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A fini'te-di'fference, time-domain solution for three­
dimensional electromagnetic modeling 

Tsili Wang* and Gerald W. Hohmannt 

ABSTRACT An inhomogeneous Dirichlet boundary condition is 
imposed at the surface of the earth, while a homoge­

We have developed a finite-difference solution for neous Dirichlet condition is employed along the subsur­
three-dimensional (3-D) transient electromagnetic face boundaries. Numerical dispersion is alleviated by 
problems. The solution steps Maxwell's equations in using an adaptive algorithm that uses a fourth-order dif­
time using a staggered-grid technique. The time-step­ ference method at early times and a second-order meth­
ping uses a modified version of the Du Fort-Frankel od at other times. Numerical checks against analytical, 
method which is explicit and always stable. Both integral-equation, and spectral differential-difference so­
conductivity and magnetic permeability can be func­ lutions show that the solution provides accurate results. 
tions of space, and the model geometry can be arbi­ Execution time for a typical model is about 3.5 
trarily complicated. The solution provides both elec­ hours on an IBM 3090/600S computer for computing 
tric and magnetic field responses throughout the earth. the field to 10 ms. That model contains 100 x 100 x 50 
Because it solves the coupled, first-order Maxwell's grid points representing about three million unknowns 
equations, the solution avoids approximating spatial and possesses one vertical plane of symmetry, with 
derivatives of physical properties, and thus overcomes the smallest grid spacing at 10 m and the highest 
many related numerical difficulties. Moreover, since resistivity at 100 n . m. The execution time indicates 
the divergence-free condition for the magnetic field is that the solution is computer intensive, but it is valu­
incorporated explicitly, the solution provides accurate able in providing much-needed insight about TEM 
results for the magnetic field at late times. responses in complicated 3-D situations. 

INTRODUCTION numerical difficulties as well as computer limitations. For 
example, Adhidjaja and Hohmann (1989) solved the second­

Solving three-dimensional (3-D) transient electromagnetic order equations obtained by eliminating the electric field 
(TEM) problems is important in understanding the physics of from Maxwell's equations, and found serious difficulty in 
observed responses, and in providing insight for data inter­ accurately evaluating the derivatives of the physical proper­
pretation. This paper describes a finite-difference solution to ties. Solving the second-order equations may also encounter 
a general 3-D TEM problem. The solution, which is based on the problem of simulating discontinuous fields. 
time-stepping Maxwell's equations, computes both electric These problems can be overcome by solving the coupled, 
and magnetic responses of arbitrarily complicated earth first-order Maxwell's equations using a staggered-grid 
structures. scheme (Yee, 1966). Successful applications of the Yee 

For more than a decade, finite-difference methods have scheme include EM wave scattering problems (e.g., Taflove 
been used, for their simplicity and flexibility, to solve and Brodwin, 1975; Holland et al., 1980; Taflove, 1980; 
two-dimensional (2-D) time-domain problems (Goldman and Greenfield and Wu, 1991; Moghaddam et al., 1991), seismic 
Stoyer, 1983; Oristaglio and Hohmann, 1984; among others). modeling (e.g., Virieux, 1984, 1986), and magnetotelluric 
The development of a satisfactory finite-difference solution modeling and inversion (Madden and Mackie, 1989). Bergeal 
to 3-D time-domain problems has been slow, because of (1982) pioneered the application of the method to a TEM 
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problem in geophysics. Unfortunately, he was not able to 
step the field in large enough time steps because he tried to 
simulate weak displacement currents. Using a staggered 
grid, Druskin and Knizhnerman (1988) developed a spectral 
differential-difference solution to a 3-D transient problem, in 
which the original partial differential equations are reduced 
to ordinary differential equations. Luo (1989) proposed a 
time-domain, finite-difference scheme for solving 2-D and 
2.5-D quasi-static Maxwell's equations. Using a divergence­
free condition for the magnetic field, he solved for only two 
components of the magnetic field using variable time steps. 

In this paper, we use Yees (1966) staggered-grid scheme 
combined with a modified version of the Du Fort-Frankel 
(1953) scheme to discretize the quasi-static Maxwell's equa­
tions. In the following sections, we will (1) illustrate our 
finite-difference, time-domain (FDTD) formulation, (2) de­
scribe the boundary conditions and their numerical imple­
mentation and initialization of the time-stepping, and (3) 
present numerical checks of the solution against other solu­
tions, including analytical, integral-equation, and spectral 
differential-difference methods, for a number of models. 

THEORY 

Governing equations 

Under the quasi-static approximation, the TEM fields in 
linear, isotropic, and source-free media are described by 
Maxwell's equations (Hohmann, 1988) 

ab(r, t) 
---= V x e(r, t), (1)

at 

j(r, t) = V x her, r), (2) 

V'b(r,t)=O, (3) 

V'j(r,t)=O, (4) 

with 

b(r, t) = jJ.(r)h(r, r), (5) 

j(r, t) = O'(r)e(r, r), (6) 

where b(r, t) , her, t) , and e(r, t) are the magnetic induction, 
magnetic field, and electric field, respectively; a(r) and per) 
are the conductivity and magnetic permeability of the earth; 
and j(r, t) is the conduction current density. 

Equations (1)-(4) are not completely independent of each 
other (Chew, 1990). In fact. taking the divergence of equa­
tion (1) plus an initial condition on V I b leads to equation (3) 
and taking the divergence of equation (2) leads to equation 
(4). In a numerical solution, however, equation (3) has to be 
incorporated explicitly. Otherwise, results are erroneous at 
late times, which has been confirmed by our numerical 
experience. To illustrate, consider the de limit. In this case, 
equation (1) reduces to 

V x e(r, t) ::: 0. (7) 

Now equation (3) is not derivable from equation (7). As a 
result, the magnetic field is non-unique, since an arbitrary 
gradient field can be added to h without violating equation (2). 
Thus, in the static limit equation (3) is needed. 

In the presence of numeric noise, a transient magnetic 
field may also experience the instability at certain delay 
times, depending upon the time variation of the field. At 
early times, the transient field has sharp variations in time 
and the electric and magnetic fields strongly interact with 
each other; therefore the problem is nearly undetectable. As 
time progresses, the field is smoothed out and approaches 
the dc limit The problem then becomes increasingly severe. 
The later the time, the larger the arbitrary gradient field can 
be. Best et al. (1985) discussed the problem in the frequency 
domain. They found that the low-frequency magnetic re­
sponse can be erroneous if equation (3) is ignored. In the 
following, we will discuss the incorporation of equation (3) 
with equations (1) and (2). 

Equation (3) implies that only two out of the three com­
ponents of b are independent of each other; anyone of them 
can be computed from the remaining two (Chew, 1990). This 
suggests a way of incorporating the equation (M. L. Oristaglio, 
1991, pers. comm.): computing two components of b from 
equation (1) and the other component from equation (3), that is, 

_ abx = de, _ dey 
(8)at ay az 

_ aby ::: aex _ ae l 
(9)at az ax 

abz abx aby
-=---- (10)
dZ ax ay 

Boundary conditions 

Maxwell's equations imply the following continuity con­
ditions across boundaries in material properties: 

(1) continuity of tangential electric and magnetic fields, 
(2) continuity of normal components of total current and 

magnetic flux. 

These conditions are used in the following section to define 
continuous fields on a staggered grid. 

Also, for the solution to be unique, equations (2), (5), (6), 
and (8) to (10) are supplemented with domain boundary 
conditions. The following conditions are sufficient to give a 
unique solution: the tangential components of either e or b 
defined on the boundary, or the tangential components of e 
defined on part of the boundary and the tangential compo­
nents of b on the remainder of the boundary. As boundary 
conditions in this study, we use the tangential e on the 
subsurface boundary and the tangential b on the surface of 
the earth. These conditions can be readily included in our 
numerical solution. 

If the model and the source possess one plane of symme­
try, natural boundary conditions can be applied on the 
symmetry plane. Then it is only necessary to discretize and 
compute half of the model. 

Sources 

In regions containing sources, equations (5) and (6) must 
be modified to 
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btr, t) = J.L(r)h(r, t) + ~omp(r, r), from the source (Oristaglio and Hohmann, 1984). To ensure 
adequate sampling of the field, we enlarge the grid spacing 

j(r, r) = <J(r)e(r, t) + jp(r, I), by an empirically determined factor of no larger than 2 from 

where mp(r, r) and jp(r, 1) are the impressed electric and 
magnetic current densities, and J.Lo is the magnetic perme­
ability of free space. To avoid source singularities, we 
replace the source terms with initial conditions for e and b at 
t = to> O. (All sources are assumed to be shut off at t =0.) 
Transforming to an initial boundary value problem from the 
original boundary value problem was discussed in Stakgold 
(1968) and has been applied by Oristaglio and Hohmann 
(1984) to a 2-D problem. Choosing an appropriate to' as 
discussed later, can provide a smooth initial condition so 
that the field is adequately sampled and numerical dispersion 
is reduced to a minimum. 

NUMERICAL SOLUTION 

In this section a finite-difference, time-stepping solution is 
derived for the system of equations (2), (5), (6), and (8) to 
(10). The solution is built of four distinct but integrated parts: 
(1) model discretization and time-stepping, (2) difference 
approximations to the spatial and time derivatives, (3) nu­
merical implementation of the boundary conditions, and (4) 
initialization of the time stepping. 

Model discretization and time stepping 

The earth model is discretized into a number of prisms as 
shown in Figure 1. A Cartesian coordinate system is defined 
with its z-axis positive downward. The origin of the coordi­
nates is placed at the upper, far left comer of the grid. The 
indices i, j, and k are used to number the grid point locations 
in the x, y , and z directions, respectively. Conductivity and 
magnetic permeability are assumed to be blockwise con­
stant The grid spacing is smallest near the source (repre­
sented by the thick arrow in the figure) and is enlarged 
gradually away from the source. Use of the graded grid is 
feasible because a diffusive EM field has relatively sharp 
variations near the source and is gradually smoothed away 

VI X 

Z /J... 

K~ 

Ie 

~: 

FIG. 1. Discretization of a 3-D earth model. The thick arrow 
stands for the source. Grid spacing increases laterally and 
vertically away from the source. 

one block to the next When the dimension of the source is 
small or the physical property contrasts of the model are 
large, the factor should be reduced. 

A staggered grid (Yee, 1966) is used to define the electric 
and magnetic fields, as shown in Figure 2a. The electric field 
components are located at the center of the edges, while the 
magnetic field components are located at the center of the 
faces. An important consequence of the staggered grid is 
that, with proper placement of the blockwise conductivity 
and magnetic permeability distributions, all the fields are 
continuous. 

The staggered grid is composed of two elementary loops: 
an electric loop and a magnetic loop (Nekut and Spies, 1989; 
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FIG. 2. (a) A staggered grid (after Yee, 1966). The electric 
field is sampled at the centers of the prism edges, and the 
magnetic field is sampled at the centers of the prism faces. 
(b) Interaction between an electric loop and a magnetic loop. 
The electric loop is formed by the four adjacent electric field 
components bounding a prism face. The magnetic loop is 
formed by the four adjacent magnetic field components,
axi == (dxi-l + dXi)/2 and dZk =: (~Zk-l + dzk)/2. 
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Visscher, 1989). The electric loop is formed by the four e 
components bounding the same face of a prism, while the 
magnetic loop is composed of the four adjacent b compo­
nents. An example is shown in Figure 2b. The concept of the 
elementary loops is very useful in discretizing Maxwell's 
equations. 

In this paper, we use a modified version of the Du 
Fort-Frankel method to time step equations (1) and (2). The 
Du Fort-Frankel (Du Fort and Frankel, 1953) method is 
explicit and unconditionally stable as applied to a diffusion 
equation (Birtwistle, 1968). Based on the method, Oristaglio 
and Hohmann (1984) presented a solution to a 2-D problem. 
Later, Adhidjaja and Hohmann (1989) applied it to a 3-D 
problem in which they attempted without success to solve the 
second-order differential equations for the magnetic field. 

The essence of the Du Fort-Frankel method is the implicit 
introduction of a hyperbolic term into the parabolic equa­
tion. All that is needed is to keep the velocity of the fictitious 
wavefield slower than that simulated by the finite-difference 
scheme. To apply the Du Fort-Frankel method to the first­
order system, we explicitly solve a wave-like equation 
obtained by modifying equation (2) to 

ae(r, r) 
-y -- + cr(r)e(r, t) = V x h(r, r), (11)at 

where -y is a coefficient we shall define later. The first term on 
the left-hand side resembles a displacement current; it is, 
however, purely artificial (see also Chew, 1990). By appro­
priately defining -y, we can develop an explicit, always 
stable, time-stepping solution. 

We use the indices, 0, 1, 2, , n - 1, n, ... to represent 
the time instants, to, t, , , t n- 1> tn' with t n = t n- 1 + 
1.11 71-1' Following Vee's (1966) time-staggering scheme, we 
define the electric field at integer time indices along the time 
axis, and the magnetic field at intermediate time indices. We 
carry out time-stepping in a leap-frog fashion; given e at t ~ 

t; and b at t ~ tn + atn l2 , we extrapolate e to t = t n+1 
using equation (2); then with b at t -s t 71 + I1tn /2 and e at t 
-s tn+l ' we extrapolate b to t = tn+1 + !i.tn+1/2 using 
equation (1), and so on. 

Finite-difference equations 

For convenience, we rewrite equation (11) in component 

-y-+crez =---. (14) 

form 

de x 
-y-+aexat 

ahl. 
= - ­

ay 
ahy 
- ' az (12) 

dey 
-y ­at + ae 

y 

ahx = ­az -
ahl. -,ax (13) 

and 

del. ahy ahx 

at dX oy 
We first discretize equations (8) and (13) as representa­

tives of the time-stepping system. Then we discuss a differ­
ence approximation to equation (10), followed by numerical 
evaluation of equation (5) on a staggered grid. The notation 
bf+J/2(i, j + 1/2, k + 1/2) is used to represent the 

x-directed magnetic field at grid node (i, j + 1/2, k + 1/2) 
and at time instant t n + !i.t71/2. Similar notations are used for 
the other field components. Applying the integral form of 
equation (8) 

-ff a:,' ~ f (e x u,HI, 

where u, is an x-directed unit vector and 1 is in the yz-plane 
to the electric loop in Figure 2b, and approximating abx la tat 
time level n using a central difference 

b:- 1/2 abx) n b;+ 1/2 ­

(at = (!i.tn _] + !i.t )/2 ' n 

we obtain 

b: + 1/2(i, j + 112, k + 1/2) 

!i.tn _ I + !i.tn + I 
= bn - 1/2(i J' + 1/2 k + 1/2) - ---­

x " 2 

x [e;U, j + 1, k + 1/2) - e7U, j, k + 1/2) 

!i.Yj 

e;U, j + 1/2, k + 1) - e;U, j + 1/2, k)] 
- A (15)• 

~Zk 

In deriving equation (15), we assume that b, is constant 
across the entire electric loop area, and that ey and e arez 
constant along the y- and z- directed edges of the loop, 
respectively. A similar difference equation can be derived 
for equation (9). 

Similarly, application of the integral form of equation (13) 
to the magnetic loop in Figure 2b, and approximation of 
oeyla t at time level n + 1/2 by a central difference 

oe ) 71 + 1/2 en +L e 11 
y Y Y 

- =:::---­( at I1tn 

and e;+I/2 by the average of e; and e;+l 

e n + 1/2 e; + e 71 + 1 
y =::: y 

2 

lead to the difference equation for extrapolating ey 

e; + IU, j + 1/2, k) 

2-y - I1tncr(i, j + 1/2, k)
 
-------- enU, j + 1/2, k)

2-y + !i.tncr(i, j + 1/2, k) y 

21.11 
n 

(16) 
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with where 

axi-1 + axi ~(i, j + 1/2, k + 1/2)i1Xi 
2 

Ax; - 1 j.1(i - 1, j, k) + Axi j.1(i, j, k) 
Azk-1 + Azk

"Ek = - - - - - axi - 1 + lui 
2 

The system of difference equations (15) to (17) haveIn the above equation, aii, j + 1/2, k) is the averaged 
second-order accuracy in space and time. Each field variable conductivities of the four prisms connected by the magnetic 
is stored only at one time level. loop 

a(i, j + 1/2, k) Stability 

1 
The time-stepping system defined by equations (15) to (18) = L 2: a(i - p, i, k - q)w(i - p, i. k - q), is explicit and always stable if 

p=o q=O 

where w is a weighting function evaluated as the ratio of the 3 ( st; ) 2'Y>-- -­area of a particular prism cut by the magnetic loop to the (19) 
- ~min li.min ' 

total area of the loop. In deriving equation (16), we assume 
that ey and its time derivative are constant across the entire where li.min is the minimum grid spacing, and ~min is the 
magnetic loop area, and b, and b, are constant over the minimum value of the magnetic permeability. To see this, 
edges of the loop on which they reside. The difference note that the phase velocity of the wave-like field defined by 
equations for equations (12) and (14) can be obtained in the equations (1) and (11) can be written 
same way. 

Approximation of equation (10) is straightforward. Note 1 
that the divergence of b can be readil y approximated at the v = v;:yo 
center of a prism using its components on the six faces of the 
prism. Thus we obtain 

b; + 112(i + 1/2, j + 1/2, k + 1) - b; + 1I2(i + 1/2, j + 1/2, k) 

Azk 

b; + 1/2(i + 1, j + 1/2, k + 1/2) - b; + 1/2(i, j + 1/2, k + 1/2) 

lui 

b; + 1I\i + 1/2, j + 1, k + 1/2) - b; + 1/2(i + 1/2, j, k + 1/2) 

Ii.Yj 

Rearranging the above equation leads to 

b; + 112(i + 1/2, j + 1/2, k) = b; + 1/2(i+ 1/2, j + 1/2, k + 1) 

b~ + 1/2(i + 1, j + 1/2, k + 1/2) - b; + 1/2(i, j + 1/2, k + 1/2) 
+ Azk [ tJ.x., 

b; + 112(i + 1/2, j + 1, k + 1/2) - b; + 1/2(i + 1/2, j, k + 1/2)] 
+ . (17)

Ii.Yj 

To solve the above equation, we start from the bottom Substituting 'Y from equation (19), we obtain
 
boundary of the grid where b, = 0 and step b, upward.
 

Finally, the magnetic field, h, here used as an intermediate
 Amin Ifftmin Ii.min
 
variable, can be calculated from b using averaged magnetic v < --- --< --­

- Y3li.t j.1 - Y3At ' n npermeabilities. For example, 

hx (i, j + 1/2, k + 1/2) which is exactly the Courant-Friedrichs-Lewy condition 
(Mitchel and Griffiths, 1980) for a wave equation, except that 

= bx(i, j + 1/2, k + 1/2)/j.1(i, j + 1/2, k + 1/2), (18) the time step is now variable. 
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The artificial term in equation (11) acts as a displacement 
current In fact, its magnitude can be much larger than the 
real displacement current in a nonpolarizable medium. For 
example, a time step of 1 us, a minimum grid spacing of 
10 m, and ~min = ~o gives 'Y = 2.4 X 10-

8
, a value about 

2700 times as large as the free-space permittivity. To prevent 
the fictitious displacement current from dominating the 
diffusive EM field, we must constrain the length of the time 
step. One can show that the field retains its diffusive nature 
if (Oristaglio and Hohmann, 1984 and Adhidjaja and 
Hohmann, 1989) 

( ~m in at) 1/2
si« -6- Amin , (20) 

where a can be taken as the minimum conductivity in the 
model. In practice, one can use a time step 

~m i n at) 1/2 
at max = a (--6- amin, (21) 

where a ranges from 0.1 to 0.2, depending on the accuracy 
required. Further reduction of a is unnecessary because of 
limited improvements on the accuracy of the results. Note 
that the time step given in equation (21) can be gradually 
enlarged with increasing time. 

Boundary conditions 

To ensure a unique solution, we impose Dirichlet condi­
tions on all the domain boundaries. For convenience, we 
specify a tangential electric field on the subsurface boundaries, 
and a tangential magnetic field on the surface of the earth. 

Subsurface boundaries.-On the subsurface boundaries, 
we simply set the tangential electric field to zero. This 
homogeneous Dirichlet condition is a good approximation to 
the true radiation condition only if the boundaries are far 
enough away from the source at a given time. Generally 
speaking, a less conductive earth or a larger source requires 
a larger grid, while computation of the early-time response 
needs a smaller grid than does that of the late-time response. 
Thus, an optimal grid should be used with its size adjusted 
with time for certain models. For simplicity, however, we 
have used a fixed but model-dependent grid. The grid is 
expected to be large enough to give reliable results at the 
latest time specified. Its horizontal dimensions are roughly 
three to four times larger than the radius of the equivalent 
descending current filament (Nabighian, 1979) at the latest 
time due to a source on the surface. The vertical dimension 
of the grid is about three fourths of its horizontal dimensions. 

Air-earth interface. - A simple upward-continuation bound­
ary condition can be implemented at the surface of the earth 
(Oristaglio and Hohmann, 1984). Two advantages follow: first, 
the grid size can be reduced; and second, it is not necessary to 
time-step the EM field in free space, which would require very 
small time steps to keep the solution stable. To apply the 
upward-continuation condition to the staggered grid, we ex­
tend the grid by one grid level into the air, and then compute bx 
and by at a level of half a grid spacing above the surface of the 
earth, using the b, on the surface. 

Under the quasi-static assumption, the magnetic flux in 
free space obeys the vector Laplacian equation (Grant and 
West, 1965, p. 470) 

V 2b = o. (22) 

It is well known (cf, Nabighian, 1972, 1984; Macnae, 1984) 
that the horizontal components of b satisfying equation (22) 
can be derived from its vertical component on the same 
horizontal plane. From equation (22), one can derive the 
following wavenumber-domain equations 

iu 
~x(u, v, Z = 0) = - ... ~2 ~z(u, v, Z = 0), (23) 

V u 2 + u: 

and 

IV 

eT3 y (U , v, Z =0) = - .. I~ eT3 z (u , v, Z = 0), (24) 
v U + v 

where ~x, ~y, and eT3z; are the Fourier transforms of bx ' by, 
and b z ' respectively; u and v are the wavenumber domain 
variables corresponding to x and y, respectively. The 2-D 
Fourier transform is defined as 

F(u, v) = J-: J-: fix, y) exp [-i(ux + vy)J dx dy. 

eT3 x and ~y given in equations (23) and (24) can be upward 
continued to give their values in free-space (Grant and West, 
1965, p. 216-220), i.e., 

~x(u, v, Z = -h) 

= exp (-h V u 2 + v2)~x(u, v, Z = 0), (25) 

and 

~y(u, v, Z = -h) 

= exp (-hVu 2 + v2)~y(u, u, Z = 0). (26) 

Substituting equation (23) into (25) and equation (24) into 
(26) yield 

OOx(u, v, z = -h) 

iU ... r-:;------;;
-=exp(-hvu2+v2)~z(u,v,z=0),(27)

Vu2 + v2 

and 

~y(u, v, Z = -h) 

iu 
Vu 

2 
+ v 

2 
exp( -hVu 2+ v2)~z(u, v, Z = 0). (28) 

Implementation of equations (27) and (28) is as follows. 
First, we interpolate, using a bicubic spline function (see 
also Adhidjaja and Hohmann, 1989), the nonuniform grid 
spanned by the discrete bz values on the ground surface to a 
constant grid with grid spacing 8. Then we Fourier transform 
b; into the wavenumber domain and multiply the results by 
the operating coefficients in the equations. Finally, we 
inverse Fourier transform the results into the space-domain. 
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The computer cost of the whole process is dominated by the 
forward and inverse Fourier transforms that are proportional 
to N logz N, where N is the total number of data points in 
both x- and y- directions. At the beginning of time stepping, 
we take 5 to be the same as the smallest grid spacing. We 
then increase 5, on a linear-square root plot, with time while 
keeping the overall sampling area fixed. This results in a 
reduction of N with time. Here, we have used the fact that 
the TEM field is smoothed gradually in space with time, and 
thus the sampling rate can be reduced accordingly. 

lnitial conditions 

To initialize the time-stepping, we supply initial conditions 
for e at t = to and for b at t = to + Ilt o/2, respectively, 
where to> 0 and Ilto is the initial time step. We assume that 
the top part of the earth is homogeneous (Oristaglio and 
Hohmann, 1984), and compute the field there using an 
analytical solution for a uniform half-space. The quality of 
the initial conditions is controlled by to' In principle, to 
should be small enough such that the assumption of a 
uniform half-space solution is valid. On the other hand, it 
should be large enough so that the field is adequately 
sampled. If to is too small, numerical grid dispersion may 
result from undersampling of the field. In some cases where 
the inhomogeneities are shallow or the field is required at 
very early time, one should use a higher-order differencing 
algorithm to suppress the numerical dispersion. In the next 
section, we shall discuss an adaptive algorithm that employs 
a fourth-order finite-difference scheme at early times and a 
second-order scheme at later times. 

Based on a series of experiments in which the finite­
difference, time-domain (FDTD) results were compared to 
the analytical solution for a horizontal magnetic dipole on 
the surface of a uniform half-space (Ward and Hohmann, 
1988), we found that setting 

to = 1.13""1 <11 Ilf, 

is appropriate, where ""1 and <11 are, respectively, the 
magnetic permeability and conductivity of the top layer, and 
~1 is the grid spacing of the uppermost part of the grid. In the 
above equation, to corresponds to the time when the equiv­
alent current filament (Nabighian, 1979) of the magnetic 
dipole penetrates to a depth of 1.51l1• 

In this study, we incorporate the impulse responses of e 
and b as the initial conditions so that the algorithm computes 
the impulse response of b. To do that, we first compute the 
step response of e (San Filipo and Hohmann, 1985) down to 
about five grid levels in the earth, with the electric field one 
grid level above the surface computed using an equation 
similar to equation (25). Next, we compute the impulse b 
response using equation (1) which in turn is substituted into 
equation (2) to give the impulse e response. 

NUMERICAL DISPERSION AND ADAPTIVE ALGORITHM 

Numerical dispersion occurs whenever a finite grid is 
unable to simulate a high-frequency field. Consider a uni­
form grid with spacing A. To suppress the numerical disper­
sion to an acceptable level, the spatial sampling rate must 
honor (Alford et al., 1974 and Kelly et al., 1976) 

Amin ~ N, 
(29)Il 

where Amin is the minimum wavelength and N is the smallest 
number of grid points per wavelength. The value of N 
depends on the difference approximation scheme used. In 
general, a higher order algorithm has a better ability to 
suppress the numerical dispersion, and thus requires a lower 
sampling rate. For a second-order scheme, N should be no 
less than 10, while for a fourth-order scheme it should be no 
less than 5 (Alford et al., 1974). 

Numerical dispersion also occurs in the finite-difference 
modeling of a diffusive EM field. Consider the transient field 
induced in a conductive earth by shutting off a steady source 
current Shortly after the shut-off the field is dominated by 
high-frequencies and rapid spatial variations. As time 
progresses, the high frequencies are attenuated and the field 
becomes smoother in space. Therefore, numerical disper­
sion should occur more likely at early times. 

In our adaptive algorithm, we use a fourth-order scheme at 
early times. The fourth-order scheme approximates the 
spatial derivatives using fourth-order differences; e.g., 

b; + 1/2(i, j + 1/2, k + 1/2) 

=b;- 112U, j + 112, k + 1/2) _ Ill" -1 + ~tn + 1 

2
 

X 2: [ape;U, j + p, k + 1/2)
 
»> -1 

- bpe;U, j + 1/2, k + p)], (30) 

n + 1(, . ey I, J + 112, k) 

2"( - Ilt"uU, j + 112, k)
 

2"( + ~tnu(i, j + 1/2, k) e;(i, j + 1/2, k)
 

21ltn+-------­
2"( + Ilt n <1(i , j + 112, k) 

2 

X 2: [cph; + 1/2U, j + 112, k + P - 112) 
p =-1 

- dph; + 1/2(; - P + 112, j + 112, k)], (31) 

where a, b, C, and d are the sets of difference coefficients, 
an example of which is given in the Appendix. To keep time 
stepping of equations (30) and (31) always stable, we modify 
equation (19) to (see also Mufti, 1990, for a discussion of 
seismic wave modeling) 

4 (Ilt n )2 "(>-- - ­
~ IJ.min ~min ' 

and accordingly reduce the maximum time step to 

..,.min crt ) 1/2
 
Ilt max = a ( --R- Ilmin • (32)
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We restore the second-order scheme derived previously at 
other times. The transition from the fourth-order scheme to 
the second-order scheme takes place at a model-dependent 
delay time. The reason for using the adaptive algorithm is 
that the fourth-order scheme is more time-consuming than 
the second-order scheme, and more importantly, that there 
is no need to use the fourth-order scheme all the time. This 
can be seen through the following error analysis. 

The accuracy of the results is controlled by the accuracy 
of both the spatial and temporal differences. The composite 
error for equations (30) and (31) can be written 

E = D[3A 4 + (AtlfA.(J)2], (33) 

where, for simplicity, we assume that the medium is homo­
geneous and the grid spacings are the same in each Cartesian 
direction. The first term on the right-hand side of equation 
(33) results from the approximations to the spatial deriva­
tives, the second term from the approximations to the time 
derivatives. Substituting equation (32) into equation (33) 
yields 

e = D[3A 4 + fa 2A 2/(8fA.(J)]. 

Thus at early time the accuracy is approximately fourth­
order, depending on fA. and (J. As t increases, the last term 
gradually dominates the errors and the accuracy of the 
results is eventually second order. 

NUMERICAL EXAMPLES 

In this section we check our FDTD solution against 
analytical, integral equation, and spectral differential-differ­
ence solutions. The models used include (1) a vertical 
magnetic dipole on a homogeneous half-space, (2) a 3-D 
conductive body in a homogeneous or layered earth, with 
the resistivity contrast variable between the body and the 
host, (3) a 3-D conductive, magnetically permeable body in 
an otherwise homogeneous earth, and (4) a 3-D conductor 
along a vertical contact beneath a conductive overburden. 
The first model is the simplest, while the last one is the most 
complicated, aimed at showing the ability of the FDTD 
solution in modeling complex earth structures. The models 
are typically divided into 100 x 100 prisms in the horizontal 
directions and 50 prisms in the vertical direction, with the 
smallest prism 10 m on each edge. The total number of 
unknowns is about 3 million, requiring a minimum storage of 
about 12 megabytes. 

Homogeneous half-space 

Consider a vertical magnetic dipole on a homogeneous 
half-space of 100 n . m. The FDTD responses along the 
positive x-axis are shown in Figure 3 at four times, ranging 
from 0.1 to 10 ms. The vertical and horizontal electro-motive 
forces (emf) correspond to the magnetic field measured with 
horizontal and vertical unit-moment coils, respectively. The 
parameter a in equations (21) and (32), which controls the 
time steps, is 0.1 for these computations. The FDTD re­
sponses are in good agreement with the analytical responses 
(Ward and Hohmann, 1988). The outward expansion of the 
smoke ring (Nabighian, 1979) causes the drifting of the 
cross-over with time. This example is important because it 

shows that by constrammg the time steps according to 
equations (21) and (32), the effect of the fictitious displace­
ment current 'Yoe/ot is negligible. In this example, the 
maximum time step is about 4 j.LS, nearly 20 times larger than 
that given by the classic forward-difference scheme. The 
execution time is approximately 5.5 hours on an IBM 
3090/600S computer. 

To study the sensitivity of the FDTD solution to the time 
steps, we recomputed the responses using larger time steps 
[with a = 0.2 in equations (21) and (32)]. Now the maximum 
time step is increased to about 8 ,""S. Figure 4 shows that the 
FDTD solution is now slightly worse than before. At that 
price, however, the execution time has been reduced to 
about 60 percent of the previous run. As a compromise 
between solution accuracy and computing time, we shall use 
a = 0.2 in the subsequent examples. 
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100 n . m half-space. The symbols "+" and "-" stand for 
positive and negative values, respectively. 
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3-D body in a homogeneous halt-space-low resistivity 
contrast 

Newman et al. (1986) computed the transient response of 
a low-contrast 3-D model shown in Figure 5, using a frequen­
cy-domain integral-equation technique. The 0.5 n .m body is 
100 m long, 4D m wide, 30 m in depth extent, and is 30 m 
deep. It is embedded in a 10 n . m homogeneous half-space 
and excited by a 100 m X 100 m loop source on the surface. 
Figure 5 also shows the central-loop soundings from both the 
integral-equation and the FDTD solution. The two solutions 
fall in good agreement with each other. The FDTD solution 
shows a slightly smaller decay rate at late times than does 
the integral-equation solution. 

3-D body in a homogeneous haIf-space-intermediate 
resistivity contrast 

As a check for a higher contrast (200: 1) model, let us 
compare the FDTD solution to San Filipo and Hohmann's 
(1985) integral-equation solution for the model shown in 
Figure 6. Here a coincident-loop configuration is used. San 
Filipo and Hohmann's solution is formulated directly in the 
time-domain. The two solutions demonstrate an excellent 
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agreement with each other after 1 ms. Before 1 ms, the 
FDTD response is slightly larger. The discrepancy is most 
likely caused by the different source current forms used. San 
Filipo and Hohmann's solution assumes a linear termination 
of the steady current over a time of 0.165 ms, while the 
FDTD solution approximates a step shut-off of the source 
current 

3-D body in a two-layer earth-high resistivity contrast 

For the last check against an integral-equation solution, 
we computed a model shown in Figure 7. In this model, a 
0.1 n m body is located in the lower layer of a two-layer 
earth. The body is 25 m thick, 100 m in depth extent and 
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FIG. 5. Comparison of the FDTD and an integral-equation 
(Newman et al., 1986) solutions for a central-loop survey 
over a 3-D conductor. The resistivity contrast is 20 . 
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800 m long, and is buried at a depth of 100 m. The does the nonpermeable model. The late-time decay rates for 
resistivities of the upper and lower layers are, respectively, the permeable model are slower than those for the nonper­
10 n· m and 1000 n· m. Results from the FDTD solution and meable model, because the time constant of the former is 
the integral-equation solution (Newman and Hohmann, larger (Nabighian and Macnae, 1991). 
1988) are shown at six times ranging from 0.5 to 15 ms. 
Again, both solutions show good agreement, even though 3-D conductor at a vertical contact 
larger discrepancies occur to the right of the body at 3,5, and 

The last model we computed is representative of a type of 10 ms, and to the left of the body at 15 ms. 
model that cannot be easily simulated with an integral­

3-D permeable body in a homogeneous half-space equation solution. The model shown in Figure 11 consists of 
two quarter spaces and a 3-D body overlain by a 10 .n . m 

Next we compare our FDTD solution to a spectral differ­ overburden. To the left of the contact is a 300 .n. m quarter 
ential-difference solution (Druskin and Knizhnerman, 1988; space and to the right a lOOn· m quarter space; along the top 
A. Hordt, 1991, pers. comm.). The model is a 3-D body part of the contact is a 3-D body representing mineralization 
embedded in a uniform half-space (Figure 8). The body is along the contact The body is 400 m long, 50 m wide, and 
100 m x 100 m x 50 m and is buried at a depth of 80 m. It has 200 m in depth extent, with a resistivity of 1 n· m. 
a resistivity of 0.333 n . m and a relative magnetic perme­ Figure 12 shows the profile variations of the vertical emf 
ability of 30. The half-space is of 100 n· m and its magnetic along the positive x-axis for t = 0.23, 0.75,2.4,3.4,5.3, and 
permeability is the same as that of free space. The resistivity 7.8 ms. Also shown are the results computed with a spectral 
and magnetic permeability contrasts of this model are 300 differential-difference method (Druskin and Knizhnerman, 
and 30, respectively. The large resistivity contrast is not 1988; A. Hordt, 1991, pers. comm.). The two solutions agree 
unusual in the real world; the high magnetic permeability overall with each other at all the times shown. At 0.23 and 
contrast, however, is not common. The purpose of using the 0.75 ms, the responses are much like those for a layered 
unrealistic value is only for testing the algorithm. A square earth (Hoversten and Morrison, 1982). At intermediate times 
loop 100 m on a side is laid on the surface. The vertical emf (2.4 and 3.4 ms), drift of the cross-over to the right is slowed 
soundings at x = 0 and 140 m are shown in Figure 9, and the down due to the 3-D body and the more conductive quarter 
horizontal component at x = 140 m is shown in Figure 10. space to the right of the contact. At later times (5.3 and 
For comparison, also shown are the responses when the 7.8 ms), the cross-over passes the contact and moves rapidly 
body is nonpermeable. In general, the FDTD solution agrees to the right 
with Druskin and Knizhnerman's solution, especially for the Oristaglio and Hohmann (1984) showed, for a 2-D prob­
nonpermeable model. lem, that the cross-over may move back at late times and be 

At early times (before 0.2 ms) there is little difference located above the body, which is diagnostic of the horizontal 
between the permeable and nonpermeable model responses, location of the body. However, the backward movement of 
since the body is masked by the conductive half-space. After the cross-over is not observed in this model, because the 
that, the permeable model gives much higher responses than response of the 3-D body is not large enough. 
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CONCLUSIONS 

We have developed a finite-difference time stepping solu­
tion to the quasi-static Maxwell's equations. The solution 
possesses a number of appealing features. First, it can 
handle a complex earth model in which both conductivity 
and magnetic permeability vary arbitrarily in space. Second, 
the formulation is simple and computer implementation is 
easy. Third, there is no need to evaluate spatial derivatives 
of the physical properties, and thus the algorithm avoids the 
possible errors associated with it Moreover, the solution is 
based on an explicit time-stepping scheme; it does not 
require matrix inversion. Finally, the solution provides all 
the electric and magnetic components throughout the earth. 
On the one hand, solving for all the field components appears 
to be a disadvantage since it doubles the computer storage 
requirement compared to solving for either the electric or 
magnetic field. It does, however, avoid many repeated 
operations and thus increases the numerical efficiency. 

The execution time for a typical model is about 3.5 hours 
on an IBM 3090/600S computer to compute the field to 10 
ms. The model contains 100 x 100 x 50 grid points and 
possesses one plane of symmetry (the x-z-plane), with the 
smallest grid spacing 10 m and the highest resistivity 
100n . m. 

In this paper, we have solved for the total fields. An 
alternative approach is to solve for the secondary fields 
(defined as the difference between the total field and the 
primary field of a background model). By solving for the 
secondary field, one can use a coarser mesh. As a result, 
computer storage and execution time are reduced. This 
approach has been successfully applied to a 2-D problem as 
reported in Adhidjaja et al. (1985). It can also be applied to 
a 3-D problem. The only difficulty is that computing the 3-D 
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FIG. 8. A 3-D model used for comparing the FDTD solution 
with a spectral differential-difference method. The resistivity 
and magnetic permeability contrasts between the body and 
the half-space are, respectively, 300 and 30. 

primary fields can be very expensive and the approach is not 
cost effective. 

A rectangular grid has been long used in TEM modeling. 
Apart from its simplicity, the rectangular grid is not neces­
sarily efficient For example, in a graded grid, the prisms 
near the grid boundaries may be unnecessarily small along 
some Cartesian directions, resulting in an oversampling of 
the field. To overcome the problem, one can use a subgrid­
ding technique (Zivanovic et aI., 1991). With this technique, 
the model is first discretized into large, approximately equi­
dimensional prisms. Then those prisms experiencing sharp 
field variations are further discretized into smaller prisms. 
The process is repeated until all the prisms are small enough 
compared to the spatial wavelengths of the field. The result­
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ing grid usually contains fewer grid nodes than does the 
conventional rectangular grid. Such a grid, however, can be 
quite irregular. Numerical interpolation is needed to com­
pute the field values at the irregular grid nodes. 
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APPENDIX 

THE FOURTH-ORDER, FINITE-DIFFERENCE APPROXIMATION 

Define the discrete values of a function f at nodes i as.k 
The grid spacing between nodes i and i + 1 is Sx]. The 
fourth-order, finite-difference approximation to djldx at 
node i + 1/2 can be written 

f 
( d ) = c _di _ 1 + CoJi + C di""- 1 + c2fj+ 2 , (A-I) 
dx j + l/2 

where c's are the coefficients to be determined. Using 
a Taylor expansion of .Ii 's at x = Xi + lixJ2 and equat­
ing the coefficients of both sides associated with the deriva­
tives of the same order, we have the following system of 
equations 
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Here, 

e_I = /1xi - L + /1xj/2, 

eo = /1xi/ 2, 

i l = aXi/2, 

i 2 = /1Xi/2 + liXi + I, 

The system of equations (A-2) can be easily solved for c's, 


