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Summary. An iterative algorithm is presented to be used in the search for the
shape of a 2-D local deep geoelectric inhomogeneity lying in a layered
medium; an anomaly having been identified in the usual way by observing
an alternating time-harmonic electromagnetic field along the surface of the
Earth. The normal section parameters (conductivities and thicknesses) and
the excess electrical conductivity (inside inhomogeneity) are assumed to be
known. The shape of the inhomogeneity is determined by means of a misfit
functional minimization technique. A gradient minimization algorithm is
constructed and Tikhonov’s regularization scheme is applied to achieve
stability of the solution. The effectiveness of such an approach is demon-
strated by model calculations and by the interpretation of the Carpathian
geomagnetic anomaly. Finally, a brief discussion of the problems of the
practical application of this formalized trial procedure is presented. Because
of the lack of reliable estimates of the excess conductivity, it is proposed to
consider a family of models selected for the set of probable values of model
parameters. This family can be treated as a generalized solution of the inter-
pretation problem.

1 Introduction

The study of variable electromagnetic field anomalies caused by the horizontal hetero-
geneities of geoelectric sections is the real challenge of today’s geoelectric methods. Known
anomalies can be subdivided into two large groups according to the superficial or deep
nature of their sources (Rikitaki 1966; Schmucker 1970; Berdichevsky & Zhdanov 1981).
The first group includes the anomalies related to the inhomogeneity of the Earth’s crustal
layer adjacent to the surface; the second group consists of the anomalies caused by the deep
inhomogeneities in the Earth’s crust and upper mantle. The geomagnetic fields observed on
the surface of the Earth are, in general, defined by both the superficial and deep factors;
therefore the first problem in the study of geomagnetic anomalies is to separate them into
superficial and deep parts. A number of papers refer to this problem (Schmucker 1970,
1971; Berdichevsky & Zhdanov 1975; Zhdanov 1975, 1980).
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The problem of the geological interpretation of the superficial and deep anomalies must
then be solved. The interpretation of superficial anomalies for the majority of cases can be
reduced to the determination of the total longitudinal conductivity of the heterogeneous
layer adjacent to the surface. This can be solved by means of the integral transforms of the
observed field (Schmucker 1970, 1971 ; Zhdanov 1975; Zhdanov, Berdichevsky & Zhdanova
1975; Rokityansky 1975; Weidelt 1975).

The problem of the interpretation of deep geomagnetic anomalies is far more compli-
cated. Zhdanov (1975, 1980) presented a method to solve this problem based on analytical
continuation of a field into the lower half-space. Analysis of the continued electromagnetic
field vector lines makes it possible to determine in a number of practically important cases
the location and form of deep inhomogeneities (Zhdanov, Varentsov & Golubev 1978;
Berdichevsky & Zhdanov 1981; Varentsov 1981).

To determine the form of deep geoelectric inhomogeneities in detail it is useful to employ
the method of successive approximations, widely used in various geophysical investigations.
In this method the form of a region with anomalous electrical conductivity is corrected by
comparing the theoretically calculated fields with observations.

Such an approach was developed for the solution of the 2-D inverse problem by Weidelt
(1975, 1978), Jupp & Vosoff (1977), and Oristaglio & Worthington (1980). In these
algorithms rather complicated geoelectric models were considered and strict modelling
techniques employed. However, all the schemes mentioned above contain a great
number of independent, discrete parameters that cause unreliable convergence in the
approximation process, and instability with respect to initial data errors.

So it is very important to improve the parameterization of optimized models and thus
achieve better convergence and stability in the approximation process. In the present paper
this idea is extended in a rather simplified form, and an effective trial algorithm is suggested
for the inversion of local conductivity structure.

Statement of the problem

Consider a 2-D model of geoelectric section which consists of the conducting horizontally
layered earth contacting at Z=0 with the homogeneous non-conducting atmosphere.
Specific electrical conductivities (0n, n=1, N) and thicknesses (h,,,n=1,N—1, hp =) of
layers in the model are assumed to be known. Let the geoelectric inhomogeneity Q in the
Ith layer be such that the electrical conductivity in this layer is defined as:

o(7,) = i é? _

0,+A0(7), T €Q

where 7, is the radius vector of the observation point and Ag(7,) is an arbitrary function
describing the anomalous (excessive) electrical conductivity.

A field in the model is generated by extrinsic electrical currents distributed through the
region P of the atmosphere. The time dependence of the field is expressed using the multi-
plier exp(—iwt). Magnetic permeability is constant in the whole space and equals
Mo=4m-10""Hm™. Displacement currents are negligible. We assume that the field and
medium are uniform along the y-axis; i.e. we can solve the problem with a 2-D formulation.
Thus we restrict ourselves to the consideration of the most interesting case of £-polarization.

We assume that we know the electromagnetic field along a certain profile X on the
Earth’s surface in the range of frequencies 2, the parameters of the normal geoelectric
section {0, h,}, and the functional dependence of the anomalous electrical conductivity
Ao on the coordinates of the point of observation. The problem is to determine a boundary
for the region Q, characterized by the anomalous electrical conductivity.
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L When formulating this problem we naturally face the question of the uniqueness of its
lution. In the theory of potential fields there is Novikov’s theorem (Novikov 1938) which
arantees the uniqueness of the solution of the inverse problem for stellar bodies with
fnown distribution of excessive density. We have no such fundamental theorem in the
fheory of electromagnetic fields; therefore, we must search for one of many possible
lutions. At the same time, if electromagnetic fields are accurately measured along the
“tather prolonged profile at the Earth’s surface, and in a wide range of periods, we have every
Justification to suppose that this information would be enough to determine uniquely the
‘deep inhomogeneities. Theoretical proof of this statement would need a special study,
transgressing the bounds of this paper (Weidelt 1978).

In order to solve the formulated problem with the approximation method it is necessary
to compare the observed fields with the results of numerical calculations.

An accurate solution of the direct problem for a region of inhomogeneity of a rather
arbitrary shape requires the consideration of complicated boundary problems, or integral
equations (Berdichevsky & Zhdanov 1981). Therefore, in developing effective trial
~ glgorithms, some simple approximative methods may be used to solve the direct problem if

the required accuracy of calculations is stated.

It has been shown by Kaufman (1974) that under certain conditions the solution to the
direct problem in the introduced model may be obtained easily and exactly, if the anoma-
lous currents ., induced in the region of inhomogeneity Q are assumed to be proportional
to the normal electrical field. In particular under £-polarization

Jex = (0, jex, 0)

el

" and the scalar function /e, can be approximately determined by the formula:
" Jex = AOE": )

where E7} is the normal electrical field.

The calculations performed by Kaufman show that with the approximation of a plane
wave external field, and with the assumption that the excessive electrical conductivity Ao
is constant, the conditions for validity of relationship (1) are reduced to:

o, tAc
—<0,1 at 1< — <10° )
i 0,
D 0, +Ao
—<0,2 at flfﬂf<l
Al 0

where D is the maximum linear dimension in the section of cylindrical inhomogeneity, A; is
the wavelength within it, and A; is the wavelength in the /th layer outside the heterogeneity.
In other words, (1) gives a good approximation, if the dimensions of the inhomogeneity are
small enough compared to the length of the electromagnetic wave within it and in the
surrounding medium.

The distribution of the normal electrical field £} in the layered earth is defined as the
continuation of the normal component of the electrical field selected from the observed
field at the surface of the Earth (Berdichevsky & Zhdanov 1975, 1981; Zhdanov 1980).
Thus, the inverse problem of the analysis of the deep anomalies can be reduced to a search
for a boundary of the region Q, which is characterized by the known distribution of
eXxcessive currents jo,. In other words, the problem is to determine the form of the region Q,
which is filled with the extrinsic currents of known density.




626 M. S. Zhdanoy and Iv. M. Varentsoy

method)

Let a deep electromagnetic anomaly U(U =H,, H; or ) be known along a certain profile
X at the surface of the Earth in the frequency range £2. Moreover, let the distribution of the
density of ‘extrinsic’ anomalous currents Jex also be known.

We shall restrict ourselves to a search for the function j? in the class of continuous
functions £

= U9): f(9) > 0,7(¢ +2m) = 1(9), T<¢<m}.

Each function J from F describes in the polar coordinates the boundary 80y of a certain
region Or.

The electromagnetic anomaly Uy generated by the currents /ey in the region Oy is defined
as follows:

T Af(9) ,
Up(x, w) = ‘ ’ Jex () GV (7, ™) pd pdg, (3)
v—mr Jo
where
G, U=E,
, l 3G
G )= ] ", U=H,
Iwpy 9z
1 a6,
— — U=H,
iwuy dx

G, is Green’s function of a layered (normal) section defined by the equation:
A(;;, (7_', 7:.”) + [wuo On G” (7:‘ ix”) L _lwﬂo (5(7—'-7:‘”)'

where 7 is the radius vector of the observation point (x, 0) and 7 is the radius vector for
the infinitesimal point of integration Me Qr with polar coordinates (p,9).

In the trial process a function f F should be found for which the corresponding direct
problem solution Uy is close enough to the observed field U. As the measure of closeness it
is advisable to use the metric of complex space %, [x, w]:

oy :ﬂ ' | U 2dxdew :ﬂ ‘ U- U*dxdw (4)
QI X JQJX

where the asterisk denotes the complex conjugate value, and Q and X are the frequency
range and the profile of observation, respectively, where the function Uis known.
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With this metric the trial process can be used to determine the function fe F for which
IUF-Ull < ellUI (5)

in which €, is the required relative trial error, which dependes on the accuracy 8 of the
observed data. If the square error functional /[ f] is defined as

If]1=11U—U/? (6)

then condition (5) may be rewritten in the form:

I[f]< &IUI. (7)

So the inverse problem is reduced to a minimization of the error function /.

It is necessary to note here that this problem is ill-posed, as are most geoelectric inverse
problems. Therefore a direct minimization of the functional /, which contains the errors
from the observations and the calculations, can lead to unstable, geologically useless results.
To obtain a stable solution the methods of regularization of ill-posed problems must be
employed. So, in order to construct a regularized solution of the trial problem for the shape
of the deep geoelectric inhomogeneity, the Tikhonov parametric functional (Tikhonov &
Arsenin 1979) is introduced:

Mp[f1=1[f]+pS[f] (8)

with the stabilizing functional S[f] used in the form proposed by Glasko & Starostenko
(1976):

SUF1=1f~fol?= J (F—fo)?do 9)

| §

where f, e F is an initial approximation based on & priori geological and geophysical
information.

The parametric functional is minimized in a two-cycle procedure (Glasko & Starostenko
1976). In the external cycle the optimal value of the regularization parameter p is selected
from the discrete sequence {pg} convergent to zero:

Pk+1=VPk, K=1,2,...; O<v<l.

In the internal cycle the iterative process is constructed to minimize the function M), for
the fixed value of parameter p (Zhdanov & Varentsov 1980 Varentsov 1981). The common
term of the minimizing sequence - {f;} is formulated as:

fis10) =1i(9) +1;Afi(¢),i=0,1,2, ..., (10)

where Af;(¢) are the increment functions defined in the class of periodic continuous
functions with the uniform metric, and ¢; is a certain set of positive constants defining the
value of minimization steps. If the constants ; are sufficiently small, then the functions f;,
as well as f,, belong to the class F.

Next is calculated the functional M), of the function f;. . Because of the differentiability
of this function the following representation is valid:

My [fis1] =M, [£:) + MO [f;, Af;) + 17 O (I A1 (11)
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where Mf,l) [fi, Afi] is the first variation of the functional M,, defined by the expression

|
MO AL = lim = M [f; + 0] ~Mp L1}
tr 0%
=2 Af; {f} | Re [/ex(f,-) l (U,<,~U>*Gf<f.f,~)dx]] dw +p(fi—fo){ do (12)
g vy Q §

vX

and 7; is the radius vector of a point with the coordinates (fi(¢), ¢). Equation (11) shows
that for rather small #; the condition of minimization

Mp( fis1]l < Mp[ fi] (13)
holds true as soon as
MO f;, Afi] < 0. (14)

To fulfil the latter condition it is expedient to preset the increment functions Af; in the
form:

Af; =14qi1°signq; (15)

where

a:#)=—1 | Re[fex(f,r)f (Uf,-fU)*GU(f’ﬂ)dX]dwfp(f}—fo), (16)
4 V) X

and f8 is a positive constant. In fact, for such a definition of the function Af; the first varia-
tion of the functional M), is negative:

T

MP (1, 8f] = -2 lq;1'*Pdg < 0. (17)

~
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Figure 1. Determination of iteration step ¢;.



Interpretation of local 2-D e/m anomalies 629

To determine the value of minimization step ¢; the scalar minimization problem should
be considered:

D(t)=Mp|[f; +tAf;] =min.

t

Let us approximate the function ®(r) by the parabola d(1) (Fig. 1) passing via the points
®, = [0, ®(0)], ®, = [to, B(to)] and ®;=[21o, P(22)] where to=1;_,. This parabola is
described by the equation:

- t? t
<mm=;ﬁkmorﬂ¢ug+¢umn_;4[3M0r4¢um+¢0mﬂ+¢m»
P ._[0
When the inequality
®(0) —2®(2o) + P (210)> 0 (18)

holds true the parabola has a minimum at the point with abscissa

to 30(0) ~49(t0) + 2(210)
2 ®(0)—2®(te) + P(210)

If £ min > O (Fig. 1a), we assign

li = Imin- (19)
The situation 7 q;, < 0 is possible when the step ¢, is too large. In this case we put
to=1to/2 (20)

and repeat the process described with a new value of ¢, (Fig. 1b).
The inequality (18) is not fulfilled if the parabola ®(z) branches are directed downward,
or if it has degenerated into a straight line. In the case ®(2¢,) < ®(0) (Fig. 1c) we assign

I,'=2[0. (21)

Instead (Fig. 1d) we decrease the step 7, according to (20) and repeat the whole process with
a new t, as shown in Fig. 1(b).

Therefore, (10)—(21) allow the construction of the sequence of the functions {f;} that
minimizes the functional M), starting from a certain initial approximation fo € F and initial
step to. These functions describe cylindrical surfaces tightening to the surface of the anoma-
lous region Q. So the technique is called the tightening surfaces method.

The iterative process in the internal cycle comes to an end according to the condition of
stabilization:

I fi=fioy I < el £l (22)

where €, > 0 is a certain prescribed value. The minimization can also be finished naturally
when the inequality (5) is fulfilled, i.e. when

I[fil< eIUI>. (23)
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For each value of the regularization parameter p e {pg} the minimization of the
functional Mp, [f£] is carried out according to the scheme described. The result obtained in
the internal cycle — the function fpx — is taken as an initial approximation for the mini-
mization of the functional Mpy ., [f] (the initial approximation for the functional
Mp‘[f] minimization is the function f;).

To complete the algorithm for the stable minimization of the parametric functional, a
criterion for the search of the quasi-optimal parameter of regularization € py  should
be formulated. We use the approach developed by Tikhonov & Arsenin (1979), Glasko &
Starostenko (1976). In the absence of errors in the initial data the following expansion holds
true
/;,=f+pa—fvf+,,.. (24)

op
If an error & exists in the original data, it is possible to use as a criterion for selecting p the
condition

Il fog oy — TPy Il = min (26)
K

of;
p == P=min. (25)
IJ

op

For the discrete sequence { px} the latter criterion may be rewritten in approximate form:

This criterion is especially useful when we do not known exactly the accuracy § of the initial
data (Glasko & Starostenko 1976). The function [ =[5 corresponding to the quasi-optimal
parameter p found from (26) is considered to be a regularized solution of the trial problem.

4 Spectral modification of the tightening surfaces method
Let us consider the algorithm derived in the previous section in the spatial frequency
domain. The spatial spectrum u (o, w) of the electromagnetic anomaly U(x, w) is defined as:

u(a,w)=F,[U(x, w)]= ’-w U(x, w)exp(iax)dx.

o —oo

The direct solution corresponding with (3) in the frequency domain takes the form:

fex(P) gY (e, 7M) pd pdo, (27)

] o f(®)
ur(e, w) =F[Us(x, w)] = ‘

vy—m JO
where
g%, PM) = F [GY(F, #M) |, ].

Equation (27) requires significantly less computational expense than the initial expression
(3), when there are simple analytical representations for the function gV (Weidelt 1975,
1978; Varentsov 1981)..Therefore, when solving the trial problem it is advisable to compare
the spatial spectra of observed and modelled fields.

So the spectral analogue of the error functional (6) may be introduced:

JUf] = llup—ul? (28)
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where the metric of complex space L, [a, w] is used:

lull = A/J.‘ lula’adw—ﬂ‘ uu*dadw
oJa

and A is the spatial frequency range for which the spectrum is known. The structure of the
functionals 7[f] and J[f] is quite similar; moreover they are equal when the observed
profile X and the frequency range A are expanded to infinity. Therefore in the spatial
frequency domain it is natural to employ the regularized minimization procedure described
above for the inverse problem solution. In this case we have only to substitute in equatlons
(8)—(16) and (23) I[f] for J[f], U(x, w) for u(e, w),x € X fora € A and GY forgV.

5 Localization of deep geoelectric inhomogeneity

When formulating the inverse problem and elaborating the algorithm for its solution we
assumed the centre of the polar coordinate system (p,®) to be situated inside the conductivity
inhomogeneity Q. Now let us assume that the pole O is originally outside the region Q (at a
point with cartesian coordinates x, and z,). In this case the formal use of the tightening
surfaces method generates the sequence of surfaces {f;} which do not converge to the
boundary of the region Q. Nevertheless these surfaces are stretching towards the real
position of the inhomogeneity, and the centres of regions Oy, are displacing in the same
direction. This effect can be detected by the analysis of the eccentricity coefficient:

6[f;] = max Ji@)_ . (29)

—-T<P< ™ f1(¢*77)

When the eccentricity of the region Qy, is significant, i.e. when

0[fi] > 0o,

with 6, equal to 1.5 or 2 say, then a correction should be made and the pole removed from
the point O, to the point O, with coordinates:

x1 =Xo+ [ fi(¢0) — fi(9po— m)] cOs pg
1=29 % [ fi(90) — fi(p—m)] sin ¢

where ¢, is the extreme value of the angle ¢ in equation (29). Then the function f is recal-
culated in the new coordinate system, and the trial process is continued. After several
corrections the polar coordinate system centre is moved sufficiently close to the centre of
the region Q.

Thus by using the tightening surfaces method it is possible to find the location of the
deep geoelectric inhomogeneity and then to determine the form of its boundary.

6 Model experiments

The spectral modification of the tightening surfaces method is realized in a FORTRAN-IV
program (Zhdanov, Varentsov & Baglaenko 1980). The effectiveness of this program can be
demonstrated clearly on theoretical models.

The first example shows the effectiveness of the regularization technique. The model
consists of a horizontal circular cylinder (hatched region in Fig. 2b) submerged in the
homogeneous earth (the conductivity of inhomogeneity being 100 times greater than that
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Figure 2. Inverse problem solution in model with conductive cylinder: (a) spatial spectra of observed
magnetic field (solid and dotted lines) and field, calculated for the final model (crosses); (b) shape of
inhomogeneity models. (1) spectrum h‘_f for model, (2) initial approximation Or., (3) real location of
inhomogeneity, (4) model selected with regularization, (5) solution without regularization.

of the surrounding space). The solution of the inverse problem obtained without regulari-
zation (Fig. 2b — dotted line) differs radically from the true shape of the inhomogeneity;
however, the deviation between the observed and modelled data (spatial spectra of anoma-
lous vertical magnetic field — Fig. 2a) is less than 2 per cent. So that proves the high degree
of instability of the trial problem. But the use of the regularized algorithm leads us to a
quite accurate and stable solution (Fig. 2b — solid line). The error of approximation in this
case is also less than 2 per cent (Fig. 2a).

The next example illustrates the process of the polar coordinate centre correction pro-
cedure. In the model containing a horizontal semicircular cylinder in a homogeneous half-
space (Fig. 3) the initial approximation Qy (dashed line) is taken far away from the real
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Figure 3. Determination of shape of semicircular inhomogeneity with correction of polar coordinate
system centre position. (1) initial approximation, (2) real location of inhomogeneity, (3) intermediate
solutions of trial process, (4) final solution.
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Figure 4. Inverse problem solution in model with a horst structure: (a) localization of inhomogeneity,
(b) improving the accuracy of its boundary, (1) real location of horst structure, (2) initial approximation,
(3) inhomogeneity contours determined through the approximate modelling data, (4) solutions for the

same data complicated by 20 per cent random noise, (5) results obtained using finite-difference modelling
data,
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position of the inhomogeneity (hatched region). Nevertheless, after eight corrections the
pole is successfully moved close enough to its centre. The shape of the inhomogeneity
determined after 96 iterations with a trial error of 1.5 per cent is shown in Fig. 3 by a solid
line.

A two-layered model with a narrow horst structure of the layers’ interface (Fig. 4)
was used to study the stability of the tightening surfaces method to errors in the initial
approximation of the inhomogeneity and to errors in the determination of the spectra of
the observed and modelled fields. The region Qr was chosen in the form of an isometric
rectangle placed at a certain distance from the horst (a dotted line in Fig. 4a). Three
variants of the initial data were considered:

the spectrum of the anomalous magnetic field 4 as defined by the approximate equation
(27);

the same spectrum complicated by 20 per cent randon noise;

the spectrum of the strict finite-difference solution of the direct problem.

The values of the magnetic fields A%, corresponding to these spectra, are shown in Fig. 5.

X
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o‘o 4)/ .
"l "\ [(x]-4
a A// h\
- | [°]-5
A |—6
T | W R R R
A

‘

!
Figure 5. Magnetic anomaly H? for horst structure and its models selected in trial process. (1) field
calculated using approximate method (Section 3), (2) the same field with 20 per cent random noise,

(3) finite-difference modelling results, (4, 5, 6) approximate direct problem solution for models deter-
mined through initial data (1, 2, 3) accordingly.
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The inverse problem in the model described was solved in two stages. In the first stage the
location of the geoelectric inhomogeneity was accurately determined and its shape outlined
(Fig. 4a). As the a priori model of inhomogeneity was chosen rather roughly, the trial
process at this stage was conducted without regularization. Then the results of the trial were
corrected. This inhomogeneity was delineated approximately by horst-like structures, so
that its boundaries, the lower part of which were distorted previously because of the
inaccuracy of the initial guess, were straightened and prolonged to the layers’ interface.

Starting from these corrected models the trial process at the second stage of inverse
problem solutions was continued with regularization. The final results depicted in Fig. 4(b)
describe the shape of the horst structure quite accurately. The corresponding magnetic
fields H¢ are shown in Fig. 5. It is important to point out that the presence of 20 per cent
random noise in the inverted data affected only weakly the solution obtained.

We now consider a variant of inverse problem solution in which the input data are
obtained from accurate finite-difference modelling. As shown in Fig. 5 the approximate
solution of the direct problem used in the trial procedure differs systematically (by
2030 per cent) from the finite-difference modelling data. This is caused by the relatively
large dimensions of the inhomogeneity — the cut-off value for the radio D/A; in the
criterion (2) is twice exceeded. Nevertheless the trial results (curves with triangles in
Fig. 4a, b) define the location of the horst structure rather well, especially the depth to its
upper edge. Though the square of the determined inhomogeneous region is diminished in
proportion to the accuracy of the approximate modelling technique, still the shape of the
structure is recognized with a proper resolution. Therefore the trial procedure technique
could be applied in a wider frequency range than is described by the criterion (2).

Finally, we can conclude on the basis of the numerical experiments described above that
the tightening surfaces method is very stable to mistakes in the initial guess (location and
shape) of the local geoelectric inhomogeneity, and provides sufficient resolution of its
structure even in the presence of significant (20—30 per cent) random or systematic errors in
the initial data (electromagnetic fields and their spatial spectra).

7 Practical results — interpretation of Carpathian geomagnetic anomaly

The Carpathian geomagnetic anomaly can be traced beneath the whole extension of the
Carpathians and is considered to be one of the most evident and well-investigated regional
geomagnetic anomalies. It has a well-defined 2-D structure typical of the anomalies caused
by local deep conductivity inhomogeneities.

A great number of geomagnetic observations have been held in the Soviet Carpathians.
Many deep MT soundings have been done here (Rokityansky et al. 1976), and synchronous
magnetic and electric measurements at periods of geomagnetic bays have been carried out
along several profiles (Bondarenko & Bilinsky 1976).

Recent studies of the Carpathian anomaly in this region (Rokitynasky 1975; Rokityansky
et al. 1976; Adam 1980; Berdichevsky & Zhdanov 1981) show that it originates from the
mutual effect of the subsurface geoelectric inhomogeneities (thick conducting sediments in
the troughs at the boundaries of the Folded Carpathians) and a deep crustal conductivity
anomaly located in the narrow contact zone between the Folded Carpathians and the
Transcarpathian trough.

This geoelectric situation gave us every justification to investigate the deep conductivity
structure by the tightening surfaces method. Electromagnetic data measured simultaneously
along the III International DSS profile (in the interval Beregovo-Korets) were selected for
the interpretation. Using the integral transformations of observed fields (Berdichevsky &
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Figure 6. Investigation of deep conductivity anomaly in the Soviet Carpathians: (a) localization of
inhomogeneity, (b) further determination of its shape. (1) initial approximations, (2) models selected
through II,) field, (3) model selected through H . field.

Zhdanov 1981), the deep geomagnetic anomaly H'[.)_z. free of subsurface distortions, was
determined for a lhr period (solid curves in Fig. 7). The initial approximation of the
inhomogeneity was a circular cylinder with a radius of 6 km and with the centre at a depth
of 24 km. The cylinder was placed under the point of zero value of H2 anomaly. Two other
initial approximations were made to control the stability of the trial process — the cylinder
described above was first moved 15km to the right, and then moved to the left from the
anomaly axis (dash-dot curves in Fig. 6a).

The inverse problem was solved as earlier (Section 6) in two stages. In the first stage the
inhomogeneity was located through the H? anomaly and its centre defined at the depth
15km (Fig. 6a). Then a new initial approximation was constructed (Fig. 6b), and the trial
process was continued with regularization, using both the vertical and the horizontal
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Figure 7. Deep magnetic anomalies calculated for models in Fig. 6(b) (crosses) and separated from the
observed field (solid lines).
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component of the deep geomagnetic anomaly. The solutions obtained are shown in
Fig. 7(b). They are quite similar and differ slightly from the initial approximation.

If we compare the models selected at the first and second stages of the trial procedure, we
notice that though the value of the trial error is almost the same (near 30 per cent), the
shape of the inhomogeneity depends significantly on the choice of the initial approximation.
The detected instability can be explained in the first instance by the high level of the field
observation errors (20—30 per cent for the amplitudes and still more for the phases). At the
same time the position of the centre of the inhomogeneity, its area (70 km?) and integral
conductivity

Y = f 0;-dQ =0.7 x 10 Sm™!

i JJ

are well-defined. These data agree with the modern generalized ideas of the deep geoelectric
structure of the Carpathian region (Rokityansky 1975; Adam 1980).

8 Discussion

In this paper we have derived a theory for the new formalized 2-D inversion technique
(tightening surfaces method) and have demonstrated its effectiveness in simple applications.
Now we should like to mention some problems that arise in making use of this technique.

First, it is necessary to find the anomaly in synchronously measured electromagnetic
fields on a rather long profile (in order to determine spatial Fourier harmonics if one is to
use the Fourier domain modification of the method). Also, the parameters of the normal
geoelectric section should be found.

Next, we need to determine a starting model for the structure of the geoelectrical
inhomogeneity explored, especially the excess conductivity value. Sometimes this parameter
can be estimated on the basis of ¢ priori geophysical data.

Anyway, it is desirable to obtain several inverse problem solutions for the set of probable
conductivity contrasts. The final solution can be chosen from these, depending on its fit to
observed electromagnetic anomalies. However, we think it would be more useful to present
this parametric family of models as a general solution of our geophysical problem. At a later
stage of geological interpretation the suitable solution can be chosen from this family, taking
into account geological ideas and results of other geophysical methods. This procedure is not
very expensive, because it is rather fast and, moreover, we have good starting models for the
second and all the following solutions.

The next problem will be to develop the application of the tightening surfaces method
for the interpretation of multi-frequency profiling data. A natural first step would be to
solve (with middle range accuracy) a set of single-frequency problems to determine an
average model of inhomogeneity, as well as the frequencies with the best resolution. Then
the multi-frequency modification of the algorithm should be used to delineate further the
geoelectrical structure.,

All of these problems are of great practical significance and we hope to study them in
more detail in a special paper.

Acknowledgments

We wish to thank Professor M. N. Berdichevsky for the discussions of the idea of the
tightening surfaces method and Mrs Nataly Baglaenko for valuable help in its computer
realization and testing. We are also grateful to Dr A. I. Bilinsky and Mrs A. M. Shilova for
the presentation of electromagnetic profiling data obtained in the Soviet Carpathians.




638 M. S. Zhdanov and Iv. M. Varentsov

Finally, we would like to emphasize the contribution of the reviewers: Professors
J. R. Booker, C. S. Cox and U. Schmucker, who made this paper more clear and accurate.

References

Adam, A., 1980. The change of electrical structure between an orogenic and ancient tectonic area
(Carpathians and Russian platform), Geomagn. Geoelect., 32, 1—46.

Berdichevsky, M. N. & Zhdanov, M. S., 1975. Analysis of the anomalies of variable geomagnetic field at
the surface of multilayered horizontal heterogeneous medium, AN SSSR, Geomagn. aeron,, 15,
325-330 (in Russian).

Berdichevsky, M. N. & Zhdanov, M. S., 1981. Interpretation of the Anomalies of Variable Electro-
magnetic Field of the Earth, Nedra, Moscow, 327 pp. (in Russian).

Bondarenko, A. P. & Bilinsky, A. 1., 1976. Anomaly of geomagnetic bays in the East Carpathians, in
Geoelectric and Geothermal Studies, pp. 589-599, ed. Adam, A., Akademiai Kiado, Budapest.

Glasko, V. B. & Starostenko, V. L., 1976. Regularizing algorithm for solving the system of non-linear
equations in the inverse problems of geophysics, /zv. AN SSSR, Fizika Zemly, No. 3, pp. 4453
(in Russian).

Jupp, D. L. B. & Vosoff, K., 1977. Two-dimensional magnetotelluric inversion, Geophys. J. R. astr. Soc.,
50, 333-352.

Kaufman, A. A., 1974. Fundamentals of the Theory of Inductive Ore Electrical Reconnaissance, Nauka,
Novosibirsk, 352 pp. (in Russian).

Novikov, P. S., 1938. Uniqueness of the solution of inverse problem in potential theory, DAN SSSR, 18,
165—168 (in Russian).

Oristaglio, M. L. & Worthington, M. H., 1980. Inversion of surface and borehole electromagnetic data for
two-dimensional electric conductivity models, Geophys. Prospect., 28, 633 —657.

Rikitake, T., 1966. Electromagnetism and the Earth’s Interior, Elsevier, Amsterdam.

Rokityansky, I. 1., 1975. Investigation of Electroconductivity Anomalies by the Method of Magneto-
variational Profiling, Naukova dumka, Kiev, 280 pp. (in Russian).

Rokityansky, I. I., Amirov, V. K., Kulik, S. N., Loginov, I. M. & Shuman, V. N., 1976. The electric
conductivity anomaly in the Carpathians, in Geoelectric and Geothermal Studies, pp. 604—612,
ed. Adam, A., Akademiai Kiado, Budapest.

Schmucker, U., 1970. Anomalies of Geomagnetic Variations in the Southwestern United States,
University of California Press, Berkeley.

Schmucker, U., 1971. Interpretation of induction anomalies above non-uniform surface layers,
Geophysics, 36, 156—165.

Tikhonov, A. N. & Arsenin, V. Ya., 1979. Methods of Solving Incorrect Problems, Nauka, Moscow,
386 pp. (in Russian).

Varentsov, Iv. M., 1981. Development of the methods for magnetovariational profiling data interpre-
tation in the class of two-dimensional heterogenecous models, Cand. thesis, IZMIR AN SSSR,
Moscow (in Russian).

Weidelt, P., 1975. Inversion of two-dimensional conductivity structures, Phys. Earth planet. Int., 10,
282-291.

Weidelt, P., 1978. Entwicklung und Erprobung eines Verfahrens zur Inversion Zweidimensionaler
Leitfahigkeitsstrukturen in E-polarisation, George August Universitit, Gottingen.

Zhdanov, M. S., 1975. Problems in the theory of interpretation of deep geomagnetic anomalies, [zv.
AN SSSR, Fizika Zemly, No. 9, pp. 59-73 (in Russian).

Zhdanov, M. S., 1980. Caushy integral analogues for the separation and continuation of electromagnetic
fields within conducting matter, Geophys. Surveys, 4, 115—136.

Zhdanov, M. S., Berdichevsky, M. N. & Zhdanova, O. N., 1975. On the surface anomalies of the variable
electromagnetic field of the Earth, AN SSSR, Geomagnetism i aeronomia, 15, 532-536
(in Russian).

Zhdanov, M. S. & Varentsov, Iv. M., 1980. Interpretation of local geomagnetic anomalies by the method
of tightening surfaces, AN SSSR, Geologiya i geofizika, No. 12, pp. 106—117 (in Russian).

Zhdanov, M. S., Varentsov, Iv. M. & Baglaenko, N. V., 1980. Program of the solution of magneto-
variational profiling inverse problem, in Algoritmy i programmy analiza geomagnitnogo polya,
pp. 177-201, eds Fainberg, E. B. & Zhdanov, M. S., IZMIR AN SSSR, Moscow (in Russian).

Zhdanov, M. 8., Varentsov, Iv. M. & Golubev, N. G., 1978. Determination of the geoelectric inhomo-
geneity location by the method of analytic continuation of variable geomagnetic fields, ANV SSSR,
Geologiya i geofizika, No. 7, pp. 54—63 (in Russian).



