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SUMMARY 
Time-domain electromagnetic (TDEM) migration is based on downward extrapolation 
of the observed field in reverse time. In fact, the migrated EM field is the solution of 
the boundary-value problem for the adjoint Maxwell's equations. The important 
question is how this imaging technique can be related to the solution of the geoelectrical 
inverse problem. In this paper we introduce a new formulation of the inverse problem, 
based on the minimization of the residual-field energy flow through the surface or 
profile of observations. We demonstrate that TDEM migration can be interpreted as 
the first step in the solution of this specially formulated TDEM inverse problem. 
However, in many practical situations this first step produces a very efficient approxi­
mation to the geoelectrical model, which makes electromagnetic migration so attractive 
for practical applications. We demonstrate the effectiveness of this approach in inverting 
synthetic and practical TDEM data. 
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problem for the adjoint Maxwell s equation, can be clearly 
1 INTRODUCTION 

associated with the inverse-problem solution. We introduce the 
Time-domain electromagnetic (EM) migration is based on residual EM field as the difference between the simulated EM 
downward extrapolation of the residual field in reverse time. field for some given (background) geoelectrical model and 
The basic principles of EM migration have been formulated the actual EM field. The EM energy flow of the residual field 
in Zhdanov (1988), Zhdanov, Matusevich & Frenkel (1988), through the surface of observations can be treated as a 
Zhdanov & Keller (1994) and Zhdanov, Traynin & Booker functional of the anomalous conductivity distribution in the 
(1996). EM migration has important features in common with model. The analysis shows that the gradient of the residual­
seismic migration (Zhdanov et al. 1988; Claerbout 1985) but field energy-flow functional with respect to the perturbation 
differs in that for geoelectric problems EM migration is carried of the model conductivity is equal to the vector cross­
out on the basis of Maxwell's equations, while in the seismic correlation function between the incident (background) field 
case it is based on the wave equation. We have introduced and the migrated residual field, calculated as the solution of the 
time-domain EM migration as the solution of the boundary­ boundary-value problem for the adjoint Maxwell's equation. 
value problem in the lower half-space for the adjoint Maxwell's This result clearly leads to a construction of the rigorous 
equations, in which the boundary values of the migration field method of solving the inverse EM problem, based on iterative 
on the earth's surface are determined by the observed EM field. EM migration in the time domain, and a gradient (or conjugate 

In the paper by Zhdanov, Traynin & Portniaguine (1995) a gradient) search for the optimal geoelectrical model. However, 
technique for transforming the EM migration fields and their the authors have found that in the framework of this method 
different components into resistivity images of the vertical even the first iteration, based on the migration of the residual 
cross-section was developed. However, the question still field, generates a reasonable geoelectrical image of the sub­
remains open how this imaging technique can be related to surface structure. We call the anomalous conductivity, calcu­
the solution of the geoelectrical inverse problem. Meanwhile, lated on the first iteration, the migration apparent conductivity. 
Tarantola (1987) demonstrated that seismic-wave migration, We obtain a simple integral relationship between the migration 
which was the prototype for EM migration, can be treated apparent conductivity and actual anomalous conductivity, 
exactly as the first iteration in some general wave-inversion similar to the relationship established in the time domain for 
scheme. In the paper by Wang et al. (1994) this analogy was the inversion method based on the back-propagated TEM 
extended to the case of the diffusive transient EM field. field (M. Oristaglio, personal communication, 1996). It 

In this paper we formulate and prove an important new describes the space filtering of the actual conductivity with the 
result: EM migration. as the solution of the boundary-value Green's-type function. We believe that this relationship will 
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help to improve the migration imaging conditions because 
it opens the way for straightforward transformation of the 
migration apparent conductivity into the real conductivity. 
We compare these new imaging conditions with the tradi­
tional one, obtained for simplified geoelectrical models of the 
subsurface structures (Zhdanov et al. 1995). 

In summary, in this paper we demonstrate that EM 
migration imaging can also be considered as the initial step in 
the general EM inversion procedure, based on the minimization 
of the residual-field energy flow through the surface of obser­
vations. This similarity facilitates a better understanding of 
the mathematical and physical background of EM migration 
and, at the same time, helps in developing new geoelectrical 
imaging tools. 

2 TIME-DOMAIN ELECTROMAGNETIC
 
MIGRATION AS THE SOLUTION OF THE
 
BOUNDARY - VAL UE PROBLEM
 

Let us formulate a general time-domain EM inverse problem. 
Consider a 3-D geoelectrical model consisting of a homo­
geneous atmosphere and an inhomogeneous earth with the 

. conductivity O"(r) = O"b(r) + O"a(r), where O"b(r) is some back­
ground (normal) distribution of the conductivity, and O"a(r) is 
the anomalous conductivity, which is not equal to zero only 
within some domain D. We will denote the surface of the earth 
by L. We will confine ourselves to the consideration of non­
magnetic media and hence assume that fl = flo= 4n x 10- 7 H m - 1 , 

where flo is the free-space magnetic permeability. The EM field 
in this model is generated by an arbitrarily located source with 
the current density je. Receivers are located on the surface of 
the earth. We assume also that the EM field is varying in 
time relatively slowly, so that in the equations for this field 
the second derivative with respect to the time a2/t;t2 can be 
discarded. In other words, we consider the so-called quasi­
stationary model of the EM field (without displacement 
currents) (Zhdanov 1988). 

We can represent the total EM field observed in this model 
as the sum of the background (normal) field {E b

, H b 
} generated 

by the given source in the model with the background con­
ductivity distribution, and an anomalous field {E", H" }. which 
is due to an inhomogeneity O"a(r): 

E=Eb+Ea, H=Hb+Ha. (1) 

The total EM field satisfies Maxwell's equations: 

V x H = (0"b + 0"a)E +Y, 
aH (2) 

VXE=-II­
I' at ' 

while the anomalous field satisfies the equations: 

V x H a = O"bEa + O"a(Eb + Ea), 

aHa (3) 
V x E" = -fl-~-. 

ot 

The general EM inverse problem can be formulated as 
follows. We are given the observed total EM field on the 
surface of the earth and the background (normal) distribution 
of the conductivity O"b(r). The problem is to determine the 
anomalous conductivity O"a(r). 

In this section we introduce first the migrated anomalous 
EM field and show how it can be calculated from the anomalous 

field. In the following sections we will demonstrate the con­
nections between the migrated EM fields and the solution of 
the EM inverse problem. 

It is known (Zhdanov 1988) that the anomalous EM field in 
this model can be expressed as an integral over the anomalous 
domain D of the product of the corresponding Green's tensors 
and excessive currents O"a(Eb + E"): 

Ea(r, t) = r: JJLG~(r, tlr', tl)'O"a(r') 

. [Eb(r ', t') +E'{r', t')J do'dt, (4) 

and 

Ha(r, t) = J:a:; JJLG~(r, rlr', t')'O"a(r') 

. [Eb(r', t') + Ea(r ', t')J dv'dt', (5) 

where G~ and G~ are the electric and magnetic Green's tensors 
for the background conductivity O"b(r), whose vector com­
ponents relate the electric and magnetic fields excited at the 
point r by an electric dipole source of unit intensity located 
at the point r ' of the domain D. The basic equations for 
Green's tensors and their properties are briefly summarized in 
Appendix A. 

A general definition of the EM migration field has been 
given in the Zhdanov (1988). According to this definition, the 
migration field is the solution of the boundary-value problem 
for the adjoint Maxwell's equations. For example, we can 
introduce the migration anomalous field E am and Ham, as the 
field, determined in reverse time t = - t, whose tangential 
components are equal to the anomalous field in the reverse 
time at the surface of the earth, L: 

n x Eam(r, r) = n x Ea(r, - r}, 
(6) 

n x Ham(r, r) = n x Ha(r, -r), r E L, 

where n is the unit vector of the normal to L directed into the 
upper half-space and satisfying Maxwell's equations in reverse 
time within the earth with a background conductivity O"b: 

V x Ham = O"b Eam, 

am (7)V x Eam_ oH - -fl or . 

From (7) we can obtain the separate equation for the migrated 
anomalous electric field: 

am 
V x V' x E?" _ aE- -!lO"b -- (8)ar . 
Therefore, in reverse time t, the electric migrated field satisfies 
the ordinary vector diffusion equation. However, in direct time 
t = - r the migrated anomalous electric field satisfies the 
equations adjoint to (8): 

iJEam 
V' x V' x E"" = flO"b -----at . (9) 

While the ordinary diffusion equation describes the develop­
ment of the process of EM field propagation in an increasing 
time from the source to the receiver. eq. (9) reflects the same 
process in the reverse order, that is from the final distribution 
of the field at the receivers to its initial distribution at the 
sources. Eq. (9) can thus be called, following Wang et al. 
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(1994), the vector concentration equation. As a result, the EM 
migration field can be treated as the field converging into the 
sources of the anomalous field, which actually coincide with 
the geoelectrical inhomogeneities. 

The solution of the boundary value problem (6) and (7) for 
the concentration equation can be obtained on the basis of 
Green tensor formula (B3) (see Appendix B). We assume that 
the volume D is bounded by the surface S, which is composed 
of the surface of the earth L, and an infinitely large hemisphere 
in the lower half-space. Since the electromagnetic field satisfies 
the radiation conditions, that is the functions Earn and H?" 
vanish exponentially at infinity, the surface integral over the 
infinitely large hemisphere tends to zero. If we substitute, in 
formula (B3) from Appendix B, the field F with the migrated 
field Earn(r, r), and the tensor P with the adjoint Green's tensor 
G~+ (r, rlr", r'), determined in Appendix A, we obtain the 
following: 

.,I.,IL{[V x V x Earn(r, r)]' G~+ (r, rlr', r') 

_Earn(r, r)' [V x V x G~+ (r, rjr", r')J} dv 

= .,lIn. {Earn(r, r) x [V x G~+ (r, rlr", r')J 
+ [V x Earn(r, r)J x G~+ (r, rlr', r'n ds. ( 10) 

Integrating the left-hand and right-hand sides of expression 
(10) over time r and taking into account eqs (8) and (A5), 
after some algebraic calculations we obtain 

Earn(r', r') = .,1_+0000 .,lIn. {Earn(r, r] x [Gt+ (r, rjr, r')J 

-Harn(r, r) x G~+(r, rlr, I')} dsdt . (11) 

Returning from the reverse time, I, to the ordinary time, t = 

-I, and taking into account the reciprocal relations (A3) and 
(A4) from Appendix A and boundary conditions (6) for the 
migration field, we can finally write 

Earn(r', - t') = .,1_+0000 .,lIn. {Ea(r, t) x [Gt(r, t lr, t') J 

- Ha(r, t) x G~(r, rlr", t')} dsdt. (12) 

Integral formula (12) describes the solution of the con­
centration equation for the migrated anomalous electric field. 
The corresponding integral representation for the migrated 
anomalous magnetic field can be obtained from (12) using the 
second Maxwell's equation. These integral transformations 
describe the conversion of the anomalous EM field, generated 
by the excess currents in the geoelectrical inhomogeneties and 
diverging in real media, into the migration field, converging to 
the corresponding inhomogeneties. This process is actually 
equivalent to the field transformation in ordinary optical 
holography (Zhdanov 1988). In the next sections we will show 
how this converging field can be used for the solution of the 
EM inverse problem. 

MINIMIZATION OF THE RESIDUAL 
EM-FIELD ENERGY FLOW 

The energy flow of the electromagnetic field can be calculated 
using the Poynting vector P (Stratton 1941), introduced by 
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the following formula: 

P=E x H. 

The Poynting vector P may be interpreted as the intensity 
of EM energy flow at a given point that is the energy 
per second crossing a unit area whose normal is oriented in 
the direction of the vector E x H. For example, the total 
energy flow of the anomalous EM field through the surface of 
the earth L, is equal to 

Q= .,lIp· nds = .,I1(E xH)' nds , 

where n is the unit vector of the normal to the surface L, 

directed to the upper half-space (assuming that the sources of 
the anomalous field are located in the lower half-space). 

We denote the observed EM field as {Eobs' H obs}. The 
theoretical EM field, calculated for the given geoelectrical 
model O"(r) = O"b(r) + O"a(r), we denote as {Epro H pr} (predicted 
field). According to eq. (1), 

Eobs = E'' + E~bs , H obs = H b+ H~bs , 
bEpr = E + E~r' H pr = H b+ H~r . 

(13) 

Now, we determine the residual field {E~, H d } as the difference 
between the observed and predicted fields: 

Ed(r, t) = Eobs(r, t) - Epr(r, t) = E~bs(r, t) - E~r(r, r), 
(14) 

Hd(r, t) = Hobs(r, t) - Hpr(r, t) = H~bs(r, t) - H~r(r, t). 

We can introduce the energy flow of the residual field 
through the surface of the earth: 

Q~ = .,I1[Ed(r, t) x Hd(r, t)Jnds. 

Pankratov, Avdeev & Kuvshinov (1995) have proved an 
important theorem, according to which the energy flow Qd of 
the residual field is non-negative: 

Qd 2 0 . (15) 

Based on this theorem we can introduce the measure <1> of 
the difference between the observed and predicted fields as 
the energy flow of the residual field through the surface of 
observations, integrated over the time t: 

<1>= J-~ .,I1[E~(r, t) x H~(r, t)J·ndsdt20. 

The advantage of this new functional in comparison with the 
traditional misfit functional is that <I>(O"b) has a clear physical 
meaning, that is the residual-field energy flow through the 
profile of observations. Obviously, the theoretical predicted 
fields Epr(r, t) and Hpr(r, t) depend on the anomalous conduc­
tivity distribution O"a(x, z) in the given geoelectrical model; 
therefore, <I> can be treated as a functional of the anomalous 
conductivity model <1> = <I>(O"J. 

Thus, the EM inversion problem can be reduced to the 
minimization of the residual-field energy-flow functional, 

<1>(O"a) = min. 

Tn the following section we will discuss the solution of this 
problem. 
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4 SOLUTION OF THE MINIMUM 
ENERGY-FLOW PROBLEM 

We apply the gradient-type method to the solution of the 
minimum energy-flow problem, which is based on computing 
the gradient direction for the misfit functional and decreasing 
this functional by moving iteratively 'down the hill' (Tarantola 
1987) in the space of the inverse-problem solutions. 

Following the conventional ideas of the steepest-descent 
method, we calculate the first variation of the energy-flow 
functional in order to find the gradient direction: 

6<1> = - f_oooo fin. [E"'(r, t) x 6H~r(r, t) 

- H"'(r, t) x bE~r(r, t)J dsdt. (16) 

The perturbations of anomalous electric and magnetic fields 
can be expressed through the perturbation of the anomalous 
conductivity ()aa using the integral formulae similar to eq. (4) 
(Zjhdanov & Keller 1994; Wang et al, 1994): 

6E~r(r, t) = f-: ffL6~(r, tlr', t'). ()aa(r') 

. [Eb(r', t')+E~r(r', t')J dv'dt ', 

6H~r(r, t) = f~ \\r 6t(r, zlr", t')'6aa(r ') 
o: ~ ~ JD 

. [Eb(r', r) + E~r(r', t')J dv'dt'. 

Substituting the last equations into (16) we find 

b<D = - ffL()aa(r') f~oo f-: fin. {E"'(r, t) x 6t(r, rlr', t') 

-H"'(r, t) x 6~(r, rlr', t') ds} dt 

. [Eb(r', t ') + E~r(r', t') J dt' dv' . (17) 

According to eq. (12) the integral over the earth's surface can 
be treated as the migration of the residual field: 

f+ OO f1I' -00 n- {E"'(r. t) x 6t(r, tlr', t') 

- H"'(r, t) x 6~(r, rlr", t')} dsdt = E.',m(r', - r). (18) 

Substituting eq.(18) into (17), and taking into account (13), 
we obtain 

<5<1)(6., oa,) ~ - ffLoa,(r) f~" E""'(r, -I)' Ep,(r, I) dtdo , 
(19) 

where we have omitted the primes on rand t to simplify 
the formula. 

We have to find a perturbation of the anomalous conductivity 
()aa(r) that will reduce the energy-flow functional. In this case 
we go 'down the hill' in the space of the inverse-problem 
solutions. The obvious choice is 

(jaa(r)=ko f-: E"'m(r, -t)·Epr(r,t)dt, (20) 

where ko>- 0 is the length of a step. In this case the first 

variation of the energy-flow functional is negative: 

b<D(aa' baa) = -ko [6aa(r)J2 dv < o.ffL
Let us select the initial conductivity distribution model to 

be equal to the background conductivity, that is the initial 
anomalous conductivity is equal to zero: 

aa(O)lr) = O. (21) 

Then the corresponding anomalous part of the predicted field 
E~~O)(r, t) is also equal to zero: 

E~~O)(r, t) = 0, (22) 

and 

E~~)(r, t) = Eb(r, t). (23) 

The first iteration, according to eqs (20), (21) and (23), is given 
by the formula 

aa(l)(r) = aa(oJr) - kololr) = -klo(r), (24) 

where lo(r) is the gradient direction (with the minus sign): 

lo(r) = - f_oo:o E"'m(r, - t)· E~~'(r, t) dt. (25) 

The optimal length of the step ko can be determined by a 
line search for the minimum (Fletcher 1987) of the functional 

<D[ab(x, z) - kolo(x, z)J = <D(ko) = min, 

with respect to ko. Appendix C contains the detailed derivation 
of the corresponding expression for ko. 

Eq. (24) describes the migration imaging condition for 
determining the anomalous conductivity distribution from the 
migrated residual electric field. Obviously, the corresponding 
value (Ta(l)(r) provides only a first approximation to the real 
anomalous conductivity. To improve the resolution of the 
method, we can repeat the same procedure, which results in an 
iterative time-domain migration. The general iterative process 
can be described by the formula 

(Ta(lI+ 1)(r)= aa(II)(r) + ba(n)(r) = aa(II)(r) - k)n(r) , rED. 

The gradient direction on the nth iteration, In(r), can be 
calculated by the formula, analogous to (25), 

ill(r) = - leo Etl"m(r, -t)'E~j(r, t) dt . 
v - 00 

where E~j(r, t) is the field calculated by forward modelling for 
the geoelectrical model with the conductivity distribution 
aa(nj(r), and E",,,m(r, - t) is the migration of the residual field 
E"''', which is the difference between the observed field and the 
theoretical predicted field, E~, found on the nth iteration. 

It is well known (Zhdanov 1988; Zhdanov & Keller 1994; 
Zhdanov et al. 1995) that the numerical calculation of the 
migration field is a stable, well-posed problem. However, in 
the case of iterative migration the complete solution of the 
inverse problem is an ill-posed problem. To regularize the 
process of iterative migration we have to introduce a Tikhonov 
parametric functional (Tikhonov & Arsenin 1977): 

pa(a) = <D(a) + (is(a). 

The stabilizer S(a) can be determined as an L2 norm of 
the difference between the current anomalous conductivity 
distribution aa and some a priori model of the anomalous 
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conductivity O"apr: From the other side, according to eqs (14) and (22), the 

S(O") = II00a - O"apr = IIL[O"a(r) ­ ITapr(r)] 
2 dv. 

residual field is equal to the observed anomalous field, which 
can be computed using formulae (4) and (5). For example, for 
the electric field we have 

In this case the iterative process will be described by the 
formula 

0"a(n + l)(r) = aa(n)(r) - k~O:) I~O:)(r), (26) 

where I~JO:)(r) is the regularized gradient direction on the nth 
iteration, calculated by the formula 

I~O:)(r)= - I-: ELl"m(r, -t)'E~)(r,t)dt+Cl[O"n(r)-O"apr(r)], 

and the length of the regularized step k~,O:) is calculated using 
the line search for the minimum of the parametric functional 

pO:(IT(IJ) - k~O:) I~O:») = PO:(k~O:») = min. 

Thus, we can describe the developed method of EM inversion 
as the process of iterative migration. At every step of the 
iterations we calculate the theoretical EM response for the 
given geoelectrical model O"(n)(r), obtained from the previous 
step, calculate the residual field between this response and the 
observed field, and then migrate the residual field. The gradient 
direction is computed as a vector cross-correlation between 
the migrated residual field and the theoretical predicted field 
E~nj. Using this gradient direction and the corresponding value 
of the optimal length of the step k~O:), we calculate the new 
geoelectrical model O"(n+ l)(r) on the basis of expression (26). 
The iterations are terminated when the functional <1>(0") reaches 
the level of the noise energy. The optimal value of the 
regularization parameter C( is selected using conventional 
principles of regularization theory (Tikhonov & Arsenin 1977). 

5 MIGRATION IMAGING AS A SPATIAL 
FILTERING OF THE ANOMALOUS 
CONDUCTIVITY 

According to eq. (20) we can develop a migration imaging 
scheme based on the formula 

O"ma(r')=koI: ELlm(r ', -t')'Eb(rl,tl)dt', (27) 

where ko is determined using eq. (C5) from Appendix C. We 
will call ama(r'), determined using expression (27), a migration 
anomalous conductivity. The important question is how this 
apparent conductivity is related to the real anomalous con­
ductivity O"a' The solution of this question can be found directly 
from formula (27). 

Let us express the residual migration field E Llm through the 
observed residual field {ELl, H Ll }, using a formula similar to 
(11): 

oo 
ELlm(r ', -t') = r+oo ILn{ELl(r, t) x [Gt(r, t[r ', t ')] 

-HLl(r, t) x G~(r, rlr", t')} dsdt. (28) 

Substituting (28) into (27), we obtain 

O"ma(r ') = ko I_ooX) I_+ooOO ILn. {ELl(r, t) x [Gt(r, zlr", t')] 

- HLl(r, t) x G~(r, rlr', t')} dsdt· Eb(r ', t ') dt'. (29) 

ELl(r, t) = E~bs(r, t) = I_CCX) I I LO"a(r") 

"" 
x [Eb(r", t lf ) + E~bs(r", til)] G~(r, zlr", til)dv"dt lf , 

(30) 

where we use double-prime notation to distinguish r" from r'. 
A similar expression can be obtained for the magnetic field. 

Substituting (30) into (29), we find 

Clma(r ') = ko I-: I I LO"a(r")· I-: [Eb(r", til) + E~bs(r", til)] 

.I_-1X)CO I Ln. {&~(r, rlr", til) x [G~(r, zlr', t') J 

"" 
- G~(r, rlr", til) x G~(r, tlr ', t')} dsdt 

·Eb(r',t')dt'dv"dt lf (31)• 

Applying the Green tensor formula (B4) from Appendix B 
and executing calculations similar to those of Section 2 for the 
EM migration field, we obtain 

lf+CC I " "" 
-oc 1n'{Gt(r, zlr", t x [G~(r, tlr', t')JI ) 

"" 
- Gt(r, rlr", til) x G~(r, tlr', t')} dsdt 

= G~m(r', - r[r", til), (32) 

where G~m is the migrated Green's tensor. 
Substituting (32) back into eq. (31), we obtain 

Uma (r') ~ i; roo IILu, (r") J: [Eb(r", t") +E:b, (r", t") ] 

. G~m(r', - r'[r", til). Eb(r ', t ') dt' do"dt": 

The last expression can be rewritten in the form: 

O"ma(r') = IILO"a(r)g(r, r') dv, (33) 

where 

g(r, r') = ko I~~ [Eb(r, t) + E~bs(r, t)] 

. G~m(r', - r'[r, t)· Eb(r', t') dt ' dt. (34) 

Eq. (33) demonstrates that the migration apparent conductivity 
ITma(r ') can be treated as the spatial filtering of the real 
anomalous conductivity with a filter determined by expression 
(34). This filter is formed by the combination of the Green's 
tensors. which have local extrema at the point r = r'. The 
sharpness of the filter g(r, r') determines the measure of 
closeness of the migration apparent conductivity to the real 
anomalous conductivity. 
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vector d , is directed downwards. Within this model, the
6 TWO-D IMENSIONAL EM MIGRATION 

electromagnetic field can be described by a single function, Ey , 

Consider now a special case of the 2-D E polarized electro­ satisfying the equation 
magnetic field, excited in a 2-D geoelectrical model by an 
electrical current of density jCX= j'''d)., which is distributed in 2 a _ ~'cxV E,. - jIO(Jb -;;-E,. - flo _ ] , (35)
the domain Q in the upper half-space. We assume that ot · ot 
{d, ; d)', d.} is the orthonormal basis of the Cartesian coordi ­
nate system with the origin on the earth's surface, and unit and the magnetic field components {Hx, Hz} can be expressed 

i(a) 0 T1 ~~__-L~,--J-fTI~---:-rt__rt---:-rt -------L-----;----L~---'-' 
2
 

4 ~
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Figure 1. (a) Conductive and resistive bod ies in a two- layered host. (b) Migration result for the model with conductive and resistive bodies in a 
two -layered host. 
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Figure 2. (a) Conductive and resistive bodies in a host with an inhomogeneous surface layer. (b) Migration results for the model with conductive 
and resistive bodies in a host with an inh omogeneous surface layer. 

b y the equa tions	 anomalous field as the field eq ual to the anomalous electric 
field in rever se time on the profile L at the surface of the earth : o ' E 

110 -;;-H , =~ 
or ' uz'	 E ~m(.x', z' , t) = E~(x ' , z' , -t) . (x ', z') E L , (37) 

(36) 

-
i! 

J.l oDi Hz = 
DEy 
a; . 

an d satisfying the 2-D ana log ues of eq. (7): 

We can introduce the y-compo nent E ~ m of a 2-D migrati on 
2 am a am_V' E; +/lo(Jb -;;- E y - 0. 

ot 
(38) 
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Figure 3. (a ) Vertical component of magnet ic induction along the profile x over a 3-D conductive bod y, ( h) 3-D conductive body in a hom ogeneou s 
background , 

M agneti c co m ponen ts of th e 2-D m igra ted field ca n be In th e case o f th e horizontal lin e L of o bserva tions (z = 0 ), 
ca lcu la ted using the second Maxwell' s eq ua tion : exp ressio n (39) ca n be simp lified (Z hda no v & K eller 1994) to 

the foll owi ng : a ' 
- 110 -=- H':" _ c E~rn 

r:t	 .< - ­
am I I I - 1 a "
 

c::. '	 ~ - OC J j OC 

E, (x . z, - t ) = -~ J . EAx. O,lj
 
ri ' E r ·oc
It -r- H':" (' .am 

0(11 = = --" 
(' X	 r ' I' )t1 (; b(X,0, Il x , z , dxdt . 

(40)aX In tegr al formul a ( 12) for the calcula tion of th e migrat ed X 

anomalous field E ~m is t ra nsformed into the expressio n 
T he last expressio n gives us th e integra l me thod of ca lculation 

~ ' '"'' ,. [ DGb(x. ::.. / lx' . ::' . r' ) of th e m igrat ed electric field . We ca n al so t ra nsform this 
I:· ~m (.,, ' . z' , - r') = E~ (x , ::, t ) , . 

form ula to find the integral fo rmula for migration	 of th e . ' Cll I.1 .1- _ 
mag netic field . Indeed . let us different iate the last equati on 

b r , i)E~ (x . with respect to x ', After integr at ing by pa rts, we find ::.I)J
- G (x,z.t lx ,z ,r) . , dldt , (39) 

Oil	 

a fl oc J' OC (J
-=.-. H~m(x ' .z ' , - t') = - 2 -:;- 1I~m(x ,O,t) where	 n is th e di recti on of the norm al to the surface of th e ot	 t' o: ot -r 

earth L di rect ed in to th e upper half-space. a nd the Green's
 
function (;h(X. ::., tlx ', z' , r') satisfies the eq ua tio n 2G 

b
("" 0, f ix ' , z·,.!J dxdt . (41 )
 x , 

cz , t1 CO(I - r') 
V· Gb 

- 110Gb -:;- Gh = Ilo l)(X - x ')(z - ::. ') _ 
ti t ot	 Note th at typical geophysical EM equipment uses recei ver 

loops fo r mea suring th e co m po nents of th e magne tic field . 
We ha ve also taken int o acco unt in eq . (39) th at th e Gree n's 

Therefo re, the ac t ual da ta conta in th e reco rds of E M ind uct ion 
func tio n Gb(x , ::., f ix' , z', r' ) is ca usa l: 

in the lo ops, which are p roporti on al to the tim e derivat ives 
Gb(x. z, Ilx ' . z' , r) == 0, t ::; r. of th e magnetic-field varia tio ns (O/tlt )H =(x . 0, r). T herefo re, 
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Figure 4. (a) Migration apparent resistivity for a 3-D model with a cond uctive body computed using approximate imaging conditions. (b) Migration 
ap parent resistivity for a 3-D model with a conductive body computed using the new imaging conditions. 

expression (4 1) so lves the pr oblem of the m igration of EM and (2) dev eloping th e numerical method of EM migration 

inducti on dat a. N o te that in the 2-D ca se we can obtain from th rough media wit h an a rbit ra ry di stribution of background 
t he migrated field Wjh' )H; m(x '. z ' , - t') the migrated electric conductivity. (J"b ' 

field again (Zhdanov et al. 1995J. using the second Maxwell 's 
equation for the migrati on field : 

7.1 Determination of the backgroun d conductivity O'b 

f.·m( , - ' ' ) - J 
~ x a

Hm ( . , - ' ' ) d ' (42),I' x. ~ • - t - J.lo -----; z x . ~ • - t x .	 There a rc seve ral publicati on s dedi cated to the development _,,, at 
of sim ple an d fast inver sion techniques for the processing of 

Thus. express ions (40) . (4 1) and (42) solve the problem of the tr an sient EM dat a ov er inh om ogeneous structures ( Barn ett 

ca lcula t io n of the migr ated electric field on the basis of electric 1984; M acn ae & Lamontagne 1987; Eat on & Hohmann 1989 ). 

or magneti c o bse rva tions. A maj ority of th ese papers were ba sed o n equating the transient 
We ca n now use the 2-D analogue of the imaging condition resp on se, measured at the surface of the Ear th. to the EM field 

(27) to calculate the mi gration anomalous conducti vity o f cu rre n t-filame nt im ages o f the so urce. Fo r example. a rapid 

(jma (..X" ~ z' ], in ver sion technique (RIT) developed in Eaton & Hohmann 
( 1989Jand based o n the earl ier wo rk of M ac na e & Lamontagne 
( 1987) proved to be an effective method for determining the

PRACTICAL ASPECTS	 OF 2 -D 
ba ckground resisti vity. Thi s approach ca n be understood well,

MIGRATION IMAGING 
based on the insp irati on al wo rk of Nabighian ( 1979), who 

Pr act ical rea lizat ion of the 2-D theory of E M migration. descr ibed th e beha viour of tran sient currents d iffusing into the 
descr ib ed abo ve. requ ires th e so lu tio n of two major problems: Ea rth as a system of 'smo ke ring s' blown by the tr ansmitting 

(I) the determination of the	 back ground co nd uctivity. (J"b ; loop into the Ea rt h. T he main lim itat ion of the RIT method 
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Figure 5. Scheme of ohject locations in the Cold Test Pit. 

is connected to the fact that it is based on a simple 1-0 model 
of underground structures. The key formula for inversion is the 
expression relating the velocity, V, of 'smoke ring ' propagation 
and the conductivity, a, in this model: 

(j=J(v). • 

The simple assumption results in a significant averaging of the 
real conductivity distribution, so the resolution of the method 
is weak in both the horizontal and the vertical direction . 
However, it is a good method for the background con­
ductivity determination. which can be useful for the subsequent 
application of EM migration. 

Another approach is based on the time-domain analogue of 
the Niblett or Bostic transform (Niblett & Sayn- Wittgenstein 
1960), which was developed for magnetotelluric data inter­
pretation. This transform involves algebraic or differential trans­
formations of the apparent resistivity magnetotelluric sounding 
curve. We can apply the same type of transform to the TDEM 
apparent resistivity curve. calculated, for example, for the 
late time field generated by a horizontal loop transmitter on 
the surface of the earth by the following formula (Spies & 
Frischknecht 1991): 

m f-1. 
2/3 (-oH )- 213 

Pa(t) = 202 /37rt~ /3 ~ 

where m = nA I is the magnetic dipole moment (nA is turns-area, 
I is the current in the transmitter loop) . 

The TDEM analogue of the Bostic transform can be 
developed as follows . In as much as Pa is a weighted average 
resistivity, it might be represented approximately as 

Pa::::;z/ [Z (j(z') dz' ; (43) 
.0 

where the running variable z is an effectite depth of penetration, 

defined as follows (Nabighian & Macnae 1991) : 

z = ..)2tPa(t )!Jlo. (44) 

Then, 

zlPa::::; I (j(Z') dz': 

Differentiating both sides of this last equation with respect to 
z, we obtain 

[d(7)J-l (45)p(z) = dz ;a 
where 

d z 1 z dPa 1 dPa / dz 
(46)

dz Pa = Pa - P; dz = P. - P: z· 

On the strength of eq. (44) , 

dz (d~ I dPa )
- = - + - - . (47) 
z ~ 2 Pa 

Substituting eq . (47) into (46), and then into (45) , we finally 
obtain 

p(z) = Pa(2 + M) j(2 - M), 

where 

«o, / dJt r.1\1 = - - = d log Pa id log '.J t. 
Pa Jt 

The Bostic transformation can be used for determining 
the background resistivity, ab, distribution if we apply this 
transformation to spatially filtered data. 

7.2 Numerical method of EM migration through 
media with an arbitrary distribution of background 
conductivity, O'b 

The problem of EM migration through media with an arbitrary 
distribution of background conductivity, O'b, can be solved in 
one of two ways. 

(1) The first approach is based on the direct numerical 
solution of eq. (38) with the boundary conditions (37), us ing, 
for example, the finite-difference method. In the paper by Wang 
et al. (1994) there is an example of the application of the finite­
difference method for the solution of the same eq. (38) for the 
back-propagated field . The onl y difference in our case will be 
in using different boundary conditions, those given by eq . (37) . 
This is related to the fact that the migrated field in our case is 
the solution of the boundary-value problem for the observed 
anomalous (or residual) field in the reverse time. 

(2) The second approach is based on application of the 
integral formulae (40) and (41). It is noteworthy that these 
equations are the EM counterparts to the Rayleigh integral 
(Schneider 1978) for seismic wavefields. Calculation of the EM 
analogue of the Rayleigh integral requires knowledge of the 
Green's function Gb(x, z, rlx ', z' , t ') . In the simplest case of 
the homogeneous model, (Jb = const., the Green's function is 
as follows : 

Gb(x, z, rlx ', z', t') 

1 {f-I.O(Jb , 2 r 2}
= - ,exp ---, [(x -x) +(z - z) ] . (48)

4n(t~t) 4(t-t) 
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Figure 6. (a) TDEM dat a observed for the 0 s profile in the Co ld Test Pit. (b) Migration appare nt resistivity with a homogeneou s background for 

the 0 s profile in the Co ld Test Pi t. 

In the general case of inhom ogeneous background con­ (x ' , 0) . We ass ume th at th e resist ivity va ries only in the vertical 

ductivity a b , the corre sponding Green's function can be dete r­ direction and is described by the function p (x ',:) within the 
mined only numerically. However, we can use a simple vertic al strip, co rrespo nding to the widt h of this filter. On a 

a pproach to approxima te calculations of the EM analog ue of vertical axis, passing through the point (x ', 0) for eac h depth 

the Rayleigh integral. Th is approach is based on the approxi­ z' we can introduce the effective resist ivity , Per(x ' , z'), by a 

mation of the real inhom ogeneou s background conductivity formula simila r to (43 ): 

by some equivalent effective conductivity, which is differen t o z' liz 
. f ,.. ' _ _ r

for different points (x ', z' ), in which we compute the migrated Pedx , ~ ) - .: J " 
/ o p( x ,:::) 

field. 
The basic scheme is as follows. O n the bas is of the Bostic Now, we use the EM analogue of the Rayleigh integral 

tran sform o r rapid imag ing technique, we ca lcula te some formula with the Green's function, computed using eq . (48) 
approxima te model fo r the background cond uctivity distri­ with O"b = 1/Pef(X' , z '}, for the migration at the point (x ' , z"). 
buti on , which is assumed by definiti on to be slowly vary ing in Th is approximate approach makes it po ssible to develop fast 
the hori zon tal direction . Th e kerne l of the EM analogue of and simple methods of int egral migration throu gh variab le 
the Rayleigh integral is represented by a relatively nar ro w background conductivity. We will illustr ate the practical 
spa tial filter (Z hda no v et al. 1988 ) with its centre at the point effectiveness of th is approach in the next section. 
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Figure 7. (a) Backgrou nd a pparent resistivity for thc 0 s profile in the Cold Test Pit. (b l Migra tion appa rent resist ivity with a variab le back gro und 
for the 0 s profile in the Co ld Test P it. 

a function of dept h. Thus, we obtain the dep th geoelectrical 
7.3	 Approximate imaging conditions 

cross-sectio n. Actua lly, the formula (49) can be trea ted as the 
No te tha t expression (27) involves the ca lculatio n of the approxima te solution of the int egral equa tion (27), describing 
migrated and incident fields for all moments of time t ', which the relatio ns between the migrate d ano malous cond uctivity, 
requ ires expensive compu tatio ns. In the pap er by Zhdanov um. (x ' , z') , and the real anomalous conducti vity ua(x ', z'). 
et al. ( 1995). a simplified ap proach to migration imaging was 
developed, based on the calcula tio n of the apparent migratio n 8 TIME-DOMAIN MIGRATION IN THE 
resistivity, Pma(x, z], dete rmined for a simple quasi-layered SOLUTION OF SYNTHETIC EM PROBLEMS 
geoelectrical model: 

We will illustrate the effectiveness of our meth od of EM 
[I + fi ~,(x, z)] }2 

(49) migrati on and imaging in the solution of inverse probl ems 
Pma(x, z) = { [ 1 _ p::'(x, z)] Pb(X, z). using some synthetic EM examples. First, we will consider 2-D 

examples. 
where Pb = ll ub' and fJ ::'(x, z) is the apparent reJ1ectivity 
funct ion . 

8.1 2-D model sTh is func tion is determined from the values of the migra ted 
resid ual field (for details see Zhdanov er al. 1995). Th e resistivity imaging techn ique has been tested on the resul ts 

We emp has ize th at the migration appa rent resist ivity, Pma is of numerical mode lling with the use of a 2-D finite -difference 
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Figure 8. Horizontal migration apparent resistivity map at a depth of 6 m constructed by horizontal interpolation of migration imaging results 
between the profiles in the Cold Test Pit. 

time-dom ain co de (Oristaglio & Hohmann 1984 ). Fig.1 (a) 
8.2 3-D model

shows the geoe lectrical cross-sectio n of the model, which 
contains a highl y co nd ucting inclusion (on the righ t ) and a The next model was of a 3-D co nductive bod y in a hom o ­
poorly conductin g inclusion (on the left). Th e cross -section has geneo us med ium ( Fig. 3b). Th e synt hetic dat a were ca lculated 
a two-l ayered background conductivity. The EM field in the using a 3-D finite-d ifference time-dom ain code (Wang & 
model was generated by an infin itely long cable. Th e obs er ved I-Io hma nn 1993). Th e EM field in this model was excited by a 
field dHz/dt was reco rded in the time interval from 1 us to rectangular loop transmitter (32 m x 32 m), located at a dis­
1000 us on a logarithmic tim escale. with 10 points per decad e. tance of 100 m outside the centre of the rectangular 3-D 
Th e the ore tical survey was conducted in the transmitter onset conducting body. The magnetic induction dat a (iJ Hz/ot ) were 
mode , with a transmitter-receiver separation (offset) equa l to simulated along the profile, passing a bove the centre of the 
4 m. Th e result s of TDEM migration of the seco nda ry field, conductive body (Fig. 3a). It was recorded in the time interval 
dH=/dl, were then recalcul ated in the migration electric field . 1 I1s-1000 I1s on a logarithmic tim escale , with 10 point s per 
Th is field has been used to co mpute the migration appa ren t decade . 
resistivity in the time dom ain (Fig. Ib) . For the migrat ion of these dat a we ha ve used a modified 

T he other 2-D model co nsists of an inhomogeneou s near­ formula (41) with the substitution of the 2-D Green 's function 
surface layer with know n conductivity a nd a homogeneo us by the corres po nd ing 3-D Green's funct ion . T his modifi cation 
baseme nt, which also conta ins highl y conducti ng an d poorly mak es it possible to migrat e the 3-D EM field observed alo ng 
co nd ucti ng inclu sion s (Fig.2a). Th e observe d field, dH=/dt , the profi le within the 3-D medi um. Actu ally, th is formula can 
was recorded in the time interva l from 1 I1S to 1000 I1S on a also be obtai ned from the general 3-D migrat ion formula (12) 
logarithmic timescale, with 10 point s per decade. The theoret ical if we substitute for the sur face int egral in (12 ) the curvilinea r 
survey was also conducted in the transmitter offset mod e, with integral a long the pr ofile of observation. From the point of 
a tr an smitt er-receiver sepa ra tion (offset) eq ua l to 4 m. Th e view of the solutio n of the inverse p roblem it mean s that we 
results of the migrat ion thro ugh the inho mo geneo us back­ minimize the residua l-field energy flow through the observa tion 
ground section are sho wn in Fig. 2(b). One can see very clearly profile . 
the co nductive and resist ive bod ies on this image. The result s of migrati on imaging, based on the approxima te 
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Figure 9. The final 3-D resistivity model of the Cold Test Pit based on rapid imaging and time-domain EM migrati on . 

formul a (49), are presented in Fig. 4(a). We have used the 
migration-imaging conditions (27), based on the convolution 
between the migrated residual field and the background 
(incident) field. to produce the image presented in Fig. 4{b). 

We can clearly see the conductive bod y on both of these 
image s. However, the image based on conv olution (Fi g.4b) 
estim ates the depth of the conducting bod y top slightly better 
than the image in Fig.4(a), while the sha pe of the bod y's 
vertical cros s-section is slightly distorted. po ssibly by the effect 
of the prim ar y field. We can also see a resistive shadow to the 
right of the body . This shadow is the side effect induced by 
the primary field. We expect that the application of the second 
or th ird iteration within the framework of iterative migration 
could correct this image . Nevertheless, the theoretical ad van ­
tage of the imaging conditions (27) seems to be that these 
conditions were derived for an a rbitrary geoelectri cal model, 
while conditions (49) were obtained for a simplified qua si­

layered model. A furth er model stud y shou ld outline the limits 
of practical applications of all of these imaging conditi ons. 

9 CASE H I ST OR Y: INTERP RETATION OF 
R W M C TDEM DATA 

The time-domain EM migration method has been applied in 
order to characterize waste sites using time-d omain electro­
magnetic (TDEM) data. The main task was the interpretation 
of the TDEM data set acquired at the Cold Test Pit site within 
the Radi oactive Waste Management Complex (RWMC) at the 
Idaho National Engineerin g Laboratory ( INEL) (McLean 
1993). The Cold Test Pit was specially designed to test d ifferent 
geophysical meth ods. The internal structure of the pit was 
known a priori and the result s of migration could be checked . 
A schematic plan of the Pit is presented in Fig. 5. We ha ve 
processed, by the time-domain electromagnetic migration 
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method, data obtained as a result of a high-density TDEM 
profiling survey using a Geonics EM47 instrument along a set 
of profiles, crossing INEL RWMC Cold Test Pit from the west 
to the east. The survey was conducted in the transmitter offset 
or slingram mode, as described by McLean (1993). The 
transmitter-receiver separation (the distance between the 
centre of the transmitter loop and the centre of the receiver 
loop) was equal to 12.5 m. The geoelectrical structure of the 
pit is 3-D making it impossible to use conventional methods 
to interpret these data. 

In an earlier paper (Zhdanov et al. 1995) we used as an 
effective background resistivity Pb= 100 n m. As a result of 
processing TDEM data using the migration method we have 
obtained a set of vertical cross-sections of the Cold Test Pit 
for a homogeneous background cross-section. The observed 
TDEM data and the typical cross-sections of the migration 
apparent resistivity along the profile 0 S (zero South) are 
presented in Fig. 6. 

In this paper we apply a two-step imaging technique to 
process the same data. On the first step we use rapid imaging, 
developed by Eaton & Hohmann (1989), to produce a 
background conductivity distribution, which is presented in 
Fig.7(a). On the second step we use the migration through 
this variable background to compute the resistivity image of 
the vertical cross-section (Fig. 7b). As we can see, the new 
migration image is close to the old one (Fig. 6b), but has a 
variable background resistivity distribution. Fig. 8 shows the 
horizontal resistivity map at a depth of 6 m obtained by 
horizontal interpolation of migration-imaging results between 
the profiles. The final 3-D resistivity model of the Cold Test 
Pit (Fig. 9), based on rapid imaging and time-domain EM 
migration, consists of several horizontal resistivity maps for 
different depths. It demonstrates that this method can be used 
to determine the structure of anomalous resistivity distribution 
in INEL RWMC Cold Test Pit. The migration image compares 
well with the schematic model of the pit that has been provided 
by the constructors (Fig. 5). The depths and the locations of 
the conductive sections of the pit also correspond well with 
the known structure of the pit. 

10 CONCLUSIONS 

In this paper we have described new results in the develop­
ment of the electromagnetic migration method. First, we 
demonstrated that EM migration can be viewed as the solution 
of the inverse EM problem, formulated as the minimization 
of the residual EM-field energy flow through the surface of 
observations. Second, we generalized the EM migration 
method and theory for 3-D geoelectrical structures and 3-D 
EM data. Third, we developed a method of EM field migration 
through a variable-background geoelectrical cross-section. We 
have tested the method on 2-D and 3-D geoelectrical models, 
typical for mining and oil and gas exploration. 

These new results permit the application of the EM 
migration method to the interpretation of real TDEM data, 
collected in 3-D geoelectrical structures. We have illustrated 
the practical results of time-domain EM migration by applying 
it to the actual TDEM field data collected at the Cold Test 
Pit site within the Radioactive Waste Management Complex 
at the Idaho National Engineering Laboratory. 
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APPENDIX A: ELECTROMAGNETIC 
GREEN'S TENSORS 

The electromagnetic Green's tensors, G~, Gt, being fields of an 
elementary electric source, follow Maxwell's equations (Felsen 
& Marcuvitz 1973): 

V x Gt = O"bG~ + {6(r - r')b(t - t'), 

(AI)j3Gt
'Ix G

A b = -11--' 
E r: ot ' 

they are causal: 

G~(r.tlr',t')==O, Gt(r,tlr',t')==O, i s r. 
Eq. (AI) suggests that G~ also satisfies the equation 

A b ' 
A b oG E ~ , c6(t - t )

V x V X GE = -PO"b- -j.1l6(r-r )--~-- (A2) 
ot ct 

The EM Green's tensors exhibit symmetry and can be shown, 
using the Lorentz lemma, to satisfy the following reciprocal 
relations (Stratton 1941): 

"" 
G~(r, rlr', t') = G~(r', - z'[r, - t), 

(A3)"" 
G~ (r, t Ir ' , t') = G~ (r ', - t' Ir, - t ), 

where the large tilde denotes the operation of transposition. 
The last conditions show that by replacing the source and 

receiver (that is the points r' and r) and by going simultaneously 
to the reverse time, - t (therefore, by retaining the causality, 
because the condition t < t' in ordinary time implies the 
condition - t > - t' in reverse time), we obtain the equivalent 
EM field, described by the Green's tensors G~(r', r'[r, t) and 
Gt(r', r'[r, t). 

Following Morse & Feshbach (1953) and Felsen & 
Marcuvitz (1973) we can introduce also the adjoint Green's 
tensors: 

G~+ (r, zlr', t') = G~(r', z'[r, t), 
(A4)"" 

G~+ (r, zlr', t') = G~(r', z'[r, t). 

They satisfy the following equations, obtained from (AI) by 
reversing the sign of all space-time coordinates: 

V x Gt+ = -O"bG~+ -{6(r-r')6(t-t'), 

Ab+ (AS) 
A b + oG H 

VxGE <»:«: 
and eq. (A2) takes the form 

A AoG~+ o6(t - t')
V x V x G~+ = PO"b -----at + pi6(r - r') (A6)ot 

The adjoint Green's tensors are anticasual: 

G~+ (r, rlr', t') == 0, 

Gt+ (r, t\r', t') == 0, t 2': t' . 

APPENDIX B: TENSOR STATEMENTS OF 
THE GAUSS AND GREEN FORMULAE 

This appendix briefly describes the fundamental theorems of 
tensor analysis, which are widely used in our paper. The 
notation closely follows the monograph of Zhdanov (1988), 
where one can find further details. 

Let G= G{r) be a tensor field differentiable continuously 
everywhere in the domain D right to its boundary S. The 
tensor statement of the Gauss theorem can be expressed by 
the following formula: 

(Bl)ffLv, Gdv = fLn. Gds, 

where n is the unit vector of an outward-pointing normal to S. 
The Green tensor formula derives from the expression (B1). 

Indeed, let us specify an auxiliary tensor field G(r): 

G= F x [V x .P] + [V x F] x .P, 

where F and Pare arbitrary vector and tensor fields, respectively, 
twice continuously differentiable in the domain D (up to its 
boundary S). The algebraic calculations show that 

V· G= [V x V x F] . P- F· [V x V x p] . (B2) 

Substituting eq. (B2) into the Gauss tensor formula (B1) we 
write in the final form the Green tensor formula 

ffL{[V x V x F]' P- F· [V x V x p]} dv 

= fLn. {F x [V x .P] + [V x F] x .P} ds. (B3) 

If the vector field F is replaced by the tensor field Q, we arrive 
at another Green tensor formula: 

ffL{[V x V x Q]'.P - Q.[V x V x .P]} dv 

= fLn. {Q x [V x .P] + [V x Q] x p} ds. (B4) 

Finally, if the tensor field P in eq. (B3) is replaced by the 
vector field B, we obtain the Green vector formula 

ffL{[V x V x F] .B - [V x V x B] .F} dv 

= fLn. {F x [V x B] - B x [V x F]} ds. (B5) 

APPENDIX C: DETERMINATION OF THE 
OPTIMAL STEP k o 

Let us determine the optimal step length ko. To do so we can 
substitute eq. (24) into (4), in which the integral operator is 
linearized, using the Born approximation, and calculate the 
approximate electric field for the model with anomalous 
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conductivity, O"a(l)(r): 

~ I-: I1[ELl(r, t) + koE1o(r', t')J 

EW(r, t);:::; Eb(r, t) + I_coco IIt G~(r, rlr', t') 

.0"ail)(r)E b(r' , t') dv'dt' , (Cl) 

H~~(r, t);:::; Hb(r, t) + I_a2co I It G~(r, zlr", t ') 

. O"a(l)(r)Eb(r', t') dv'dt' . (C2) 

Thus, we have the following for the residual-field energy flow 
functional: 

<D(O"a(l») = cD [O"b(X, z) - kolo(x, z)J = cD(ko) 

= I_cow II [ELl(l)(r, t) x HLl(l)(r, t)J ·ndsdt, (C3) 

where
 

ELl(l)(r, t) = Eobs(r, t) - E~lj(r, t),
 
(C4) 

HLl(l)(r, t) = Hobs(r, t) - H~lj(r, t). 

Substituting eqs (C4), (Cl) and (C2) into (C3), and taking into 
account eq. (24), we obtain 

<D(O"a(l») = <D[O"b(X, z) - koloC"x, z)J 

= I_a2 I1[Eobs(r, t) - E~~(r, t)Jco 
x [Hobs(r, t) - H~lj(r, t)J ·ndsdt 

X [HLl(r, t) + koHlo(r', t')J ·nds' dt', 

where the field {E'v, Hlo} is an electromagnetic field, calculated 
using the Born approximation for the geoelectrical model, 
perturbed in the gradient direction: 

E10(r,t)= I:~ IIt G~(r,tlrl,tl)·lo(r')Eb(rl,t')dvldt', 

H1o(r,t)= I_coco IIt G't(r, rlr'. tl)·lo(rl)Eb(r', t')dv'dt'. 

Now we can find the first variation of cD(ko) with respect to
 
ko:
 

bcD(ko) = bko I:~J II {[ELl(r, t) + koE1o(r', t')J x H1o(r', t')
 

- [HLl(r, t) + koH1o(r', t')J x E1o(r', t')} ·nds'dt' = o. 
The necessary condition for the minimum of cD(ko) is 

bcD(ko) = o. 
From the last equation we have 

ko = [H1o(r', t') x ELl(r, t)~ {I-: I1
+HLl(r, t) x Elo(r', t')J·nds'dt'}
 

.{ I_CO IJ" Elo(r', t') x H1o(r', t').nds1dtl}-1 (C5)
 
.,-' XJ foi S 
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