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SUMMARY

Time-domain electromagnetic (TDEM) migration is based on downward extrapolation
of the observed field in reverse time. In fact, the migrated EM field is the solution of
the boundary-value problem for the adjoint Maxwell’s equations. The important
question is how this imaging technique can be related to the solution of the geoelectrical
inverse problem. In this paper we introduce a new formulation of the inverse problem,
based on the minimization of the residual-field energy flow through the surface or
profile of observations. We demonstrate that TDEM migration can be interpreted as
the first step in the solution of this specially formulated TDEM inverse problem.
However, in many practical situations this first step produces a very efficient approxi-
mation to the geoelectrical model. which makes electromagnetic migration so attractive
for practical applications. We demonstrate the effectiveness of this approach in inverting

synthetic and practical TDEM data.
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1 INTRODUCTION

Time-domain electromagnetic (EM) migration is based on
downward extrapolation of the residual field in reverse time.
The basic principles of EM migration have been formulated
in Zhdanov (1988), Zhdanov, Matusevich & Frenkel (1988),
Zhdanov & Keller (1994) and Zhdanov, Traynin & Booker
(1996). EM migration has important features in common with
seismic migration (Zhdanov et al. 1988; Claerbout 1985) but
differs in that for geoelectric problems EM migration is carried
out on the basis of Maxwell’s equations, while in the seismic
case it is based on the wave equation. We have introduced
time-domain EM migration as the solution of the boundary-
value problem in the lower half-space for the adjoint Maxwell’s
equations, in which the boundary values of the migration field
on the earth’s surface are determined by the observed EM field.

In the paper by Zhdanov, Traynin & Portniaguine (1995) a
technique for transforming the EM migration fields and their
different components into resistivity images of the vertical
cross-section was developed. However, the question still
remains open how this imaging technique can be related to
the solution of the geoelectrical inverse problem. Meanwhile.
Tarantola (1987) demonstrated that seismic-wave migration,
which was the prototype for EM migration, can be treated
exactly as the first iteration in some general wave-inversion
scheme. In the paper by Wang et al. (1994) this analogy was
extended to the case of the diffusive transient EM field.

In this paper we formulate and prove an important new
result: EM migration, as the solution of the boundary-value
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problem for the adjoint Maxwell’s equation, can be clearly
associated with the inverse-problem solution. We introduce the
residual EM field as the difference between the simulated EM
field for some given (background) geoelectrical model and
the actual EM field. The EM energy flow of the residual field
through the surface of observations can be treated as a
functional of the anomalous conductivity distribution in the
model. The analysis shows that the gradient of the residual-
field energy-flow functional with respect to the perturbation
of the model conductivity is equal to the vector cross-
correlation function between the incident (background) field
and the migrated residual field, calculated as the solution of the
boundary-value problem for the adjoint Maxwell’s equation.
This result clearly leads to a construction of the rigorous
method of solving the inverse EM problem, based on iterative
EM migration in the time domain, and a gradient (or conjugate
gradient) search for the optimal geoelectrical model. However,
the authors have found that in the framework of this method
even the first iteration, based on the migration of the residual
field, generates a reasonable geoelectrical image of the sub-
surface structure. We call the anomalous conductivity, calcu-
lated on the first iteration, the migration apparent conductivity.
We obtain a simple integral relationship between the migration
apparent conductivity and actual anomalous conductivity,
similar to the relationship established in the time domain for
the inversion method based on the back-propagated TEM
field (M. Oristaglio, personal communication, 1996). It
describes the space filtering of the actual conductivity with the
Green’s-type function. We believe that this relationship will
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help to improve the migration imaging conditions because
it opens the way for straightforward transformation of the
migration apparent conductivity into the real conductivity.
We compare these new imaging conditions with the tradi-
tional one, obtained for simplified geoelectrical models of the
subsurface structures (Zhdanov et al. 1995).

In summary. in this paper we demonstrate that EM
migration imaging can also be considered as the initial step in
the general EM inversion procedure, based on the minimization
of the residual-field energy flow through the surface of obser-
vations. This similarity facilitates a better understanding of
the mathematical and physical background of EM migration
and, at the same time, helps in developing new geoelectrical
imaging tools.

2 TIME-DOMAIN ELECTROMAGNETIC
MIGRATION AS THE SOLUTION OF THE
BOUNDARY-VALUE PROBLEM

Let us formulate a general time-domain EM inverse problem.
Consider a 3-D geoelectrical model consisting of a homo-
geneous atmosphere and an inhomogeneous earth with the
. conductivity o(r) = agy(r) + g,(r), where ay(r) is some back-
ground (normal) distribution of the conductivity, and o,(r) is
the anomalous conductivity, which is not equal to zero only
within some domain D. We will denote the surface of the earth
by . We will confine ourselves to the consideration of non-
magnetic media and hence assume that u=j, =47 x 1077 Hm™*,
where 11, is the free-space magnetic permeability. The EM field
in this model is generated by an arbitrarily located source with
the current density j°. Receivers are located on the surface of
the earth. We assume also that the EM field is varying in
time relatively slowly, so that in the equations for this field
the second derivative with respect to the time @%/ct? can be
discarded. In other words, we consider the so-called quasi-
stationary model of the EM field (without displacement
currents) (Zhdanov 1988).

We can represent the total EM field observed in this model
as the sum of the background (normal) field {E®, H} generated
by the given source in the model with the background con-
ductivity distribution, and an anomalous field {E?*, H*}. which
is due to an inhomogeneity a,(r):

E=E°+E*, H=H"+H". (1)
The total EM field satisfies Maxwell’s equations:
VxH=(0,+0,)E+]j°,

cH (2)

ot’

VxE=—pu

while the anomalous field satisfies the equations:
V x H* = ¢, E* + 0,(E® + E?).

oH® (3)
VxEBE*= —pu———r.
ot

The general EM inverse problem can be formulated as
follows. We are given the observed total EM field on the
surface of the earth and the background (normal) distribution
of the conductivity oy(r). The problem is to determine the
anomalous conductivity a,(r).

In this section we introduce first the migrated anomalous
EM field and show how it can be calculated from the anomalous

field. In the following sections we will demonstrate the con-
nections between the migrated EM fields and the solution of
the EM inverse problem.

It is known (Zhdanov 1988) that the anomalous EM field in
this model can be expressed as an integral over the anomalous
domain D of the product of the corresponding Green’s tensors
and excessive currents o,(E®? + E?):

E:(r, r)=J UJ Ghr tlr', ')+ 0, (r')
o D

-

[E*(, ¢') + BA(r, 1')] dv'd’, (4)
and

w o rrr
H“(r,t]={ J | G4 tlr, ) o, (r)

[Ebr, ') + B3, )] dv'dr’, (5)

where G and GY, are the electric and magnetic Green’s tensors
for the background conductivity ¢,(r), whose vector com-
ponents relate the electric and magnetic fields excited at the
point r by an electric dipole source of unit intensity located
at the point r’ of the domain D. The basic equations for
Green’s tensors and their properties are briefly summarized in
Appendix A.

A general definition of the EM migration field has been
given in the Zhdanov (1988). According to this definition, the
migration field is the solution of the boundary-value problem
for the adjoint Maxwell's equations. For example, we can
introduce the migration anomalous field E*™ and H*™, as the
field, determined in reverse time t= —f, whose tangential
components are equal to the anomalous field in the reverse
time at the surface of the earth, X:

n x E*™(r, 1) =n x B*(r, —1),

(6)
n x H*(r, 7)=n x H*(r, — 1), rex,
where n is the unit vector of the normal to ¥ directed into the
upper half-space and satisfying Maxwell’s equations in reverse
time within the earth with a background conductivity oy

V x H*™ = g, E*™ |
¢HA™ (7)

VXE™= —py——o.
ot

From (7) we can obtain the separate equation for the migrated
anomalous electric field:

) aEam
VxVXE™=—pus,—. (8)

ot

Therefore, in reverse time 7, the electric migrated field satisfies
the ordinary vector diffusion equation. However, in direct time

t= —1 the migrated anomalous electric field satisfies the
equations adjoint to (8):
aEam
am __
V x V x B*™ = ug, T (9)

While the ordinary diffusion equation describes the develop-
ment of the process of EM field propagation in an increasing
time from the source to the receiver, eq. (9) reflects the same
process in the reverse order, that is from the final distribution
of the field at the receivers to its initial distribution at the
sources. Eq.(9) can thus be called, following Wang et al.
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(1994), the vector concentration equation. As a result, the EM
migration field can be treated as the field converging into the
sources of the anomalous field, which actually coincide with
the geoelectrical inhomogeneities.

The solution of the boundary value problem (6) and (7) for
the concentration equation can be obtained on the basis of
Green tensor formula (B3) (see Appendix B). We assume that
the volume D is bounded by the surface S, which is composed
of the surface of the earth ¥ and an infinitely large hemisphere
in the lower half-space. Since the electromagnetic field satisfies
the radiation conditions, that is the functions E*® and H*™
vanish exponentially at infinity, the surface integral over the
infinitely large hemisphere tends to zero. If we substitute, in
formula (B3) from Appendix B, the field F with the migrated
field E*™(r, 1), and the tensor P with the adjoint Green’s tensor
G* (r, 7|r", '), determined in Appendix A, we obtain the
following:

(” {[V x V x E®™(r, 7)]- GO+ (r, 7|r', ')
v D

—E*™(r, 1) [V x Vx G (r, 7|r', 7')]} dv

~

J n-{E*™(r, 1) x [V x G} (r, 7lr', 7')]
I

+[V x E*™r, 1)] x G&* (x, 7|, )} ds. (10)

Integrating the left-hand and right-hand sides of expression
(10} over time 7 and taking into account eqgs (8) and (A5),
after some algebraic calculations we obtain

+ o0

E*™(r', )= J IJ n-{E*™(r, 1) x [GY (1, 7|r’, 7)]

—H*™(r, 1) x GO (r, 7|r’, v')} dsdr. (11)

Returning from the reverse time, 7, to the ordinary time, t =
—1, and taking into account the reciprocal relations (A3) and
(A4) from Appendix A and boundary conditions (6) for the
migration field, we can finally write

M+ oo

E*(r, —1') =

” n {Er, 1) x [GY(r, t]r'. t')]
z

~H(r, 1) x GR(x, t|r’, ¢')} dsdt . (12)

Integral formula (12) describes the solution of the con-
centration equation for the migrated anomalous electric field.
The corresponding integral representation for the migrated
anomalous magnetic field can be obtained from (12) using the
second Maxwell’s equation. These integral transformations
describe the conversion of the anomalous EM field, generated
by the excess currents in the geoelectrical inhomogeneties and
diverging in real media, into the migration field, converging to
the corresponding inhomogeneties. This process is actually
equivalent to the field transformation in ordinary optical
holography (Zhdanov 1988). In the next sections we will show
how this converging field can be used for the solution of the
EM inverse problem.

3 MINIMIZATION OF THE RESIDUAL
EM-FIELD ENERGY FLOW

The energy flow of the electromagnetic field can be calculated
using the Poynting vector P (Stratton 1941), introduced by
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the following formula:
P=ExH.

The Poynting vector P may be interpreted as the intensity
of EM energy flow at a given point, that is the energy
per second crossing a unit area whose normal is oriented in
the direction of the vector E x H. For example, the total
energy flow of the anomalous EM field through the surface of
the earth X is equal to

0= JT P nds = jj (E x H) nds,
JvI T

where n is the unit vector of the normal to the surface X
directed to the upper half-space (assuming that the sources of
the anomalous field are located in the lower half-space).

We denote the observed EM field as {E.., H,,,}. The
theoretical EM field, calculated for the given geoelectrical
model o(r) = 6, (r) + a,(r), we denote as {E_., H, } (predicted
field). According to eq. (1),

prs

Eobs =E° + Ezbs b
E,= E°+ |

Hobs = Hb + szs 5

. (13)
H, =H"+H:,.

Now, we determine the residual field {E*, H*} as the difference
between the observed and predicted fields:

EA(ra [) = Eobs(n t) _Epr(ra t) = gbs(n t) _E;r(ra t)~

(14)
HA[rs [) = Hobs(r~ t) - Hpr(rs t) = st(rs t) - H:r(rv l) .

We can introduce the energy flow of the residual field
through the surface of the earth:

04 = ”‘ [EA(r, 1) x HA(r, t)]nds.

Pankratov, Avdeev & Kuvshinov (1995) have proved an
important theorem, according to which the energy flow Q2 of
the residual field is non-negative:

04>0. (15)

Based on this theorem we can introduce the measure @ of
the difference between the observed and predicted fields as
the energy flow of the residual field through the surface of
observations, integrated over the time t:

@:j ” [EA(r, 1) x HA(r, )] ndsdr > 0.
z

~w

The advantage of this new functional in comparison with the
traditional misfit functional is that ®(s,) has a clear physical
meaning, that is the residual-field energy flow through the
profile of observations. Obviously, the theoretical predicted
fields E,(r, t) and H,,(r, ¢} depend on the anomalous conduc-
tivity distribution a,(x, z) in the given geoelectrical model;
therefore, ® can be treated as a functional of the anomalous
conductivity model ® = ®(q,).

Thus, the EM inversion problem can be reduced to the
minimization of the residual-field energy-flow functional,

®(g,)=min.

In the following section we will discuss the solution of this
problem.
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4 SOLUTION OF THE MINIMUM
ENERGY-FLOW PROBLEM

We apply the gradient-type method to the solution of the
minimum energy-flow problem, which is based on computing
the gradient direction for the misfit functional and decreasing
this functional by moving iteratively ‘down the hill’ (Tarantola
1987) in the space of the inverse-problem solutions.

Following the conventional ideas of the steepest-descent
method, we calculate the first variation of the energy-flow
functional in order to find the gradient direction:

f*oo r
b= — J J
-0 vi

—HA(r, 1) x 0B}, (x, 1)] dsdr. (16)

n-[EA(r, 1) x 0HG,(r, 1)

The perturbations of anomalous electric and magnetic fields
can be expressed through the perturbation of the anomalous
conductivity do, using the integral formulae similar to eq. (4)
(Zjhdanov & Keller 1994; Wang et al. 1994):

OB, (r, t) = [‘ ( [J Go(r. tr'. 1) da,(r')
J—oo JJ VD
B, )+ E&(r, )] dv'dr

‘SH;r(r» t)= - ‘r [‘J‘ G‘}’,(r, tir', t')-da,(r’)
D

% v

[BY(r, 1)+ BA (1, )] dv'dr’.

Substituting the last equations into (16) we find

ob = — J \ (Saa(‘r’)J J ( ( n- {BA(r, 1) x Gh(r. f|r', 1)
J JD —oc J mo0 o VE

—HA(r, t) x G&(r, tr', t') ds} dt
[BP(r', ) + E:r(r', Y] dt'dv'. (17)

According to eq.(12) the integral over the earth’s surface can
be treated as the migration of the residual field:

+ oo r”
J JJ n-{EAr 1) x GY(r tlr', 1)

—HAL 1) x GO, (|1, 1)} dsdr = E™(x', —1). (18)

Substituting eq. (18) into (17), and taking into account (13),
we obtain

o

oD(s,, d0,) = — (({ 6aa(r)J E*™(r, —t) E(r. 1) didv,
D — o0

v

(19)

where we have omitted the primes on r and t to simplify
the formula.

We have to find a perturbation of the anomalous conductivity
da,(r) that will reduce the energy-flow functional. In this case
we go ‘down the hill' in the space of the inverse-problem
solutions. The obvious choice is

=

S0,(r) =k, J B (r, — 1) E,(r, 1) dt, (20)

— 0

where ko0 is the length of a step. In this case the first

variation of the energy-flow functional is negative:

0D(a,, 60,) = —kq (J ( [0a,(r)]*dv < 0.

v JJD

Let us select the initial conductivity distribution model to
be equal to the background conductivity, that is the initial
anomalous conductivity is equal to zero:

Gao)1) =0. (21)

Then the corresponding anomalous part of the predicted field
E&0(r, 1) is also equal to zero:

ExO(r,1)=0, (22)
and
EQ(r, 1) =E°(r,1). (23)

The first iteration, according to eqs (20), (21) and (23), is given
by the formula

Go1)(T) = G0 (1) — kolo(r) = —klo(r), (24)

where [y(r) is the gradient direction (with the minus sign):

lo(r)= — [A E*™(r, ‘t]-Eg’,'(r, t)dt. (25)
The optimal length of the step k, can be determined by a
line search for the minimum (Fletcher 1987) of the functional

Dloy(x, 2) — kolo(x, 2)] = ®(ko) = min,

with respect to k,. Appendix C contains the detailed derivation
of the corresponding expression for k.

Eq.(24) describes the migration imaging condition for
determining the anomalous conductivity distribution from the
migrated residual electric field. Obviously, the corresponding
value o,,,(r) provides only a first approximation to the real
anomalous conductivity. To improve the resolution of the
method, we can repeat the same procedure, which results in an
iterative time-domain migration. The general iterative process
can be described by the formula

O—a(n+ 1)(1') = a-a(n)(r) + 6U(n)(r) = Ga(n)(r) - kn In(r) s re D .

The gradient direction on the nth iteration, [,(r), can be
calculated by the formula, analogous to (25),

L(r)= —J E*™(r, —t)-BUr, 1) dt,
where E()(r, 1) is the field calculated by forward modelling for
the geoelectrical model with the conductivity distribution
Oam(r), and E4™(r, —1) is the migration of the residual field
E*. which is the difference between the observed field and the
theoretical predicted field. E}, found on the nth iteration.

It is well known (Zhdanov 1988; Zhdanov & Keller 1994;
Zhdanov et al. 1995) that the numerical calculation of the
migration field is a stable, well-posed problem. However, in
the case of iterative migration the complete solution of the
inverse problem is an ill-posed problem. To regularize the
process of iterative migration we have to introduce a Tikhonov
parametric functional (Tikhonov & Arsenin 1977):

P*(0) = ®(0) + 25(0).

The stabilizer S(o) can be determined as an L, norm of
the difference between the current anomalous conductivity
distribution ¢, and some a priori model of the anomalous
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conductivity a,,,:

S(G’)Z Ho-a apr Iz J f [O- apr ] dl

In this case the iterative process will be described by the
formula

k& 1P(r), (26)

Ga(::+ 1)(r) = Ua(n)(r) -
where ['“(r) is the regularized gradient direction on the nth
iteration, calculated by the formula

[D(ry= — J E*™(r, —1)-ER(r, 1) dt + a[0,(r) — 6, ()],

and the length of the regularized step k{ is calculated using
the line search for the minimum of the parametric functional

P — k@) =P*(k'*) = min.

Thus, we can describe the developed method of EM inversion
as the process of iterative migration. At every step of the
iterations we calculate the theoretical EM response for the
given geoelectrical model ,(r), obtained from the previous
step, calculate the residual field between this response and the
observed field, and then migrate the residual field. The gradient
direction is computed as a vector cross-correlation between
the migrated residual field and the theoretical predicted field
E{!. Using this gradient direction and the corresponding value
ol the optimal length of the step k'™, we calculate the new
geoelectrical model o,.4,(r) on the basis of expression (26).
The iterations are terminated when the functional ®(a) reaches
the level of the noise energy. The optimal value of the
regularization parameter x is selected using conventional
principles of regularization theory (Tikhonov & Arsenin 1977).

5 MIGRATION IMAGING AS A SPATIAL
FILTERING OF THE ANOMALOUS
CONDUCTIVITY

According to eq.(20) we can develop a migration imaging
scheme based on the formula

Omall’) = kg J EA" (', —t')-Eb(r', t') dt’, (27)
where k, is determined using eq. (C5) from Appendix C. We
will call a,,,(r), determined using expression (27), a migration
anomalous conductivity. The important question is how this
apparent conductivity is related to the real anomalous con-
ductivity o,. The solution of this question can be found directly
from formula (27).

Let us express the residual migration field EA™ through the
observed residual field {E* H*}, using a formula similar to
(12):
fto
E*(r, —t) = J J n{EA(r, 1) x [GY(r, t]r’, £')]
- z

—HAT 1) x Go(x, t|r', ')} dsdt . (28)

Substituting (28) into (27), we obtain

~p

o0 + oo
ama(r/) = kO [ J J J n {EA(ra [) X [G}JI(I', [|I", ll)]
Voo J o z
—HAx 1) x Go(r, t|r, ¢')} dsdt-EP(r', ') de’.  (29)

© 1997 RAS. GJI 131, 293-309

Time-domain electromagnetic migration 297

From the other side, according to egs (14) and (22), the
residual field is equal to the observed anomalous field, which
can be computed using formulae (4) and (5). For example, for
the electric field we have

G, (r//

EA(r, t) = B3 (1. 1) f

X [EP(r”, 1) + By (r". t" ]G‘; (r, t|r", ")y dv"dt",
(30)

where we use double-prime notation to distinguish r” from r'.
A similar expression can be obtained for the magnetic field.
Substituting (30) into (29), we find

ctrt|” [[ L] sz
v oo D J =0

‘o P ~
: f ( net Ga(r, 1", 1) x [Gh(x, oIt )]

—o0 v JI

— GY(r, tr", ") x GB(r, tIr', t')} dsdt
“E°(r'. ') dt'dv"dt” . (31)
Applying the Green tensor formula (B4) from Appendix B

and executing calculations similar to those of Section 2 for the
EM migration field, we obtain

fro rr

JJ

n- {(GY(r tr”, 1) x [GY(r, t]r', ¢')]

ZM

Q)

}’ Lfr’, ") x GY(r ¢|r’, 1)} dsdt
P, =), (32)

where G%™ is the migrated Green'’s tensor.
Substituting (32) back into eq. (31), we obtain

P P Moo

[l oser [t

CGE (', — e, ") BN, ) di dv" dt

Tma (1) = ko )+ EGps(r”, )]

The last expression can be rewritten in the form:

Oma(F') = J J j o, (r)g(r. ') do, (33)
D

where

gl )=k, [ LE(r, t) 4 E2y,(r, £)]

Vv

SGYNr, — 1|, 1) EP(r, ) drdt . (34)

Eq. (33) demonstrates that the migration apparent conductivity
0ma(r’) can be treated as the spatial filtering of the real
anomalous conductivity with a filter determined by expression
(34). This filter is formed by the combination of the Green’s
tensors, which have local extrema at the point r=r". The
sharpness of the filter g(r,r’) determines the measure of
closeness of the migration apparent conductivity to the real
anomalous conductivity.
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6 TWO-DIMENSIONAL EM MIGRATION

Consider now a special case of the 2-D E polarized electro-
magnetic field, excited in a 2-D geoelectrical model by an
electrical current of density j =j**d,, which is distributed in
the domain Q in the upper half-space. We assume that
{d,,d,,d.} is the orthonormal basis of the Cartesian coordi-
nate system with the origin on the earth’s surface, and unit

vector d, is directed downwards. Within this model, the

electromagnetic field can be described by a single function, E,,
satisfying the equation

V2E —uoabiE‘=u0£j°" (35)
4 o at’

and the magnetic field components {H,, H,} can be expressed

(a) 0 ' YTl Ii. s
2B e e R R S RS R IR
e Ay v ¥a 1 AL eF PaasSay Ve o
Pl DA B8 PSR T LT e 2 T
58 ‘. “ay . . .‘pho:’:}*\‘*::' 2 ‘,;
41 188 N I B ST SHIATE L Rt
- 2 1 P RN i D AT e e AN BE
E »BAF 3 rrm T L IS S R AR SO c.~°"£
= N u g ade i Tl VA
E 6 IS eRaeis ' rribitin ] '.;.:,'-'{'f'*.‘
& FE ke CTEER LS SAEES LR e olie
= SRR SRt S ey i T T L T
o Iis FPRESIE B SRS 47 fihy T 1)
L e e R G P ates
: ' . ‘ . A TR et b
e : Y . v -_‘:‘: Ba- ;-ffﬁg"o'izi’.
104 . ST SR e A SR o
$itaimiaie [ RARRe
i 3 b S - ' e"lhg
'y i1
T ] T T il ‘T T l! =
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—— e ——
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Ohm*m
® O -
2_
4,
E
£ 6
Q
a
8 et
10
T ) 1 ! ;.:
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! ! I [
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Figure 1. (a) Conductive and resistive bodies in a two-layered host. (b) Migration result for the model with conductive and resistive bodies in a

two-layered host.
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Figure 2. (a) Conductive and resistive bodies in a host with an inhomogeneous surface layer. (b) Migration results for the model with conductive
and resistive bodies in a host with an inhomogeneous surface layer.

by the equations anomalous field as the field equal to the anomalous electric
5 . field in reverse time on the profile L at the surface of the earth:
= = — ' ’ Al ' VT
P Ha=" > g CeROsBE —, Eeek, (37)
P " JE, and satisfying the 2-D analogues of eq. (7):
“Hog T T ax

0
— VZES™ + poo, - E2™ = 0.
We can introduce the y-component Ei™ of a 2-D migration e a’ (38)
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Figure 3. (a) Vertical component of magnetic induction along the profile x over a 3-D conductive body. (b) 3-D conductive body in a homogeneous

background.

Magnetic components of the 2-D migrated field can be
calculated using the second Maxwell’s equation:

—Hyre= =—,
/o(r * 0z
¢ pyam _ O
to— H?™ = —2
lOvl éx

Integral formula (12) for the calculation of the migrated
anomalous field E{™ is transformed into the expression

Prao [

O0Gq(x, z. t|x', Z', 1)

E2"(x',z', —t') = =
yo J cn

[E;(x. z,1)

ot JL
OE%(x, z, 1)
—GP(x, z.1|X', 2, r')%—} dide.  (39)

where n is the direction of the normal to the surface of the
earth L directed into the upper half-space, and the Green's
function G(x, z. t|x", z/, ') satisfies the equation

¢ ad(t—t')
V2G® — p1o0y — G® = ppd(x —x')(z —2')——.

Hao 5, Mool ) ) &

We have also taken into account in eq. (39) that the Green’s
function G°(x, z, t|x’, z', t') is causal:

G®(x, z, t|x", 2/, ') =0, <

In the case of the horizontal line L of observations (z = 0),
expression (39) can be simplified (Zhdanov & Keller 1994) to
the following:

*+ %

o oo
Es(x', 2, —') = —2J .[ E3(x,0,1)
(= -

8G®(x, 0, t|x', 2/, t')
X —————dx
0x

dt . (40)

The last expression gives us the integral method of calculation
of the migrated electric field. We can also transform this
formula to find the integral formula for migration of the
magnetic field. Indeed, let us differentiate the last equation
with respect to x'. After integrating by parts, we find
é v freo g
L pyamy .’ o "o ——. fyam
ﬁt’Hz (x',z', —t)= -2 J; J‘_% 6t”z (x,0,1)
0G®(x, 0, t|x', z', t')

X _[-— dxdt . (41)
Note that typical geophysical EM equipment uses receiver
loops for measuring the components of the magnetic field.
Therefore, the actual data contain the records of EM induction
in the loops., which are proportional to the time derivatives
of the magnetic-field variations (é/dt)H.(x,0,t). Therefore,
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Figure 4. (a) Migration apparent resistivity for a 3-D model with a conductive body computed using approximate imaging conditions. (b) Migration
apparent resistivity for a 3-D model with a conductive body computed using the new imaging conditions.

expression {41) solves the problem of the migration of EM
induction data. Note that in the 2-D case we can obtain from
the migrated field (¢/ét'VH2™(x’, z', —t') the migrated electric
field again (Zhdanov et al. 1995), using the second Maxwell’s
equation for the migration field:
rE (q
EMR 2, —t') = ”"J (2 ) dx. (42)
Thus, expressions (40), (41) and (42) solve the problem of the
calculation of the migrated electric field on the basis of electric
or magnetic observations.
We can now use the 2-D analogue of the imaging condition
(27) to calculate the migration anomalous conductivity

Vi)

Tl 5 2 ).

7 PRACTICAL ASPECTS OF 2-D
MIGRATION IMAGING

Practical realization of the 2-D theory of EM migration,
described above, requires the solution of two major problems:
(1) the determination of the background conductivity, oy;
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and (2) developing the numerical method of EM migration
through media with an arbitrary distribution of background
conductivity, gy,

7.1 Determination of the background conductivity 4,

There are several publications dedicated to the development
of simple and fast inversion techniques for the processing of
transient EM data over inhomogeneous structures (Barnett
1984; Macnae & Lamontagne 1987; Eaton & Hohmann 1989).
A majority of these papers were based on equating the transient
response, measured at the surface of the Earth, to the EM field
of current-filament images of the source. For example, a rapid
inversion technique (RIT) developed in Eaton & Hohmann
(1989) and based on the earlier work of Macnae & Lamontagne
(1987) proved to be an effective method for determining the
background resistivity. This approach can be understood well,
based on the inspirational work of Nabighian (1979), who
described the behaviour of transient currents diffusing into the
Earth as a system of ‘smoke rings’ blown by the transmitting
loop into the Earth. The main limitation of the RIT method
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Figure 5. Scheme of object locations in the Cold Test Pit.

is connected to the fact that it is based on a simple 1-D model
of underground structures. The key formula for inversion is the
expression relating the velocity, V, of ‘smoke ring’ propagation
and the conductivity, ¢, in this model;

o=f(V).

The simple assumption results in a significant averaging of the
real conductivity distribution, so the resolution of the method
is weak in both the horizontal and the vertical direction.
However, it is a good method for the background con-
ductivity determination, which can be useful for the subsequent
application of EM migration.

Another approach is based on the time-domain analogue of
the Niblett or Bostic transform (Niblett & Sayn-Wittgenstein
1960), which was developed for magnetotelluric data inter-
pretation. This transform involves algebraic or differential trans-
formations of the apparent resistivity magnetotelluric sounding
curve. We can apply the same type of transform to the TDEM
apparent resistivity curve, calculated, for example, for the
late time field generated by a horizontal loop transmitter on
the surface of the earth by the following formula (Spies &
Frischknecht 1991):

mBPu, (—eH,\ "
Pall) = 2B\ "t ’

where m = nAlI is the magnetic dipole moment (nA is turns-area,
I is the current in the transmitter loop).

The TDEM analogue of the Bostic transform can be
developed as follows. In as much as p, is a weighted average
resistivity, it might be represented approximately as

»

Pa X Z//J a(z')dz’, (43)

0

where the running variable z is an effective depth of penetration,

defined as follows (Nabighian & Macnae 1991):

2 =20, (/o (44)

Then,

zZ/p, & J a(z')dz'.
0

Differentiating both sides of this last equation with respect to
z, we obtain

d/( z -t
[T .
z\ pa

where
dz 1 zdp, 1 dp, /dz
NN Y (46)
dzp, pa pidz p. pa/ Z
On the strength of eq. (44),
dz (d\/i I dpa)
—=|—F=+= . 47
z Jto 2 pa 1)

Substituting eq. (47) into (46), and then into (45), we finally
obtain

p(Z) = pa(2 = M)//(z_ M),

where

dp, |y

— =dlog p,/dlog V.

pa/iﬁ

The Bostic transformation can be used for determining
the background resistivity, oy, distribution if we apply this
transformation to spatially filtered data.

7.2 Numerical method of EM migration through
media with an arbitrary distribution of background
conductivity, &,

The problem of EM migration through media with an arbitrary
distribution of background conductivity, o, can be solved in
one of two ways.

(1) The first approach is based on the direct numerical
solution of eq. (38) with the boundary conditions (37), using,
for example, the finite-difference method. In the paper by Wang
et al. (1994) there is an example of the application of the finite-
difference method for the solution of the same eq. (38) for the
back-propagated field. The only difference in our case will be
in using different boundary conditions, those given by eq. (37).
This is related to the fact that the migrated field in our case is
the solution of the boundary-value problem for the observed
anomalous (or residual) field in the reverse time.

(2) The second approach is based on application of the
integral formulae (40) and (41). Tt is noteworthy that these
equations are the EM counterparts to the Rayleigh integral
(Schneider 1978) for seismic wavefields. Calculation of the EM
analogue of the Rayleigh integral requires knowledge of the
Green’s function G®(x,z,t|x’,z/,t"). In the simplest case of
the homogeneous model, o, = const., the Green’s function is
as follows:

Go(x, z, t|x', 2/, t')
1

- _ M e
= 4n(t—t’)eXp{ 4(t—t’)[(x x)?+(z 2)2]}, (48)
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Figure 6. (a) TDEM data observed for the 0 s profile in the Cold Test Pit. (b) Migration apparent resistivity with a homogeneous background for

the 0 s profile in the Cold Test Pit.

In the general case of inhomogeneous background con-
ductivity o, the corresponding Green’s function can be deter-
mined only numerically. However, we can use a simple
approach to approximate calculations of the EM analogue of
the Rayleigh integral. This approach is based on the approxi-
mation of the real inhomogeneous background conductivity
by some equivalent effective conductivity, which is different
for different points (x', z'), in which we compute the migrated
field.

The basic scheme is as follows. On the basis of the Bostic
transform or rapid imaging technique, we calculate some
approximate model for the background conductivity distri-
bution, which is assumed by definition to be slowly varying in
the horizontal direction. The kernel of the EM analogue of
the Rayleigh integral is represented by a relatively narrow
spatial filter (Zhdanov et al. 1988) with its centre at the point
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(x’, 0). We assume that the resistivity varies only in the vertical
direction and is described by the function p(x’, z) within the
vertical strip, corresponding to the width of this filter. On a
vertical axis, passing through the point (x’, 0) for each depth

z' we can introduce the effective resistivity, p.s(x’,z’), by a
formula similar to (43):

Per(x’ ”')—"'/ &
£ S Cadl JO p(X(.,Z)'

Now, we use the EM analogue of the Rayleigh integral
formula with the Green’s function, computed using eq. (48)
with o, = 1/p.(x’, z’), for the migration at the point (x', z’).
This approximate approach makes it possible to develop fast
and simple methods of integral migration through variable
background conductivity. We will illustrate the practical
effectiveness of this approach in the next section.
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Figure 7. (a) Background apparent resistivity for the O's profile in the Cold Test Pit. (b) Migration apparent resistivity with a variable background

for the 0's profile in the Cold Test Pit.

7.3 Approximate imaging conditions

Note that expression (27) involves the calculation of the
migrated and incident fields for all moments of time ¢, which
requires expensive computations. In the paper by Zhdanov
et al. (1995), a simplified approach to migration imaging was
developed, based on the calculation of the apparent migration
resistivity, pua(x.z), determined for a simple quasi-layered
geoelectrical model:

NIDIEET HET )R
PmalX, 2) = {[1 — f(x, 2)]

where p,=1/0,. and fP(x,z) is the apparent reflectivity
function.

This function is determined from the values of the migrated
residual field (for details see Zhdanov er al. 1995).

We emphasize that the migration apparent resistivity, pp, is

pb(xs Z)* (49)

a function of depth. Thus, we obtain the depth geoelectrical
cross-section. Actually, the formula (49) can be treated as the
approximate solution of the integral equation (27), describing
the relations between the migrated anomalous conductivity,
Oma(X’, 2’), and the real anomalous conductivity a,(x’, z').

8 TIME-DOMAIN MIGRATION IN THE
SOLUTION OF SYNTHETIC EM PROBLEMS

We will illustrate the effectiveness of our method of EM
migration and imaging in the solution of inverse problems
using some synthetic EM examples. First, we will consider 2-D
examples.

8.1 2-D models

The resistivity imaging technique has been tested on the results
of numerical modelling with the use of a 2-D finite-difference
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Figure 8. Horizontal migration apparent resistivity map at a depth of 6 m constructed by horizontal interpolation of migration imaging results

between the profiles in the Cold Test Pit.

time-domain code (Oristaglio & Hohmann 1984). Fig. l{a)
shows the geoelectrical cross-section of the model, which
contains a highly conducting inclusion (on the right) and a
poorly conducting inclusion (on the left). The cross-section has
a two-layered background conductivity. The EM field in the
model was generated by an infinitely long cable. The observed
field dH,/dt was recorded in the time interval from 1 ps to
1000 us on a logarithmic timescale, with 10 points per decade.
The theoretical survey was conducted in the transmitter offset
mode, with a transmitter—receiver separation (offset) equal to
4 m. The results of TDEM migration of the secondary field,
dH./dt, were then recalculated in the migration electric field.
This field has been used to compute the migration apparent
resistivity in the time domain (Fig. 1b).

The other 2-D model consists of an inhomogeneous near-
surface layer with known conductivity and a homogeneous
basement, which also contains highly conducting and poorly
conducting inclusions (Fig. 2a). The observed field, dH./dr,
was recorded in the time interval from 1 ps to 1000 ps on a
logarithmic timescale, with 10 points per decade. The theoretical
survey was also conducted in the transmitter offset mode, with
a transmitter—receiver separation (offset) equal to 4 m. The
results of the migration through the inhomogeneous back-
ground section are shown in Fig. 2(b). One can see very clearly
the conductive and resistive bodies on this image.

© 1997 RAS, GJI 131, 293-309

8.2 3-D model

The next model was of a 3-D conductive body in a homo-
geneous medium (Fig. 3b). The synthetic data were calculated
using a 3-D finite-difference time-domain code (Wang &
Hohmann 1993). The EM field in this model was excited by a
rectangular loop transmitter (32 m x 32 m), located at a dis-
tance of 100 m outside the centre of the rectangular 3-D
conducting body. The magnetic induction data (H,/0t) were
simulated along the profile, passing above the centre of the
conductive body (Fig. 3a). It was recorded in the time interval
1 us—1000 ps on a logarithmic timescale, with 10 points per
decade.

For the migration of these data we have used a modified
formula (41) with the substitution of the 2-D Green’s function
by the corresponding 3-D Green'’s function. This modification
makes it possible to migrate the 3-D EM field observed along
the profile within the 3-D medium. Actually, this formula can
also be obtained from the general 3-D migration formula (12)
if we substitute for the surface integral in (12) the curvilinear
integral along the profile of observation. From the point of
view of the solution of the inverse problem it means that we
minimize the residual-field energy flow through the observation
profile.

The results of migration imaging, based on the approximate
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Figure 9. The final 3-D resistivity model of the Cold Test Pit based on rapid imaging and time-domain EM migration.

formula (49). are presented in Fig. 4(a). We have used the
migration-imaging conditions (27), based on the convolution
between the migrated residual field and the background
(incident) field, to produce the image presented in Fig. 4(b).
We can clearly see the conductive body on both of these
images. However, the image based on convolution (Fig. 4b)
estimates the depth of the conducting body top slightly better
than the image in Fig. 4(a), while the shape of the body’s
vertical cross-section is slightly distorted, possibly by the effect
of the primary field. We can also see a resistive shadow to the
right of the body. This shadow is the side effect induced by
the primary field. We expect that the application of the second
or third iteration within the framework of iterative migration
could correct this image. Nevertheless, the theoretical advan-
tage of the imaging conditions (27) seems to be that these
conditions were derived for an arbitrary geoelectrical model,
while conditions (49) were obtained for a simplified quasi-

151 176 201

225 250

layered model. A further model study should outline the limits
of practical applications of all of these imaging conditions.

9 CASE HISTORY: INTERPRETATION OF
RWMC TDEM DATA

The time-domain EM migration method has been applied in
order to characterize waste sites using time-domain electro-
magnetic (TDEM) data. The main task was the interpretation
of the TDEM data set acquired at the Cold Test Pit site within
the Radioactive Waste Management Complex (RWMC) at the
Idaho National Engineering Laboratory (INEL) (McLean
1993). The Cold Test Pit was specially designed to test different
geophysical methods. The internal structure of the pit was
known a priori and the results of migration could be checked.
A schematic plan of the Pit is presented in Fig. 5. We have
processed, by the time-domain electromagnetic migration
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method, data obtained as a result of a high-density TDEM
profiling survey using a Geonics EM47 instrument along a set
of profiles, crossing INEL RWMC Cold Test Pit from the west
to the east. The survey was conducted in the transmitter offset
or slingram mode, as described by McLean (1993). The
transmitter—receiver separation (the distance between the
centre of the transmitter loop and the centre of the receiver
loop) was equal to 12.5 m. The geoelectrical structure of the
pit is 3-D making it impossible to use conventional methods
to interpret these data.

In an earlier paper (Zhdanov et al. 1995) we used as an
effective background resistivity p, =100 Q m. As a result of
processing TDEM data using the migration method we have
obtained a set of vertical cross-sections of the Cold Test Pit
for a homogeneous background cross-section. The observed
TDEM data and the typical cross-sections of the migration
apparent resistivity along the profile 0S (zero South) are
presented in Fig. 6.

In this paper we apply a two-step imaging technique to
process the same data. On the first step we use rapid imaging,
developed by Eaton & Hohmann (1989), to produce a
background conductivity distribution, which is presented in
Fig. 7(a). On the second step we use the migration through
this variable background to compute the resistivity image of
the vertical cross-section (Fig. 7b). As we can see, the new
migration image is close to the old one (Fig. 6b), but has a
variable background resistivity distribution. Fig. 8 shows the
horizontal resistivity map at a depth of 6 m obtained by
horizontal interpolation of migration-imaging results between
the profiles. The final 3-D resistivity model of the Cold Test
Pit (Fig.9), based on rapid imaging and time-domain EM
migration, consists of several horizontal resistivity maps for
different depths. Tt demonstrates that this method can be used
to determine the structure of anomalous resistivity distribution
in INEL RWMC Cold Test Pit. The migration image compares
well with the schematic model of the pit that has been provided
by the constructors (Fig. 5). The depths and the locations of
the conductive sections of the pit also correspond well with
the known structure of the pit.

10 CONCLUSIONS

In this paper we have described new results in the develop-
ment of the electromagnetic migration method. First, we
demonstrated that EM migration can be viewed as the solution
of the inverse EM problem, formulated as the minimization
of the residual EM-field energy flow through the surface of
observations. Second, we generalized the EM migration
method and theory for 3-D geoelectrical structures and 3-D
EM data. Third, we developed a method of EM field migration
through a variable-background geoelectrical cross-section. We
have tested the method on 2-D and 3-D geoelectrical models,
typical for mining and oil and gas exploration.

These new results permit the application of the EM
migration method to the interpretation of real TDEM data,
collected in 3-D geoelectrical structures. We have illustrated
the practical results of time-domain EM migration by applying
it to the actual TDEM field data collected at the Cold Test
Pit site within the Radioactive Waste Management Complex
at the Idaho National Engineering Laboratory.
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APPENDIX A: ELECTROMAGNETIC
GREEN’S TENSORS

The electromagnetic Green’s tensors, G‘f, G‘}Z,, being fields of an
elementary electric source, follow Maxwell's equations (Felsen
& Marcuvitz 1973):

V x 6% =0, G5+ i0(r —r)5(t — 1),
BGx (AD

ot -’

VxGy=—u

they are causal:

Gh(r. |, )=0,

Eq. (A1) suggests that G also satisfies the equation
oG, 8(t—1t')

VxVxG6o=—puo,—— —uidr —r')——. (A2)
ot ot

Gortlr,1)=0, t<t.

The EM Green’s tensors exhibit symmetry and can be shown,
using the Lorentz lemma, to satisfy the following reciprocal
relations (Stratton 1941):

Gyir,tlr', 1) = GR(t', —t'|r, —1),
A ~ (A3)
G?{(r,[‘r/, z’): Gl;l(r,ﬁ _r’|r7 _t)’

where the large tilde denotes the operation of transposition.

The last conditions show that by replacing the source and
receiver (that is the points r’ and r) and by going simultaneously
to the reverse time, —t (therefore, by retaining the causality,
because the condition t<t in ordinary time implies the
condition —t> —t' in reverse time), we obtain the equivalent
EM field, described by the Green’s tensors Gb(r', t'|r, 1) and
Gh(r, 7|r 7).

Following Morse & Feshbach (1953) and Felsen &
Marcuvitz (1973) we can introduce also the adjoint Green’s
tensors:

Gormlr, vy = GY(r', ' 1),

. ~ (A4)

G (r t|r', t') = Gy(r', t'|r, ).

They satisfy the following equations. obtained from (Al) by

reversing the sign of all space—time coordinates:

Vx Gy =—06,Go —idr—1)o(r—1t),

le (A5)
ot

Vx Gy =—u
and eq. (A2) takes the form

Gy st —t
£ +,ui¢5(r—r’)—((T).

V x Vx G2 = oy, (A6)

The adjoint Green’s tensors are anticasual:
Ght(r,tr',t)=0,

Go (i, t)=0, t>t.

APPENDIX B: TENSOR STATEMENTS OF
THE GAUSS AND GREEN FORMULAE

This appendix briefly describes the fundamental theorems of
tensor analysis, which are widely used in our paper. The
notation closely follows the monograph of Zhdanov (1988),
where one can find further details.

Let G=G(r) be a tensor field differentiable continuously
everywhere in the domain D right to its boundary S. The
tensor statement of the Gauss theorem can be expressed by
the following formula:

f” V- Gdo = ” n- Gds, (B1)
D J IS

where n is the unit vector of an outward-pointing normal to S.
The Green tensor formula derives from the expression (B1).
Indeed, let us specify an auxiliary tensor field G(r):

G=Fx[VxP]+[VxF]xP,

where F and P are arbitrary vector and tensor fields, respectively,
twice continuously differentiable in the domain D (up to its
boundary §). The algebraic calculations show that

V-G=[VxVxF]-P—F-[VxVxP]. (B2)

Substituting eq. (B2) into the Gauss tensor formula (B1) we
write in the final form the Green tensor formula

L]

J J {[VxVxF]-P—F-[VxVx P]}dv
JJp

:Hn-{Fx[VxﬁH[VxF]xﬁ}ds. (B3)
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If the vector field F is replaced by the tensor field 0, we arrive
at another Green tensor formula:

J” {[VxVxQ]-P—0-[VxVxP]}dv

:”n-{Qx[in)]Jr[VxQ]xﬁ}ds. (B4)
N

Finally, if the tensor field P in eq.(B3) is replaced by the
vector field B, we obtain the Green vector formula

J[J {[VxVxF]'B—[VxVxB]F}dv

=fjn~{Fx[V><B]fB><[V><F]}d5. (BS)
s

APPENDIX C: DETERMINATION OF THE
OPTIMAL STEP k,

Let us determine the optimal step length k,. To do so we can
substitute eq. (24) into (4), in which the integral operator is
linearized, using the Born approximation, and calculate the
approximate electric field for the model with anomalous

© 1997 RAS, GJI 131, 293-309



conductivity, o,,(r):

EL)(r, () ~ EP(r, 1) + [ j” Gh(r, t|r', 1)
J— o D

o

“Ga,(MEY(X, ) dv'dt, (C1)

G, tIr, )

HY(r, 1) » H(r, 1) + J f
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'Ga(n(l‘)Eb(r’, t')dv'de . (C2)

Thus, we have the following for the residual-field energy flow
functional:

(D(O'a(l)) =O[oy(x, z) — kolo(x, 2] = D(ky)

= J ) J [E*O(r, 1) x HA(r, 1)]-ndsdt (C3)

—w v

where
E*V(r, 1) =B (1, t) —EX(1, 1),
HAO(x, 1) = Hop,(r, £) — HR/ (. ).

Substituting eqs (C4), (C1) and (C2) into (C3), and taking into
account eq. (24), we obtain

D(0,1,) = PLop(x. 2) — kololx, 2)]

foo

-l

X [Hobs(r’ l) - ng](rg t)] 'ndeT

J\ [Eobs(n t) - Egr’(rv t)]
h
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X J‘x (J [EA(r, t) + koElo(r', £')]
- s

x [HAT, ) + koH'o(r', ¢')]-nds'dt’,

where the field {E', H"} is an electromagnetic field, calculated
using the Born approximation for the geoelectrical model,
perturbed in the gradient direction:

El(r, 1) = ( ”[ GR(r, t|r, t') - L,(r)Eb (X', t') dv'df’,
oo vD

Moo

Ho(r, r):J J ” Gh(x, 1|1, )1, (t)EP(r, t') dv'dr .
J JD

-~ oo

Now we can find the first variation of ®(k,) with respect to
ko:

<3q>(k(,)=5koj H {[EMr 1) + koElo(r, )] x Ho(r', t')
S

—[HA(x, 1) + koHlo(r', )] x Blo(r’, t'}} *nds'dt' = 0.
The necessary condition for the minimum of ®(k,) is
5Q(ko)=0.
From the last equation we have

L= 7f
ko =2H» HS [Ho(r', ') x EA(r, 1)

X W

+HA(r, t) x El(r, t')]'nds'dt’}

0 ~r -1
H JEZO(r’,t’)xH’O(r’,t’)-nds’dz’} . (C5)
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