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Use of cauchy integral analogs 
in the geopotential field theory 

by 

M.S. ZHDANOV(*) 

ABSTRACT. - A /lew technique of vector Cauchy integral analogs has been developed for three-dimensional potential fi elds which ex­
tends the basic principles of the classical theory of Cauchy integrals to three-dimensional cases. Representations have been derived 
fo r gravitational and magnetic fields of three-dimensional perturbing bodies with arbitrary density or magnetization distribution in 
the fo rm of certain vector Cauchy integral analogs over the surface of bodies. Several important questions in the theory ofanaly­
tical continuation of three-dimensional geopotential fields inside masses and the interrelations between the singular points and 
the geometry of the surface of perturbing bodies and the density or magnetization distribution inside these bodies have been 
investigated with the help of these representations. Thus, it has been shown that the basic results of the two-dimensional geopo­
tential field theory can be extended to three-dimensional cases with the help of the Cauchy integral analog technique. 

RESUME. - On developpe une nouvelle technique d'analogues vectoriels Ii l 'integrale de Cauchy pour des champs potentiels tridimen­
sionnels, qui etend les principes de base de la theorie classique des integrales de Cauchy aux cas tridimensionnels. On derive des 
representations pour les champs gravitationnel et magnetique de corps perturbateurs tridimensionnels de densite ou d'aimantation 
quelconques sous la form e de certains analogues vectoriels de l'int egrale de Cauchy sur la surface des corps. On etudie par ces repre­
sentations diverses questions importantes de la theorie du prolongement analytique des champs geopotenttels tridimensionnels Ii 
l'interieur des masses et les relations entre les points singuliers, la geometrie de la surface des corps perturbateurs et la distribution 
de densite ou I'aimantation Ii l'interieur de ces corps. On a ainsi montre que les resultats de base de la theorie du champ geopotne­
tiel bidimensionnel peuvent etre etendus aux cas tridimensionnels grace Ii la technique de l 'analogue de I'integrale de Cauchy. 

Introduction The importance and the need for generalizing the 
results of the two-dimensional theory to three-dimen­

Most of the advances made during the last twenty sional case are quite evident. These problems were in­
years in the interpretation of two-dimensional poten ­ vestigated first by V.N. Strakhov (Strakhov, 1970 ; 
tial fields have been achieved due to the use of the 1974) who also studied an important particular case 
techniques of the theory of functions of a complex of axisymmetric problem (Strakhov, 1976). 
variable. This approach has been developed in detail In the papers (Zhdanov, 1973 ; 1974; 1975 ; 1976) 
by V.N. Strakhov, G.M. Voskoboinikov, G.Ya. Golizdra , it has been shown that several results of the logarithmic 
AV. Tsirulskiy and many others . potential theory can be extended to three-dimensional 

Cauchy type integrals play an exceptionally impor­ case, using certain analogs of the Cauchy type integrals 
tant part in the theory of logarithmic potential (as in for the three-dimensional fields which are the modifica­
the theory of functions of a complex variable) . They tions of the integrals introduced by Moisil, Teodoresko 
are used in the analytical continuation of fields , in and Bitsadze (Bitsadze, 1953 ; 1972 (....) . In the present 
finding the location and properties of their singular paper a new approach, in our opinion , much simpler 
points and in determining the uniqueness of the so­ than that used in the Moisil-Teodoresko-Bitsadze theory , 
lution of the inverse problem, 

(**) A similar approach to solve this problem has also been 
used by T . Kolbenheyer (1976 ; 1978), E. Vargova (1977) , and 

(*) Institute of Terrestrial Magnet ism, Ionosphere and Ra ­ 1. Sitarova (1977) who investiga ted the three -dimensional po­
j: 'wave Propag ation, The USSR Academy of Scien ces, Moscow tential problems, using the four -vector s analytical in the sense 
re ~i o n . Troitsk 142092 USSR. o f Moisil and Teodoresko. 
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is proposed for constructing the three-dimensional ana­
logs of Cauchy integrals . The three -dimensional pro ­

blems of ~ravimetry and .magnet? metry both i.n the 
case of um~ormly pe~urbmg bodle~ a: well. as . In ~he 
case of arbitrary density or magnetization distribution 
have been studied with the help of this technique . A 
striking feature of the relationships thus obtained is 
that in the case of two-dimensional fields these ex ­
pressions readily reduce to the corresponding expres­
sions of the complex the ory of logarithmic potential. 
This feature of our approach to solve the three-dimen ­
sional problems of the potential theory is quite essentiel 
and useful in generalizing the techniques of the theory 
o f functions of a complex variable to three-dimen sional 
cases . No te that a similar te chnique can be developed 
for transient electromagnetic fields as well . Some re­
sults of such a generalizations were report ed at the 
1V Workshop on Electromagnetic Induction in the 
Earth and Moon held at Murnau (Zhdanov, 1980) . 

1. Th ree-dimensional Analogs of Cauchy Integrals 

First we shall recall how the Cauchy type integral 
is defined in the theory of funct ions of a complex 
variable . 

The Cauchy integral theorem is formulated as fol­
lows : If fm is a fun ction anal yti cal inside a domain 
D bounded by a contour L and continuous in [j (where 
jj is th e closure of D) , then from the values o f fm 
on L , its value anywhere inside D can be determined 
by means of the expression : 

f(f)= _l. I fm ( ED (l a)
2 TTl L ~ _ ( d~ ; 

(The orientation of the contour L is such that the do ­
main D remains on the left) . 

If the point ( lies outside n,then 

I I f(O- --d - 0 ' ( E CD (Jb)21Ti L ~ - ( ~ - , 

(where CD is the complement o f Jj with respect to the 
whole space) . 

Note that the Cauchy integral (1) exists also in the 
case where an arbitrarily piecewise smooth closed or 
open contour L is given on the complex plane and an 
arbitrary continuous function <{J (n is defined on L : 

K«() = _1- I <{Jm c1~ (2)
21T i L ~ - ~' 

Integral (2) is called Cauchy type integral, and the func­
tion <p(n its density . Cauch y type inte gral has certain 
remarkable properties , of which the main are ( Bitsadze, 
1972) : 
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I) The function K defined by the Cauchy type iil~~ 
tegral is an alytical everywhere outside the contour Ll
 

2) If L is a closed contour bounding a domain D , ant
 
the fun ction <{J is the limit on L of some function anal _
 
ti I ' D th Y
 
rca in , en ( I . 

~' ED ;K (n = I <{J (~ ) ,
I0 ; ~' E C b , 

(3) 

3) If the density of Cauchy type integral satisfies 
the Ho lder boundary condition on L. then the func­
tion K has both left -hand and right-hand limits , when 
( tends to an y point ~ 0 belonging to the smooth part 
of the contour L and the limiting values are found 
from the Sokh o tskiy-Plernel formulas : 

I 1<(Jm d~ 1
K+ (~o ) = lim K (n 

I = - - - + -«J (~o ) ;
r' ....ro 21Ti c ~ - ~o 2 

~' ED ; (4) 

K-(~o )= ,lim K (f)= -I.I <p m d ~ _ 2- <p (~ o ) ; 
r .... r0 2 1T 1 C ~ - ~ . 2 

( E C ii , (4) 

We shall now show that a theory somowhat similar 
to the theory of Cauchy type integral can be developed 
for three-dimensional fields as well. 

First we shall derive the three-dimensional analogs of 
th e Cauchy integral formula. Let S denote a piecewise 
smooth surfacebouding a domain D in a three-dimen­
sional space . If A is a vector function continuously dif­
ferent iable every-where on D, then 

(5) 
D 'S 
IfI div A d v =IlCA ,n) dS 

where n is a unit vector alon g the o uter normal to S. 

Suppose that the vect or -fun cti on A is expressed in 
the fo rm : 

A = (C , il h ) il f + [Vf x [ilh x Cll , (6) 

where h , <p are ~rb i t ra ry functions twice con tin uously 
differentiable in D. an d C is an arbitrary constant vector. 
Substituting (6 ) in (5) , and since the choice of C is arbi­
trary . we obtain the Gauss theorem in a vectorial form : 

llI (D. f iJh + D.h 'iJj) d V 

=il {(n , ilJ) v iz + [[n x 'iJ11 x 'iJ h]} d S = 
s 

= JI{(Il .v iz) v f + [[n x v lt ] x v !1 } dS. (7) 
s 
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where 'P	 and 'P are the tangential and normal compo ­In (6) assume that h is a function harmonic in D, and r n 
nents of 'P, respectively .f == g (r - r') ., is the Green function for the Laplace
 

equation : Write the following expression :
 
.6.h=O ; rED 

.6.[ == .6.g == - 41T15 (r - r' ) (8) 

, 1 
g (r - r ) == --,- ; 

rr - r I 
where 0 (r - r' ) is the Dirac delta function . 

Hen ce 
1 . 

-4;.{Ji(n, 'Y h ) V_I,
[r - r I 

+ [n x VhJ x V -, _1_,]) dS= \ \1h(r') ; 
.r - r I ~ I 0 ; 

, 
r E D ) 

r' E C D \ (9) 

Differentiation and integration on the left-hand side of 
(9 ) are carried out with respect to r , while r' is taken to 
be a fixed point. In structure this expression is quite 
similar to the Cauchy integral formula . Indeed , just 
I' .e the later , it is useful in reconstructing a fleld inside 
[; from it s values on the boundary , while the integral 
vanished outside D . Moreover, the apparent exterior 
resemblance reflects the internal unity of these expres­
sions , because Eq. (9) reduces to (1) in two-<l.imensional 
case. It can , therefore , be called the analog of Cauchy 
formula . Proof of this fact is given in appendix A. 

Now , using the expression (9), we shall construct 
the three-dimensional analog of the Cauchy type inte­
cal. First , we shall recall how the two-dimensional dif­
i rentlat ion op erators of fields on a surface S are 
efined : 

I 
VSh == lim - ~cvhdl ; 

AS-O .6.5 

1 
(Vs , h ) == lim - Pc (hr , v) dl ; (10)

r AS-O .6.S . 

1 
[Vs x hrJ = lim -Pc n (hr , I) dl ; 

AS-O .6.S 

where h is a scalar field , h, is a vector field tengential 
to S , C is a contour bounding a part .6.S of the surface 
S , n is a unit vector normal to S , l-is a unit vector of 
the extremal normal to C , belonging to S . l-is a unit 
vecto r along the tangent to C, and the vectors n , v, I 
fo rm a right-handed triplet , i.e [n x vJ = l. Now , on S 
define a continuously differentiable vect or field 
<;J == 'Pn + 'P sat isfying the condition : r 

[VS x 'Prj == 0 (1 1) 

1 
KS(r' , 1,iJ) == - _11f \(n ,'P) V _ _, 

47T S	 ( [r - r I 
:t
. ..J+ f [n x 'PJ x v-I,J)dS. 

J 
....: _L [r - r I \	 . ~ 

(12) 1 
!iEvidently , (12) exists at all points of the space not ..

belonging to S. 

We shall transform (1 2), using the obvious equality : 

1 ,
'Y --== - V -- ­

[r - r' ] Ir - r ' ] I 

(where V' shows an operating with respect to r') 

.	 1KS ( r , . 'P) == - 1 V 'I f (n , 'Pn ) --, dS 
47T S Ir- r l 

- J'[-[1 V' x [n x 'Pr j 1 , dSJ (13) 
47T	 ' [r - r I 

This expression can be used to der ive the equation
 
verified by the vector field KS . Indeed , the divergence of
 

KS is
 

11 ~ 1(V' , Ks) == - J(n , 'P ) .6.' --, dS == 0 (14)n 
47T S Ir - r I 

r' f.S 

(where V' , A' operates with respect to r'). 

We shall now calculate [V' x KSJ : 

1 ­
V' x KSJ == - _1 [V' x [V' x [ f [n x <Pr J - , dSJ'


[ 47T 'S Ir -rl'J 

= - _1v'l f (V' , [~ X .p~ ] )dS (1 5) 
4n s \ Ir - r I
 

r' f. S
 
And we have
 

(V' ,[: ~ :~J)= (V' Ir ~ r' l ,[n x 'PrJ) == 

= _ ( VS	 _1_, ,[n x 'Pr j)
Ir - r I 

S 
_ (V , [0 x <Pr j) _ (VS ,[nx ~)~ (16) 
- Ir - r '1	 [r - r I 
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By virtue of (IO) and (II) 

1
is" , [n x 'PT ]) = lim -'c {[n x 'PT ] , v) dl 

A8-+O ss 
1 

=- lim -'c('PT,l)dl=-([Vs x'PT),n)==O . 
I:.S--'O tlS 

(17) 
Similarly , 

( I/
S ,[nx~] )= (-[VS x~] ,n) = 

Ir - r I Ir - r I 

= - ( [1/ x~] ,n). (I8) 
[r - r I 

Substituting (I7) and (I8) into (I6) and then into 
(IS), we get: 

[V' x K
S

) = _1 v'1[( [v x A]-r == 0 
47T s: Ir - r I ) 

o (19 

r' ~S 

(because the surface integral on the right -hand side of 
(I9), due to the Stokes theorem, reduces to a curvilinear 
integral over the boundary of S which is a closed sur­
face). 

Thus, everywhere outside S the function KS describes 
a Laplace vector field : 

(V ,KS)==O ; [ l/ xKs]=:O ; res . (20) 

and the scalar components of KS are harmonic functions 
(in general , different on different sides of S). This pro­
perty of (12) and the fact that in a two-dimensional 
case the right-hand side of (12) reduces to a complex 
Cauchy integral gives us ground to call (12) the three­
dim ensional Cauchy integral analog, and the function 
'P , its vector density. 

2. Properties of Three-dimensional Cauchy 
Integral Analogs 

Similarity of integrals (I2) and (2) is manifested 
in the commonness of their properties . Indeed, simple 
calculations show that the Cauchy integral analogs have 
the same properties as the classical integrals . The follo­
wing are the most important properties. 

Ist property follows from (20), i.e everywhere outs ide 
S the function KS (r' ,'I') can be expressed as the gra­
dient of some harmonic fun ctions 'lJ! (r') (different 
on different sides of S) : 

KS (r' , 'I') = V'lJt (r ' ) (21) 
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~: 
(where the "+" sign relates to the domain D , while "_''::' - ,
to CD). By means of simple transformations, we can ;. 
derive an explicit expression for 'lJ. Indeed , by virtue 
of (II) 

'PT = I/s 'P (22) 

where 'P is some function twice continuously differen ­
tiable on S, which we shall call the scalar density of the 
Cauchy integral. Using the Stokes theorem , and since 
S is a closed surface , we can transform the second in­
tegral in (13) as follows : 

- _1 [V' x f' r [n x 'P
T 

) 1, dSJ = 
47T Js Ir -r l 

1 [' f'r [I/s'P x n] ]= - V X J<: dS
41T S [r - r' l 

= _1 v'I1 (v , 

(23) 

1 ' 'P n) dS 
41T S Ir - r l 

Let us introduce the following notations : 

qS = - (n , 'P ) (24)n

mS = - <(J · n 

Now , substituting (23) into (13) , by virtue of (24), 
we obtain : 

11S , , \ 1 qSK (r,'P) = V - - ---, dS-

I 41T S [r - r I
 

(25) 

S-Ifi( m ) I- V 1 dS 
41T S J r - r ' I ' \ 

Hence 

S
'lJ- (r ) = - -1 1£ s: dS­• t 

47T . S [r - r' ] 
(26) 

1 ( 1 S- - V m dS 
41T fis Ir - r' I' ) 

Thus , the three-dimensional Cauchy integral analog 
can be expressed as the sum of a field of a simple layer 
of surface density qS = (n , 'P ) and a field of a doublen 
layer of dipole moment mS = - 'P . n . This represen­
tation is analogous to the representation of real and 
imaginary parts of the classical Cauchy integral in the 
form of superposition of simple and dou ble layer fields 
(Gakhov 1963). 

Tnd property 

If a point r' lies on the surface S , i.e. r' = rO E S 
th e Cauchy int egral is an improper integral because 
the integrand tends to infinity when r = rO. It can 
be calculated as the limit : 

t
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Sp 
KS (ro ,I{)) = lim K (ro ,..p) (27) 

p--+O 

...here Sp is a part of S outside a sphere 0 p of radius p 
md center at the point rO. This limit is called the sin­
;dar integral in the sense of Cauchy principle value. 

It has been shown (Zhdanov, 1974) that if S is a 
Lyapunov smooth surface and if the vector density 
)f a Cauchy integral satisfies the Holder boundary 
.ondition on S, i.e. if there exist positive constants 
~ and h (0 < h ~ 1) such that 

II{)(r')-I{)(r)I~Llr'-rih, r,r'ES (28) 

then the limit (27) exists and is equal to 

1 
KS (ro ,I{)) = KS (ro ,I{) - I{)(ro)) + "2 <p(ro) (29) 

vhere KS (ro ,<p - <p(ro)) is calculated as an ordinary 
ntegral (because the integrand does not tend to infinity 
it any point). 

3rd property 

The behaviour of three-dimensional Cauchy integral 
n.alogs near the integration surface is quite important 
in the theory of potentials . We can show that in those 
cases where the density <p satisfies the Holder boundary 
condition, there do exist limits for the Cauchy integral 
analog on approaching the surface S from either side : 

+ ° . s. : SOlO)K (r ,<p) = lim K (r ,<p) = K (r ,<p) + -I{)(r ; 
r'-r O 2 
r'ED (30) 

1 
;C (ro , <p) = lim KS(r' ,<p) = KS(ro,<p) --<p(ro)
 

r' --+r o 2
 
t' f$jj
 

These limits are, however, different on different sides; 
therefore a jump in value takes place on crossing the sur­
face. The jump is equal to the density in magnitude: 

K\rO ,<p) - K-(ro ,I{)) = <p(ro) (31) 

Eqs. (30) and (31) are the analogs of the Sokhotskiy­
Plemel formula(*) . 

4th property 

If <p is the limit on S of the gradient of a function 
everywhere harmonic in D, then by the Cauchy integral 
formula : 

KS(r' I{)) = ( I{)(r') ; (ED (32)( 0 ; r'EeD 

(0) The second and the third properties may be considered 
to be the corollaries or (21) and (26) and the well known pro ­
peities of simple and double layer potentials (Tikhonov, 
Samarskiy , 1953). 

j 
G 

5th property 

In order that a function <p(r) be the limit on S of the 
gradient of a certain function harmonic in D, it is neces­

,1 

sary and sufficient that 
S , , ­

K (r ,<p) == 0; r $.D (33) 

These properties of the Cauchy integral analogs are 
similar to the properties of the usual Cauchy type 
integral. Moreover, it is not difficult to show, as we 
have done in Appendix A for the Cauchy integral 
theorem, that in two-dimensional cases (where 
<p = (<P ,0 ,<p ) is not dependent on y) the integralx r 
(I2) simply reduces to the classical Cauchy type in­
tegral (2) , when <pCD = - <P (x • r) + i<P (x ,r) .x r 

3. Analytical Continuation of Three-dimensional 
Cauchy Integral Analogs through Integration
 

Surface
 

The integration surface is, as already mentioned, a 
special surface for the functions described by Cauchy 
type integrals. In many cases , however, the Cauchy type 
integral can be analytically continued beyond the inte­
gration surface. This problem has important significance 
in geophysical applications . Consider a certain analytical 
part r of a surface S on which the Cauchy integral ana­
log (12) of vector density <p(r) is defined. We shall as­
sume that the components of <p(r) on r are described 
by analytical functions of coordinates and that they 
satisfy the Holder boundary condition (28). Take a 
certain fixed point rOE r. Then, according to the 
Cauchy theorem (Smirnov, Sretenskiy, 1946), in the 
neighbourhood of rO there exists a harmonic function 
ll>(r) satisfying the condition: 

-all> I = I{)n; ll> Ir = I{) , (34) 
an r 

on I', where I{) is the scalar density of the Cauchy type 
integral which is related to the vector density by Eq . 
(22) ; hence 

Vll> Ir = 'P (35) 

Now we shall use the Sokhotskiy - Plemel formula for 
the Cauchy integral analogs. By virtue of (31) and (35), 
we have 

K-(ro ,I{))=K+(ro,<p) -Vll>(ro) rOEr (36) 

Obviously, the right-hand side of (36) is the boundary 
value on r of the gradients of functions harmonic in 
some domain D+ adjacent to r and wholly lying inside 
D. The left-hand side describes the boundary value of 
the gradients of fields everywhere harmonic outside D . 
Consequently, the right-hand side is, according to the 
Stal theorem (Sretenskiy, 1946) , the analytical conti ­
nuation of the left-hand side through the surface r. 
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Analytical continuation of Cauchy type integrals from 
inside to outside of an analytical part of the surface 
r is demonstrated in a similar manner . 

conl 
From (36) it is seen that K (r , <Ii ), which are 

the values of the Cauchy integral analogs continued 
across the surface , differ from the integrals by a quan ­
tity equal to - \leP (r) : 

Kcont(r , 'P) - K(r, <Ii) = - \leP(r) (37) 

Hence , we obtain two corollaries : first, the singular 
points of Kcont are the same as the singular points of 
\l<l> (r). Second, the joining lines of different analyti­
cal parts of the surface S are the branching lines of 
the Cauchy integral analogs . These properties of the 
Cauchy integral analogs give us a means to study the 
analytical continuation of external geopotential fields 
inside perturbing masses. 

4 . Representation of Gravitational Fields in the form 
of Three-dimensional Cauchy Integral Analogs 

Remarkable advances made in theoretical analysis 
of plane problems of gravimetry and magnetometry 
have been achieved , as already mentioned elsewhere , 
due to the representation of gravitational and magnetic 
fields in the form of Cauchy type integrals. These reo 
presentations were first derived by A.V . Tsirulskiy 
(1963) and were then further developed and genera­
lized by G. Ya. Golizdra (1966) , and V.N. Strakhov 
(19701 2 3)' In this connection , it is quite tempting 
to derive' similar representations foi: three-dimensional 
fields . These problems were first solved by Zhdanov 
(1973 , 1974) who , using matrix formalism , gave the 
representation for gravitational fields of uniformly 
perturbed bodies in the form of Cauchy integral ana­
logs. Later T. Kolbenheyer (1976 , 1978) studied the 
description of gravitational field of a body with an 
arbitrary density distribution a(r), using the Moisil­
Teodoresko theory (Bitsadze, 1953, 1972). In the 
present paper we shall solve this problem with the help 
of vector representation of Cauchy type integral deve­
loped in the previous pages. 

We shall begin our analysis with gravitational fields . 
The intensity of gravitational fields of a domain D 
bounded by a piecewise smooth surface S and filled 
with masses distributed in D with an arbitrarily conti ­
nuous density a(r), as is known , has the form : 

VCr') = I, dV (38) 1 IJ[ a (r) \l r
• D [ r - r I 

where 1 is the gravitational constant. We shall now reo 
duce the volume integral in (38) to a Cauchy type in­
tegral defined on the surfa ce S bounding the domain 
D . For this purpose, using th e Kolbenheyer technique 
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(1978), we shall extend the definition of the functi~~ 
a(r) into some domain D* wholly containing the sur~: 
face S and the domain D (D C D* ;S C D*), such thai 
a(r) is continuous in D*. 

Let h (r) , r E D* be an arbitrary particular solution 
of the Poisson equation: 

L1h(r) = - 471l'a (r) (39) 
and 

I 
fer) = [r _ r' ] (40) 

the Green funct ion. Substituting (39) and (40) into (7), 
we obtain the representation for the external gravita. 
tional field of the domain D in the form of Cauchy 
in tegral analog : 

VCr') =-I' fJj~ a(r) \l _1_, -r, = KS(r~ - \lh), j
le-r I (41) 

where r' E CD. 
Now we shall introduce analogous representations 

for the inner gravitational field W(r') of the domain 
D. Obviously, 

W(r') = V''P(r') (42) I 
where 

L1' .p(r') = - 47110(r') r'ED (43) 
'j

By virtue of (39), the difference .p(r') - h (r') is a func­
tion harmonic in D : 

L1(.p - h) = O r' ED I 
Hence , by the fourth property of the Cauchy integral 
analog , we have 

.~ 

Wee') - V' h(r') = KS (r' , W(r) - Vh(r)) = (44) 

= KS (r' , W(r)) + KS (r:- Vh (r)) ; 

]
 
for r' ED 

We know that the intensity of a gravitational field due 

rES .: I 
to continuously distributed masses is a everywhere 
continuous function . Consequently, 

VCr) == W(r) 

for 

and 

KS (r' , W(r )) = KS(r' , V (r)) = 0 ; (45) 

for r' ED 

because V (r) is harmonic outside D . Substituting (45) 
into (44), we can rewrite \, 

~ ,. 

W(r' ) = V' II (r' ) + KS (r' , - 'V h (r)) ; (46) ! , ; ; 

r E D. ,' ! 
l · 
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J 
ow consider the function : By virtue of the results stated in Append. A, the expres­ '1' 

tence, by the fourth propert y of the Cauchy type inte­
rals, we have 

i ... 

~ . 
< 

i , ~ 

, 
tt 
": ,; 

r. 

·h, 

.':'.\ 

". ~; 

(57) 

(59)
471 ) )

+3,,/°Or \ 

o (r) = (C , r) + 0 0 

453 

as the particular solution of (39). Consequently , Eq. 
(4 1) has to be rewritten as 

(') S(' \ 1 [ 2 2 2]U r = K z. i -;- x Cxe x + y Cye y + z Czez + 
. -

On expanding the left-hand side, with the help of (12) , 
we can finally obtain: 

"/0 0 fjj \2(r -r) , n I _ . (n r - r' ) - - ­ . dS = 
3' ( Ir - r' 13 ' I r- r ' l~ 

S 
\ U (r'}; r' E C Jj 

= ( W (r'}; r' ED 

(56) 

where: 4rr"/C = - (Cx ,Cy. ,C), 0 0 are certain arbi­
trary constant vector and scalar, respectively. Here we 
have to take 

Now consider a case where the density o (r) varies 
according to a linear law: 

1
h (r) = - (C . x 3 + C y 3 + C 7 

3 ) 2rr"/° 0 2 

6 
x y z· · ---r

3 ' 
(58) 

while (50) takes the form : 

KS(r' , ~ :rr "/00 (r _ r') _ ~ [(x 2 
- X'2 ) CX ex 

(y 2 '2) 2'2 I)+ - Y . Cyey + (z .- Z ) Czez] \ 

\ U (r'} ; r' E C i5 
I W(r') ; r ED (60) 

This expression is the three-dimensional analog of 
Strakhov's formula (Strakhov, 1970). Evidently, using 
similar arguments , we can easily construct the represen­

sion (52) in two-dimensional cases is readily converted 
into (53) when 2rr is substituted for 4rr/3 (because a 
finite three-dimensional domain is converted into a 
two-dimensional region , i.e. infiinitely extended along 
Y·axis). 

Expression (SO) for a uniform body is written as : 

, 4rr , \ U (r'}: r' E C D 
xS (r ,-,,/0o (r-r)) = 1 " (55)

3 I W(r ); r ED 

(53) 

(49) 

(51) 

(52) 

(47) 

(48) 

r' E C i5 
r' ED 

(SO) 

r' E CD 

r' ED 

rED 

0 0 ~ 
h = - 2rr"/ ­ r" 

3 

x (r) =(r , v' II (r')) 

V' x ( r) == V" h ( r) 

li x (r) == 0 

s (4rr )U(r) = K r' '3"-,,/0 0 r 

U(n = _1 j' - 2rr"/°0 ~ * 
2 ni C ~ _ r dt; 

\ U (r') ; 
KS (r' ,[ \7'h (r' ) - Vh (r)]) = ( W(r') ; 

Ib viou sly, 

'hen, we can take 

:S (r , V' X[r')) = KS (r' , ,I'h(r')) 

_ \ 0 ; 

- I V'h ( r') 

'hus, we have derived expressions for gravitational 
ields both inside arid outside the perturbing masses 
:l terms of the same Cauchy type integral (SO). These 
xpressions extend the Strakhov formula (I970) to 
; ree-d imensional case. 

Now we shall examine how these expression (41) and 
SO) can be simplified for an important particular case 
If bodies with a uniform or linear density. Let 

o Cr) == 0 0 = const . 

s the particular solution of Eq. (39) . Accordingly, 
::q. (41) can be rewritten as 

:y virtue of (49) , Eqs. (4 1) and (46) can be combined 
· to one expression: 

rhis expression extends the Tsirulskiy formula for a 
lane field (Tsirulskiy , 1963) , to three-dimensional 

.ase : 

vhere ~* is the conjugate of ~ , C is the cross-section 
if a two-dimensional body extend ed along Y·axis , 
'Jen is the complex intensity of the gravitation field 
» lated to U (Ux ' 0 , U: ) by means of the expression : 

U (f) = ­ Ux (x' . r') + i U: (x' ,r) (54) 
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tation for gravitational fields in the form of Cauchy 
integral analogs for bodies whose density changes ac­
cording to any polynomial low . 

Such a representation ma y be quite useful in solving 
the direct problems of gravimetry, because by means 
of these repr esentations we can easily convert the 
volume integrals into surface integrals even for nonu­
nifo rm bodies . The y have , however, the greatest value 
in theoretical investigat ions or in studying the analyti­
cal continuation of gravitational field s inside or o ut side 
mass es. 

5.	 Representation of a Magnetic Field in the Form 
of Cauchy Integral Analog 

The intensity of magnetic field of a domain D, in 
which the magnetic masses of arbitrarily continuous 
magnetization 1 (r) are distributed , is of the form : 

H(r) = V' (fJ(1(Z) ,'iJ 1,)d Vr (61) 
"D [r - r I 

Proceeding as in the previous Section , we can reduce 
the volume integral in (61) to a Cauchy integral analog 
over a surface S bouding the domain D. For this pur­
pose transform (61) by the usual technique : 

H(r')= v'l/[J ( V , 1; av, _ rJ (n, J~ . dSr ) = 
I .D [r - r I -!s Ir - r i \ 

" 1 
= - J (v , 1) V --, «v, -+­if
 [r - r I 

1+1J(n , 1) V --, as, (62) 
S [r - r I 

The magnetizati on 1 being potential in D, we can 
take : 

J = - vh (63) 

Hence, with the help of (7) we can rewrite the first 
integral in (62) as follows : 

_jl'rJ ( V , 1) V _ 1_, av, = 
JD [r - r I 

j'J'(n ,J)	 V --, dSr ­= -	 1 
S Ir - r I 

-j'r [[n	 XJ ]XV I , J dSr (64) 
s : [r - r I 

454 

Substituting (64) into (62), we obtain : 

H (r')=-lJ' [[n xJ] xV 1 I ] as, = 
S [r - r I 

= KS (r' , 41T 1
T

) , (65) 

where 1T is the co mponent of 1 tangential to S . 

The expression (65) shows that for a wide clas~ 
of magnetization distributions inside D , the magnetic 
field of D can be expressed in the form of a Cauchy 
integral analog over the surface of S. '. 

In a particular case , where the function h in (63) is 
harmonic in D, by virtue of (62) and (65) , we have: 

I 1'f Is,H(r ) = (n , J) V --, dS = K (r ,41T 10) == t 
S [r - r I . ~ 

' r' 

== KS (r' , 41T 1T ) (66). 

where In is the component of J normal to the surface 
S. The expressions (65) and (66) , just like (41), give 
a basis with which we can solve the problem of analy­
tical continuation of external field inside a magnetized 
body . 

6. Analytical Continuation of An External Gravitational 
Or Magnetic Field inside a Three-diemensional Domain
 

containing the Field Sources
 

The representations derived in the previous Section 
for external gravitational and magnetic fields in the form 
of Cauchy integral analogs lie at the base of the theory 
of anal ytical continuation of fields inside and out side 
masses. 

Let r be some analytical part of the surface Sand 
let the density 0 (r) and magnetization 1 (r) be_analytical 
functions of coordinates everywhere inside D (domain . 
D along with its boundary S). The fun ctions Vh Ir and 
JT Ir are evidently analytical on r . Hence, by the 
Cauchy the orem, in the neighbourhood of r there ~ 

exist such harmonic functions (p u (r) and <f/I (r) that 
on r : 

V1>U (r) Ir = - Vhi!, (67a) ;: 

v qII (r)l r = 41TJ
T 

lr (67b) : 

For example , if the domain D is filled with masses 
of uniform density 0 0 , Eq . (67a) , by virtue of (51), -,~ 

can be rewritten as : 

41T 
V1>u (r) lr = "3 r oo r (68) 

, . 

It is called the equat ion of t he surface r in a har- ,~ 
mon ic form (Zhdano v, 1974). In a two-dimensional ..;. 

-.... 

01 
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ase, where 5 is a cylindrical surface with its generator 
arallel to Y-axis, Eq. (68) is converted into the equa­
on of a plane curve in the form of Tsirulskiy (1963 ) : 

p
3 [i:l<I>U a<t ]; * = 'It (n =-- -- (x , z) - i - (x , z) 

41T')'ao ax ar 
(69) 

epH( I) and epfJ(2) defining the surfaces 5 I and 52 have 
singularities only in the intersection Do = D I () D2 ; 

. ~.
U( I) U(2) U moreover , the differences <I> - ep = c5 ep or 

<I>fJ(l) _ epfJ(2) = c5<I>H be functions harmonic in Do' 
The truth of Theorem 1 follows directly from Eqs. 
(70) and (71) . We shall prove Theorem 2 in Appendix 
B. 

/here ~* is the conjugate of ~ = x + iz . 'It (n is a 
omplex analytical function . 

Owing to Eq. (67) which defines the equation of 
he analytical part r of the surface 5, we can make 
rse of the properties of the Cauchy integral analog 
{ 'i/hand J satisfy the H" older boundary condi­

T 

Ion on I") , according to which external gravitational 
nd magnetic fields (described by the Cauchy integral 
nalogs) can be extended within the masses. Moreover, 
,y virtue of (37) , (41) and (65), the continued field 
alues are given by the formulas : 

U(r) = - 'i/llP(r) + FU(r) (70a) 

H(r) = - VepH(r) + FH(r) (70b) 
"1ere 

FU(r) = KS(r , _ 'i/h) = KS(r , 'i/<I>u) ; 
(71) 

FH(r) = KS(r, 41TJ ) = KS(r, 'i/<I>H)
T 

'his expression gives a comprehensive means to study 
he analytical continuation of external field into the 
omain D. In particular , if the whole surface 5 is ana­
y' tical, and the distributions of a(r ) , J (r) are described 
y analytical functions , then the following theorems, 
/hich extend the theorem of Strakhov (1970)(*) to 
hee-dimensional case, hold true. 

'heorem I : If 5 is a closed analytical surface given 
'y Eq . (67), the functions <I> u (r) and epH(r) have, ne­
essarily singular points inside 5, and the number of 
heir singularities is equal to the number of singula­
ities of the function U(r) or H(r) wh.ich are the ana­
ytical continuations into 5. 

'heorem 2 : In order that two different domains D I 
r. d D2 field with masses of different analytical dis­
r.butions of densities a I (r) and a2 (r) or magnetizations 
1(r) and J 2 (r), and bounded by analytical surfaces 51 
nd 52 ' may create identically equal external fields : 

U(ll (r) == U(2)(r) ; (72a) 
. e co; 

H(I)(r) == H(2)(r) ; (72b) 

t is necessary and sufficient that the domains D I and 
) . intersect and the functions IIPO) and <I>U(2 ) or 

l O) fo r a du mai n of uni fo rm densi ty or magnet iza t ion 
hcse th eorems wer e first derived and dem ons trated for a two­
irnensional case by A,V, T sirulsk iy (1 96 3 ; 1969 ) , and ex tend­
d to three-dimensional case by Zhdanov (19 73 ) , 

In the general case where the boundary 5 of the 
domain is a piecewise analytical surface , the following 
statements wh.ich are the generalizations of Strakhov 
theorem (1970) for plane fields to three-dimensional 
case are true : 

Theorem 3 : An external gravitational or magnetic field 
generated by analytical distributions of density or ma­
gnetization inside a domain D (such that J = - 'i/h 
in D and the funct ions Ilh Is and JT Is satisfy the Holder 
boundary condition on the boundary 5 of D) admits 
analytical continuation through any analytical part r 
of the surface 5, besides , perhaps , its boundary. The 
singular points of the continued field are the same as 
the singular points of functions describing the equation 
of the surfaces r in the form (67) . 

Theorem 4 : If the boundary 5 of a domain D consists 
of a finite number of different analytical parts r j 

(i = 1,2,3, .. . ,N) ( "different' ~ in the sense that dif­
ferent analytical functions <I>(') (r) , (i = 1,2,3 , . .. ,N) 
occur in the equations of these surfaces (67», then 
for any analytical distribution of the density or magne­
tization inside D (such that J = - 'Vh in D and 'ilh Is 
and J Is satisfy the Holder boundary condi tion on

T 
5) the joining lines of different analytical parts r i and 
r are th e branching lines of the external field, j 

The proofs of Theorems 3 and 4 follow directly 
from (70) and (7 1). These expressions (70) and (7 1) 
can also be used in solving certain inverse problems 
of gravimetry and magnetometry, employing the prin­
ciples of analytical continuation . Such problems were 
first studied by A.A. Zamorev (1941 ; 1942) and A.V. 
Tsirulskiy (1964) for uniform two-dimensional bodies, 
and were later extended by Strakhov (19702 ) to two­
dimensional bodies of arbitrary analyt ical magnetization 
distribution . Zhdanov (1974) applied a similar technique 
to solve the three-dimensional inverse problems in the 
theory of potentials for bodies of uniform density . It 
should, however, be noted that the use of these methods 
for solving the inverse problems is rath er cumbersome 
due to the instability of the analytical continuation 
procedure . They have their main significance in theo­
retical investigations because the y reveal the conditions 
under wh.ich the solution of the inverse problem is 
unique . We shall extend the se results to a thr ee-dimen­
sional body of arbitrary analytical density distribution. 

Let a surface 5 be composed of several analytical 
parts r j (i = 1,2.3 , . . . , N ) and assume that we know 
the analytical densit y distribution inside 5 (which is 
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such that the gradient of the corresponding function 
h (r), a particular solution of Eq. (39), satisfies the 
Holder boundar y condition on S). Besides . we shall 
assume that the analytical function <pU(I) defining 
the equation of the surface f i in the form (67a) is 
known . It is assumed that this function is analytical 
everywhere inside D (except, perhaps , at certain finite 
number of isolated singular points ). The problem is 
to find the whole surface S from the external gravi­
tational field U (r), using the analytical continuation 
te chnique. 

The solution of this problem follows from (70a). 
Indeed I let 0<1) (r) denote the analytical continuation 
of the external gravitational field across the surface 
r ; Then 

F U (r) = U(i)(r) + V' <p U(i)Cr) ; i = 1,2, ... ,N (73) 

In particular , for a known part I' of the surface S: 

FU(r) = U(I)Cr) + \7<pU( I)(r ) (74) 

Equating the right-hand sides of (73) and (74), we get 

\7tP U(i)(r) = V' tPu (1 )Cr) - U(i)(r) + U(l)(r) (75) 

Consequently , the equation of the surface f i , by virtue 
of (67) , takes the form : 

V'tP U(1 )Cr) - O<i) (r) + U(l)(r ) = - V'h(r) (76) 

where h (r) is the particular solution of Eq. (39) . 

Expression (76) gives the solution to the problem 
of determ ination of the shape of a surface composed 
of a flnite number of analytical parts , on the basis of 
analytical continuation technique . This problem has 
evidently a unique solution , provided we not only 
know the density distribution inside S , hut also some 
other part (however small it be) of this surface. In the 
contrary case, the inverse problem , as its follows from 
Theorem 2, is ambiguous. 

Conclusion 

The exemples given above do not form a complete 
list of the results which can be derived for three-dimen ­
sional fields with the help of Cauchy integral analog 
technique . Moreover, the inter -relations mentioned 
above between the Cauchy integral analogs and the 
classical theory of functions of a complex variable 
suggest that almost all the results obtained for the two­
dimensional case can be extended to three-dimensional 
case as well. Thus, the sharp demarcat ion existing since 
long between the theoret ical approaches applied for 
the interpretation of two-dimensional and three-di­
mensional geopotential fields has been obliterated . 
This fundamental result , that follows from the whole 
system of analogs constructed above, is quite important. 

456 

Appendix A 

Illustration of the analogy between the Cauchy 
integral formula and Eq. (9) given in sec. 1 

Introduce a righthanded Cartesian coordinate systei 
xy z , the Z-axis being directed vertically downwards. u 
S be a cylindrical surface generated by a line parallel t 
Y-axis, and let the function h be not dependent on J 
Then n (n, , 0, nr) , V'h = (h ,O ,h r) and the lefx 
hand side of (9) can be rewriten as : 

1 1 [ 1- - f'fJo \/(n , Vh) V - - , + [n x Vh] x v - -,] I dS 
4 71 S Ir - r l Ir - r l \ 

__~j' (x ' - x ) (h ,dx .- hx d z)+ (: ' - : )(h., dx + h , dz ) . 
- I ,2 ( , 2 e,

271 • (x - x) + z .. z ) 

_~ j' (z ' - z)(h , dx - Il ,J:) - (x ' -x ) (Il, dot + h , dZl . e 

2 71 L (x ... x ' /+ (Z __ Z')2 I ' 

where ex' er are the unit vectors along x and z, respe 
tively ; r and r' have the coordinates (x , z) and (x ' ,z 
respectively ; and the contour L is the intersection I 

the surface S by the plane XZ . 

In the complex plane xz introduce the variab 
~ = x + iz and let f Cn stand for the complex functior 

fen = - hx ex . z) + ihr (x . z) (A. 

Obviously , fCD is analytical in D and continuous in ; 
because h and h; are interrelated by the Cauchx 
Riemann condition due to the harmonicit y of h . 

Transforming (A.I) with the help of (A.2) and (S 
we obtain the classical Cauchy integral formula : 

1 j' e- hx + ihr) . 
- d (x + lZ ) =
 

2rri L (x - x') + i (z - a')
 
(A. 

(ED;
= _II fCD d~ = \ f(n ; 

2rri ~-( 10; ~' E CD 

Thus, Eq. (9) is the natural generalization of the Caucl 
formula for the three-dimensional case ; it can, the! 
fore, be called the analog of Cauchy formula . 

Appendix B 

Proof of the Theorem 2 
(for the sake of brevity we shall consider the case of 

magnetized massesonly) 

Necessary condition : By virtue of Theorem 1, t 
functions <pli(l) and 'VI ( 2 ) should obviously have t 
same singularities which should necessarily be insi 
D I and D2 ; consequentl y , either these domains shor 
intersect, or one should be contained wholly within t 
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fother : DIn D2 = Do =1= O. For the sake of definiteness , Consequently' , by the fifth property of Cauchy integral ~ ; 

we shall assume that D\D is never an empty set (i.e. analogs , 0.pH is a function harmonic everywhere inside 
!; ! ­o ; . .either D I lies wholly within D 2 , Fig. 1a, or D I intersects Do, which is what was required to be proved . ';"1: 

D , Fig. 1b). From (70b) and (71 b), we have • •
2 Sufficient condition : We shall now calculate the dif­ ',,' IysH(I)(r) = - lj'epH(I)(r) + FH(I)(r) ; ference of the fields H(I)(r') and H(2)(r') by means of 

(B.1) (B.3) and (B.4) : 
H(2)(r) = - lj' epH(2)(r) + ~(2)(r) ; ,;Il 

H(2)(r' ) _ H(I)(r' ) = KSo(r' , Ij' (0 clJH)) ; 

where the functions ~(I) and ~(2), being harmonic 
r' E c150 (B.6)

in D I and D2 , respectively, are given by the expres­
sians: But , if 8epH is a function harmonic everywhere in Do, rL .i I1FH(I)(r) = KSI(r , Ij'clJH(I)) ; :~ 

by virtue of the fifth property of Cauchy integral ana­ ~ ~t , . 
(B.2) 

KS2(r logs, the right-hand side of (B.6) identically vanishes . ;,
. .1 

, ~' _.~(2 )(r) = , VclJH(2») ; 
Consequently, 

Ob"iously, the function H(I)(r) is harmonic in D 2 \ Do. H(I)(r') == H(2)(r') ; r' E C15 (B.7) 
Co ~sequent~, from the condition of the theorem, the 

Thus , Theorem 2 has been fully demonstrated.function H( )(r) (or its analytical continuation) is also 

0 

lilt
harmonic in D 2\Do. Thus, by virtue of (B.l) , V¥(2), 

Manuscrit recu le 19 decernbre 1979 .,;qbeing the difference of two harmonic functions, is itself 
sous sa forme definitive le 24 juillet 1980

harmonic in D2\ Do. Therefore . using the fourth pro­ :1 f~ 
perty of the Cauchy integral analog , we can write: ~" ~ . 

,1 ~ S ;
S ( S

H(2)(r') = K 2(r' ,41T J,?») = K 2(r' , lj'epH(2 l ) = References ii 1!~ .• 
· " ~ f 

S HHi:· ~· . 
= K o(r' , lj'epH(2») , (B.3) Bitsadze A.V., "Three-dimensional analogs of Cauchy integrals 

J\..,. . ~~.I. ,!and their applications" . Izv , AN SSSR , ser. Matem. , No . ~ . 
where So is the boundary of Do , r' E c15 0 (complement 17,1953 . jli 1 

. ~ , 
of the closed domain Do + So with respect to the whole Bitsadze A.V., "Pr inciples o f the theory of analytical function s ( ii 

"; ~; b.I ", ·· .space). Similarly , we can show that of a complex variable" . Moscow, Nauka, 1972 . 
;; ~~ ~ .

Gakhov B.D., " Boundary value problems" . Cos. Izdat. Fiz, Mat. .H(I)(r') = KSo(r' , VclJH(I»); r' E co; (B.4) . ~ { 

Lit., Moscow, 1963 . ~ ~4 ;.:: 
~ ;i ~! . 

Hence, we obtain Golizdra G.Ya. , "Singular points of analytical continuation o f ~~ ~ gravitational field and their relation with the shape of the :.j : " 
Ii ' \' 6. : i

KSo (r' , VclJH(I) _ VepH (2») = KSo(r' , V(OepH)) == 0 ; masses" . " Chapters to 
. :1J;.

perturbing In Supplementary A ;:;dCour se in Gravimetry and Magnet ometry" , Novosibirsk ,
r' E c15 0 (B.5) .j,1966 . 
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