
...............
 

JOURNAL OF SEISMIC EXPLORATION 3, 283-297 (1994) 283 

MIGRATION BY ANALYTIC CONTINUATION THROUGH A 
VARIABLE BACKGROUND MEDIUM 

~ 

MICHAEL S. ZHDANOV 1 and TII\.10 TJAN 2 

/ Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, U.S.A.
 
2 Dept. of Geophysics, Colorado School of Mines, Golden, CO 80401, U.S.A.
 

(Received April 11, 1994; revised version accepted June 22,1994) 

ABSTRACT 

Zhdanov, M.S. and Tjan, T., 1994. Migration by analytic continuation through a variable 
background medium. Journal of Seismic Exploration, 3: 283-297. 

Conventional migration of wavefields is based on depth extrapolation of the upgoing field 
in reverse time. This extrapolation provides us with a means to determine the positions of reflectors 
and diffraction points and, therefore, to produce an image of a geological cross-section. However, 
conventional depth extrapolation allows us 10 restore only some transformation of the field in the 
subsurface rather than the true field. For example, this approach rules out the proper imaging of 
multiple reflections. Meanwhile. there is reason to expect that a different reconstruction of the 
seismic wavefield - reconstruction by analytic continuation can yield a more comprehensive image 
of a medium. An exact depth extrapolation based on analytic continuation could contribute to the 
restoration of the true process of seismic wave propagation in a medium. In this case, multiples do 
not 'pass' the layers where they have been formed and, hence, they cannot generate any fictitious 
reflecting boundaries. Here, we describe a method for doing migration of seismic wave fields in the 
frequency domain by analytic continuation through a medium with vertically variable velocity. 

KEY WORDS: migration, analytic continuation, multiples elimination, boundary problem. 

INTRODUCTION 

The conventional procedure for the migration of wavefields is usually 
based on the depth extrapolation of the upgoing field in reverse time (Claerbout, 
1985). However, this extrapolation allows us to restore only some 
transformation of the field in the subsurface rather than the true field. Also, 
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one-way field extrapolation cannot reconstruct correct amplitudes of the seismic 
waves (l.arner et al., 1981; Kozloff and Baysal, 1982). In some situations (e.g., 
when we wish to image multiples) it can be useful to restore the true distribution 
of the total seismic wavefield in the subsurface. This restoration can be 
accomplished by the method of analytic continuation. In analytic continuation, 
the field distribution in the lower halfspace with given background velocity is 
restored from the known values of the field on the earth's surface. The method 
is related to the analytical theory of the functions of real or complex variables, 
but in this paper we discuss only the straightforward implementation needed for 
the solution of the migration problem. 

Some aspects of this problem have been discussed in earlier papers 
published by Kozloff and Baysal (1982) and by Zhdanov and Matusevich 
(1984). A comprehensive analysis of this problem has been developed by 
Wapenaar and Berkhout (1985. 1986) and by Wapenaar et a1. (1987). A more 
detailed introduction to this subject can be found in Zhdanov (I988); and 
Zhdanovet a1. (1988). Here, we focus on the explicit method of migration by 
analytic continuation in a layered medium with a vertically variable velocity, 
based on the Green's function decomposition. This new technique makes it 
possible to construct an analytical solution for the problem of two-way wave 
extrapolation in a medium with a specific depth-dependent velocity. 

FORMULAnON OF TI-IE PROBLEM 

The problem of analytic continuation can be formulated as a boundary­
value problem for the wavefield. 

Suppose the seismic field (vertical component of displacement or pressure 
in the case of an acoustic model) and its normal derivative are given on the 
surface of the layered half-space with a given vertical profile of velocity 
variations (note that the practical ways of determining the boundary values u' 
will be discussed later): 

u(X,y,O,w) = UO(x,y,w), (aldZ)U(X,y,z,w) I z=O = u' (x.y ,ev). (1) 

Reconstruction of the field utx.y .z.co) is required inside any layer in the 
earth. The solution of this problem can be divided into two stages: 

a) continuation of the seismic field into a given layer with a specified 
depth-dependent velocity Va(z) based on equation 

V2u(x ,y ,z,w) + {alJV~(z)} utx.y.z.o) = 0 , La-I;;; Z ;;; La , (2) 

where La means the depth to the bottom of the a layer. 
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b) recalculation of the field and its normal derivative across an interface 
by applying the proper boundary conditions on interfaces. 

Therefore, the solution of the stated problem comes down to the field 
continuation within the limits of one given layer. 

WAVEFIELD IN TIlE FREQUENCY SPACE TIME DOMAIN 

We can present the field utx.y.z.o) in the form of the Fourier transform 
over space variables x,y 

.08+00 

u(k",ky,Z,ill) = f Julx.y.z.co)e - iCk.x+ Kyy) dxdy (3) 

In the space-frequency domain equation (2) can be written as 

Lii(kx,~,z,w) = 0 (4) 

where L is the one-dimensional Helmholtz operator 

L == (a2/az2) + «(il/C2(z» 
and 

(l/C2(z» = (lIV2(z»){1 - V2(z)[(k,Jw)2 + (k/w)Z]} 

Note that C is the function of vertical coordinate z , spatial frequencies k., ky 

and temporal frequency co, but for the purposes of solving the differential 
equation in z we write it only as C (z). Correspondingly, boundary conditions 
(I) will take the form 

u(kx,ky,O,w) = uO(k",ky,ill) il' (kx.ky,O,w) = lil(kx,ky,lLl) (5) 

where the prime denotes the vertical derivative. Note that the seismic wave 
source term is included in the boundary conditions at the surface. 

Our goal is to determine ueverywhere inside the first layer, where the 
function Ctz) is the continuous function of depth, from the given values of lio 
and til on the earth's surface. To solve this problem we apply the I-D Green's 
theorem and corresponding Green's function. 

SOLUTION OF THE BOUNDARY VALUE PROBLEM 

Let us apply Green's theorem in one dimension to the first layer 
(Bleistein, 1984): 

..
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hi	 "I" If [u(z)Lg(z,?;) - g(z ,t)Lii (z)Jdz ::: u(z)g'(z,?;) I - g(z,t)u'(z) I (6) 
o	 o 0 

Here. l1(z) = ii(kx,ky,Z,ill) and g(z,t) = g(kx,ky,z,t,ro) is the Green's function 
that satisfies the equation 

II ' 
Lg(kx,ky,z,t,w) = - c5(z - t) (7) 

Substituting equations (4) and (7) into (6) gives 

"I hi 
il(t) = g(z.thi'(z) I -u(z)g'(z,t»)	 (8) 

a a 

We now have two key issues. The first is how to determine the Green's 
function. This problem can be solved using the high-frequency asymptotic 
(WKBJ) approximation for : the Green's function (Bleistein, 1984). The 
corresponding expressions for the Green's function are given in the Appendix. 

The second key issue is how to determine the values of the field (j on the 
bottom of the layer z ::: hi in equation (8). Evidently, we can solve the 
boundary value problem (the recalculation of the field u inside the earth), if we 
know the field's values on the bonom of layer z = hi' But we only have the 
recorded data u on the earth's surface z = O. To overcome this difficulty we 
apply a special method of transformation of the portion of the right-hand side 
in (8), pertaining to the bottom of the layer. so that it is expressed in terms of 
values at the surface . As is shown in the Appendix , we can express the field 

~I f	 values from level z = hi in terms of the values at the earth's surface by 
decomposing the Green's function into the multiplication of two functions that 
depend on z and t separately. and by using the Green's theorem (6) once again. 
The Appendix gives a detailed mathematical explanation of this transformation. 

Following this procedure, we have from equation (8) the following 
expressions for the analytic continuation of the wavefield into the first layer: 

il(t) = UO ~{C(~)/C(O)} cos[lI)</>(~)] + ul[~{C(t)C(Ol} I w] sin[w</>(tJ] , (9) 

I; 

where ¢(tl = f dgIC(S-) 

° 
In the same way. we can obtain the formula for the vertical derivative of 

the field inside the first layer. Similar expressions can be applied to the wave­
field continuation from the top of the a layer to a position within this layer: 

u(~) = u(h,,_I) ..[{C,,({l/C,,(h"'.l)} cos[ro¢a(t)] + 

u'(h" _l )(.j{Ca(~)C a(h"_I)} I w] sin[ill¢u<t1] 

"" , ,,,~,,,=-"' 5_. ~	 _"'-'-"• 

a.' 

001 
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f. 

where ¢a(t> = f dgIC(g) (11) 
h _a l 

Thus, using formulae (9) through (11) for continuation inside layers, 
along with proper boundary conditions on the interfaces, we can analytically 
continue the wavefield u from the surface of the earth through a variable 
background medium to any internal point of the earth's interior ( as long as 
C2(z) > 0 , see the Appendix). 

For analytic continuation of recorded seismic data, we apply to equations 
(9) and (l O) the inverse Fourier transform from the wavenumber-frequency 
domain (k;vky.co) to the space-time domain (x.y.t). 

BOUNDARY CONDmONS 

In practice, only one of the functions U
O or u1 is recorded on the earth's 

surface. Computation of the remaining field requires an additional geophysical 
assumption. 

Here, we consider two possible models for the boundary conditions. One 
is based on the so-called free surface conditions for the vertical component of 
displacement wherein the vertical derivative of the wavefield on the surface of 
the solid earth is equal to zero 

u'(x.y.ro) = 0 (12) 

Relation (9) is then 

u(t) = 11°";{C(t)/C(O)} cos[(V¢>(~») (13) 

Another model has been discussed by Kozloff and Baysal (1983). They 
suggest that the velocity Vfz) = V(O) = canst in some vicinity of the surface 
and that the recorded wavefield consists of upgoing waves only. For constant 
velocity, the general solution of equation (4) in the vicinity of z = 0 takes the 
form: 

u(kx,ky,~,w)· ;:; u ' (kx,ky,w)exp[iw{tIC(O)}] + 

u" (kx,fs"w)exp[ - im{tIC(O)}] (14) 

Because we consider only the upgoing wavefield at the surface, we delete the 
first term in this equation, giving 



288 

"­
ZHDANOV & TJAN 

u(kll,ky.t,co) == u - (kx,ky.m)exp[ - iw{~JC(O)}] (IS) 

Now we can calculate the vertical derivative of the wavefield at the earth's 
surface 

til (kx.ky,w) = [- iw{~/C(O)}] uO(kx.ky,w) (16) 

Substituting (16) into (9). we have for the first layer. 

t1(~) = t1°v'{{C(~)/C(O)} exp[-iw<l>(~)] (I 7) 

Note that the formula (17) presents exactly Gazdag's phase-shift method for 
depth extrapolation of a seismic wavefield in the wavenumber-frequency 
domain. The main difference in this formula and the general formula for 
analytic continuation (8) is that the latter takes into consideration both upgoing 
and downgoing waves and, therefore, accounts (Of" the multiple reflections that 
are produced by strong velocity contrasts. This is achieved by calculating the 
wavefield in equation (8) along the two surfaces: z = 0 and z = h, (but we 
should remember that. as a result of mathematical transformation, the 
integration over the plane z = hI is reduced to the integration over the surface 
of the earth z = 0). Conventional migration ignores the multiples. thus possibly 
resulting in the reconstruction of the false reflectors in the migration image (we 
will discuss this question in detail later). 

The initial step of analytic continuation in the model suggested by Kosloff 
and Baysal (I983) is the same as phase-shift depth extrapolation. As soon as we 
cross the first strong velocity boundary, however, we have to apply boundary 
conditions and then extrapolate the field with continuation formula (9). From the 
physical point of view, this means that we take into consideration the multiples 
generated at the first strong velocity boundary. and at subsequent ones, as well. 

Thus. we can combine conventional methods of depth extrapolation (if we 
wish to ignore the multiples in some depth interval) with analytic continuation 
through the structures with strong velocity contrasts. In this way, we aid the 
efficiency of analytic continuation. For media with continuously changing 
velocity V(z) (i.e., hi ~ 00), analytic continuation with boundary condition (16) 
is identical to Gazdag's depth extrapolation (17). 

MIGRATION OF TIME SECTIONS BY ANALYTIC CONTINUATION 

It is important to recognize that in the general case analytic continuation 
is an ill-posed problem; that is, errors in the initial data can increase 
significantly during the continuation process. This follows from the behavior of 
evanescent waves. which are given by the exponentially varying solutions of the 

-ilii 
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wave equation. The evanescent waves are defined by the condition 

k; + I<; > aiN 2(z) (18) 

The simplest way to overcome this difficulty is to eliminatethe evanescent
 
energy when implementing the analytic continuation algorithm (Kozloff and
 If; 

1,1Baysal, 1982). Correspondingly, in this paper we use the high-frequency 
iii

asymptotic approximation for the Green's function, which is valid only when , : 

" I:' 

Ii: 
C2(z) > 0 (l9) I;:11

or I,l: 
IIIk; + t<; < aiN?'(z) (20) \1 
~Ji 
IiThus, as with conventional depth extrapolation, by using the analytic ~ ! I 

continuation algorithm we eliminate the evanescent waves. The subsurface ' ·· .~
J'image then can be obtained based on a space-time structure analysis of the l

, / 

earth's total seismic wavefield. Consider the situation of a reflector on which
 
a reflected wave is produced at the moment of direct wave arrival. Interference
 
of the waves results in an increase (or decrease) of the amplitude of the total
 
field at the reflector points in comparison with that of the surrounding points.
 
This fact makes possible the use of analytic continuation for imaging of the
 
earth's interior. We can restore the wavefield at each point of the section at the
 
moment of direct-wave arrival. Then the locations of anomalous amplitudes of
 
the field will show the location of the reflectors and the diffraction objects. We
 
call this procedure migration by analytic continuation. This method of obtaining
 
a migrated section (subsurface image IlI(x,y,z» from time sections can be
 
expressed mathematically by the formula:
 

I.(x,y,z) = f
+"" 

<5[t - ~(x,y,z)]u(x,y,z,t)dt (21) 

where r(x,y,z) is the time of arrival of the direct wave at the point (x.y .z), 
utx.y.z.t) is the analytically continued seismic wavefield, and <Ht) is the Dirac
 
delta function.
 

Thus, applying the inverse Fourier transform to equation (10) and then
 
substituting the result into (21) we get
 

+~ +00 +OD 

I.(x,y,z) = O/8n- 3
) J f f [(i(ha- 1 V{Ca(~VCa(ha_l)} cos{wPa(t)} + 

u'(h - )v'"{Ca(S-)Ca(h )/w} sin{wtj>a(t)}]ei[kxX+~Y-flJr(x.y,z)Idkxdkydw , (22)a l a- 1 

which describes imaging based on the analytic continuation migration. 

I 
I ..... 

~ -~_. . --,-- ­
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ELIMINA1l0N OF MULTIPLE REFLECTIONS 

The problem of multiple elimination has been extensively studied in a 
number of publications (see, for example, Anstey and Newman, 1967; Kennett, 
1979; Verschuur et at. 1989; Wapenaar and Berkhout, 1985, 1986; Wapenaar 
et al., 1987; Verschuur, 1992) . Migration by analytic continuation also provides 
an opportunity to eliminate the multiples that are produced by the (perfectly) 
reflecting free surface. as well as by the strong velocity contrasts in the lower 

II 
parts of the section . This problem was discussed. for example, in Zhdanov and 
Matusevich (1984). Following Zhdanov et al. (I 988), consider the two-layered 
model shown in Fig. 1. A line source is located in the lower layer, 
Conventional migration based on the depth extrapolation of the upgoing field 
fails to recognize multiple reflections shown in the right-hand figure of Fig. 1 
for what they are. As a result they will give rise to fictitious reflecting 
boundaries in the migrated section. During migration, multiple waves produced 
in the top layer and presented in the observed field, 'pass' into the lower layer 
where, in reality, they cannot penetrate, In contrast, depth extrapolation of the 
total field based on analytic continuation potentially can restore the true process 
of wave propagation. Multiples are understood as such and hence. cannot 
generate fictitious reflecting boundaries as long as the analytic continuation is 
done accurately. 

Fig. 2 shows snapshots of the analytically continued wavefield at specified 
moments in time. Input consisted of the data shown at the right of Fig. 1. At the 
latest time shown (150 ms), M is a multiple reflection from within the shallow 
layer . As time decreases the spatial structure of the calculated wavefield is 
simplified substantially and is free of multiple waves for times of 50 ms and 
less. 

I' Distance (km) Distance (km) 
I 2 4 6 8 o 2 4 6 8 

J ' ,.. 

----.:.- .~. ­
~ - - " '7 -9' ,,-' " - ~.- ' " . .­t .? ~ ." 

t/ . 

. : 

.. r.:~-» ~~.--(~: -,,. 
., 

~~> #~-~ ~ - ''''::
" .. 1 

r 

- ~ 7;:;J·' · .. . ''-~ . 
....,.L....:-_~ 

[/{Z :=~: 
• .

Fig . 1. (Left) Point source in half-space benea th surface layer. (Right) Synthetic zero-offset data , 
including two multiple s . 
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t= 150ms t=70ms 

I'
 
1 1 1 11 .
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I I~ I I~ '::'1" 
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. .l 

t=50ms 

~I ~ 

Fig . 2 . Snapshots of the analytically continuated wavefie ld at different moments of time . 
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Fig. 3. (Le ft) Simple two-layer model with a free surface. (Right) Ze ro-offset data obtained from 
a simulated seismic reflection experi ment conta ining a primary and one multiple re flection. 

t= 140ms 

t "" lOOms 

1 234 

0.51 " " : . I 

E1.oi ' 1 

1.5 

2 .0.1 -;. · ··::;;; .· ; .'1 

II[~' .i . 



- -~ ---, -i 

po"" 

292 ZHDANOV & TJAN 

Fig. 3 shows a two-layer model with a free surface and zero-offset data. 
Performing conventional phase-shift migration and migration by analytic 
continuation resulted in Fig. 4. Conventional migration shows the false reflector 
caused by the presence of the multiple reflections. Migration by analytic 
continuation through the two-layer model gives the correct image of the section. 
As a final example. Figs. 5 and 6 show the modeling and migrated results of a 
three-layer model with a free surface and a syncline beneath the first layer. 
Conventional migration again shows the false reflector caused by the presence 
of the multiple reflections. Migration by analytic continuation gives the correct 
image of the section , because most energy has been migrated to the position of 
primary. This is caused by interference of the upgoing and downgoing 
wavefields (conventional phase-shift migration considers only the upgoing 
wavefield) . 

l ', 

Distance (km) Distance (km) 
o 123 

o L ~" '.. ,, . ' " . . 'i 

E 500fz . , .:', :',:: ' : ' d '::i: '. ,:,~ . "~~ .'~ ·.:1 I 
.J::. a. 1000%1000 
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500 t"" '" .,,'.0 , ' .. .. ... . . •c I 
; ... . - . --:, ~\~ /zL2·: ~ .~.~ : ': ~: ~ "(:' ',~ 

i ''' '.. ' ' .
. " , ..- . ,- '
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~ 2000~ 2000 

ANAl.YTIC CONTINUATION GAZOAG MIGRATION 

Fig . 4. (Left) Depth-migrated data using conventional Gazdag migration . (Right) Depth-migrated 
data using migration by analyt ic continuation. 
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Fig. 5 . (Left) Three-layer model with a free surface and a syncline below the first layer .
 
(Right) Zero-offset data obta ined from a simulated seismic reflection experi ment con taining the
 
primaries and one multiple refl ection.
 

Distance (km) Distance (km) 
1 2 3 4 o 1 2 3 o 

500 

I I 
.c:: .s:;;
0. 1000 a. 
Q) Q)
"0 "0 
"0 "0
2 2 
~ ~ 
0) Cl 

~ 2000 ~ 2000 

2500 

Fig . 6. (Left) Depth-migrated data us ing conventional Gazdag migration. (Right) Depth-migrated 
data using migration by analytic continuation. 

L O 

4 



2 p-----------­
294 ZHDANOV & TJAN 

CONCLUSIONS 

Migration by analytic continuation allows reconstruction of the total 
distribution of the seismic waves inside the earth. Implementation of this method 
is no more complicated than that of conventional migration (Stolt or Gazdag) in 
the frequency-wavenumber domain. The developed method can be applied to 
geological models with strong velocity contrasts. The method offers the 
opportunity to treat not only those multiple reflections related to the perfectly 
reflecting free surface, ~ but also those from strong velocity boundaries within the 
subsurface. However, actually treating such multiplies will involve 
complications not addressed in this paper. A layer-by-layer effort that will 
undoubtedly be highly sensitive to the interpretation of layer boundary depth 

I ~ will be required. The quality of the treatment of multiples by this migration 
I technique will, thus, be degraded by the errors in the estimation of the 

background velocity as well as the acoustic-impedance discontinuity and location 
of the interfaces, that produce the multiples. This problem is of fundamental 
importance to the method and requires further special treatment. 

Another important problem is related to the fact that the earth is never 
exactly horizontally layered. So, it is necessary to find the way to generalize the 
developed technique in order to account for a laterally varying background 
model. In principle, the solution of this problem can be found using the same 
technique of the Green's function decomposition; that we have used in this paper 
(see the Appendix). Actually, the problem can be solved even for elastic wave 
equations, using the asymptotic expression of the elastic Green's tensor for high 
frequency, obtained by Cohen (1988) for a completely inhomogeneous medium. 
However, the detailed analysis of this inhomogeneous model requires a lot of 
calculation and will be the subject of a separate paper. 

Therefore much work remains ahead. 
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APPENDlX 

I-D GREEN'S FUNCTION IN THE SOLUTION OF THE BOUNDARY 
VALUE PROBLEM 

In the simplest case, when V'(z) = V = const and, correspondingly y 

Ctz) == C = const, the Green's function can be expressed in the form 

g(z,t) = - (C/2im)exp{ ± (iwIC)(z - t)) (A-I) 

where we use the sign + for z > t and the sign - for z < t. In the general 
case of variables Vfz) and Ctz), it is difficult to construct the direct analytical 
solution for the Green's function. However, we can effectively use the 
high-frequency asymptotic solution (the so-called WKBJ approximation) which, 
in the case of the one-dimensional Green's function, can be written" following 
Bleistein (1984), as 
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g(Z,t) -- -..j{C<t;)C(z)}/2iw exp[±iw f
z 

{~JC(~)J], (A-2) 
t 

where as in equation (A-1) we use the sign + for z > 'and the sign - for 
z < r;. For constant velocity equation (A-2) reduces to (A-I). For the 
construction of the WKBJ approximation we have to neglect the evanescent 
waves so that according to (19) and (20) we suppose that 

C2(z) > 0 

Now, if we know the field's values on the bottom of layer z = hI' we can use 
equation (8) to solve the boundary value problem - recalculation of the field u 
inside the earth. But the field is not initially known at depth. To overcome this 
difficulty, let us represent the Green's function g(ht>t) in the form 

g(hI.r;) -- a(hI)b(r;) (A-3) 
w~re z 

atz) ;:; - {~C(z) I 2im}exp[im J{~/C(~)}]
 
o
 

s 
b(r;) = ~C(t'} exp] - ill) J {d;/C(~)}] (A-4) 

e 

Everywhere inside the first layer the function a(z) is the high-frequency 
asymptotic solution of the Helmholtz equation 

Latz) = 0 (A-5) 

Therefore, from Green's theorem (6), we have 

ii(h1)g'(hl,t> - g(hl,~)U'(hl) = ii(O)a'(O)b(t) - a(O)b(t)u'(O) . (A-6) 

Substituting (A-6) into (8) we have 

ii(t) = -ii(Q)[a'(O)b(t) - g'(O,t)] + ii'(O)[a(O)b(t) - g(O,s)] . (A-7) 

According to (A-2) and (A-4) 

g(O,t) -- - [~{C(t)C(O)} / 2iw] exp[im1'(t)] (A-8) 

a(O)b(t) "" - [~{C(s)C(O)} / 2ial} exp] -iw4J(t)] (A-9) 

where t 

1'«(;) f {d~/C(~)} (A-tO) 
o 

.c. __ .~ .....~._.-.._,.........
 _ 

lL'~ 
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The leading order terms for g'(O,t) and a'(O)b(t) are thus 

g'(o.t) -­ (I/2)..[{C(t)/C(O)} exp[iw<p(~')] 

a' (O)b(t) -­ - O/2)v'"{C<t)/C(O)} exp] -iwq>(t)] 

~7 

(A-II) 

(A-12) 

Substituting equations (A-8) , (A-9) and (A-ll), (A-12) into (A-7) and 
taking into consideration the boundary conditions (5) we obtain 

[i(t) = u°...[{C(t)/C(O)} cos[axj><t)] + a1[.J{C(t)C(O)} I m] sin[mq>(t)) . (A-13) 

Also in the high frequency approximation. differentiation of the last 
equation gives the vertical field derivative inside the first layer 

ii'(t) :: lior -wly'"{C(t)C(O)}]sin[w¢(t)] + u\f{C(O)/C(t)}coskv¢(t)] . (A-14) 

Thus, using the formulae (A-I3) and (A-14) along with proper boundary 
conditions on the interfaces we can analytically continue the wave field u from 
the surface of the earth through a variable background medium to any internal 
point of the earth's interior. 

• L ... 
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