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. 1. A basic problem in geoelectrics today is to develop methods for interpreting
the data from electromagnetic studies carried out in regions with complex, hori-
zontally inhomogeneous geoelectric profiles. This problem is particularly acute
in the analysis of the results of electromagnetic sounding with high-power artificial
current sources (MHD generators), since the fields generated by these sources propagate
over a broad territory, through regions with very different geological structures.

The solution of this problem requires the development of some fundamentally new inter-
pretation methods based on an analysis of the entire space-time pattern of the electro-
magnetic field detected at the earth's surface. In the present paper we describe one
such method, "electromagnetic migration" (named by analogy with seismic migration

[11).

This method is based on the "inverted" extension of the field into the conducting
earth [2-4] and is a %eneralization, to the case of variable electromagnetic fields,
of existing methods of inverse extension of wave fields. These other methods are
used widely in seismic exploration [5-7].

In this paper we analyze the properties of the fields obtained as a result of
migration, and we analyze the possibilities of using this method to solve inverse
problems of geoelectrics.

2. The problem is formulated as follows. At the earth's surface?, I', an electro-

magnetic field EV, HV is specified for the time interval from 0 to 7. This field is
excited by a time-varying source which is either on the outer side of the surface I’

or is raised slightly above the earth and turned on at the time r = 0. The earth is
assumed to have a constant electrical conductivity o except in a certain deep zone D
(of either finite or infinite size), in which the conductivity (0p) can vary in any
arbitrary way. We are to find the region with an anomalous conductivity from measure-
ments of the time-varying fields EV(r,¢), HY(r,/) at the earth's surface.

To solve this problem we construct the following field transformation. We trans-
form from the ordinary time / to the inverted time 7 =7 -r, and we specify auxiliary
fields F(r, r) and R(r, 7) at the earth's surface I' in the following way:

v ! v
Fig(r,7) = Ef, (r. T=1), F,,(r,-r)=—c-E,,(r.T-1');
Rig(r,7)=H, (r.T=1), R,(r,7)=-H)(r,T-1), &5

where the subscripts '"tg" and '"»" specify the tangential and noxrmal components of the
vectors F and R. .

It is not difficult to see that the fields F and R satisfy on the surface I the
two-dimensional analogs of Maxwell's equations in the inverted time T (since the real
fields EY and HY satisfy on T the two-dimensional analogs of Maxwell's equations in
the ordinary time t)®, under the condition that the conductivity (¢”) of the region
adjacent to TI' satisfies 0" =co:

YTranslated from: Migratsia elektromagnitnykh poley pri reshenii obratnykh zadach gecelektriki.
Doklady Akademii Nauk SSSR, 1983, Vol. 271, No. 3, pp. 589-594.

It is assumed that I is a pilecewige-smooth surface, either closed or passing through an infin-
itesimally remote point.

As usual in geoelectrics, we are dealing with a quasisteady model of the electromagnetic field.
In other words, we are ignoring the displacement currents in Maxwell's equations.
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Fp=— —div' [n1XRy], = —divi [nXFq], (2)
a Ho

where divl is a surface divergence, Mo is the permeability of free space, and n is the
vector of the external unit normal to I.

We can now write the following integral relations which, as in [8], we call
"Stratton-Chew integrals for a time-varying field":

E"(r',1") = - Zl;nfflf {(n-F)v6+ [[nXF] X VG] +

a6
3 [nXR]uoa—}deT, 3)
T

H7 (s ¢') = 4’_" offrf {(n-R)VG + [[nXR] X VG] +

+ [nXF]u"’E]deT. (4)

The function G =G(r, 7lr'r’) in expressions (3) and (4) is the adjoint of the funda- i

mental Green's function for the diffusion equation [9]:

1/2
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where
L, <7
; _ i 7
M= {0, >7',

The integrals in (3) and (4) have several properties which are analogous to the
properties of their harmonic analogs [8]. The most important of these properties is
that the Stratton-Chew integrals satisfy Maxwell's equations away from surface I, and
the vector functions E” and H" themselves satisfy a diffusion equation,

a El“,‘ H"l
A(E™; H™) —uou"'—(a,—)= 0. (5)
T

Definition. The transformation by Egs. (1), (3), and (4) of the EV,HY field
observed at I is called the "migration of the electromagnetic field," and the field
E" H" itself is the "migrated electromagnetic field."

The migrated field E”, H" can be given a simple physical meaning: This is the
electromagnetic field which is excited in a homogeneous conducting half-space with
conductivity o™ =co by a system of certain virtual currents and charges distributed
on the surface I'. These operate in inverted time 7 [i.e., they begin to operate (are

turned on") at the end of the field-detection interval, at ¢ = T, and cease ta operate
at r=0].

Substituting (1) into (3) and (4), and replacing the variable T in (3) and (4)
by T-t, we find

(n-EY)

(4

1
B v =

VG +[[nXE"] XVG] +

G
+ [nXH")uo — }dS dt,
[ To 37 (6

B2 T~ t)) == 4‘%; forf [=(n-H)VG+ [[n XH*] XV G] +

+ [nXEY] 0™ G} dS dr, N

where G=G(r,|r’,t') is the fundamental Green's function for the diffusion equation,
which is related to the function G by the reeiprocity condition

Glrotle', 1"y = Gr,~rlc', - ¢").
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-0,§ 0 03 X/z, Fig. 1. Contour map of /'. The values of #.

T T are divided by the value of the field at the local
extremum ( a similar normalization has been used
in plotting the contour maps of the migrated field
in Figs. 2-4). Here z, is the depth of the dipole.

Fig. 2. Contour map of E,'!’ in a model with a thin
band. Here d is the distance from the observation
surface to the center of the band.
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Equations (6) and (7) implement the procedure of electromagnetic migration.
When these equations are applied to actual data, we should follow the lead of seismic-
exploration geophysicists and adopt as ¢ the apparent specific electrical conductivity
of the earth, 0app(7), averaged over the time in the interval ©,7") ¢

I
o=— /[ o T)dT. (8)
= ({ app(T)

The actual inhomogeneous profile of the earth in this case is, in a sense, re-
placed by some homogeneous model (which depends on the time 7).

The field transformation described by Eqs. (6)-(8) is a stable procedure because
the operators on the right side of these expressions are bounded in the space L,.

3. For a more graphic representation of the properties of the migrated field
E™, H", we again transform from the inverted time 7 to the ordinary direct time ¢/, and
for simplicity we set ¢ = 1:

E'(, ¢y = E"@', T=1"), H'@' ") =H"(@' T-1").
According to (5), the field E’, H' satisfies in direct time the equations
s JE’ AH'
AE *“°”ﬁ=°' AH’+yoaT = 0. (9)

Whereas the ordinary diffusion equation describes the evolution with time of
the propagation of the electromagnetic field from the source to the observer, Eqs. (9)
describe the same process in the opposite order: from the final distribution of the
field EY, HY on the earth's surface to its initial distribution at the sources. Our
field transformation (6)-(8) therefore describes a transformation of electromagimetic
fields which are diverging in the real medium and are being diffracted by geoelectric
inhomogeneities into fields which are converging into the corresponding diffraction
surfaces, lines, and points. At the 7'=T (or ' = 0), as in seismic holography, the
fields E"(r', T) = E’(r', 0) and H™ (¢ 72 =H'(r', 0) form an image of virtual field-exciting
sources associated with the geoelectric inhomogeneities.

Let us illustrate the situation with some theoretical and model examples,

4. We consider a first series of models with elementary sources of an anomalous
field. Direct analysis shows that the positions of the elementary sources (a hori-
zontal electric dipole or an infinitely long cable) coincide with the positions of
local extrema of the migrated field at the time at which the current is turned om in
these sources (i.e., at t' =0 or r'=T)., For example, for an E-polarized primary field
this property holds for the horizontal magnetic field component Ay in the case of
field mifration into a medium with a conductivity ¢™ =0,50, and it holds for the hori~-
zg'nt%lsse ectric field component £} in the case of migration into a medium with
" >055a. )

The migrated field retains the same properties in the three-dimensional situation,
when an anomalous field is excited by a horizontal electric dipole. The values of the
migration constant ¢ = 0.5 (for the magnetic component A7) and ¢ ~ 0.55 (for the
electric component £}') can therefore be taken to be the optimum values for the migra-
tion procedure for both two-dimensional and three-dimensional fields.
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Fig. 3. Contour map of Efv" for a layer-by-layer reconstruction of the migrated
field in a model with a composite (complex) inclusion. Here 4 is the distance
from the observation surface to the upper edge of the inclusion.

Fig. 4. Contour map of £ in a model with an inclusion. This map is plotted
for the instant corresponding to the local extremem in Fig. 3.

Let us see how the properties of the migrated field are manifested in numerical
simulations., Figure 1 shows an H contour map in & vertical plane perpendicular to
the axis of the dipole and passing through its center (/' = 0 and ¢ = 0.5). The
surface I', on which the observed field is specified, coincides with the XQY surface.
We see that the spatial position of the dipole can be determined accurately from the
position of the local extremum of the migrated field (an analogous property is ob-
served in the horizontal plane parallel to the dipole axis). We wish to emphasize that
the migration procedure makes it possible to determine the spatial positions of
anomalous-field sources at various depths.

5. In a second series of models we consider local two-dimensional geoelectric
inhomogeneities of a simple gecmetric form, immersed in a homogeneous conducting half-
space of lower conductivity (o). The field in this model is exocited by a plane elec-
tromagnetic wave whose amplitude varies in accordance with the triggering pulse. The
anomalous fields at the earth's surface are calculated by finite-difference simulation
[101.

In model 1 the geoelectric inhomogeneity is a narrow, highly conducting band
(outlined by the heavy lines in Fig. 2); the ratio of the conductivities of the per-
turbing medium and the band is o;/a= 10°.

At the initial time, t' = 0, in the case of electromagnetic migration of the anom-
alous field specified at the X axis, there arise some sources of anomalous field, con-
centrated along the band. From the contour lines of the migrated field we can deter-
mine the position and shape of the object which forms the anomaly (Fig. 2).

In model 2 the inhomogeneity is formed by two connected rectangular inclusions
(op/o=10"). The migration of the anomalous electromagnetic field by means of Eqs. (6)
and (7) makes it possible to see at each instant the regions of the geoelectric pro-
file with the greatest excess currents. Accordingly, the spatial distribution of the
migrated field in this model is reconstructed in a layer-by-layer fashion: The field
at each level is constructed at the time at which the excess currents (the field
"sources” in the layer) corresponding to this level are 'turned on." The "turn-on"
time is determined from the expression for the depth of the skin layer of the time-
varying field [11]. Figure 3 shows the result of this reconstruction of the horizontal
electric component of the migrated field EM (¢ =1). We can clearly see a local
extremum, which can be ascribed to maximum excess currents. The reconstruction of the
overall spatial distribution of the migrated field at the time corresponding to the
position of this extremum obviously gives the most information. As can be seen from
Fig. 4, the L)' contour lines give a clear pattern of the position and shape of the
geoelectric inhomogeneity.

6. These theoretical and experimental studies show that the procedure of elec-
tromagnetic-field migration can be used as an extremely effective method for solving
the inverse problem of reconstruction of a "gecelectric image" of a medium.
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Theoreticians of the tidal evolution of the earth-moon system have assumed until
recently that the basic sink for tidal energy is its dissipation in the solid earth.
This assumption contradicts certain calculations (see [1-3], for example) which show
instead that the oceans are the primary dissipators of tidal energy, and the solid
earth is responsible for only a few percent of the total amount of the dissipated
tidal energy. These calculations were carried out for the modern epoch, assuming
resonant excitation of tides in the earth's oceans characteristic of this epoch [4, 5].
Were the same mechanism for the excitation of ocean tides also dominant in the past,*
then the conclusion that the oceans are dominant in the dissipation of tidal energy
would remain in force throughout the geological history of the earth. This would
force a revision of the theory for the tidal evolution of the earth-moon system. Such
a revision is the subject of the present paper.

We consider the simplest case, in which the moon revolves around the earth in a
circular equatorial orbit. We can then write the equation for angular-momentum con-
servation in the earth-moon system and Kepler's third law, which define the distance
(c) between the earth and the moon, the sidereal rotation velocity of the earth (uw),
and the average velocity (n¢) of the orbital motion of the moon, as follows:

_ ok
13 Lo (1)

ﬁt_) =<i )
(n(o Co, = e

 Translated From: Prilivnaya evolyutsiya sistemy Zemlya-Luna pri rezonansnom vozbuzhdenii prili-
vov v Mirovom okeane. Doklady Akademii Nauk SSSR, 1983, Vol. 271, No. 3, pp. 594-498.

This assumption might be based on the results calculated in [6] For the natural mode spectrum
of a hemispherical ocean in different positions of this ocean on the earth's surface.
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