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Quasi-linear approximation in 3-D 
electromagnetic modeling 

Michael S. Zhdanov* and Sheng Fang* 

ABSTRACT 

The Born approximation in electromagnetic (EM) 
numerical modeling has limited application for solving 
3-D electromagnetic induction problems, because in 
structures with high conductivity contrasts and at high 
frequencies, this approximation is inaccurate. In this 
paper, we develop a new and relatively simple approxi
mation for the EM field called a quasi-linearapproxima
tion, which is based on the evaluation of the anomalous 
field E a by a linear transformation of the normal 
(primary) field: E a = ~En, where ~ is called the 
electrical reflectivity tensor. The reflectivity tensor inside 
inhomogeneities can be approximated by a slowly vary
ing function that can be determined numerically by a 
simple optimization technique. The new approximation 
gives an accurate estimate of the EM response for 
conductivity contrasts of more than one hundred to one, 
and for a wide range of frequencies. It also opens the 
possibility for fast 3-D electromagnetic inversion. 

INTRODUCTION 

One important approach to (EM) electromagnetic numeri
cal modeling is based on linearization of the integral equations 
for scattered EM fields. This approach is usually called the 
Born approximation , 

The Born approximation was developed originally to de
scribe quantum mechanical scattering (Born, 1933). Since the 
basic idea behind this method has broad applications, it is 
possible to apply the Born approximation to different geo
physical problems as well. For example, it has been used quite 
extensively and successfully in seismic geophysics (Bleistein 
and Gray, 1985), (Tarantola, 1987), 

Let us formulate the general EM induction problem so that 
the unknown material parameter ("anomalous" parameter) 
can be treated as a perturbation from a known background (or 
"normal") parameter distribution. The solution of the indue

tion problem in this case contains two parts: 1) a linear part, 
which can be interpreted as a direct scattering of the source 
field by the inhomogeneity without taking into account cou
pling between scattering currents, and 2) a nonlinear part that 
is composed of the combined effects of the unknown pertur
bation and the unknown scattered field at the inhomogeneous 
structure. The Born approximation is based on the assumption 
that this last part, which represents the actual nonlinearity of 
the physical problem, is negligible as compared to the linear 
part. As a result, a linear expression is obtained for the solution 
of the EM induction problem. This makes the method espe
cially attractive for geophysical applications. 

The perturbation methods have found numerous applica
tions in 2-D electromagnetic modeling problems (Berdichevsky 
and Zhdanov, 1984). The Born approximation has been used 
widely in inversion schemes because it provides a linearized 
approach to the solution of inversion problems (Oristaglio, 
1989; Habashy et al., 1986). However, the Born approximation 
works reasonably well only for small conductivity contrasts, 
relatively small inhomogeneities, and low frequencies w (Born 
and Wolf, 1980; Habashy et al., 1993). It has limited applica
tion for solving general 3-D electromagnetic induction prob
lems because the Born approximation breaks down when the 
anomalous induction number of the anomalous region, that is 
w 1 fJ- 1 Au 1L 2 (where L is the upper bound of the distance 
of any two points belonging to the region D with anomalous 
conductivity Au, and fJ- is the magnetic permeability) gets too 
large. It also has problems for high contrast bodies even at de. 

A novel approximation to numerically simulate the electro
magnetic response of dipole or line sources in the presence of 
inhomogeneous structure has been introduced in Habashy et 
al. (1993) and applied to the inversion in Torres-Verdin and 
Habashy (1994). The authors of these papers present a new 
approximation for the scattered field inside inhomogeneous 
structure. This new approximation for the internal field is given 
by the projection of the background or normal electric field 
(i.e., the electric field excited in the absence of conductivity 
inhomogeneity) onto a scattering tensor. It is shown that the 
scattering tensor does not depend on the illuminating sources 
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and is a nonlinear functional of the anomalous conductivity 
distribution. In addition, papers (Habashy et al., 1993; Torres
Verdin and Habashy, 1994) demonstrate the efficiency of the 
new approximation, which remains accurate within a wide
frequency band for large anomalous structures and large 
conductivity contrasts. 

Here, we present a different approach to the solution of the 
EM induction problem, which is based, however, on similar 
ideas and can be considered as a development of the Torres
Verdin and Habashy method. We separate the total electric 
field into normal and anomalous parts and introduce an 
electrical reflectivity tensor that linearly transforms the normal 
field into an internal anomalous one. 

The electrical retlectivity tensor inside inhomogeneities can 
be approximated by slowly varying functions and can be 
determined numerically by a simple optimization technique. 
Thus we avoid a complicated problem of determining the 
scattering tensor and at the same time reach the desired 
result-to obtain a very precise approximation for the scat
tered field. We call this new and relatively simple approxima
tion for the EM field a quasi-linear (QL) approximation 
because it generates an integral expression for the scattered 
field that is nonlinear with respect to the conductivity, but 
which is linear with respect to the product of the conductivity 
and the retlectivity tensor. It can be applied with the same 
efficiency to 2-D or 3-D models. We illustrate this new 
approximation using the electromagnetic induction response 
of different 3-D structures for different source fields. The QL 
approximation can accurately estimate the EM response for 
much stronger conductivity contrasts (up to hundred times) 
than the conventional Born approximation and over a wide 
range of frequencies. It also opens the possibility for fast and 
versatile 3-D electromagnetic inversion. 

THE BORN APPROXIMAnON IN 3-D EM MODELING 

Consider a 3-D geoelectrical model with a normal (back
ground) complex conductivity (j II and local inhomogeneity D , 
with the arbitrarily varying complex conductivity & = &II + 
fuJ. We will confine ourselves to consideration of nonmagnetic 
media and, hence, assume that f.1 = f.10 = 41T X 10 -7 Him, 
where f.10 is the free-space magnetic permeability. The model 
is excited by an electromagnetic field generated by an arbitrary 
source. This field is time harmonic as e ~iwt. Complex conduc
tivity includes the effect of displacement currents: cr = (J 

i WE, where (J and E are electrical conductivity and dielectric 
permittivity, respectively. 

The electromagnetic fields in this model can be presented as 
a sum of normal and anomalous fields: 

H IIE == Ell + E a
, H == + H", (I) 

where the normal field is a field generated by the given sources 
in the model with the normal distribution of conductivity (j II' 
and the anomalous field is produced by the anomalous con
ductivity distribution dO-. 

It is well known that in this model the anomalous field can be 
presented as an integral over the excess currents in the 
inhomogeneous domain D (Hohmann, 1975; Weidelt, 1975; 
Zhdanov and Keller, 1994): 

E"(rj) = (;n(rjlr)ao-(r)[En(r) + E"(r)] dv, (2)f fL
where Gil (rj [r) is the electromagnetic Green's tensor defined 
for an unbounded conductive medium with the normal con
ductivity &n and satisfying the equation (Zhdanov, 1988): 

V' X V' X GIl(rjlr) - k~GIl(rjlr) = -iwf.1oio(rj - r). (3) 

Here k;; = iwf.1ocrII' i is the unit tensor, and o(rj - r) is the 
Dirac delta function. 

An integral expression for the anomalous magnetic field can 
be written as 

Ha(rj) == -.1_ JJJ v. GIl(rj Ir)K'cr(r) 
lWI-'-O D J 

X [EIl(r) + Ea(r)] dv. (4) 

The conventional Born approximation EB
( rj ) for the anom

alous field can be obtained from equation (2) if we assume that 
the anomalous field is negligibly small inside D in comparison 
with the normal field. In this case, it can be ignored in 
comparison with the normal field: 

EB(rj) ~ (;"(rj[r)ao-(r)E"(r) dv. (5)JJL
Approximation (5) works reasonably well only for small con
ductivity contrasts between background media, a relatively 
small inhomogeneity, and low frequencies (Berdichevsky and 
Zhdanov, 1984). A detailed analysis of the range of validity of 
this approximation is given in (Habashy et al., 1993). In the 
next section, we describe the modification of the Born approx
imation which is similar in the basic ideas to the last one, but 
is much more accurate. 

A QUASI-LINEAR APPROXIMATION AND THE ELECTRICAL
 
REFLECTIVITY TENSOR
 

Expression (2) can be rewritten using operator notations: 

E" = C[E a ] , (6) 

where C[Ea 
] is an integral operator of the anomalous field Ea 

C[E a
] = A[E Il ] + A[E a] (7) 

and A is a linear scattering operator: 

A[E] = ffIv (;"(rjlr)ao-(r)E(r) dv. (8) 

Equation (6) can be treated as an integral equation with 
respect to the anomalous field Ea. The solution of this integral 
equation has to be a fixed point of the operator C (in other 
words, the application of the operator C to the anomalous field 
Ea does not change this field). This solution can be obtained 
using the method of successive iterations that is governed by 
the equations 

Ea(N) = C[Ea(N-l)], N = 1, 2, 3, . . . (9) 
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It is well known that successive iterations converge if operator 
C is a contraction operator (Banach theorem), that is 

IIC[Ea(l) - Ea(2)]11~ kIIEa(I) - Ea(2)11, (10) 

Eawhere II··· 11 is L 2 norm, k < I, and Ea(l) and (2) are any 
two different solutions. Substituting (7) into (10) we obtain 

IIC[E(J(l) - Ea(2)]11= IIA[Ea(l) - Ea(2)]11

~ IIAIIIIEa(I) - Ea(2)11. (11) 

Therefore, condition (10) holds if IIAII < 1. 
If operator C is a contraction, then the Nth iteration 

approaches the actual anomalous field 

Ea(N) ~ E", (12) 

when N ~ 00. 

The Born approximation is simply the first iteration of this
 
method, if the initial approximation Ea(O) (zero order itera

tion) is selected to be equal to zero (Ea(O) = 0):
 

E B = Ea 
(1) = C[O] = A[EIl 

] . (13) 

In this case the Nth iteration can be treated as the sum of N 
terms of the Neumann (or Born) series: 

Ea(N) = AE I1 + A2e + A3EIl +... + ANEIl 

+ A3EIl= EB + AzEIl + 1 I I + ANEil . ( 14) 

We will obtain a more accurate approximation if we assume 
that the anomalous field Ea inside the inhomogeneous domain 
is not equal to zero, but is linearly related to the normal field 
Ell by some tensor ~: 

Ea(r) = ~(r)EIl(r). (15) 

By analogy with the geoelectrical reflection coefficients for the 
layered models (Zhdanov and Keller, 1994) and with the 
seismic case (Bleistein, 1984), we will call ~(r) an electrical 
reflectivity tensor. 

Subsequently, we use the expression (15) as the zero-order 
approximation for the scattered field inside the inhomogeneity 

(Ea(O) = ~EIl) and calculate the first approximation as 

Ea(l) = C[~EIl] = A[EIl + ~EIl] = A[(i + ~)EIl]. (16) 

We will call this approximation a quasi-linear (QL) approx
imation E:e for the anomalous field because it generates an 
integral expression for the scattered field which is nonlinear 
with respect to the conductivity (the reflectivity tensor A is in 
the general case a function of dO' as well), but which is linear 
with respect to the product of conductivity and reflectivity 
tensor. Taking into account (8) we have 

E;, = E"(I) ~ JJLG"(rjlrjii<r(r)[! + ~(r)]E"(r) dv. 

(17) 

Up till now the background of the Born approximation and 
new QL approximation is the same. The main difference is that 
in the case of the BOI11 approximation the starting point for the 
iteration process is the zero scattered field, while in our 
approach we start with the scattered field proportionate (in an 
as yet arbitrary way) to the normal field. In principle, we can 

expand our approach to computing all iterations by equation (9). 
In this case we will obtain a complete analog of the BOI11 series. 
However, in this paper we will analyze only the first QL 
approximation. 

Let us estimate an accuracy of the QL approximation. 
According to equations (6) and (7) the actual anomalous field 
Ea is equal to 

E
a Il 

= A[E ] + A[E
a
] . (18) 

Comparing E
a 

with the QL approximation, we can obtain an 
accuracy criterion for a QL solution: 

[E" - E;ell = IIA(Ea- ~EIl)1I ~ IIAllllEa - ~EIlII. (19) 

Equation (19) shows that the accuracy of the QL approxima
tion depends on the accuracy 5 = IlEa - ~EIl II of equation 

(1Sr 

(20)IlEa - E;ell -s IIAllo. 

Taking into account that the electrical reflectivity tensor A(r) 
is, in the general case, a function of the observation point r, it 
is clear that 8 can be made arbitrarily small if ~(r) is closely 
specified. 

At this point it is interesting to analyze the difference 
between a QL approximation and the second-order Born 
approximation that is given according to equation (14) by the 
formula 

Ea(2) = AEn + A 2E Il = A[E n + AEIl] (21) 

Comparing equations (16) and (21), we see that the QL 
approximation can be obtained formally from the second
order Born approximation if we substitute operator A within 
the square brackets in equation (21) by the electrical reflectiv
ity tensor ~. However, these two approximations are different 
because we have a choice in the selection of the tensor ~, and, 
therefore, we can obtain the better approximation for the 
anomalous field. The main problem is to find the correspond
ing tensor function ~(r) that would minimize o. 

Our approach to the solution of this problem will be based 
on the following analysis. Using equation (16) we can express 
ilEa - ~EIl II as follows: 

ilEa - ~EIlII = ilEa - E;e + A[(! + ~)EIl] - ~EIlIl 

~ IlEa - E;ell + IIA[(! + ~)EIl] - ~EIlII. (22) 

Let us determine ~ from the condition 

IIA[(! +~) . Ell] - ~' EIlIl = 'P(~) = min. (23) 

From inequalities (19) and (22) we have 

II:E a - E;ell ~ IIAli{llE a - E;ell + 'P(~)}. (24) 

In the beginning of this section we stated that in order for the 
Born series expansion to converge to the actual electric field, 
the condition 

IIAII < 1 (25) 

is required. Under this condition we can rewrite inequality (24) 
as 

IIAII A 

IlEa - E;a 51 _ IIAII 'P(A). (26) 
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The last formula shows that the minimum of equation (23) 
determines the accuracy of the QL approximation. 

Note that the electrical retlectivity tensor >- is formally 
connected with the scattering tensor r, introduced in Habashy 
et aI., 1993, by the simple formula 

>- = r - i. (27) 

However, Torres-Verdin and Habashy use a quasi-analytical 
expression to determine r while we will use condition (23) for 
the numerical calculation of the electrical reflectivity tensor. 
This numerical approach opens a way to impose additional 
restrictions on the reflectivity tensor. 

For example, we can demand that >- is a diagonal tensor: 

AX 0 0 ] 

>- = 0 x, 0 . (28)
[ o 0 Az 

In other words, we can assume that every componetn of the 
anomalous field is linearly proportionate to the component of 

normal field along the same axes. 
Alternatively, 

~ = Ai. (29) 

Of course, these assumptions make our approximate solution 
less accurate. However, as we will see below, in some situations 
they work very well. 

DETERMINATION OF THE REFLECTIVITY TENSOR 

In this section, we develop the numerical method for the 
electrical reflectivity tensor estimation in complicated models. 
To solve this problem we rewrite equation (17) for the points 
inside domain D, taking into account equation (15): 

E~e = >-E n = A[CI + >-)EnJ 

~ JJtG"(TjIT)arr(r)[i + ~(r)]E"(r) d o, (30) 

The last equation provides the basis for determining ~. This 
equation should hold for any internal point of the domain D. 
In reality, of course, it holds only approximately. Therefore we 
can use the minimum norm condition to determine >-: 

II ~(r)E"(rj) - JJtG"(rj!r)<i.,.(r)[(i + ~)E"(r)] dvll 
= lfl(~) = min. (31) 

As we mentioned in the previous section, the electrical 
reflectivity tensor >- is connected with the scattering tensor A[ 
introduced in Habashy et aI., 1993 by the simple formula (27). 
Therefore, we can use some results obtained in Habashy et al. 
C1993) for the scattering tensor to analyze the properties of the 
reflectivity tensor. First of all, we can assume that the reflec
tivity tensor >-, like r, reflects the conductivity distribution. 
Also this approximation is valid under the assumption that the 
internal field, and therefore the reflectivity tensor, is varying 
slowly inside the inhomogeneous domain (Torres-Verdin and 
Habashy, 1994). The correctness of this assumption can be 
illustrated by numerical calculations. 

Approximation 649 

Consider the 3-D geoelectrical model consisting of a homo
geneous half-space (with resistivity 100 ohm I m) and a con
ductive rectangular inclusion with a resistivity of I ohm I m 
(Figure 1). The electromagnetic field in the model is excited by 
a horizontal rectangular loop, located 50 m to the left of the 
model, with the loop IO m on a side and the current at I A. We 
have used the integral equation program SYSEM for comput
ing the frequency-domain response of the complex conductiv
ity structure (Xiong, 1992). This code makes it possible to 

calculate the EM field not only on the surface of observation, 
but inside the conductive half-space. For the sake of simplicity 
we assume also that the reflectivity tensor is diagonal, as in 
equation (28). After defining the normal and anomalous fields 
in the conductive half-space by forward modeling, we have 
used equation (IS) to compute all of the components of the 
diagonal retlectivity tensor for different frequencies. Calcula
tions have been done for the receivers, located along the 
profile AB crossing the top of the conducting body (Figure I). 
The plot of the Ax component at the frequency f = w/2Tr = 
I Hz is shown on Figure 2. One can see that Ax changes rapidly 
outside the body, but is almost constant inside the body (about 
400 cells were used for sampling Ax inside the body). The same 
results have been obtained for other components of >- and 
frequencies between 0.001 Hz and 1000 Hz. Models with 
conductive inclusions of pz = 10 ohm I m and pz = 0.1 
ohm I m produce the same results. Moreover, calculations 
show that the value of Ax is constant everywhere inside the 
conducting body. For example, Figure 3 presents the plot of Ax 
for the vertical cross-sectionx =a for 10Hz. Figure 4 presents 
the same plot at the vertical cross-section x = 2.5 m and for 
1000 Hz. The white zones on these figures delineate the 
anomalous body very well. Thus, our assumption about the 
slow variation of Ax inside the anomalous domain is correct. 
The problem is how to determine the tensor ~. 

For the numerical calculation, it is more convenient to 
rewrite equation (30) using tensor notations 

E;ea(r j) = A~"yo ",~E~(r J) 

= JJLG~~(r J Ir) arreT)[0" + A~, (r) ]E~(r) d v; 

a, I), 'Y = x, y, z. (32) 

In the last equation, E:e",(r) and E; (rHa, 'Y = x, y, z) are 
the Cartesian components of the electric field vectors, and 
G ~~ (rj Ir), a, I) =x, y, z are the Cartesian components of the 
electromagnetic Green's tensor. In all equations with summa
tions we use the Einstein convention: the twice recurring index 
indicates summation over this index (for example, I) = x, y, z). 

Following our assumption about slow variation of the tensor 
>- inside the anomalous domain, we begin our analysis with the 
simplest case of the constant reflectivity tensor inside D. 
Therefore, equation (32) takes the form 

E~(rj) = AI3)'o",~E~(rj) = (013'1 + A~"y) 

x JJLG~,(rjlr)a.,.(r) E~(T) dv, (33) 

and we have 
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l\ ,,[ 3.,E~(rJ) - JJIv G:,(rj!r)Aa(rl E~(r) dU] 

"'" E~(rj), (34) 

where fj E D. 
This equation, as well as relationship (30) holds only approx

imately. Therefore we can use the least-squares method to 
determine the ~ that optimally fits condition (34): 

J 

t.p(~) :;;;; L [E~(rJ) - A ~'YAE afl)'(rj)]* 
i> l 

x [E~(rj)'" A lJ.1,AE{~lJ.l'(rJ}] = min; 

a, ~, "Y. IL, v = x, y, z; (35) 

where AE o.?>'Y is the bracketed term in equation (34): 

~E afoll' (r j) = & af1E~(rj) 

-JJt G:~(rjlr)Aa(rlE;(r) (36)d u, 

and the superscript * means the complex conjugate value. 
The solution of the minimization problem (35) is described 

in Appendix A. The components of the optimal reflectivity 
tensor are 
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.", . , . J). , 

x L AEo1h(r;)Eolf/) (37)
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FIG. 2. Plot of the A, component of the reflectivity tensor 
computed for Model I at frequency f = wi 21T = 1 Hz. 
Calculations have been done for the receivers located along 
profile AB crossing the conducting body at its top side (see 
Figure I). A, changes rapidly outside the body, but is almost 
constant inside the body ( - 1O::s: y s 10). 

y 

z 

Modell 
FIG. 1. 3-D geoelectric model, containing one conductive body in a homogeneous half-space, with rectangular loop excitation 

(Model I). AB is a profile ofreceivers. 
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FIG, 4 . Plot of the real part of the co mponent A, at the vertical cross-section x =2.5 m of the reflectivity tensor, computed for 
Model 1 (Figure I) at frequency f =wI 2 'IT =1000 Hz (the imaginary part of A, is negligibly small), The white domain corresponds 
to the constant value of A,. Thi s white domain coincides with the geo metry of the anomal ous bod y, 
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As we noted in the previous section, there is a choice in the 
selection of the type of the electrical reflectivity tensor. For 
example, in the simplest case when ~ is a scalar tensor 

A13)' :;;:: AO 13" (38) 

we obtain 

2:1=1 LlE*a1313 (r j) E~(r j) 
A= 'VJ *' L.Jj=1 LlE al3l3 (rj)LlE ajJ.jJ.(rj) 

(39) 

In the case when ~ is a diagonal tensor 

A13 ' 13 = '"Y =X,y, z 
A - (40) 

13)' - { 0, 13 =-1= '"Y ' 

the solution has the form 

[AfJ- ] = [ ±st: '"p(r j)dE "' (rj)] -1 

J=1 

X [~ dE'.p( !j)E~(!jl (4\) 

In the ge~eral case we should solve equation (37) to find A, 
After the Ais found, the QL approximation is calculated using 
expression (17). 

We can obtain a more precise approximation for the electric 
field if we divide the domain D into subdomains D = U k= I K D, 
and assume that relationship (30) holds inside any subdomain 
Dk: 

E~(rj) = A~fi~(rj), rj E Db (42) 

where the reflectivity tensor Ag" depends only on the subdo
main's number k. Substituting equation (42) into equation (2) 
we have 

A~"oa.I3E~(rj)= L (OI3)'+A~,,) 
k=l.K 

x JJLO:p(rjlrl,[,,(r) E~(r) d o, (43) 

rj E ti.; 

Now the problem is to determine the tensors ~ k . 

To solve this problem we can repeat all calculations, done 
above for one constant tensor ~ (see Appendix B). 

Thus, we obtain 

[A~,] ~ [i*' dE'.~,,(r i) dE "'~ (r j) 

X (44)[i~ dE'"p'k(rJ)E~(rj)]'
 
where
 

AE ( 13)'d r j ) oa13°ktE~(rj)
 

- JJJ G~13(rjlr)K'(J(r)E~(r)dv, (45) 
Dk 

The last expression also can be simplified for the cases of 
diagonal or scalar reflectivity tensor. 

Note that, according to equation (27), the method of 
calculation of the reflectivity tensor developed in this section 
opens a quicker and more efficient way of arriving at the 
scattering tensor than is given in Torres-Verdin and Habashy 
(1994). 

NUMERICAL COMPARISON OF THE QUASI·LINEAR
 
APPROXIMATION, BORN APPROXIMATION, AND
 

FULL INTEGRAL EQUATION SOLUTIONS
 

In this section, we compare numerically the EM field 
components, obtained by the solution of the exact integral 
equation (2), the Born approximation (5) and the linear 
approximation (17). For the full integral equation (IE) solu
tion, we have used the SYSEM program (Xiong, 1992). 

First, we analyze the results of the numerical calculation for 
modell, presented in Figure 1. Figures 5 and 6 show the 
comparison of the different solutions for real and imaginary 
parts of the anomalous electrical field E: and the anomalous 
magnetic field H: for two different frequencies: 10 Hz and 
1000 Hz. In the case of QL approximation, we have used the 
simplest scalar reflectivity tensor and the diagonal reflectivity 
tensor. One can see that the full solution and the QL approx
imations calculated with the use of the scalar and the diagonal 
reflectivity tensor produce similar results, while the conven
tional Born approximation produces curves of the correct 
shape but incorrect magnitude. We can observe a small 
difference between the QL approximations and a full IE 
solution only on the ReH: component near the center of the 
body. Notice, that the symmetry in the absolute value of the 
anomalous field, observed on the Born approximation and QL 
approximation computed with the scalar A, is destroyed for the 
full IE solution and QL approximation computed with the 
diagonal tensor ~, This fact has a simple explanation. The 
normal field in the model is asymetrical because the transmit
ter loop is located to the left of the conducting body. This 
asymetry of the normal field generates the same type of 
asymetry in the IE solution and in the more precise QL 
approximation computed with the diagonal tensor ~, and it is 
not seen on the other less precise approximations. 

Model 2 is presented on Figure 7. This model is excited by 
the vertically propagating plane wave. For the sake of symplic
ity, we assume that the reflectivity tensor is a scalar inside the 
conductive body. Figure 8 compares different solutions for the 
anomalous fields ReH:, ReH; and ReE:, [mE; for a 
frequency of 1 Hz. Figure 9 presents the apparent resistivity 
curves for TE and TM modes. One can see again that the full 
solution and the QL approximation produce similar results, 
and that the Born approximation lies far away from the exact 
solution. 

Model 3 contains two anomalous bodies with different 
resistivities-I ohm 1 m and 100 ohm . m-immersed in a 
three-layer earth (Figure 10). We again consider plane-wave 
excitation and assume that the reflectivity tensor is scalar 
within every body, but a different function for conductive 
(I ohm I m) and resistive (100 ohm I m) inclusions. Results of 
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numerical EM modeling are presented in Figure 11 (anoma
lous field components) and Figure 12 [apparent resistivity 
curves for transverse electric (TE) and transverse electric 
(TM) modes]. The conclusion of the analysis of these results is 
the same: the full solution and the QL approximation produce 
similar results, while the Born approximation generates an 
erroneous solution. 

The last model, model 4, with three conductive bodies is 
shown in Figure 13. This model simulates the VLF observa
tions: we have a shallow conductive structure and consider 
high-frequency plane-wave excitation-up to 500 kHz. The 
reflectivity tensor is scalar and could be equal to different 
functions for different bodies: 

~k =1\i kt k = 1,2,3. 

Results of numerical modeling are presented in Figures 14 and 
15. The conclusion is the same as for the previous models: a 
QL approximation works well while the Born approximation 
does not. 

It is important to compare the computational time of the 
numerical modeling needed for any of these three approaches. 
The results of comparison are presented in Tables I and 2. 

One can see from these tables that CPU time increases 
exponentially with the number of cells for a full IE solution, 
while it increases linearly for the QL approximation and Born 
approximation. In the models with 800 cells in the anomalous 
domain, the QL approximation is an order of magnitude faster 
than the full IEs solution. It takes about twice the time to 

I*I 
I 

,I, 
2000m: 

compute the QL approximation that is required for Born approx
imation. However, the QL approximation produces reasonable 
results, while the Born approximation gives a poor estimate. 

CONCLUSION 

The QL approximation of the EM field developed in this 
paper is based on the approximation of the anomalous field by 
a linear transformation of the normal field: E, :::::: J...En , where 
~ is called the electrical reflectivity tensor. The reflectivity tensor 
inside inhomogeneities can be approximated by slow varying 
functions that can be determined numerically by a simple 
optimization technique. 

The results of numerical calculations have shown that the 
new approximation gives an accurate estimate of the 3-D EM 
response for a much stronger conductivity contrast (up to 
hundred times) than does the conventional Born approxima
tion and for a wide range of frequencies. At the same time, this 
method is much faster than the computer codes based on the 
full IE solution. Thus it opens up a possibility for fast 3-D 
electromagnetic inversion. 
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Table 1. Comparison of the CPU time (in seconds) for EM 
modeling, using different methods (Modell). 

Cell number in anomalous 
domain 

Full integral equation solution 
Quasi linear approximation 
Born approximation 

250 400 800 
cells cells cells 

1029.1 2995.0 13127.0 
382.4 530.4 1170.1 
237.5 308.5 482.8 
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APPENDIX A
 

CALCULATION OF THE CONSTANT REFLECTMTY TENSOR
 

The retlectivity tensor should solve the minimization prob
lem described by equation (35). To develop a solution for this 
equation, we calculate the first variation of the functional 'P(~) 
as 

O'P(~, o~) = -2 Re OA *(3'1 2: ~E*a(3"y(rj) 
j=1 

x [E~(rj) - AlJ-v~EalJ-v(rj)]. (A-I) 

The minimum of equation (35) is reached when o<p(~, o~) == 0 
for any o~. Therefore 

J J 

AIJ-v L ~E*a(3"'(rj)~EalJ-v(rj) = L boE*ul3"'(rj)E~(rj), 
j=1 j=1 

(A-2) 

where [3, 'Y = x, y, z. 
Thus, we have: 

[A fLvJ = [ ±t!.E'"~,(ri)t!.E oe"(ri ) ] -1 

J=1 

(A-3)x [ ±t!.E·"~,(ri) E~(ri:]' 
J=1 

For example in the simplest case when ~ is a scalar tensor, 

A (3"'( = AO (3'1' (A-4) 

we can find immediately from equation (A-I) that 

O'P(~, o~) = -2 Re OA * 2: boE*af}l3(rj) 
j=1 

x [E~(rj) - A~E afLfL(rj)J (A-5) 

and 

2:/=1 boE*a(3f}(rj)E~(rj) 
(A-6)

A = L/=1 boE*af}f}(rj)~EalJ-lJ-(rj)' 

When ~ is a diagonal tensor 

Af} , [3 = 'Y 
(A-7)Af}"'( = { 0, [3 =1= 'Y 

we can find immediately from equation (A-5) that 

O'P(~, o~) = -2 Re OA *13 L ~E*al3(rj) 
j=1 

x [E~(rj) - AIJ-~EalJ-(rj)J, (A-8) 

where 

~E*al3(rj) = ~E*a~(rj)'
 

The line above [3 means no summation over f3.
 
Equation (A-2) then takes the form
 

J J 

AIJ- 2: ~E*a(3(rj)~E alJ-(rj) = 2: ~E*al3(rj)E~(rj)' (A-9) 
j=1 j=l 

Solving equation (A-9) we find 

[I\e] = [i~ t!.E'"~(rj)"E."(ri)]-1 

(A-lO)X [i~ 1>E'"~(rj)E~(r)l 
In the general case we should solve equation (A-3) to find x. 

APPENDIXB
 

CALCULATION OF THE VARIABLE REFLECTIVITY TENSOR
 

We rewrite equation (43) for the points inside domain Dk, 

taking into account equation (42): ~ A~"Y[ OkeoaI3E~(rj)-f f f G~I3(rjlr)i'a(r)E~(r) dV] 
k-l$ Dk 

E~(rj) = A~"'(O keO a(3E~(rj) 

2: (0(3"'( + A~"'()JJJ G~I3(rjlr)i'(J(r)E~(r)dv 
= E~(r) dv, (B-2) 

k=l,K D 
where rj E De. 

The last equation provides the basis for determining ~ k .
 

This equation should hold for any internal point within the
 

rj E D e domain D. In reality, of course it holds only approximately.
 
Therefore, we can use the least-squares method to determine
 

Therefore we have the ~ k that fits equation (B-2) to the highest accuracy: 

(B-1) 
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J x [E~(rj) - A:lI~ECljJ.lIrn(rj)], (8-5) 

A "" B k'P (A) = L.J [E Cl (r j) - A~'t~E Cl~'tk (r j ) ] * 
where the minimum of (B-3) is reached when Oip(~, o~) == 0 for j=l 
any o~. Therefore
 

x [E~(rj) - A;lI~ECljJ.lIrn(rj)J = min (B-3)
 

Here A: 2: 
J 

~E*ClI3'Yk(rj)~E lXflvrn(rj) = 2: 
J 

~E*lX13"Yk(rj)E~(rj),lI 

k, m = 1,2, ... K j=l j=l 
(B-6) 

o , 13, 'Y, \-L, v = x, y, z 
where k, m = 1, 2, ... K; o , 13, 'Y, \-L, v = x, y, z.

and Thus, we have 

liE "~'1k(rj) = oCl~okeE~(rj) 
J ] -1 

[A :v] = ~ AE *<xI3'Yk (r j) st: <Xflvrn (r j)[-fff G k ~,(rJ I r)LI<J(r)E;(r) dv, (B-4) J=l 
Dk 

where r; E De. 
x [ ±/lE'.~'k(rj)E~(rj)],The symbol * denotes complex conjugation. (B-7) 

We calculate the first variation of the functional 'P(~) as J=1 

J The last expression is the solution for the problem of the 
A A k "" * reflectivity tensor ~ rn determination for every subdomain D rnOip(A, OA) = -2 Re OAI3't L.J ~E ClI3'Yd rj) 

j=l of the structure D with anomalous conductivity. 


