + U(])(r) = — Vh(l') (76)

where h(r) is the particular solution of Eq. (39).

Expression (76) gives the solution to the problem
of determination of the shape of a surface composed
of a finite number of analytical parts, on the basis of
analytical continuation technique. This problem has
evidently a unique solution, provided we not only
know the density distribution inside S, but also some
other part (however small it be) of this surface. In the
contrary case, the inverse problem, as its follows from
Theorem 2, is ambiguous.

Conclusion

The exemples given above do not form a complete
list of the results which can be derived for three-dimen-
sional fields with the help of Cauchy integral analog
technique. Moreover, the inter-relations mentioned
above between the Cauchy integral analogs and the
classical theory of functions of a complex variable
suggest that almost all the results obtained for the two-
dimensional case can be extended to three«timensional
case as well. Thus, the sharp demarcation existing since
long between the theoretical approaches applied for
the interpretation of two-dimensional and threedi-
mensional geopotential fields has been obliterated.
This fundamental result, that follows from the whole
system of analogs constructed above, is quite important.
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Appendix A

[llustration of the analogy between the Cauchy
integral formula and Eq. (9) given in sec. 1

Introduce a righthanded Cartesian coordinate syster
xyz, the Z-axis being directed vertically downwards. Lt
S be a cylindrical surface generated by a line parallel t
Y-axis, and let the function & be not dependent on
Then n (n,,0, n), VA = (h, ,0,h;) and the lef
hand side of (9) can be rewriten as :

1 ( 1 ! )
4;;‘[/; {(n,V/I)V ot + [:[anl]xV r-—r'&\ds

__1 j (x' - x) (hdx - i, dz) +(' z) (h dx +h dz) e
27 VL (x - x') +(z -2

1 (- 2)(hydx - hod:) ~ (x" —x) (h dx + hdz)

27 L (26 x')2 + (z - :')2

I

where e, e, are the unit vectors along x and z, respe
tively ; r and r' have the coordinates (x,z) and (x',z
respectively ; and the contour L is the intersection «
the surface S by the plane xz.

In the complex plane xz introduce the variab
¢ =x + iz and let f(¢) stand for the complex functior

f®)=—h(x.z) +in(x,z (A.

Obviously, f(¢) is analytical in D and continuous in ,
because A, and A, are interrelated by the Cauch
Riemann condition due to the harmonicity of A.

Transforming (A.1) with the help of (A.2) and (S
we obtain the classical Cauchy integral formula :

1 (—h, +in,) N
277[‘/1‘ (x _ X’) 4 ,(: B zl) d(x +I‘-) = (A
_ LI L s6); seD;

2niY ¢ ¢ [ 0: ¢ €D

Thus, Eq. (9) is the natural generalization of the Caucl
formula for the three-dimensional case ; it can, ther
fore, be called the analog of Cauchy formula.

Appendix B

Proof of the Theorem 2
(for the sake of brevity we shall consider the case of
magnetized masses only)

Necessary condition : By virtue of Theorem 1, t
functions ®V and @ should obviously have t
same singularities which should necessarily be insi
D, and D, ; consequently, either these domains shot
intersect, or one should be contained wholly within t
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other : D; N D, = D, # 0. For the sake of definiteness,
we shall assume that D\D is never an empty set (i.e.
either D lies wholly within D, , Fig. 1a, or D intersects
D,. Fig. 1b). From (70b) and (71b), we have

HO @) = — 767 D) + FO() ;

(¢3) H(2) 2) (B.1)
HP@r) = — vo" @) + FF @) ;

where the functions FH(I) and FH(Z), being harmonic
in D, and D,, respectively, are given by the expres-

sions : s
F'O@m =K '(r, ve M)

S
F/P@) =K, ve"?);

Obviously, the function H(l)(r) is harmonic in D,\D,.
Cosequently, from the condition of the theorem, the
function H®(r) (or its analytical continuation) is also
harmonic in D,\D,. Thus, by virtue of (B.1), veH @),
being the difference of two harmonic functions, is itself
harmonic in D,\D,. Therefore, using the fourth pro-
perty of the Cauchy integral analog, we can write :

S S,
HO@') = K 2,411 = K (', vo @) =
S
’ =K °%¢,ve" @), (B3)

(B.2)

- where S, is the boundary of D, r' € CD,, (complement
! of the closed domain D, + S, with respect to the whole
space). Similarly, we can show that

N _
HY@) =K °¢, va? Yy, rech, (B4)
Hence, we obtain
S S
KO, va’ ™M _ v @y = KO, v(so ) =0;

r€ch, (BS)

USE OF CAUCHY INTEGRAL ANALOGS IN THIE GEOPOTENTIAL FIELD THEORY 11

Consequently, by the fifth property of Cauchy integral
analogs, 6 is a function harmonic everywhere inside
D, which is what was required to be proved.

Sufficient condition : We shall now calculate the dif-
ference of the fields HP(r') and H® (") by means of
(B.3)and (B.4):
’ S U
HO¢) - By = K¢, (27
reCcD, (B6)

But, if 87 is a function harmonic everywhere in D,
by virtue of the fifth property of Cauchy integral ana-
logs, the right-hand side of (B.6) identically vanishes.
Consequently,

HO() = KO ;

r €CD, (B.7)

Thus, Theorem 2 has been fully demonstrated.

Manuscrit regu le 19 décembre 1979
sous sa forme définitive le 24 juillet 1980
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