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Summary. This paper deals with the further development of finite-difference
methods for electromagnetic field modelling in two- and three-dimensional
cases. The main feature of the approach suggested here is the application of
generalized asymptotic boundary conditions valid with the accuracy O(1/o™),
where p is the distance from the heterogeneities. The finite-difference
approximation of problems under solution is made using the balance method,
which results in S-point difference schemes in the 2-D case and 7-point
difference schemes in the 3-D case. To solve the linear system of difference
equations the successive over-relaxation (SOR) method is used, the relaxation
factor being chosen during the iteration procedure. In view of the vectorial
character of the problem for the 3-D case, a successive blocked over-relaxa-
tion method (SBOR) is applied.

The model’s validity is based on the comparison of the fields accounted at
the ground surface with those computed by the integral transformation of
excessive currents, determined in the heterogeneity region using the finite-
difference scheme.

1 Introduction

One of the fundamental problems in modern geoelectrics is the construction of effective
models for variable electromagnetic fields in inhomogeneous media. Different techniques
have been applied to solve this problem: integral equations, finite differences, finite elements
etc. These methods have advantages and disadvantages and, on the whole, the problem of
choosing the optimal method for numerical modelling remains open. It seems important
therefore to search for the most effective algorithms, to examine different approaches, and
to select such classes of problems for which the application of these algorithms is most
suitable. In this paper we will consider the principles of the construction of effective
algorithms for finite-difference modelling of electromagnetic fields. This approach has been
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developed by many authors: Greenfield (1965); Swift (1971); Madden & Swift (1972);
Jones & Pascoe (1971); Miiller & Losecke (1975); Weaver & Brewitt-Taylor (1978);
Tatrallyay (1977, 1978a); Judin & Kazantseva (1977); Dmitriev & Barashkov (1979);
Barashkov (1980); Varentsov & Golubev (1980a, b, ¢); Lines & Jones (1973); Jones (1978);
Judin (1980); Zhdanov & Spichak (1980); etc. A number of programs for finite-difference
modelling are considered which are widely used in the practice of geoelectric research. In
spite of the advances, however, some difficulties exist concerning the application of this
technique, the resolution of which would significantly increase the effectiveness of such
calculations. The main problems in our opinion, are as follow:

(1) the construction of accurate boundary conditions in the case when the distance
between the boundary of the region modelled and the geoelectric heterogeneities is relatively
small;

(2) the construction of correct finite-difference approximations of field equations;

(3) the selection of effective methods for solving the systems of finite-difference equa-
tions;

(4) the development of techniques for independent testing of model validity.

Note, that all the problems given above arise in solving both two-dimensional and three-
dimensional modelling problems, however in the latter case they are considerably more
complicated. On the other hand, the successful solution of these problems in three dimen-
sions promises the greatest computational profits.

The first part of this paper considers in detail techniques for solving the 2-D problems

mentioned above. In the second part we outline ways of generalizing these results for the
3.D case.

2 Two-dimensional modelling
2.1 THE GEOELECTRIC MODEL AND FIELD EQUATIONS

Consider the 2-D model, presented in Fig. 1, in which the conducting Barth involves the
anomalous rectangular region ¥, with arbitrary conductivity distribution g, (x, ), surrounded
by three regions of the normal section with a one-dimensional conductivity distribution: the '
region VI with conductivity of (z) (the left normal section), the region ¥} with conduc-
tivity o (z) (the right normal section) and the region V,, with conductivity a, () = ok (z) =
Oy (2) (the lower normal section). The Earth is in contact with the non-conducting atmos-
phere V5 (05=0). The model is excited by the plane wave with E- or H-polarization. The
time dependence of the field is specified as exp(—iwt), the displacement currents are
ignored and the magnetic permeability is overall equal to yg (the vacuum permeability). 3
In the case of E-polarization the modelled electric field satisfies the well-known equation:

AE, +K*E, =0 @2.1)

where K?= K?(x, z) =10 (x, ), and the associated magnetic field is determined by the
electric field:

1 2E, !
iy 0z
1 2E, {2:2)

H,=—
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Figure 1

In the case of H-polarization the equation for magnetic field takes the form:

1
div;{—2 grad Hy + Hy =0 (2.3)
and the electric field is given by
-l
X
o 0z
(2.4)
1 9H,
E,=— —.
o 0x

2.2 THE BOUNDARY PROBLEM FORMULATION

We consider the problem of solving equations (2.1) and (2.3) in the bounded rectangular
regions Vg (E-polarization) and Vyy (H-polarization) with the left, right and lower boun-
daries lying in the respective parts of the normal section (Fig. 1) and the upper boundary in
the atmosphere.

To formulate the boundary problems it is necessary to specify boundary conditions for
the electric and magnetic fields. The conditions of the first kind are traditionally used, i..
the value of electric and magnetic fields are given directly. The boundaries of the region Ve
and WV are assumed to be removed far enough from the region Vs, 80 that the correspond-
ing anomalous field may be ignored (Pascoe & Jones 1972 Brewitt-Taylor & Weaver 1976;
Dmitriev & Barashkov 1979). However, in complicated geoelectric situations it is not clear
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a priori how far should we remove the boundary. The choice of boundary conditions may be
incorrect, particularly in an isolator, where the damping of an anomalous field is very slow
and determined by the geometry alone. Therefore, in this case the numerical solution of the
boundary problem gives rise to great difficulties due to the large dimensions of the modelled
region as compared with those of the heterogeneity region V.

To overcome these difficulties one may use boundary conditions which either take into
account the asymptotic behaviour of anomalous fields far away from the heterogeneities or
are based upon integral relationships between the different field components. These ideas in
their most general form were expressed by Sveshnikov (1969) and later advanced by
Dmitriev (Barashkov 1980) and Weidelt (1975b, 1978). As for 2-D problems of geoelectrics,
this approach has been developed most completely by Weaver & Brewitt-Taylor (1976,
1978). In this paper we shall formulate the generalized asymptotic boundary conditions in
the atmosphere for the case of E-polarization. In the H-polarization case the magnetic field

is constant. So we have no need of such conditions, and the upper boundary of the region
Vi may be coincident with the Earth’s surface,

2.3 THE GENERALIZED ASYMPTOTIC BOUNDARY CONDITIONS

To deduce the asymptotic expression for the electric field in air, we use the second of
Maxwell’s equations and write:

X
Ey(x, 2) = iwpy f Hy(x, z)dx + Cyz + C, z<0 (2.5)

where Cy and C; are constants.

Let us express the magnetic field H,(x, z) in (2.5) in terms of its spatial spectrum
he (@, 2):

Wy [ hy(a,z
Ey(x,2)=- -2—0 f =(%.2) exp (—iax) da + Cyz + C,, z<0 (2.6)
T Jow @

hy(a,2) = fn H,(x, z) exp (iax) dx.

It is known that in this model the spectrum 4, (o, z) at any level in the air may be
expressed in terms of the one determined at the ground surface:

ha(e,2) = hy(e, 0) exp (~ |||z ). 2.7
Substituting (2.7) into (2.6) we obtain:
W) = exp(—|alz
Ey(x,z)=— f J- hy(a, 0) M exp (—iax)doa + Cyz + C,. (2.8)
o o
The spatial spectrum of the magnetic field A, at the ground surface may be expanded
into the Maclaurin series:
o h}; oo

=
hi0)> § —o, 30 k0= ¥ o’ a<b, (2.9)
p=o P! p=¢ P!

A
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where hp are the coefficients of the series. Substituting (2.9) into (2.8) and interchanging
the summation and integration we obtain:

) 1 )
L'I‘},(x,z)=—m——#0 2 ——f of ~Yexp(—|al|z|) [exp(—iax)hp
2n P=0 P! 0
—(=1)P exp(iax)hp] da + Cyz + Cy. (2.10)

After the calculation of the tabular integrals in (2.10) (Bateman & Erdelyi 1954) we finally
find:

ey i & hpexp(—ipp) — (1) hp exp(ipy)
E,= hop +— 7
2 P=1 p P

+ Gz + Co, @2.11)

where ¢ and p are the polar coordinates of the observation point (Fig. 1):
p=+/x%+z?, p=arctan (x/|z]).

Considering the first (N +1) terms in (2.11) we get the asymptotic expression for the
electric field with accuracy O(1/oN). The coefficients ko, Coand C; in (2.11) are determined
by matching this expansion as x = *o with the right and left normal electric fields EJ‘," and
Ej;, respectively, i.e.

g =g =Ey“ (0)—£¥ (0)

ho=—-H3— 3
iwpo iwpo
ZR _zL ER(0)+E}
Co=—H" B Al (2.12)
2 2
Cy= —iwuoH

where HJ is the normal magnetic field at the ground surface (suitably normalized), Z R.L are
the impedances of the right and left normal sections respectively and

L= —HYZ™L +iwoug2), z<0.

The difficulty consists in the fact that we do not know the other coefficients hp in the
series (2.11). To exclude the unknown coefficients we construct a differential operator Dy
in the form:

Dy =L®.L® . .1 =[] L®, (2.13)
where 0
L(")=1+£—§—=1+-1- (xiui).
n op n\ ox 0z

Note that

1, §=0
Dy [1/p%]1={ 0, 1<S<N

el _ e, - SN
(8=0,1,2...),

so an application of operator Dy to the series (2.1 1) results in the equation:

itotioh 2
Dy [1/05] = 2020 4 (W +1) Cyz + Co+ B(1/p™), (2.14)
m
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Neglecting the last term in the right side of (2.14) we obtain the approximate equation
(written in Cartesian coordinates):
x Cl’\lf u m . n-m,m I"E Y
. =3 = e Y
n=0 I‘l'. m=0 ax az

iweh X
s R WA G+ Com i ) (2.15)
T Z

It is valid with accuracy O(1/p" ) and can be used as the asymptotic boundary condition in
the atmosphere.

To realize this condition we have to calculate the derivatives normal to the boundary of
the modelled region. It is more convenient however to reduce normal derivatives (beginning
from the second order) in the equation (2.15) to the tangential ones using Laplace’s
equation:

g d a)|a" 'k

—tmo R YR S e A G

) ([ CUAE )]az} 3z 1

a” i bl o) 'E

az,,'v =5{[1+(—1)"] Pkl [ —~=0)7] 5} axT—ly : (2.16)

The substitution of (2.16) into (2.15) produces:

N 1 3 0 =g
Byt ¥ X oy [cosn(¢+g)5;~sinn (np'*'z)—J Z = fy(x,2) (2.17)

n=1 n! 2/ 0z Bx"'l

N CR 3 3l = LE
&g N_,.[_- 2 cos _]__ < Ty 2.18
y RZH n!( p) g AR I (x, 2) (2.18)

The conditions (2.17) should be used at the horizontal boundaries while the conditions
(2.18) at the vertical boundaries of the region V.

In the special case N =1 the relationships (2.17) and (2.18) coincide with the boundary
conditions, suggested by Weaver & Brewitt-Taylor. Therefore, these equations may be
called the Weaver—Brewitt-Taylor's generalized asymptotic conditions of order N.

At the lateral sides of the region Vg, lying in the Barth, the boundary conditions are
defined by requiring continuity of the field values from the Earth’s surface using the
formulae corresponding to the one-dimensional field equations in the laterally homogeneous
medium (Weaver & Brewitt-Taylor 1978). At the lower boundary of the region Vg the
boundary values are determined, as a rule, by means of the simple interpolation. However, if
the bottom of the section is also non-conducting, the boundary conditions may be specified
using formulae, analogous to the asymptotic ones written above for the atmosphere
(Zhdanov, Varentsov & Golubev 1980).

Experience of the numerical calculations with the asymptotic boundary conditions shows
that their application significantly increases the effectiveness of the model,

2.4 THE FINITE-DIFFERENCE APPROXIMATION OF THE BOUNDARY PROBLEM

For the numerical solution of the boundary problem let us introduce the rectangular
(uneven) grid X in the regions ¥V and V.

L X=X =X %= %1 +Ax; 1=2,3;... 1
= (X{Zl) _ 2 R )
51=2,25=2,2/=z_y +Az;_, ks e TR &
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Define on the grid the discrete functions £, /)= Ey(x;, ;) and H(i, j)=Hy (x;, 2p).
Furthermore, introduce the auxiliary grid 2 consisting of the nodes disposed at the centres
of grid X cells:
Ax,-

x,-+./z=x,~+—2—, i=1,...,1—1
i Xi 4+ Zj 4
(Xt 2+ ) ™ .
2w =2+~ i=1,...,7-1

and consider on this grid the discrete function

K2t Yo £0) = K? (i v),0 22 1,)-

To construct a correct difference scheme for solving the boundary problem in the case of
E-polarization it is advisable to approximate not the original equation (2.1) but the integral
identity resulting from the integration of (2.1) (using the Green theorem) over the elemen-
tary cell S of the grid Z:

¥
J - d1=—ﬂ K*E, dx dz, (2.19)
L”’ an Sl/'

where L is the rectangular boundary of the cell S and n is the outward normal to it.

Expressing the integrals in (2.19) approximately in terms of discrete functions E(i, j) and

K2(i£ Vs, j£1,) we obtain the system of difference equations for the electric field values

at the interior nodes of the grid Z:

u(i, /) =D [DYP u(@+1,7) +DPu(,j+1)+DP uli- 1.1 +D{Pu(i,j-1)]
(2.20)

i=2,...,1-1; J= 2,000y =1

where u(i, 1) = E(i, )

DY = —— PP = —

T Axdx T Axy_Axy
D@ = = 5, DR

4 AzjAz; i Az;_,Az

& 1 ! e 2 opnq B

D<9>=[ .o ¥ § B,

4 ng Py 4Si p=o qgo .
Kxp=(Ax;_y + Ax)[2 Kz;=(Agj_y +Az)/2
K2 a=K*(i+p—"a,itq="h) SPU=Axisp-18Zj+q-1-

In the case of H-polarization, approximating the integral identity, resulting from the
equation (2.3),

1 3H
J’ — g=- f H, dxdz (2.22)
Lli K2 on Sij
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we obtain the system of difference equations of general type (2.20) for the magnetic field
(u(4, /)= H, (i, ))) with coefficients:

1 1

1 Sl'q/K%.q 2 So'q/K%,q

=0 q=0
M RS

T s Ay T as(ax% )
1

3 5, L 5" K30 2.23)

D‘(}) = —pl—. D(4) q = 0 .
; N2 ) e
2S11(AZ,) i 2Si](Azj—l)2

4 =%
DR =[1)_:1 D}}_l] .

Thus, we have constructed a finite-difference approximation of this boundary value
problem at the interior nodes of the grid . Now we consider an approximation for boun-
dary conditions themselves.

The approximation of the conditions of the first kind does not lead to any difficulties.
The field values at the boundary nodes of the grid are simply made equal to the normal
fields values. In this case we obtain the homogeneous 5-point difference schemes of the type
(2.20) for both field polarizations.

The application of the generalized asymptotic boundary conditions results in additional
difference equations at the boundary nodes of the grid  (Varentsov & Golubey 1980h),
distorting the homogeneity of the difference scheme. In the general case (excluding the
conditions of first order) we do not obtain the usual S-point schemes.

2.5 THE SOLUTION OF THE SYSTEM OF FINITE-DIFFERENCE EQUATIONS USING
THE SUCCESSIVE OVER-RELAXATION TECHNIQUE

The systems of finite-difference equations, obtained earlier, may be written in a matrix
form:

A.U=cC (2.24)

where U is the column of unknown values of electric or magnetic field at the grid nodes, 4 is
the matrix of the system, C is a column vector containing boundary terms. The structure of
the matrix 4 depends considerably on the way the elements of the unknown values vector U
are ordered and on the choice of boundary conditions.

In the simplest case, when using the boundary conditions of the first kind, the matrix 4
has a 5-diagonal structure, It is possible to solve such a system by the direct methods of
linear algebra (Greenfield 1965; Brewitt-Taylor & Weaver 1976; Madden & Swift 1972).
Iterative methods require comparatively less computer storage and are more stable with
respect to the rounding errors (Forsythe & Wasow 1960). One of the most effective among
them (for the problem under consideration) is the successive over relaxation (SOR) tech-
nique (Forsythe & Wasow 1960). This technique was applied by Tatrallyay (1978a), Miiller
& Losecke (1975) and Varentsov & Golubey (1980a). The corresponding iteration procedure
for solving the system (1.20) is as follows:

TN, )= (1-v) UDG, ) + vDP (DPUD(i +1,)) }
+Df) UGG, +1)DP ve*DG-1, jy+ DY U+ 11 (2.25) 1

i=2,3,...,1-1; i=2,3,...,7-1
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where £ is the iteration serial number and » (> 1) is the relaxation factor determining the
rapidity of convergence of method considered.
In the matrix form the formulae (2.25) are written as

Ut =Ry UY (2.26)
where R(¥) is the transition matrix. It also connects the increments of calculated field values
AU® = yt+ D _y® for two successive iterations
AU+ = R()-AU®. (2.27)

The most important question which arises in realizing the SOR method concerns with the
search for the relaxation factor vy, the correct choice of which resuits in a considerable
decrease of the number of iterations required (Forsythe & Wasow 1960; Tatrallyay 1978a).
In the general case it is difficult to give a priori an effective evaluations of the optimal value
of the relaxation factor. It is better to determine it during the iteration procedure, using the
Young-Frankel theory (Forsythe & Wasow 1960). In the framework of this theory the
relaxation factor vop; is predicted using the maximum \,, of absolute eigenvalues of the
transition matrix R ():

Yopt = 2[1+V1 = O\ +20=1)/(Am )] (2.28)

where v is the initial value of relaxation factor (¥o< Yopt, for example, v = 1). The value A,,
is estimated after a certain initial interval Ny of the iteration process with a constant relaxa-
tion factor vg:

L N1 AU Y
No-1 ,21 | AUD |
where
AU = max UG, f) - VOGN

Am = (229)

S S Y J=, 2y il

Substituting the approximate value A, in (2.28), we obtain an estimate (prediction) of the
optimal relaxation factor vop,. Such an approach will give » within a small vicinity of vopt
after few iterations. It is possible to improve the estimate of Vopt using a special correction
procedure (Varentsov & Golubev 1980a). The latter is based on the scanning of relaxation
factors close to vop and choosing the one which provides the most rapid convergence. It is
advisable to fulfill such a correction periodically, and in this case we can obtain even better
convergence than that in the case of an optimal but constant relaxation factor.

When we use the asymptotic boundary conditions it is worthwhile applying the SOR
modification with two relaxation factors — for interior and boundary nodes — due to the
different types of equations describing the field within the region and the boundary condi-
tions. To optimize the ‘interior’ relaxation factor o' the scheme, described above, can be
applied. The ‘exterior’ relaxation factor J® is determined by means of a simple algorithm:
if the maximum of | AU® | is achieved at the boundary, then the value »® is decreased step-
wise; to the contrary, it remains unchanged. Practical computations show that »° is always
less than 1, therefore, at the beginning of the iteration we can assign g =1.

' In the conclusion of this section we note that the number of iterations required to solve
the linear system with a given accuracy depends not only on the rapidity with which the
iteration process converges, but also on a suitable choice of the initial approximation U 0,
It is usually chosen by means of the horizontal interpolation, i.e. wholly determined by the
conductivity of normal sections o®L(z). For constructing more accurate initial approxi-
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mation it is necessary to take into account the anomalous structure of the geoelectric
section. Since the field computation is usually carried out for monotonic sequence of
periods, the initial approximation is naturally assigned by some transformation (for example,
linear — Miiller & Losecke 1975; Varentsov & Golubev 1980a) of the solution obtained for
the previous period. It is also desirable to construct the initial approximation by means of
interpolation of the field values determined on the smaller grid (Miiller & Losecke 1975 .
Marchuk & Shaidurov 1979).

2.6 TESTING OF THE MODEL VALIDITY

One of the most important questions in the numerical modelling is the testing of the validity
of the modelled field. The modelling errors are caused in general by three main reasons: (€Y}
the errors connected with the grid approximation of the boundary problem, (2) the errors
arising under the solution of the system of finite-difference equations, (3) the errors result-
ing from the numerical differentiation of the components of the field, not occurring in the
difference scheme (the magnetic field in the case of E-polarization and the electric field in
the case of H-polarization).

In the majority of the works which have been devoted to the finite-difference modelling
attention is paid mainly to the errors of the second type, i.e. arising in solving the linear
system of equations (Pascoe & Jones 1972; Miiller & Losecke 1975; Brewitt-Taylor &
Weaver 1976). In this case testing of the solution validity is fulfilled using the following
criterion:

1aU@| (B-polarization)
et ———— W E -polarization
2%+ 25 (2.30)

1AUD | < e, (H-polarization)

where €, is the required accuracy and the norm is determined in accordance with (2.29).

The errors arising in numerical differentiation (the errors of the third type) can be esti-
mated by means of comparing the results obtained using the different numerical techniques
(Varentsov & Golubev 1980a). Miiller & Losecke (1975) have suggested a criterion which
simultaneously tests the errors of second and third types. It is based on the analysis of the
increment norm of the impedances Z® calculated in each m iterations at the ground
surface:

1 Ilz(t-l-m) _Z(t)“

—_——— < 6. 2.31
m o |ZEm) * g

It should be noted that the criteria, cited above, do not completely evaluate the real
modelling accuracy, because errors may arise at the stage of the grid approximation
(Tatrallyay 1978a). Therefore, it is of great importance to have a method to test the total
error of the model. One of the ways to make such estimates is an analysis of the functional

relationships between different field components, for example, the Hilbert—Kertz relation-
ship:

L o= HE(x!
Hﬁ(x,0)=—f el dx?
m

iy g ks

1 e EE (Y
H:(x’0)=——f dex.

3
Moo res, R =)
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The appropriate criterion may be based on the validity of (2.32) when substituting
components H¢ and H; determined from a finite-difference solution (Varentsov & Golubev
1980a). This criterion is not universal, however, as it does not explicitly take into account
the conductivity structure of the model.

The other criterion, based on the integral relationships between the fields in the region of
anomalous conductivity and those at the Earth’s surface is significantly more effective.
Consider, for example, the case of E-polarization, when the parameters of the right and the
left normal sections coincide (0™(z) = ™ (2) = 0, (2)):

Ey(x, 0) = EJ} +iwop f f L Gnlx 080 (04, t) — 0n(®)] By, $)dEdE (2.33)

where E7 is the normal electric field at the Earth’s surface, G,, is the Green function for the
normal section. Substituting into the right side of (2.33) the values of electric field, deter-
mined via the finite-difference scheme, integrating numerically and comparing the result
E,‘,’" with the finite-difference solution Ey at the Earth’s surface, we obtain the required
criterion:

Lo
NEy |l

Essentially, this criterion provides the coincidence of the finite-difference modelling result
and the solution by means of integral equations technique (Berdichevsky & Dmitriev 1976;
Weidelt 1978).

(2.34)

2.7 NUMERICAL EXAMPLES

The algorithm described above is realized in the program package Fom. To illustrate the
effectiveness of these programs consider the models in Dmitriev, Zakharov & Kokotushkin
(1973). For the case of E-polarization let us take a model consisting of a rectangular sub-
surface conducting body buried in the three-layered normal section (Fig. 2). The apparent
resistivity curves, calculated by the integral equations technique (the thick line) and the
results of finite-difference computations are both shown in Fig. 2 (the circles denote the
use of the boundary conditions of the first kind, the crosses denote the asymptotic
boundary conditions of the first order, the numbers at the curves specify the distance (in
km) from the sounding point to the centre of the heterogeneity, the dotted lines correspond
to 1-D curves in the centre of the model and out of the heterogeneity, the model parameters
are given in $-m™" and km).

The problem was solved using ordinary boundary conditions in the region Vg with sizes
5400 x 540km on the grid of (37 x 24) nodes. In the case of asymptotic conditions the sizes
of the grid were diminished to 240 X 170 km and the number of nodes was (39 x 35).

As it is seen, the results obtained by finite-difference modelling and by the integral equa-
tions technique match well enough the best accuracy being reached with the asymptotic
boundary conditions.

The examples of calculations for the model of a horst in the case of H-polarization are
shown in Fig. 3. The continuous lines denote the apparent resistivity curves obtained by the
integral equations technique and the circles denote the results of finite-difference modelling.
Here also good agreement is observed between the curves obtained using different techniques.

Some discrepancies in Figs 2 and 3 may be due to the approximate description of the
perfect isolators and conductors (the real conductivities of models are given in Figs 2 and 3
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in parentheses) and to the continuous approximation of the contact between the surround-
ing medium and the inhomogeneity in the finite-difference method.

3 Three-dimensional modelling
3.1 THE GEOELECTRIC MODEL AND FIELD EQUATIONS

Consider the geoelectric model, presented in Fig. 4, in which the three-dimensional inhomo-
geneous region ¥, in the form of a rectangular prism (elongated to infinity in the y-axis)
with an anomalous conductivity distribution 0a(x, , z) is buried in the horizontally layered
medium. We suppose that some distance along the y-axis the three-dimensional heterogeneity
becomes two- dimensional, i.e.

0a(X, ¥, 2) = 0,(x, 2) fory > ', y < y°.
As in the two-dimensional model (Fig. 1), the region ¥, is surrounded by three domains of

normal section: the left ¥y, the right VX and the lower ¥,, — all having one-dimensional
conductivity distribution.
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We assume, as in Section 2, that U= po. Neglecting the displacement currents we may
write:
AE —grad (divE) +K2E=0. 3.1)
The magnetic field is expressed through the electric field using the Maxwell’s second
equation:

1
=~ foyE. (32)
[WHg
Taking into account that
grado

divE=—E (0 #0)

o
(3.1) may be rewritten in the form:

grado
AE +grad E,—) +EAE =0, (3.3)
o

The use of (3.3) instead of (3.1) in the numerical solution of this problem has several
advantages. First, the finite-difference approximation of equation (3.3) can be accomplished
by a 7-point scheme, which diminishes the computer storage required and the computational
time. Secondly, in approximating the equation (3.3) in the regions where grad o =0 the
second term of the equation vanishes while in approximating the equation (3.1) the
corresponding term remains in the regions with grad 0 #0 as well as in the regions, where
grad ¢=0, which leads to the additional errors in the calculations (Zhdanov & Spichak
1980).

Let us consider the scattering of the arbitrarily polarized plane electromagnetic wave by
the three-dimensional heterogeneities, described above. The normal fields in the right and
left parts of the normal section are defined as follows:

ERL (2) = Pan (ZRF +iwpyz) 3.4)

where Pyn={H} —H? 0} is the vector of normal magnetic field components at the
ground surface and Z®+* are the impedances of normal sections,

3.2 BOUNDARY CONDITIONS

In the three-dimensional case we shall utilize, as in Section 2, the asymptotic boundary con-
ditions, which diminish significantly the region ¥ where the solution is required.
Let us express the electric field in the air in the form:

& X
Eyy=E,,t Cox,y + Cix,yz +Chy, y arctan _l l (z<0) 3.5)
zZ

where E~x, y are the components of the electric field vanishing at infinity and Cox, y> Cix, PR
Cax, y are constants determined from the condition:

By x=rw=EXL (3.6),
Using the second and third of Maxwell’s equations, we write:
0E, OF,
e e LY
ax gy | ref
oE, A )

=——, 3.7
ox dy az 59
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Substituting (3.5) into (3.7), introducing the spatial spectra of the electromagnetic field

e(e, B,z « (E(x,» 2

{—E—B—)] - ﬂ [———) | expitex + )] dxdy (38)
h@ 6, W= |HEx D)

and taking into account that everywhere in the atmosphere

hz(a, ﬁ) Z) = hz(“, 6’ 0) enoz

e;(e, B,2) = e;(e, B,0) ™%, 2<0 (3.9)

0
Ny =V +ﬂ » e;(arﬁaz)':—a—z—ez(aaﬁaz)

we obtain
s TE ™ —iaC, . +i8C
{e-x} = {e;E"'eer + 272 exP(]:‘lz)a(ﬁ) { l.a 2 1.5 2}’1 (3.10)
éy eyt +ey ng —iBCyx — 10Csy)
where
TE . n,z :
[ex fwpge™® (—if
e h,(a, 8,0
le},‘E) n3 [ ia} «(®,.0)
@11}
™ Ny 2 :
e eh? [—ja| ,
= ,8,0
{e;””} n {—w} o

and 8 (B) is a delta-function.
The formulae (3.11) justify the introduction of the indices TE and TM, since they show

that el5, and ey5 are the spectra of transverse-electric (E15) and transverse-magnetic

(EM) ‘modes of the field £, . Thus, the formulae (3.5) can be written in the following
manner:

x
Eyxy =ETE +Ex5 + Cox,y * Cix,p2 * Cay, y Arctan vl (3.12)

Notice also that the vertical component of the electric field belongs to transverse-magnetic
mode only:

E =g (3.13)
e, =a, (3.14)
In the equations (3.12) and (3.13) we have:
1 o0
EZi = Zﬁﬂ eTE ™ exp[—i(ax + fy)] ddf (3.15)

and in a similar way to the two-dimensional case, we expand the spectra h; (2, B, 0) and
e4 (e, B, 0) in Maclaurin’s series:

e(@,B,0)] 1=0 ! m=o0 1y

[h,(a,ﬁ,o)} = i _1_ i cr {h‘m (—iay™ (—if)! - ™. (3.16)
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Substituting (3.11) and (3.14) into (3.15) and taking into account (3.16) we find:

)
; —
EEE iwg, « 1 - m 0 %y
R = Gy i e s Inz+R (3.17)
(E;E 27 1§o H mz=:o SR "o e h B )
ox
]
ox
™
?’“‘M 1mlzljc"' 2 a1(+R)
=— - eg, ————( — V(2
| 2m S0 Il 2ol m ppmgyiom | 5
E,
\ oz

where R =/x? + y2 + 2.

To deduce the formulae (3.17) we used the Fourier transform:
1 oo en,z ) 1
mﬂ T [—ifex +8y)] dadf= 5 nG@*R).

The substitution of (3.17) into (3.12) produces the asymptotic expression for the electric
fields in the air for large R. However, the coefficients hy,, and e in these expressions
remain undefined. To exclude these unknown coefficients one may use the procedure,
described in Section 2 for the two-dimensional case. For the construction of three-dimensional
analogues of the Weaver—Brewitt-Taylor conditions (of the first order) let us consider the
operator (Varentsov & Golubey 1980b):

3 )
D, = 1+x—-+y—+l—. (318)
ox 9
Substituting (3.17) into (3.12), (3.13) and using (3.18) we obtain:
(1+ a+ a11- a)E (1+Ra>E
X—+y—+z—E= ==
Y% P u oR

ox )y
(3.19)

(zR -zt ZR4+zL
= 6+

T 2
The relationship (3.19) is the three-dimensional analogy of the asymptotic boundary con-

ditions of Weaver and Brewitt-Taylor,

It should be noted that using the relationships (3.17) we may construct as in the two-
dimensional case the asymptotic boundary conditions of the arbitrary order .

+iwpoz) Pyn +O(1/R), 8 = arctan (x/(z ).

33 THE FINITE-DIFFERENCE APPROXIMATION OF THE 3D PROBLEM AND THE
METHOD OF ITS SOLUTION

To solve the equation (3 .3) numerically we subdivide the region ¥ into the elementary
rectangular prisms by some three-dimensional grid 2 and introduce a second grid 3, the
nodes of which are situated in the centres of the corresponding cells of the grid T. The node
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(I, m, n) of the grid T corresponds to the point (X7, Ym,2Zn)(1 << L,1<m< M,1<n<N).
The electric field E is denoted at the nodes of the grid T by U, m,n)=E (X1, Ym,2n), and
the wavenumber K2(l £ 5, m £ Y5, n £ /,) at the nodes of the auxiliary grid $.To obtain a
difference approximation of equation (3.3) let us apply as in the two-dimensional case the
integro-interpolation technique (the balance method). Integrating (3.3) over the elementary
cell Vyy of the grid 2, we have:

grado
AEQV + grad |E, ) av+ K*Edv=0. (3.20)
Vimn J Vimn g Vimn

Applying Gauss’s theorem to the first and second integrals in (3.20) and replacing o by X
we obtain:

2E dK?
ﬂ =4S+ _U (Eﬁi;—) ds+ﬂf K*Eav=o0. (3.21)
Stmn 0N Simn K Vimn

This vectorial equation is equivalent to three scalar equations, differing from the two-
dimensional equation (2.19) only by the presence of the term with grad X2 and permits a
simple finite-difference approximation, resulting in 2 7-point difference scheme (Zhdanov
& Spichak 1980):

u(l, m, n)=DQ, (DY, U0 +1,m, n)+D@ U, m+1,n)
mn Imn

Imn
+D@ U@, m, n+1)+ D, U -1,m, n) + D, UG m —1,n) (3.22)
+D®,u(l, m,n-1)}
1=2,...,L-1; m=2,..., M-1; B=Dl .y M=,

where D§,‘,>,,, (i=0, 1,...6) are the matrix coefficients (of the third order) determined by
the grid geometry and the discrete function K* (I Y5, m2 V2, n £ ).

To solve the system (3.22) one may use the SOR technique. However, due to the
vectorial character of the difference scheme it is advisable to apply the blocked modification
of this technique (SBOR) each block consisting of three electric field components at one
node (Zhdanov & Spichak 1980):

U+ (1, m, n)y=(1—») UD (I, m, n) + vD®, (DM, vO+1,m, n)

m
+Dl(3r2nU(f>(lr m+1,n) +D§rar?nu(t)(l, m, n+1)
+ D@ U@ —1,m, n)+ D), U, m —1,n)
+DOUED (Y, m, n-1)}

(3.23)

I=2,..., L-1; m=2,..., M-1; n=2,..., N-1

The relaxation factor v is chosen using the scheme suggested for the two-dimensional
case.

3.4 THE ESTIMATION OF THE VALIDITY

The validity testing in the three-dimensional should be carried out in accordance with the
same principles as formulated in Section 2.6. The criteria (2.30), (2.31) may be used in the
three-dimensional case without any changes, but the criteria based on the Hilbert—Kertz
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relationships and on the integral relation between the fields in the anomalous region and
those at the ground surface require an appropriate modification. For example, the following
relationship is the three-dimensional analogue of the formula (2.35) (Weidelt 1975a):

E(rg) = E*(t°) + iwopq J] G(x, o) [04(r) — 0, )] E(r) dV. (3.24)
Ve

Here the parameters of the right, left and lower normal sections are assumed to be equal:
"(2) =0 (2) = 0, (2); G is the Green tensor for the normal section and ro— the obser-
vation point which lies on the ground surface.

Substituting the calculated values of the electromagnetic field into the integral on the
right side of (3.24), integrating numerically and comparing the result E®* with the finite-
difference solution E we can estimate three-dimensional modelling validity (in accordance
with (2.34)).

4 Conclusion

In describing these algorithms for finite-difference modelling we have not considered a many
of the important computational, technological and methodological questions concerning the
practical realization of this approach. It seems that it is considerably more important to
formulate the main ideas of the construction of the effective algorithms instead of describing
technical details. The problem of realizing these algorithms in concrete computer programs is
of great importance, but it goes beyond the framework of this paper. Moreover, we have
only shown some test models although our two-dimensional programs are widely used for
modelling real geoelectrical situations.

The main prospects (and at the same time difficulties) of the further development of the
finite-difference approach are connected with the increase of the modelling effectiveness
(mainly, in the three-dimensional case). We hope that the ideas and principles formulated
above will produce progress in solving this problem.
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