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One of the most challenging problems in electromagnetic (EM) geophysical methods is
developing fast and stable methods of imaging inhomogeneous underground structures using
EM data. In our previous publications we developed a novel approach to this problem, using
EM migration.

In this paper we demonstrate that there is a very close connection between the method of
EM migration and the solution of the conventional EM inverse problem. Actually, we show
that migration is an approximate inversion. It realizes the first iteration in the inversion
algorithm, based on the minimization of the residual field energy flow through the profile
of observations. This new theoretical result opens a way for formulating a new imaging
condition. We compare this new imaging condition with the traditional one, obtained for
simplified geoelectrical models of the subsurface structures.

This result also leads to the construction of a solution of the inverse EM problem, based
on iterative EM migration in the frequency domain, and gradient (or conjugate gradient)
search for the optimal geoelectrical model. However, the authors have found that in the
framework of this method, even the first iteration, based on the migration of the residual
field, generates a reasonable geoelectrical image of the subsurface structure.

1. Introduction

One of the most challenging problems in electromagnetic (EM) geophysical methods is de-
veloping fast and stable methods of imaging inhomogeneous underground structures using EM
data. Solution of this problem is important for many practical applications ranging from mineral
exploration to waste and building site characterization. In the papers (Zhdanov et al., 1995) and
(Zhdanov et al., 1996) and the references therein we have developed a novel approach to EM
imaging based on the notion of EM migration. The method includes downward continuation of
the observed field or one of its components in reverse time and application of the correspond-
ing imaging conditions. However, until recently the relationship between EM migration imaging
and traditional EM inversion have remained unexplored. The conventional EM inversion means
a method which predicts the geoelectrical model generating the theoretical data closed to ob-
servations. The EM migration introduced in our previous publications constructed an image
of subsurface geoelectrical structures, and there was no guarantee this image, if included in a
geoelectrical model, would give rise to theoretical EM fields that matched those observed.

Meanwhile, Tarantola (1987) demonstrated that seismic wave migration, which was the proto-
type for EM migration, can be treated exactly as the first iteration in some general wave inversion
scheme. In this paper we formulate an important new result: EM migration, as the solution of
the boundary value problem for the adjoint Mazwell’s equation in frequency domain, can be clearly
associated with the inverse problem solution. In other words, we prove that a geoelectrical model
constructed on the basis of migration images would actually generate a theoretical field close to
observations.

We introduce the residual EM field as the difference between the simulated EM field for
some given (background) geoelectrical model and the actual EM field. The EM energy flow of the
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residual field through the surface of observations can be treated as a functional of the anomalous
conductivity distribution in the model. The analysis shows that the gradient of the residual field
energy flow functional with respect to the perturbation of the model conductivity is equal to
the integral over frequencies of the product of the incident (background) field and the migrated
residual field, calculated as the solution of the boundary value problem for the adjoint Maxwell’s
equation.

This result clearly leads to a construction of the rigorous method of solving the inverse EM
problem, based on iterative EM migration in the frequency domain, and gradient {(or conjugate
gradient) search for the optimal geoelectrical model. However, the authors have found that in the
framework of this method, even the first iteration, based on the migration of the residual field,
generates a reasonable geoelectrical image of the subsurface structure. We call the anomalous
conductivity, calculated on the first iteration, the migration apparent conductivity. This new the-
oretical result suggests a new imaging condition formulation and indicates a new approach to EM
imaging, based on iterative migration. The iterative migration forms a principally new method
of interpreting EM data, which combines the ideas of downward continuation and traditional
inversion. We compare this new imaging technique with the popular Rapid Relaxation Inver-
sion (RRI) method developed by Smith and Booker (1991). Numerical modeling demonstrates
that migration generates reasonable images of the subsurface structures even faster than rapid
inversion.

In summary, in this paper we demonstrate that EM migration imaging can also be consid-
ered as the initial step in the general EM inversion procedure. This similarity facilitates better
understanding the mathematical and physical background of EM migration, and, at the same
time, develops new geoelectrical imaging tools.

For the sake of simplicity, in this paper we consider only the 2-D frequency domain geoelec-
trical problem. However, all the results, developed below can be generalized to the 3-D case. The
solution of the 3-D migration and inversion problem is the subject of a separate paper, submitted
to Geophysical Journal International (Zhdanov and Portniaguine, 1997).

2. 2-D EM Inverse Problem in the Frequency Domain

Consider a 2-D geoelectrical model with a background electrical conductivity ¢ = o, and
a local inhomogeneity D with conductivity ¢ = o, + Ao, varying spatially. Note that the
background conductivity in general case also can be a function of coordinate o, = oy (x, 2).
However, it is assumed that it is known a priori. We assume that u = pg = 47 x 10~"H/m,
where 1 is the free-space magnetic permeability. The model is excited by an E-polarized field
generated by a linear current density j** = 7*d,, which is distributed in a domain @ in the upper
half-plane (z < 0) with the constant conductivity o (z,2 < 0) = const. Here {d,,d,,d} is the
orthonormal basis of the Cartesian system of coordinate with the origin on the earth’s surface.
This field is time harmonic as e~**. We also consider the quasi-stationary model of the EM field,
so displacement currents are neglected (Zhdanov and Keller, 1994). Within this model, the EM
field can be described by a single function I satisfying the equation:

V2Ey +iwpgop By = —twpeg®®, z <0,
(1)
VQEy +iwpooky =0, 2> 0,

and the magnetic field components can be expressed by the equations:

1 OF i
H, = v, - L 9B (2)
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We can introduce the complex Poynting vector P as following (Stratton, 1941):

1 1 1
P= §E x H* = 'éEyH:dZ - §EyH;dz, (3)
where in the case of E-polarization E = E,d,, H* = H;d, + H;d, and = indicates a complex
conjugate value. The real part of the vector P describes the intensity of the EM field energy flow.
The divergence of the real part of P determines the energy dissipated in heat per unit volume

per second:
1
V~ReP:~§oE~E*. (4)

It can be shown using 2D Green’s theorem that the total energy @ dissipated throughout any
region S bounded by a contour L is equal to:

1
Q—-—Re/LPvndl:5//SUE-E*dsZO, (5)

where n is the unit outward normal vector and the contour is traversed counterclockwise.

When the region S coincides with the lower half-plane (z > 0), the contour L can be composed
of the horizontal axis z = 0 and an infinitely large semicircle in the lower half-plane. Since the
EM field satisfies to the radiation conditions, i.e., functions E and H* vanish exponentially at
infinity , the contour integral over infinitely large semicircle tends to zero. Thus, the total energy
Q dissipated in the lower half-plane can be calculated using the formula:

+00 1 +00
* * !
Q= Re/ P-d.dl = —Z/ (E H; + EyHZ) dz’, (6)
—0 — o

where 2’ is the integration variable and we use the formula Re (E,H}) = % (EyH; + E;Hx).

Let us denote the EM field components observed on the surface of the Earth (z = 0) at
the point 2’ as E;’bs (z',0,w), H2 (2',0,w) and also denote the theoretical EM field components
calculated for a given background geoelectrical model oy (z, 2) as EZ (z',0,w), H (z',0,w). We
can introduce the residual fields as the difference between the observed and background theoretical
fields:

EyA (2, 0,w) = Egbs (z’,0,w) — EZ (z',0,w),
(7)

H2 (2',0,w) = H2 (z',0,w) — H? (2, 0,w).

The observed field is generated by the real geoelectrical cross section o (x, 2) = oy, (z, 2) + Ao (z, 2)
and actually exists everywhere in the vertical section. Therefore, the residual field can be deter-
mined everywhere as a function of coordinates (z, z) and satisfies the equations:

V2E§X + iwpgobE;} =0, 2<0,
VQEf + z‘wuoabEyA = —iw,u,voE;bs, 2z >0,

A
HA: 1 8Ey7 HA:

1 9Ep
T iwpy 0z z

iwug Oz

The total energy flow Q* of the residual field through the earth’s surface (z = 0), is calculated
by the formula:

+00 1 [t
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where we use the “+4” sign, opposite to the sign of the expression (6), because the sources of
the residual field, excess currents in the inhomogeneity D, are located in the lower half-plane.
Pankratov, Avdeev and Kuvshinov (1995) have proved an important theorem, according to which
the energy flow Q% of the residual field is non-negative:

Q> >0. (10)

Moreover, if the conductivity of the upper half-plane is assumed to be nonzero (o, > 0) the
residual field energy flow is always positive (for residual field not identically equal to zero E?f # 0).
This result can be obtained from the Eq. (5) applied to the upper half-plane:

QA:%—// EyAEyA*dSZ%// )E5|243>0, if B #0. (11)
J2<0 2<0

Based on this theorem we can introduce the measure ® of the difference between the observed and
the background theoretical fields as the residual field energy flow, integrated over the frequency
range {2

1 too
O (o3) = / Q%dw = Z/ / (ESHE + EXHE) do'dw. (12)
Q QJ-00

The functional ® (0},) can be treated as an analog of the misfit between the observed and the-
oretical fields. The advantage of this new functional in comparison with the traditional misfit
functional is that ® (0,) has a clear physical meaning of the residual field energy flow through
the profile of observations.

Obviously, the background theoretical field components EZ (z',0,w) and H (z',0,w) depend
on the conductivity distribution op(z,2) in the given geoelectrical model and, therefore, ® can
be treated as a functional of the conductivity model: ¢ = ® (0;,). We would like to modify the
background conductivity in such a way that it will be equal to the actual conductivity within the
anomalous domain D. In this case the new background field will be close to the observed field.

Thus, the 2-D EM inversion problem can be reduced to the minimization of the functional:

® (o) = min. (13)

In the following section we will discuss an approach to the solution of this problem.

Note that the analysis given in this section for the TE mode applies in an analogues manner
to the TM mode. It is important to notice also that similar to the case of the traditional misfit
functional it is possible to incorporate measurement uncertainties in the functional ® given by
Eq. (12) by using weighted data. In this case this functional will correspond to the energy of the
weighted EM data.

3. The Steepest Descent Method of Nonlinear Inversion

We begin our analysis with the formulation of the steepest descent method of solving the
minimization problem (13). The critical problem in realizing any steepest descent method is
the calculation of the steepest ascent direction (or the gradient) of the functional. To solve this
problem, let us perturb the background conductivity distribution: o} (z, z) = oy, (z, 2) + 60 (z, z).
Actually, we have to perturb the conductivity only within the inhomogeneous domain D of the
lower half-plane:

bo (x,2) =0, (x,2z) ¢ D. (14)
The first variation of the misfit functional with respect to the perturbation of the background
conductivity can be calculated as:

1 +o00
52 (0,60) = 1 / / (SE2HA + EASHS 1 SES*HA + ES*SHA) do'dw.  (15)
QJ -0
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A;‘Ub A Ak _O‘b A2 i ) A
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1 +oo
® (0p) = / Q%w = - /Q/ (EJHZ + E;*HZ) da'dw. (12)
2 « — 00
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1 too
60 (0,60) = ; / / (BESHR* + ERSHD® + SEXHE + EX*6HE) da'dw. (15)
QJ -
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Here 6E2, §HZ2* are the first variations of the residual electric and magnetic fields:

SE} =6 (B (2, 0,w) — E} (2/,0,w)) = —8Eb (x',0,w),
(16)
SHE* = 6 (H2P (2',0,w) — HY* (2/,0,w)) = —6HY* (z',0,w),

using 6B = §HY"* = 0.
According to Appendix A the first variations of the background electric and magnetic fields
can be calculated as:

6Ef,’ (2, 0,w) = iwuo/ G(,,,éoEst, (17)

SHY (2',0,w) // "b(s Elds, (18)

where G, is the Green’s function of the geoelectrical model with the background conductivity
op = oy (T, z). Substituting Egs. (17) and (18) into Egs. (16) and (15) and changing the order of
integration, we obtain:

) 1 A feo s b 7 A% AaG* b
é‘b(a,&o’):*z Dbo' 0t o 7fw/1'[)GrrbEny Ey 92 Ey

0G,,,
92

—iwpo Gy, B HY — ES* E”) da'dwds.  (19)

At the same time the residual magnetic field H2 can be expressed as the vertical derivative
of the residual electric field E’UA using the equation:
1 OEQ}

HY =
T wpo 07

(20)

Taking the last equation into account we can modify Eq. (19):

1 +00 aE*A
-1 // 50/ E) / <Gob 85’ —- E}* BGU'}) dz'dwds
D Q —o0
1 oo OE® oG,
_Z 5 Eb* . * vy _ A ob /
4//1) O'/Q Y [m (Gab 5y E, 5 )d:c dwds.  (21)

6® (0,60)

According to Appendix B:

+oo , 8EA oG, .
/_ (G"’ e az'b)dl'l_EyAmv (22)
and A
+o00 aE* 8G
Ax Am
[m (GU = )d’ ~ g, (23)

where EyA’” is the migrated residual electric field, determined in Appendix B.
Substituting Eqs. (22) and (23) back to Eq. (21) we obtain:

1
6@ (op,60) = 71//;60/0(E?(;Eyam—i-Es*EyAm*)dwds

L ‘ b pAm
—2//5(50‘]%6./(2 E, B, ™ dwds. (24)

I
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Therefore, to make the first variation of the misfit functional to be negative we have to select 6o
as:
bo (r,2) = —kol (x,2), (x,2) € D, (25)
where the gradient direction [ (z,z) (or direction of the steepest ascent) is computed using the
expression:
I(z,2) = —Re / EVES ™ dw, (26)
Q

and ko is a positive number (length of a step). This choice of 6o makes

o p 2
1
6 (O‘b,(sa) = ‘i‘ko // |:R€/ El;EyAWde} dS,
S Q

which is indeed negative.

Thus, we can see that the gradient direction of the residual field energy flow functional is
equal to the integral over frequencies of the product of the incident (background) field and the
migrated residual field.

Let us select the initial conductivity distribution model to be equal to the background con-
ductivity:

a ) (IZ) = 0y (CIK,Z). (27)

The first iteration of the conductivity can be found as:
oqy (T, 2) = o) (x,2) + b0 (x,2) = 0p (T, 2) — kol (z,2), (x,2) € D. (28)

Formula (28) describes the first approximation to the conductivity distribution. We can see from
Egs. (25) and (26) that the anomalous conductivity éo (z, z) is proportional (with some constant
coefficient kg) to the frequency stacked values of the product of the background (incident) field Ez
(the field that corresponds to the background distribution of conductivity oo (z,2) = o3 (x, 2))
and the migrated residual field E}™ = [E;bs (', 0,w) — Eg (', 0, w)]m. In the time domain the
stacking formula corresponds to the convolution of the background and migrated electric field
(Zhdanov and Portniaguine, 1997).
The optimal length of the step ko can be determined by a linear search for the minimum of
the functional:
® oy (z,2) — kol (2, 2)] = ® (ko) = min (29)

with respect to kg. Derivations presented in Appendix C show that k¢ can be determined by the
formula: oo

Re fQ fvoo [EéHf‘* + EyAHi*] dr'dw

fo = 2Re [, [*® EUHIdy'd
QJooo Lyfly 0T AW

; (30)

where Eé is migration fiéld, calculated for the model perturbed in the gradient direction.

Note in the conclusion of this section that we have discussed above the iterative migration
method based on steepest descent method. It is well known that this method usually converges
more slowly than Newton method or conjugate gradient (CG) method. However, using the
expression for steepest ascent direction (26) one can easily apply the CG search for the optimal
geoelectrical model. We don’t present here the full description of CG migration due to the limited
size of a journal paper. At the same time, we will demonstrate below that even migration based
on the first iteration of the steepest descent method can produce reasonable geophysical results.

Thus, on the basis of Eqgs. (25) and (26), we can introduce the migration apparent conduc-
tivity as:

Ao ma (x,2) = koRe /Q E‘; (z, 2) Eﬁ‘m (z,z) dw. (31)
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4. Tterative Migration

We have demonstrated above that the conventional migration imaging introduced in our
paper (Zhdanov and Keller, 1994) and others, can be treated as the first iteration in the solution
of some specific EM inverse problem, formulated in Section 2. Obviously, we can obtain better
imaging results if we repeat the iterations. The general iterative process can be described by the
formulae:

O(nt1) (T,2) = 0(ny (T,2) +60(n) (T,2) = o) (T, 2) — knlpn (2,2), (z,2) € D. (32)

The gradient direction on the n-th iteration [, (x, 2) can be calculated by the formula, analogous
to Eq. (26):
l, (z,2z) = —Re / EJE;"™dw, (33)
Q
where E} is the field calculated by forward modeling for the geoelectrical model with the con-

ductivity distribution o) (z, 2), and EyAm is the migrated residual field EyA", computed as the
difference between the observed field and the theoretical field E}, found on the n-th iteration:

E2 (2!, 0,w) = B (2',0,w) — E (2, 0,w),

y
(34)
HxAn ('r/v va) = H;bs (Ilvoa ‘-‘)) - H;' (37/707‘4)) .
The optimal length of the step k, can be determined by the formula, similar to (30):
Re [, [*2° [EbHA»> + E&» HI*] da'dw
A Jo 22 [Ey Y ] (35)

2Re [, jj:oo Eé"‘Hi"*d:r’dw,

where EL is the electric field, calculated for the model o, (z,z), perturbed in the gradient
direction.

Note that the iteration scheme described above does not include regularization, so the solu-
tion can be unstable. To obtain a regularized solution we should introduce a Tikhonov parametric

functional:
P*(oc)=® (o) +aS (o), (36)

where « is a regularization parameter, and S (¢) is a stabilizer that can be determined as an Lo
norm of the difference between the current conductivity distribution ¢ and some a priori model
of the conductivity oqp-

5 (o) = llo = Tapr

b= [ 192 = o 2. (37)

The a priori model is usually selected based on available geological and geophysical information.
In this case the iterative process is described by the formula:

O(n+1) (l‘, Z) = O(n) (957 Z) - kﬁla)lgza) (II),Z) ’ (38)

where () (z,2) is the regularized gradient direction on the n-th iteration, calculated by the
formula:

189 (z,z) = —Re /QE;EyA"mdw +a(on — Tapr) (39)
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and the length of the regularized step k) is caleulated using the linear search for the minimum
of the parametric functional:

pe (a(n) - k,(za)lﬁf‘)) =Pp* (k,(lo‘)) = min. (40)

Thus, we can describe the developed method of EM inversion as the process of iterative migration.
On every iteration we calculate the theoretical EM response for the given geoelectrical model
O(n) (¥, z), obtained on the previous step, calculate the residual field between this response and
the observed field, and then migrate the residual field. The gradient direction is computed as
the stack over the frequencies of the product of the migrated residual field and the theoretical
response E7. Using this gradient direction and the corresponding value of the optimal length of

the step kY we calculate the new geoelectrical model T(n+1) (T, 2) on the basis of expression
(38). The iterations are terminated when the functional ® (o) reaches the level of the noise energy.
The optimal value of the regularization parameter « is selected using conventional principles of
regularization theory, described, for example, in Zhdanov and Keller (1994) or Zhdanov (1993).

5. Numerical Models

We analyze the properties of new imaging conditions, introduced in this paper, on simple
synthetic models. We have calculated the theoretical EM fields for these models using the code
PW2D discussed by Wannamaker et al. (1987). For numerical calculation of the migration field
we use finite-difference code, developed in our paper (Zhdanov et al., 1996).

Figure 1(a) depicts a locally conductive rectangular-insert 2-D model. The resistivity of
the inclusion is 0.5 Ohm-m and the resistivity of the host rocks is 250 Ohm-m. The synthetic
“observed field” components were calculated using the same PW2D forward modeling code. The
N = 61 observation points x; (i = 1,2,...,N) were located along the profile on the earth’s
surface with the separation Az = 1000 m. We have computed the electric £, and magnetic H,
fields for the J = 42 periods within the range 0.01-0.25 sec. The result of migration imaging for
multifrequency TE mode EM data is shown in Fig. 1(b),(c),(d) (1st, 2nd and 4th iterations). One
can see that even migration image obtained on the 1st iteration reconstructs well the location
of the inhomogeneity. However, the conductivity contrast is underestimated. The 4th iteration
reproduces well both the geometry and the conductivity of the rectangular body. Figure 2 presents
the plots of the normalized residual energy functional ® computed by discrete analog of formula
(12) and the traditional normalized least square misfit functional ¢, computed for apparent
resistivity differencies for all 4 iterations:

1\7 J * \ *
. Soicy ijl [Ef (z4,w;) HY (@, wj) + EyA (z4,w;) HS (.”I,',;,wj)]
- ZV J o0s 008 * * !
St D B (iywy) HEb* (24, wy) + EQP* (24,w;) HE (x4, w;)]

obs

N J
SN P2 (wiywy) — P8 (4, w)

N J 2
D i1 ZJ:] |08 (i, wy)

where p2”® is observed magnetotelluric resistivity and pg.") is theoretical predicted apparent resis-

tivity computed by the formulae:

‘ 2

Pp

b

obs
Ey
b
Hebs

m_ L |Ey
s Ma Hg‘

Wio

1
obs _ _ =
Po = Whto

(41)

We can observe a fast convergence of the iterative migration on these plots. Note that CPU time
for computing one migration iteration is approximately equal to 20 s on Spark 4 Work Station,
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Fig. 1. (a) 2-D resistivity model of a locally conductive rectangular-insert. The resistivity of the inclusion is
0.5 Ohm-m and the resistivity of the host rocks is 250 Ohm-m; (b) The result of the 1st iteration migration
imaging, stacked over the time periods range 0.01-0.25 s; (¢) The result of the 2nd iteration migration imaging,
stacked over the time periods range 0.01-0.25 s; (d) The result of the 4th iteration migration imaging, stacked
over the time periods range 0.01-0.25 s.

which is 2-3 times faster than the forward modeling solution. So, the most time consuming part of
the iterative migration is the forward modeling. For example, the total CPU time for computing
the 4th iteration presented in Fig. 1 is approximately equal to 4 minutes.

Figure 3 shows the apparent resistivity curves computed at the point £ = 0 m on the surface
of the earth for geoelectrical models obtained by 1st, 2nd and 4th migration iterations. One can
see that these plots converge to the observed apparent resistivity curve (shown by solid lines).

We compare the migration results with the inversion by the popular Rapid Relaxation Inver-
sion (RRI) technique developed by Smith and Booker (1991). Figure 4 presents the RRI image
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Fig. 2. The plots of the normalized residual energy functional > computed by discrete analog of formula (12)

and the traditional normalized least square misfit functional ¢, computed for apparent resistivity differencies
for the model shown in Fig. 1(a).

obtained for the same model shown in Fig. 1(a). It took 30 iterations and about 30 Min of CPU
time to generate this model. The misfit between the synthetic observed data and the theoretical
field generated by RRI for the model presented in Fig. 4 is equal to 1.54%. One can see that in
spite of the small value of the misfit, the model obtained by RRI describes the real rectangular
insert not as clearly as the migration image. The RRI produces a more diffuse and unfocused
image of the real geoelectrical structure than even the 1st iteration migration.



Migration versus Inversion 1425

. . v . v
W+
®
210° ]
§ +++ - inversion results
---  true value
R " . . N
107° 107 107° 1072 107 10° 10’
period(s)
" ' y . .
80
60} p
g 40 Tt v
20 4
. . . R
107 107 107° 1072 o' 10 10’
period(s)
iteration 1
. v . . .
W
B
810° 1
L " " A .
107 107 1070 107° 107" 10° 10’
peariod(s)
y v ey v v
80 — i
60 + J
a0 ]
20 N
o e . . " .
107 107 107 107 107" 10° 10’
period(s)
iteration 3
T v T y :
W
=
=
k]
810 p
. " L ) L
107° 107 107° 107° 107" 10° 10'
period(s)
1 T v T v
80 4
60 i
2
]
£ 40 i
20 N
o . M . . )
10° 10 107° 107? 107 10° 10'

period(s)

iteration 4

Fig. 3. The apparent resistivity curves and phases computed at the point £ = 0 m on the surface of the earth for
geoelectrical models obtained by 1st, 2nd and 4th migration iterations for the model shown in Fig. 1(a) (dash
lines). The observed apparent resistivity and phase curves are shown by solid lines.
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Fig. 4. The inverse model obtained for the model shown in Fig. 1(a) using Rapid Relaxation Inversion (RRI)
code by Booker and Smith (1991) after 30 iterations.

Figure 5 presents a 2-D model of a prismatic conductive prism with the horizontal shear
strain applied. Conductivity parameters of the model are the same as in the previous example.
We also use the same observation points and frequency for observed TE mode EM field. The
result of the 1st iteration migration is shown in Fig. 6. The image reflects the direction of the
deformation. It takes only 20 s of CPU time to generate this image. At the same time RRI
produces the inverse model presented in Fig. 7 after 35 iterations, and it requires 32 Min on
Sparc-4 Work Station. The RRI model itself doesn’t describe better the geometry of the real
conductive body than the migration image. However, 1st iteration migration underestimates the
conductivity contrast while RRI produces a correct estimation. To obtain the correct anomalous
conductivity by migration we have to run the migration iteratively several times, as it has been
demonstrated above for the model in Fig. 1. Meanwhile, if we would like to get a quick image of
the subsurface structures without paying much attention to exact conductivity contrasts, the 1st
iteration migration can solve this problem quite reasonably.

Note that the migration images for examples described above were computed for different
individual frequencies, and stacked over the range of frequencies. Stacking for a spectrum of
frequencies results in positive reinforcement within the inhomogeneity and destructive interference
elsewhere.

However, even images for individual frequencies possess the necessary resolution, as we can
see for the next model of two conductive rectangular inserts with resistivities 0.5 Ohm-m within
a 250 Ohm-m background, presented in Fig. 8. Figure 9 shows the migration image computed for
the period 0.05 s. For comparison we have applied the RRI to the same data and have obtained
a geoelectrical model presented in Fig. 10. This model, similar to one shown in Fig. 4, gives a
rather diffusive image of actual structures. However, misfit between the observed and theoretical
data for this model is very small and equal 1.54%. The CPU time for migration is 22 s, while the
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Fig. 5. 2-D resistivity model of a prismatic conductive insert with the horizontal shear strain applied.
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Fig. 6. The result of the lst iteration migration imaging, stacked over the time periods range 0.01-0.25 s.
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Fig. 7. The inverse model obtained for the model shown in Fig. 5 using Rapid Relaxation Inversion (RRI) code
by Booker and Smith (1991) after 35 iterations.
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Fig. 8. 2-D resistivity model of 2 conductive rectangular inserts with resistivities 0.5 Ohm-m within a 250 Ohm-m
background.
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Fig. 9. The result of 1st iteration migration imaging at the time period 0.05 s for the model shown in Fig. 8.
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Fig. 10. The inverse model obtained for the model shown in Fig. 8 using Rapid Relaxation Inversion (RRI) code
by Booker and Smith (1991) after 35 iterations.
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CPU time for inversion by RRI method is 30 Min.

Imaging resistive structures is usually a more difficult task than imaging conductive objects.
Figure 11 shows a model with one resistive (5000 Ohm-m) prismatic insertion, and one conductive
(0.5 Ohm-m) within a 250 Ohm-m background. The synthetic “observed field” components were
calculated using the same PW2D forward modeling code. The N = 121 observation points
z; (1 = 1,2,...,N) were located along the profile on the earth’s surface with the separation
Az = 1000 m. We have computed the electric £, and magnetic H, fields for the periods 0.01-
0.25 s. As we can see in Fig. 12, 1st iteration migration allows us to resolve both the resistive
and the conductive objects. We have the same result even if we add 25% Gaussian noise to the
observed data (Fig. 13).

So far, we have discussed results of applying migration imaging to 2-D models in TE mode.
However, we can repeat for TM mode as well all the derivations made above for TE mode. We
thus obtain the following imaging conditions for TM mode data:

ACpmq (2, 2) = k‘OR(e/ H;’ (z,2) Hﬁm (z,2) dw. (42)
Q

Thus, we can see that the migration anomalous conductivity for TM mode is equal to the
integral over frequencies of the product of the incident (background) magnetic field H;’ and the
migrated residual magnetic field H;\‘m. Figure 14 presents the 1st iteration migration results for
TM mode data, calculated for the same model shown in Fig. 11. We can see that the migration
image for TM mode is exactly the same as for TE mode (Fig. 12).

We have also applied RRI method to inverse TE and TM data for the same model. The
results of inversion are shown in Figs. 15 and 16. These images are compatible with those obtained
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Fig. 11. 2-D resistivity model with one resistive (5000 Ohm-m) prismatic insertion, and one conductive (0.5
Ohm-m) within a 250 Ohm-m background.
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Fig. 12. The result of the 1st iteration migration imaging for TE mode, stacked over the time periods range
0.01-0.5 s for the model shown in Fig. 11.
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Fig. 13. The result of the st iteration migration imaging for TE mode, stacked over the time periods range
0.01-0.5 s for the model shown in Fig. 11 with 25% Gaussian noise added.
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Fig. 14. The result of the 1st iteration migration imaging for TM mode, stacked over the time periods range
0.01-0.5 s for the same model shown in Fig. 11.
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Fig. 15. The inverse model obtained for the model shown in Fig. 11 using Rapid Relaxation Inversion (RRI) code
by Booker and Smith (1991) for TE mode after 35 iterations.
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Fig. 16. The inverse model obtained for the model shown in Fig. 11 using Rapid Relaxation Inversion (RRI) code
by Booker and Smith (1991) for T'M mode after 35 iterations.

by migration. They produce better estimation of the depth of the resistive body. Meanwhile, the
CPU time for RRI is about 35 Min for TE mode and 29 Min for TM mode, while in the case of
migration it took only 23 s to actually generate the image.

6. Conclusion

The results of theoretical analysis presented in this paper demonstrate that there is a very
close connection between the method of EM migration, developed in our earlier papers, and the
solution of the conventional EM inverse problem. Actually, we can say now that migration is
an approximate inversion. It realizes the first iteration in the inversion algorithm, based on the
minimization of the residual field energy flow through the profile of observations. This new theo-
retical result suggests a new imaging condition formulation and indicates a new approach to EM
imaging, based on iterative migration. The iterative migration forms a principally new method
of interpreting EM data, which combines the ideas of downward continuation and traditional
inversion. Numerical modeling demonstrates that migration generates reasonable images of the
subsurface structures an order faster than rigorous inversion.

We also should notice in the conclusion that there are some limitations in using migration for
interpretation of EM data. The main problem is that the background conductivity distribution
used for migration should be known a priori, while in the case of conventional inversion it is usually
generated in the process of inverse problem solution. Different ways of solving this problem have
been discussed in our paper (Zhdanov et al., 1996).

Another problem is related to the fact that the migration is based on the transformation
of the electric and magnetic fields observed on the surface of the earth, and cannot handle the
impedances, which are usually recorded in the case of magnetotelluric observations. Practical ap-
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plication of the migration would require implementation of a special observation system designed
to obtain the synchronous distribution of electromagnetic field along the profiles on the earth’s
surface. It can be done by simultaneously using one moving observation and one fixed reference
station and by applying transfer function technique to process these data. One can find more
details about this technique in the book by Berdichevsky and Zhdanov (1984).

Financial support for this work was provided by the National Science Foundation under grant
No. EAR-9403925.

We also thank the University of Utah Consortium of Electromagnetic Modeling and Inversion
(CEMI), which includes CRA Exploration Ltd., Mindeco, MIM Exploration, Naval Research Labora-
tory, Newmont Exploration, Western Mining, Kennecott Exploration, Schlumberger-Doll Research, Shell
International Exploration and Production, Western Atlas, Western Mining, the United States Geological
Survey, Unocal Geothermal Corporation, and Zonge Engineering for providing additional support for this
work.

We are thankful to the reviewers, Drs. C. Farquharson and D. Avdeev, for their helpful remarks.

Appendix A: Calculation of the First Variation of Electromagnetic Field

Perturbing Eq. (1) we obtain the equation for the first variation of the electric field:

—iwpobo by, (x,2) € D

0, (¢.2) ¢ D (A1)

v? OE, + iwppod By = {

We now introduce the Green’s function G, of the geoelectrical model with the conductivity
o = o (x,z). The Green’s function depends on the position of the points (z, z) and (z’,2’) and is
determined by the equation:

V3G, (z,z |2, 2') +iwpeoGy (z,2|2',2") = =6 (x — 2', 2 — 2'), (A.2)

where 6 (x — 2,z — 2’) is two-dimensional Dirac function.
According to the Green’s formula:

9B, ., 0G , ‘
LG, Z8E, | dl = +V26E, — 2 : .
/,( on TN y) d //S (G,V*6E, — 6E,V*G,) ds, (A.3)

where n is the direction of the outer normal to L.

Let us assume now that the region S is a big circle with the center inside domain D and of
radius R which is so big that D C §. Taking into account Eqgs. (A.1) and (A.2) the Eq. (A.3)
can be rewritten as:

G
/ DE, —2G, ((—géE dl = // (—iwpoGoboEy + 6Ey 6 (x — &',z — 2)) ds. (A.4)
I on a S

Let us expand the radius R of the circle L to infinity. Then the curvilinear integral will go
to zero, because, due to the radiation conditions, functions 6 F, and G, vanish rapidly at infinity,
and we finally obtain:

SE, (z',2') = iwpo // Go(v—1a',z-2") b0 (x,2) E,(x,2) ds. (A.5)
D
The first variation of the magnetic field 0 H, can be calculated from 8 Ey using Maxwell’s equations:
1 d&E 0G, !
§H, (2',2") = —- // —z )50 (z,2) Ey(x,2)ds, (A.6)
W o

where domain of integration changes from S to D because of Eq. (14).
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Appendix B: Integral Representations for Electromagnetic Migration Field

Following our previous publications (Zhdanov and Keller, 1994; Zhdanov et al., 1996), we
introduce the EM migration field as the solution of the boundary value problem for the ad-
joint Maxwell’s equation. In the case of E-polarization and in the frequency domain, the ET*
component of the EM migration field satisfies the equation:

VQE;”* — iquUE;”* =0,2z>0 (B.1)

everywhere in the lower half-plane, vanishes according to the radiation conditions at the infinity,
and is equal to the observed field on the surface of observation z’ = 0:

E7 (2,2 =0,w) = By (2,2 = 0,w),

8E;n* (¢, 2, w) _ OB, (¢, 2, w) (B.2)
oz 20 o0z o
where asterisk * denotes complex conjugate values.
We have the same conditions for the migrated residual field Ef}:
VEER™ —iwpgo Eg™ =0, 2> 0 (B.3)

and
EP™ (2!, 0,w) = B (2, 0,0)

BE;””* (2,2 ,w) 3E$ (¢, 2, w)
0z N oz’

z'=0 z'=0

The complex conjugated Green’s function G, satisfies the following equation in the lower
half-plane:
VG:, (2, 2]z, 7)) — iwpeoGL, (z,2]2',2') = =6 (x —2', 2 — 2') . (B.4)
We can now apply Green’s formula taking into account Eqs. (B.3) and (B.4) and repeating the
derivations similar to the one described in Appendix A. As the result, we find the expression for
the migrated residual electric field as an integral over the profile of observations, horizontal axis
z, of the residual electric field:

400 3EA /’/ o9G* ot
/ (szuaznczv-—4i53—33-—EA(xcz) 2 @)
z'=0

oz 4 oz
= E}™ (z,2). (B.5)

—0OQ

Taking complex conjugated values of the left-hand and right-hand parts of Eq. (B.5) we determine:

400 (9EA* /’/ '
/ Q%uﬂdw—LﬁiLﬂfwwf@“”““vw

0z’ oz
= E}™ (x,2). (B.6)

—00

The last two equations give the integral representations for the solution of the boundary value
problem for the migrated residual field.
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Appendix C: Definition of the Length of the Step ko

The optimal length of the step ko can be determined by minimization of the functional
® [0y (z,2) — kol (z,2)] = @ (ko).

We denote by Eg(/l), Hg(cl) the EM field components corresponding to the geoelectrical model
with the conductivity distribution o = o} (z,2) — kol (z, z). Let us substitute El(,l), Hg(cl) into Eq.

(12),
1 [ [T
@:;// (Ey’AH;“A*+E§1>A*H§1)A) dz’dw, (C.1)
4 QJ—o0

where E?(,l)A = E;bs - Eél), M = Hebs — g(ﬁl), and the calculation of theoretical field El(,l),

H;l) is linearized, using Born approximation (Berdichevsky and Zhdanov, 1984):

B = B (o)~ By 0w) +ivm [ oo =o'\2)00 (@,2) By 2,20 ds
= Ey(¢,0,w) - koEy (2’ 0,w), (C.2)
0Gy, (x —a' 2z — 2')
~ b " a )
H.E'l) = Hil) (I/,(),w) ~ H:c (.7,’,0,w) —/:/S : 92 |z':0 bo (.’L’,Z) E‘Z (I,z)ds
- Hg (1,'/,0, LU) - kOH:i: ((IT,,(),(U) ) (Cg)
where 60 (z,2) = —kol(z, z) and Eé, H! are the fields, calculated using Born approximation for

the model, perturbed in the gradient direction:

EL (', 0,0) = iwpio / /S Go, (¢ —',2) 1 (z,2) B (,2) ds, (C.4)
1 OE!
H. =- L. :
z wpy 07 (€5)

Substituting Egs. (C.2) and (C.3) into Eq. (C.1), we obtain:
d = l/ /HO (E(I)AH(I)A* I E(I)A*H(I)A> dr’ duw
4 QJ—o0 Y * y ’
_ LT [E2 + koEL) [HA + koHL]”
*ZQ_OO y Oy}[z+0x]
+ (B + koEL]" [H + koH!) } dadw. (C.6)
Now we can find the first variation of ® (ko) with respect to ko:
1 +00
ko® (ko) = Z(Sko/ / {[ELHZ* + EXHY + EXHE + ES*HY)
QJ -0
+2ko [EyH + EVHL]} da'dw.  (C.7)
After some algebraic transformations, we obtain:

1 oo
Sko® (ko) = 56ko /Q / {Re [ELHD* + E}HL] + 2koRe [ELHL |} di' duw. (C.8)
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The necessary condition for minimizing ® (ko) is:
8ko @ (ko) = 0.

Therefore, we have:
+o00
/ / {Re [ELH2* + E}HL| + 2koRe [ELHY| } da'dw = 0.
QJ—o0

From the last equation we find at once:
Re [, |72 [ELHS* + ERHE] da'dw
2Re [, [ EL Hr da'dw '

ko = (C.9)
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