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ABSTRACT 

One of the most challenging problems of electrical geo­
physical methods is the interpretation of time domain electro­
magnetic (TDEM) sounding data in the areas with the 
horizontally inhomogeneous geoelectrical structures. This 
problem is of utmost importance in mining exploration and 
environmental study, in particular, in the case of sounding 
conducted in the transmitter offset or slingram mode. The 
conventional 10 EM inversion technique cannot solve this 
problem, because the observed data are strongly distorted by 
horizontal conductivity inhomogeneities. The multidimension­
al EM inversion techniques existing today can handle only 
simple models, require repetitive forward modeling solutions, 
and therefore are very time consuming. 

We developed a new approach to the interpretation of TDEM 
data over inhomogeneous structures based on downward 
extrapolation of the observed electromagnetic field in reverse 
time (the time domain electromagnetic migration). Numerical 
solution of this problem is provided by an electromagnetic 
analog of the Rayleigh integral. TDEM migration transforms 
EM data, observed on the surface of the Earth, into immed­
iate geoelectrical images of geological cross sections. This 
transformation is very fast (requiring only a few seconds of 
CPU time on PC) and stable to the random noise in the data. 

The numerical results of rapid inversion based on the time 
domain electromagnetic migration illustrate the property of 
migration described above. This method has also been 
applied to waste site characterisation. We have analysed the 
data obtained as a result of high density TDEM profiling 
survey with the Geonics EM47 along the set of profiles, 
intersecting Cold Test Pit waste site within the Radioactive 
Waste Management Complex (RWMC) at the Idaho National 
Engineering Laboratory (INEL). Time domain electromag­
netic migration and resistivity imaging made it possible to 
outline the conductive sections of the pit filled with the waste. 

INTRODUCTION 

This paper focuses on improving the analysis and imaging of 
time domain electromagnetic (TDEM) data. In the past these 
data were processed using a simplified technique based on 
the 10 apparent resistivity calculation. This technique works 
well enough for horizontally homogeneous structures. There 

are several publications dedicated to the development of 
simple and fast inversion techniques for the processing of 
transient EM data over inhomogeneous structures (Eaton 
and Hohmann, 1989), (Macnae and Lamontagne, 1987), 
(Barnett, 1984). The majority of these papers have been 
based on equating the transient response, measured at the 
surface of the Earth, to the EM field of current filament 
images of the source. This approach originated in the pion­
eering work of Nabighian (1979) who described the behav­
iour of transient currents diffusing into the Earth as a system 
of "smoke rings" blown by the transmitting loop into the Earth. 

In this paper we develop and test a different approach to 
processing transient data, based on downward extrapolation 
in reverse time. We call this method time domain electro­
magnetic migration (Zhdanov et al. 1994), (Zhdanov and 
Booker, 1993). It results from transforming the observed data 
to a geologically meaningful image of the geoelectrical cross 
section. 

The basic principles of EM migration have been formulated in 
(Zhdanov, 1988), (Zhdanov et ai, 1988), (Zhdanov and Keller, 
1994), and Zhdanov et al. 1994). EM migration has important 
features in common with seismic migration (Zhdanov et ai, 
1988), (Claerbout, 1985), but differs in that for geoelectric 
problems, EM migration is done on the basis of a 
diffusion equation rather than a wave equation. 

Let us consider the case in which we have observed an EM 
field produced by a controlled source over an array of recei­
vers. The array of receivers will be situated on the surface of 
the Earth for this discussion. Having recorded time-varying 
EM field components over the array of receivers, we then 
conceptually replace the receivers with an array of sources, 
each driven with a moment which replicates the actually 
recorded time-varying field components. The conceptual 
sources are driven in reverse time to produce a field that we 
call the migrated EM field. Like in the seismic case, this field 
can "illuminate" the internal structure of the Earth and give us 
a "geoelectric image" of the Earth's interior. 

Time domain EM migration (TDEMM) is based on the 
downward extrapolation of the observed EM field in reverse 
time. Numerical solution of this problem is provided by an EM 
analog of the Rayleigh integral, that, in exact analogy with a 
seismic problem, produces upgoing fields (Le. fields propa­
gating in the direction of the observation surface). These 
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upgoing fields are EM analogues of the upgoing Claerbout 
seismic waves and, consequently, can feature some of the 
properties of the latter. For example, for imaging the geo­
electrical cross-section we can use the "EM radiating­
inhomogeneities" concept, analogous to the exploding- re­
flectors concept, widely used in seismic migration. According 
to this concept the position of secondary sources of the EM 
field (geoelectric inhomogeneities - boundaries, anomalous 
conductive or isolating zones) can be determined according 
to the position of the extreme point of the migrated field. 

We also developed a technique for transforming the EM mig­
ration fields and their different components into resistivity 
images of the vertical cross-section. 

In this paper we present the theoretical foundations of EM 
migration and resistivity imaging and illustrate them by the 
results of numerical modeling and the interpretation of the 
time domain EM (TDEM) data set acquired at the Cold Test 
Pit site within the Radioactive Waste Management Complex 
(RWMC) at the Idaho National Engineering Laboratory 
(INEL). 

TIME DOMAIN ELECTROMAGNETIC
 
MIGRATION
 

Consider a model in which the horizontal plane, z=o sepa­
rates the conductive Earth (z » 0) from the insulating 
atmosphere (z-: 0). The conductivity in the Earth, a(i\ is 
represented as the superposition of a constant normal con­
ductivity, (In=const, and an anomalous conductivity function, 
flair): 

(1) O"(T) = a ; + ~O"(T) 

Everywhere in the Earth outside the anomalous region, the 
magnetic Aand electric E fields satisfy the diffusion equation: 

~ ali ~ aft (2)~H - /lOO"n7jt = 0, ~E - /lOO"nat = 0 

where flo is the magnetic permeability of free space. 

For this model, we can discuss the problem of migration of 
any scalar component, P(,:,O, of an observed EM field. 

We define the migrated field, P", obtained from a specific 
scalar component, P, of the EM field observed at the Earth's 
surface as being the field that satisfies the following 
conditions: 

pOi r. l' - TL=o for 0 S T S T,
pm(i, T) 1,=0= (3) 

o for T < 0, T > T1 
Dpm(r'T)

~pm(i, T) - /lo(]"-----;h = 0 for z > 0 (4) 

prn(i, T) -t 0 (5) 

for I r I~oo z» 0, where t =T-t is a reverse time, T is an 
interval of EM signal recording. 

Note that if we exchange reverse time, r, for ordinary time, t, 
in eq. (4), we have an equation which is the adjoint to the 
diffusion equation: 

8pm(r,t) _ 0 
~pm('r, t) + /l00" -at- - (6) 

If the ordinary diffusion equation describes field propagation 
from the sources to receivers, then eq. (6) describes the 
inverse process of propagation from receivers to sources. 

The problem of defining the migrated field reduces to the 
downward extrapolation of the field P from the Earth's 
surface into the lower halfspace in the reverse time, r, This 
procedure is called EM field migration. 

It can be seen from these considerations, that the calculation 
of a migrated field is reduced to a boundary value problem 
described by eqs. (3) through (5). This boundary value prob­
lem can be solved, using Green's theorem and Green's 
function for the diffusion equation, G: 

2
 
G(r',t'l r,t) = (/l00"r/ e-/"{)olr'-rl'/4(t'-t) H(t' _ t)
 (7)87r3/ 2 ( i' - t )3/2 

Here H(t'-O is a Heaviside excitation function (step function): 

H(t _ t') = J0; t' - t < 0 

11; t'- t > 0 

Green's formula gives the following representation for the 
migrated field: 

00 

pm(F', T _ r') = -2 rT J1 pO(i, t) oCW, t' 1 r, T) dxdydt (8)lt' oz-00 

where G is the adjoint to the Green's function G for the 
diffusion equation (Morse and Feshbach, 1953), (Zhdanov et 
ai, 1988). 

It is noteworthy that eq. (8) is the EM counterpart to the 
Rayleigh integral (Claerbout, 1985). Just as in the seismic 
application, eq. (8) defines in space and normal time a field 
propagating towards the surface of observation (that is, 
upgoing waves), as can be seen from the fact that eq. (8) 
contains the function G adjoint to the Green's function G of 
the diffusion equation. Hence, just as in the seismic case, a 
migration transformation of EM field yields the upgoing field. 

Let us consider the special case of the 20 model of the EM 
field (for example the E polarised mode) and a profile 
observation. We assume that the axis X coincides with the 
profile, and axis Y is orthogonal to the profile of observations. 
In this case the expressions for the migration of the different 
components of the magnetic field, H:,z (x,O,O, observed 
along the profile X on the surface of the Earth, will have the 
form: 
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Z' 
m ' I " I flOO"n iT 1 a 1H	 n; (x,O,t)---2 X 
x zlx,z,1-t)=-­, 411" t' X ,z (t - t') 

(9) 

x exp {- 4 ~o:ntl) [(x' - X)2 + (z' - Z)2] } dxdt 

Note, that typical EM equipment uses receiver loops for 
measuring the components of magnetic field. Therefore, the 
actual data contains the records of EM induction in the loops 
which are proportional to the time derivatives of the magnetic 
field variations ~ H:,z (x,O,~. Thus we have to modify (9): 

Z'e m (' 'T ') flOO"n iT1 0 a ( ) 1-aHx z x,z, - t = -- ~Hxz x,O,t -(--) xt' , 411" t' x vt' t - t' 

X exp {- 4 ft°:ntl) [(x' - X)2 + (z' - Z)2]} dxdt 
(10) 

The last expression suggests the possibility in a 20 case of 
calculating the migrated electric field from the observed 
vertical component of the magnetic field. 

From Maxwell'ssecond equationfor the migrated field we have: 

oEm oHm 
z­~JL = -flo-_ox OT 

and 

Em(- I r ')	 1;: 0 J{m( I T t')d• Y	 x, z, - t = Ilo ~ z x,I z, - X I 

XL dt. (11) 

where (~z' ) is a current point of electrical field calculations, 
and XL is a horizontal coordinate of the left end point on the 
profile. 

Thus, from the observed vertical component of magnetic field 
we can calculate the migrated magnetic field at any level z, 
and then determine the migrated electric field E; at the same 
level. 

IMAGING OF GEOELECTRIC
 
STRUCTURES BY TIME DOMAIN
 
ELECTROMAGNETIC MIGRATION
 

For imaging the geoelectrical cross-section we can use the 
"EM radiating inhomogeneities" concept, analogous to the 
exploding-reflectors concept widely used in seismic migra­
tion. To illustrate this concept, we represent the observed EM 
field E, A as being the sum of a primary field, Ep, Ap, and a 
secondary field, £5, As: 

if = EP + ES
, if = j{P + It: (12) 

where the primary field is defined as being that field which is 
generated by a specific source in the Earth with the normal 
distribution of the electrical conductivity O'n(r) (e.g., in a homo­
geneous half-space) and the secondary field is due to the 
anomalous conductivity distribution. In another words we can 
treat the secondary field as the field generated by the ex­
trinsic currents concentrated in inhomogeneous domains and 
layers. 

It is noteworthy that a transfer in the integral formula (8) to the 
adjoint Green's function for the diffusion equation means that, 
as in the wave case, a field determined in the space by these 
integrals represents an assembly of EM "waves" moving in 
the direction to the observation surface. However, in view of 
the specifics of the diffusion equation, this field does not 
feature such simple and effective geometrical properties as 
the Claerbout upgoing wave, ensuring a direct reconstruction 
of reflection boundaries by the location of fronts of a migration 
wave, at an instant t'=O. We will see nevertheless that the 
migrated EM field also can be used for the search for local 
inhomogeneities in a conducting medium, and for deter­
mination of geoelectrical boundaries. 

To simplify our discussion we assume that the secondary field 
is generated by the pulse currents switching on at zero time. 
This field is propagating in different directions, and is 
observed on the surface of the Earth. The idea of EM migra­
tion consists of reverse downward extrapolation of the 
observed field in reverse time. Notice, that in the process of 
the reverse time extrapolation the time is decreasing. When 
the time reaches zero, the extrapolated field is at the source 
location. Thus, in the case of the secondary field this down­
ward extrapolation in reverse time will result in focusing of the 
migrated field at zero time at it's source. 

Note that in a real situation the behaviour of the sources of 
the secondary field is much more complicated than the pulse 
source. Also these sources "switch on" not at zero time, but 
after some delay related to the time of propagation of the 
primary field from the Earth's surface to the geoelectrical 
boundaries of inhomogeneties. For this reason we have two 
options: 1) to reconstruct the migration field in the lower 
halfspace not in zero time, but in the retarded times for differ­
ent depth, or 2) to use for the downward extrapolation not the 
actual background conductivity, but instead some effective 
the migration conductivity Om proportional in the general case 
to the normal conductivity O'm=yO"n. where r is the so called 
migration constant. Detailed analysis of geoelectrical models 
shows that in the second case we can select the migration 
conductivity o; in such a way that the extreme point of the 
migration field in zero time coincides with the geoelectrical 
boundaries (see Appendix B). 

It was shown in (Zhdanov and Booker, 1993) and (Zhdanov 
and Keller, 1994) that in the frequency domain secondary 
(upgoing) and primary (downgoing) fields everywhere inside 
the conducting layer are characterised by different ampli­
tudes and phases. On the geoelectric boundaries their 
phases coincide (or shifted by It), while the amplitudes of the 
upgoing wave is proportional to the amplitude of the 
downgoing wave and the proportionality factor is equal to the 
reflectivity coefficient {3. When passing into the time domain 
the above regularities manifest themselves in the fact that the 
shapes of a time pulse of upgoing and downgoing waves 
everywhere inside the conducting layer differ and are 
coincident (simply mutually proportional to the coefficient f3) 
only at the geoelectric boundary (see Appendix A). 

We can introduce a time domain apparent reflectivity 
function, {3ta(/,~, defined as the ratio of secondary EXl,O and 
primary E:(i',~ fields, as follows: 



189 RESISTIVITY IMAGING BY TIME DOMAIN ELECTROMAGNETIC MIGRATION (TDEMM) 

(13)f3ta(r,l) = E;(r,l)/E:(r,t) 

The determination of this function, obviously, relies upon the 
procedure used for downward extrapolation of the upgoing 
and downgoing fields in the lower half space. However, it can 
be generalised to the results of time domain EM migration. 

In Appendix Awe show that the migration apparent reflectivity 
function at zero time f3~ (r) can be determined also from the 
values of the migrated secondary field, calculated in zero 
time and normalised by some function oCi): 

f3;;(Tj = E;:S(r,0)/D(i) (14) 

where O(i) is the convolution of the migrated primary field at 
the same depth and the analytical function <p ( z,t) 

r=D(i') = D(x,z) = 10 H;"P(x,z,l)'P(z,t)dt (15) 

where 

'P(z, t) = a~exp [-27r2 (;r] (16) 

In the last equation: 

7 2 5 2 (17)2 / 7r_. T = 27r ~2t/"(7a = __/ 
JJ.C1 n ' r: n 

The function ~: is equal to the actual reflectivity coefficient f3 
exactly at the position of the boundary: 

(18)f3;;(i') = fJ 

This result is based on the fact that the migrated secondary 
(upgoing) field has local extreme point exactly at the location 
of geoelectric boundaries. This extreme point is proportional 
to the reflectivity of the boundary and to the magnitude of the 
downgoing (primary) field at the same point. 

The reflectivity coefficient is connected with the conductivity 
contrast ~() at the geoelectrical boundary by a simple formula 
(see eq. (19) of the Appendix A): 

r:D(i) = D(x, z) = 1 H;"P(x, z, l)'P(z, I) d! 
0 

From this we can determine the resistivity p=1/(Jn+~0') below 
the geoelectrical boundary (within the anomalous domain or 
layer): 

(I = (19)[1 + p] 2 
1 - Ji (lTi 

slow horizontal variation of conductivity (see Appendix A). 
However, following the traditional approach to electrical 
sounding, we can use this expression for an arbitrary model. 
In this case we will call the corresponding value of the 
resistivity, computed by eq. (19), the migration apparent 
resistivity. 

So, the migration apparent resistivity o; can be calculated 
using the formula: 

pm(i') = {[1 + f3;;(i')]}2 (20)[1- f3;>(Tj] Pn (i') 

We emphasise that the migration apparent resistivity pm is a 
function of depth. Thus we obtain the depth geoelectrical 
cross section. 

Note, that the migrated secondary field in the expression (14) 
is calculated at zero time, that corresponds to secondary field 
propagation in the vicinity of the source location. We can 
compare this situation with the time domain sounding, when 
the depth of the field penetration inside the Earth is 
proportional to the square root of the time after the current 
pulse in the transmitter: for early times the field is concen­
trated in near surface layers, for later times the field pene­
trates deeper in the Earth. In the case of the migrated field at 
early times this field is in the vicinity of its sources - geo­
electrical boundaries. At later times this field propagates up­
ward to the Earth's surface. Thus at early time the migrated 
field behaviour is determined only by the properties of the 
medium near the boundary between two layers. Therefore we 
can successfully use eq. (19) for determining the conductivity 
contrast between these layers. 

In the case of multilayered cross sections we can start from 
the first layer and determine the resistivity of the second 
layer, then find the conductivity contrast between second and 
third layer and determine the resistivity of the third layer, etc. 
This layer by layer process opens the way for direct imaging 
of the complex geoelectrical structures. In a model with a 
complex multilayered structure we can take as P; the 
apparent resistivity of the Earth pA ~ obtained by the 
corresponding formulae of the theory of EM soundings and 
averaged along the profile of observations. The time t of the 
apparent resistivity calculation can be connected with the 
depth of downward extrapolation d by the following approxi­
mate expression for the skin-depth (Zhdanov and Keller, 
1994): 

d;::::; V2iPa(t)//10 (21) 

In the framework of this approach an inhomogeneous profile 
of the Earth's resistivity is substituted by some homo­
geneous model which is used as background (normal) 
resistivity for the migration (for each depth d - by its own). 
We call this normal resistivity profile the model of the mean 
resistivity. 

where p; is the background (normal) resistivity. The last This approach is similar to one used in seismic prospecting 
expression gives the exact value of the resistivity of the when the real velocity distribution is substituted by the model 
second layer in the framework of the 2-layered model with the of the mean velocity (Claerbout, 1985). Also, as in seismic 
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Fig. 1. Geoelectrical cross section of the test model, containing a highly 
conducting inclusion (on the right) and a poorly conducting inclusion (on 
the left). The EM field in the model was generated by an infinitely long 
cable. The observed field was dH,Idt.The theoretical survey was con­
ducted in the transmitter offset mode with the transmitter - receiver 
separation (offset) equal to 4m. 

prospecting we can use the recursive algorithms of migration 
which are based on successive downward extrapolation from 
level to level with different background resistivity. 

NUMERICAL MODELING 

The resistivity imaging technique has been tested on the 
results of numerical modeling with the use of a 20 finite­
difference time domain code (Oristaglio and Hohmann, 
1984). Figure 1 shows the geoelectrical cross section of the 
model, containing a highly conducting inclusion (on the right) 
and a poorly conducting inclusion (on the left). The EM field 
in the model was generated by an infinitely long cable. The 
observed field was dHjdt. The theoretical survey was con­
ducted in the transmitter offset mode with the transmitter ­
receiver separation (offset) equal to 4 m. The results ofTDEM 
migration of the secondary field dHjdt were than recalculated 
in the migration electric field. This field has been used to 
compute the migration apparent resistivity in the time domain 
(Figure 2, top panel). 

To examine the effect of noise, we have added 20\% white 
noise to the secondary field dHjdt computed on the Earth's 
suriace. The results of the migration of this noisy data illus­
trate the stability of the migration. Migration apparent resis­
tivity, calculated from the noisy data (Figure 2, bottom panel), 
is very close to the resistivity image presented on the Figure 
2, top panel. 
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Fig. 2. The migration apparent res istivity cross section in time domain, 
computed from the migration electric field for the model in Figure 1 (top 
panel) . The same results for data with 20% white noise added to the 
secondary field dH)dt (bottom panel) . 

CASE HISTORY: INTERPRETATION OF
 
RWMC TDEM DATA
 

This method has been applied for waste site characterisation, 
using TDEM data. The main task was the interpretation of the 
time domain electromagnetic (TDEM) data set acquired at 
the Cold Test Pit site within the Radioactive Waste Manage­
ment Complex (RWMC) at the Idaho National Engineering 
Laboratory (INEL) (Mac Lean, 1993). The Cold Test Pit was 
specially designed to test the different geophysical methods. 
So, we knew a priori the internal structure of the pit and could 
check the results of migration. A schematic plan of the Pit is 
presented at the Figure 3. We have processed by TDEMM 
Method data obtained as a result of high density TDEM 
profiling survey using a Geonics EM47 instrument along a set 
of profiles, crossing INEL RWMC Cold Test Pit from the West 
to the East. The survey was conducted in the transmitter 
offset or slingram mode as described in (Mac Lean, 1993). 
The transmitter - receiver separation (distance between the 
center of the transmitter loop and receiver loop) was equal to 
12.5 m. The geoelectrical structure of the pit is three 
dimensional, making it impossible to use the conventional 
methods to interpret these data. 

We have processed 13 profiles, numbered from the North to 
the South (see Figure 3): 15N, OS, 5S, 10S, 15S, 20S, 25S, 
30S, 35S, 40S, 45S, 50S, 60S. We have used as an effective 
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Fig. 3. The schematic plan of the RWMC Cold Test Pit. 1 • nonconductive 
zones (Earth berm); 2 - conductive zones (random dump drums and 
boxes); 3 - conductive zone (stacked drums, contains 700 drums). 

background resistivity Pn=1 00 Otun- m. As a result of proces­
sing of TDEM data using the migration method we have 
obtained a set of vertical cross sections of the Cold Test Pit. 
The typical cross section of the migration apparent resistivity 
along the profile 35S is presented on the Figure 4. These 
data have been interpolated in horizontal planes to plot the 
horizontal variations of the resistivity at different depths, 
specifically, 2, 3, 4, 5, 6, 7, 8 and 9 m. We present here, as 
an example, the resistivity maps at depths 3 and 5 m. (Figure 
5). The solid lines on these maps show the known boundary 
of the pit. Consider, for example, the migration resistivity map 
at a depth 5 m (Figure 5, bottom panel). We observe on this 
map several conductivity anomalies that correlate very well 
with the pit sections filled with the drums and boxes full of 
waste. Note, that elongation of the anomalous conductive 
zone in the northern section of the pit outside the formal 
boundary of the pit can be explained by the interpolation 
effects between profiles 15N and as. In fact, there is no 
profile between profiles 15N and as. So, conductive structure 
from profile as could be formally extrapolated outside the pit 
by the interpolation code. However, comparing the maps on 
Figure 5 with known Pit scheme (Figure 3) we can see that in 
general the internal structure of the pit is reflected reasonably 
well on these maps. 

We have also constructed 3D resistivity image on the basis of 
resistivity maps at depth 2, 4, 6, and 8 m ( Figure 6). One can 
see on these maps that conductive structures appear at 
depth bellow 2 m and disappear at depth about 8 m. The 
maximum of the conductive structures on the resistivity 
images lies at depth about 5 m. This picture provides a reas­
onable volume image of the pit that corresponds well to the 
known internal structure of the pit (Mac Lean, 1993). Thus the 
results of the time domain EM migration and resistivity 
imaging demonstrate that this method can be used to 
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Fig.4. TIme domain migration resistivity cross sections interpolated in 
the horizontal planes to produce horizontal maps of the resistivity 
distribution at depth 3 m (top panel) and 5 m (bottom panel) . Solid line on 
these maps shows the known boundary of the RWMC Cold Test Pit. 

determine the structure of anomalous resistivity distribution in 
INEL RWMC Cold Test Pit. 

CONCLUSION 

TDEM migration and resistivity imaging made it possible to 
interpret TDEM sounding data in the areas with horizontally 
inhomogeneous geological structures. This problem cannot 
be solved using conventional 1D inversion techniques. 

TDEMM is a tool to locate anomalous geoelectric zones and 
determine the resistivities. The resistivity images can be 
obtained only on the basis of the vertical component of 
magnetic field Hzobservations in the transmitter offset or 
slingram mode. 

The TDEMM is a stable and fast method of geoelectrical 
imaging. It doesn't require costly forward modeling as do 
conventional inversion techniques. However, the main limita­
tions of migration are due to the necessity for spatially dense 
measurements of EM responses along the profile or over 
surface of the Earth. 
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APPENDIX A: MIGRATION APPARENT 
RESISTIVITY 

Consider a 2D model of the EM field (E-polarisation). It is 
important to notice that in the model with slow horizontal 
variation of the conductivity and of the field, we can represent 
the different compon ents of the EM field in the frequency 
domain approx imately by the following formulae (Zhdanov et 
ai, 1994) 

1I" , (x , z,w ) = Q~., ( 3O , z,w!,, ' " + Q~ . , ( 3O . z .~')fc -"" ' 

(22) 

1;, (30 , " , w) = Q~ ( 3O , ",w)e"" ' + Q; (.r. ".w),,-··· ' 
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where O;:z are the coefficients relatively slow depending 

on the depth, EJrAx, z,w) = Q~,z(x, z,w)e 
i 
! is a wave number and 

(In(X,Z) is a background conductivity. 

Here the terms associated with the downgoing exponential 
function correspond to the primary field and the terms 
associated with the upgoing exponential function correspond 
to the secondary field: 

= Q~)x, z,w)ciknz, 1I~,z(x, z,w) = Q~)x, z,w)e­1I:. z(,r, z,w) iknZ 
(23) 

E~(x,z,,,,,:) = Q~(x,z,w)eiknZ, E;(x,z,w) = Q~(l',z,w)e-iknZ 

Let us consider, for the sake of simplicity, the two-layered 
model with the slow variation of conductivity aAx,z) and ()n+1 

(x,z) within each layer and sharp conductivity contrast on the 
quasi horizontal boundary S between two layers. 

We will analyse the behaviour of the horizontal component of 
the electric field at the quasi-horizontal boundary {S : (x,d(x))} 
between two layers. In the 1st layer we have: 

Ey(x,d,w) = Q~(x,d,w)eiknd + Q~(x,d,w)r-iknd 
(24) 

E~(:r.d ....,) = IknQ~(x,d,w)elknd _lknQ~(l·,d,w)e-iknd 

while in the second layer: 

f';y(l'.d,w) = Qy(x,d,w)eikn+ld (25) 

E~(x,d,w) = Ik"+IQz(x,d.u.))r·kn+,d 

where "prime" means the vertical derivative of the electric 
field. 

On the boundary S in the case of E-polarization both 
components Eyand E; are continuous. Therefore, the corres­
ponding right-hand sides of (24) and (25) are equal. Solving 
this system of equation, we find: 

Q" (26)
~ (J 2 knd 
Q~ = I' (x, d) r • 

where 

;;;n (.r.d) - /an+l (I.d) (27) 
3(r.d) = ~(Td) + \/(In+1 (.r.d)Van' . 

is the so-called reflectivity coefficient. Let us calculate the 
frequency domain apparent reflectivity function as the ratio of 
the secondary and primary fields: 

~"(.r.z.w) Q~(.r.~.",,) -M,,: (28) 
·:t,(.l. z.:..-') = ""trl. :::,L,:) = Q~(.r. ::-.:;f 

According to (26) at the boundary: 

,(.,\f.rI.u.;) ~ .J (.r.rI) (29) 

So, at the geoelectrical boundary apparent reflectivity func­
tion is equal exactly to the true reflectivity coefficient! 

Now let us find the way to calculate the apparent reflectivity 
function from the migrated fields. According to the definition 
(Zhdanov et al. 1994), the migrated secondary and primary 

ms mp 

fields (Ey and Ey ) can be expressed approximately as : 

E~lS(X,Z,W) = q~(:r, , E;;'P(l',Z,W) = Q~(x,z.w)e-k",= (30) 

km (x, Z, w) = jiW/lo(Jm (x, z) is a migration wavewhere 
number. 

ms mp 

According to eq. (28), (29) and (30) the fields Ey and Ey are 
proportional at the boundary S: 

E ms( d,) - (3 ( d) Emp( d .) 2iknd (31) y z , ,W -- x, y x, ,w e 

Equation (31) can be used for calculation of the time domain 
migration apparent reflectivity function f3: (x,z,t) at zero time: 

am ( ) ETnS(, a X,Z = (3';;(x,z,t = 0) = y x,z,t = 0)
D(x,z) (32) 

E;;"(x,z,w) 

Here f3: (x,z,f) is obtained from the ratio E;;'P(:r,z,w) by 
inverse Fourier transform from frequency domain to time 
domain, and D(x,z) and q> (z,t) are determined by equations 
(15) and (16). 

The function f3:'(x,z) is equal to the actual reflectivity coeffi­
cient f3 exactly at the position of the boundary: 

(';:'(x, til = (3(I. d) (33) 

APPENDIX B: EXTREME POINT 
PROPERTIES OF THE MIGRATION FIELD. 

Next simplification of the model is based on the assumption 

that the coefficient O;(x,z,w) in the equation (23) doesn't 

depend on wand very slowly changes with z: 

Q~(r,.::,w) ~ Qu(.r) (34) 

These conditions for example take place in the case of 
constant conductivity of the first layer and if the primary field 
can be approximated by the plane wave with a 8-pulse 
waveform on the surface of the Earth. Under these conditions 
we can write approximately: 

f;~(.r.::-, ...') = (2o(IIC""o (35) 
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Therefore from (26) and (23) we have: 

E: (x, z,w) = Qo (x) eiknz (36) 

According to definition the migrated secondary field in fre­
quency domain is equal to 

E;;lS(X,Z,W) = Qo(x) 13 (x,d) e2iknde-kmz (37) 

If we apply the inverse Fourier transform from frequency 
domain to time domain, we find the migrated secondary field 
in time domain: 

1E;;lS(X,z,t) = -2Qu(x)j3(x,d) J+oo e2iknde-kmze-iwtdw (38)7r -00 

The last integral can be reduced to the tabulated one, if t=O. 
Omitting long calculations, we write: 

E;;lS(X,z,t = 0) = 8Qo(x)j3(x,d)d,J/2 z 

7r/l,(JJ (4d2 + fZ2)" (39) 

where Y= am ks n is the migration constant. 

Let us find now the depth of the extreme point of the migra­
tion field: 

e 8Qo(x) 1312 (x, d) d,:/2 Z (4J2 _ 3fZ2)fuE;;'S(x,z,t = 0) = (40) 
7r/l,(JJ (4d2 + fZ2) 

One can see that the vertical derivative of the migrated field 
is equal to zero exactly at the depth of the boundary z =d, if 

migration constant Y= 4/3. The value of the migration field in 

the extreme point is equal to: 

E;;'S(x,d, t = 0) = _ V3Qo(x)J(~,d) (41 ) 

From the last formula we can find [3 (x,d): 

47r/llJmJ2 Ems(x. d, t = 0)j3(x,d) = - V3Qo(x) y	 (42) 

and calculate the resistivity of the second layer: 

Pn+J(x) = [1+j3(x,d)]2 (43)1 - 13 (x,d) pn 

Expression (43) gives the exact solution for the problem of 

the determination of Pn+1 (x) only for this simple model under 

consideration. However, following traditional approach to EM 

sounding, we can introduce migration apparent resistivity, 

which is determined by the same formula: 

Pm(x,z) =	 Ii +P::'(X,Z)]2 (44)II - 13: (x, z) Pn 

In the last expression [3: (x.z) is given by eq. (32). 

Note in the conclusion that expression (42) can be obtained 

directly from equations (32) and (15). 


