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The two-dimensional (2-D) magnetotelluric (MT) inverse problem still poses difficult chal-
lenges in spite of efforts to develop fast and efficient methods for its solution. In this paper,
we present a new approach for the solution of overparameterized cases based on regular-
ization theory and full 2-D, quasi-analytic, calculation of the Frechet derivatives. For the
forward solution we use a fast and efficient finite difference formulation to the solution of the
MT equations in both transverse electric (TE) and transverse magnetic (TM) modes based
on the balance method. The Frechet derivative matrix is obtained as a solution to simple
forward and back substitution of the LU decomposed matrix of coefficients from the forward
problem utilizing the principle of reciprocity. Magnetotelluric data is usually contaminated
by mnoise, so that its inverse problem is ill-posed. In order to constrain the solution to a set
of acceptable models, Tikhonov regularization is applied and yields a regularized parametric
functional. The regularized conjugate gradient method is then utilized to minimize the para-
metric functional. Results of inversion for a set of synthetic data and for a set of CSAMT
data from Kennecott Exploration show that the method yields models which are physically
and geologically reasonable for both synthetic and real data sets.

1. Introduction

The 2-D MT inverse problem has been addressed by several authors. The most well-known
approaches for the solution of overparameterized cases are the search for a smooth model in the
Occam code from de Groot-Hedlin and Constable (1990) and the Rapid Relaxation Inverse (RRI)
solution of Smith and Booker (1991). The main limitations of these approaches are in the smooth
model assumed for the inversion and in the calculation of the Frechet, or sensitivity, matrix. The
smooth model is a very artificial approximation to the real model of the earth, which contains
sharp boundaries between structures with different conductivities. Also, the RRI method is based
on the approximate calculation of the Frechet derivatives under the assumption that horizontal
variations in conductivity are much smaller than vertical ones. In real inhomogeneous structures
we can observe strong conductivity contrasts both in vertical and in horizontal directions. In the
Occam code, the calculation of the Frechet matrix is the most time consuming part of the code.

In this paper we present a different approach dealing with the model of an arbitrary structure
containing both smooth subdomains and areas with sharp conductivity contrasts. This approach
is based on regularization theory and the fast, full 2-D, quasi-analytic calculation of the Frechet
derivatives.

For the forward solution, we use a fast and efficient finite difference formulation to the solution
of MT equations in both TE and TM modes based on the balance method of Zhdanov et al. (1982),
but modified to obtain a symmetric matrix of coeflicients. This modification was required in order
to apply reciprocity using the methodology described in de Lugdo and Wannamaker (1996) for
the calculation of the Frechet matrix.
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The calculation of the Frechet derivative matrix can be one of the most computationally
expensive tasks in the solution of an overparameterized inverse problem. In this work, the Frechet
derivative matrix is obtained as a solution to simple forward and back substitution of the LU
decomposed matrix of coefficients from the forward problem with different right hand terms due
to the sources introduced by differentiation of the inversion parameters. Utilizing the principle
of reciprocity (Rodi, 1976; Tripp et al., 1984; Sasaki, 1989; de Lugdo and Wannamaker, 1996),
the number of forward and back substitutions performed decreases from the number of inversion
parameters to the number of receivers of interest.

The inverse problem in magnetotellurics is ill-posed since the data is usually contaminated
with noise: a solution may not exist or there may be many solutions that fit the data. In the
search for a stable solution to the two-dimensional magnetotelluric inverse problem, we apply
Tikhonov regularization {Tikhonov and Arsenin, 1977) utilizing a stabilizing functional which
ties the solution to an a priori model. In order to minimize the parametric functional, we utilize
the non-linear conjugate gradient method (Zhdanov, 1993).

We present validation for the forward code and for the calculation of the Frechet terms for
apparent resistivity and phase data in both TE and TM modes. Inversion is first performed
for separate sets of TE and TM synthetic apparent resistivity and phase data from COMMEMI
model 2D-1 (Zhdanov et al., 1990) and the models obtained from inversion are consistent with the
resolution of each mode, independently. Results are then presented for inversion of a set of TM
mode apparent resistivity and phase CSAMT data from Kennecott Exploration and the model
obtained from inversion resolves both known and new resistive targets.

2. 2-D Finite Difference Forward Solution

The forward solution utilized in the inversion was written based on a finite difference scheme
formulated by Zhdanov et al. (1982). However, the coefficients used in the approximation were
rearranged in order to obtain a symmetric matrix of coefficients. The symmetry of the coefficient
matrix is a necessary condition in the method used for the calculation of the Frechet derivative
matrix and will be discussed in the next section.

We assume time dependence e~ *¢ and neglect displacement currents. In cartesian coordi-
nates, the strike direction is y to the south, x is west-east and z is down.

For the TE mode we solve the Helmholtz equation to obtain the total electric field parallel
to strike, Ey:

V?E, + k*E, = 0, (1)

with components of the auxiliary magnetic field:

1 0OF
Hy= - %%
wig 0z (2)
and | BE
= et
T dwpg Ox (3)

For the TM mode the equation to solve for the total magnetic field parallel to strike is:
1
V- ?VHy +H, =0, (4)

with components of the auxiliary electric field:
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and 1 8H
C ”
Ez - -’/7 6
o Ox (6)
where
K% = iwpo. (7)

Two meshes are constructed. Mesh % discretizes the fields parallel to strike F(z;, z;), where
F, is either Ey in the TE mode or Hy in the TM mode. An auxiliary mesh ¥’ is constructed on
the nodes placed in the center of the main mesh in order to discretize 52(31&1/2, Zjx1/2)-

In the TE mode, the Laplacian of E, is approximated by an integral over the rectangular
boundary L;; of the cell S;; using Green’s theorem:

/L P / / KB, dud:. (8)

ij

In the TM mode, the integral identity resulting from approximation of Eq. (4) is:

1 0H
/L K2 dny / . Hydzdz. (9)

Evaluating these integrals by the sample values F,(4,j) and x%(i +1/2, j +1/2), we arrive at
a system of difference equations for the solution of the total fields parallel to strike at the internal
nodes of the main mesh ¥:

D F(i j) = [a DFi+1,5) + ol Flij+ 1)+ oV F(i~1,5) +al)F@i,j-1)]  (10)

where F is E, in the TE mode and Hy in the TM mode.
1 @ B @
’LJ ? 7 J

For the TE mode the coefficient a( Visa complex constant while i are real
constants. The indeces i and j range from 1=2,...,Ny—1land j=2,...,N; -1, where N;
and N are respectively the total number of horizontal and vertical nodes in the mesh. We then
obtain the following coefficients:

(1) _ B 2 _ A% @ _ A% () _ _AZ

K Al’l K AZJ' ’ K Al’i_l ’ K AZJ',1 ’

and

o = Yal) -3 s an

£=1 =0 ¢=0

which form a symmetric matrix Arg.
For the TM mode all coeflicients are complex and depend on the conductivity o. We obtain
the following coefficients, which form the symmetric matrix Apa;:

1 Sl.q 1 p.1

R i o 2= Sl
;T = —" lo 20— v'i
E 2(Ax;)? v 2(Az;)? 7

1 599 1 .0

o D=0 W =0T
R I a\P = T _
U (Al'i_l)Q ’ K 2(A23~1)2 ’

and

0
o) Za ~ S, (12)
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where:
Ai; = (Azi_y + Az;)/2, Az = (Azj_1 + Az;)/2,
8P = AZiyp-1AZj1q1, Sij = AT AZj,
and
R R A ! (13)

Using matrix notations we have the following system of equations:
A-F=C"F, (14)

where F is the vector of unknown values for the E, or H, components over mesh ¥, A is the
matrix of coefficients, AT E OT /iTM, for the system and C is the vector of free terms, in which
the only non-zero terms are those at the boundary nodes for mesh .

The structure of matrix A essentially depends on the method used in ordering the vector F
and on the choice of boundary conditions. Here, we solve for total field values at each node inside
the mesh and the normal (or 1-D) field values are taken as the boundary condition. The nodes
of the mesh are numbered consecutively along the horizontal and vertical.

Matrix A is complex, symmetric, penta-diagonal and diagonally dominant. The dimensions
of A are given by the number of horizontal N; — 2 and vertical Ny — 2 internal nodes in the
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Fig. 1. COMMEMI model 2D-0 used to check forward code and calculations of Frechet matrix with period of
300 s.
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mesh. The leading dimension N is given by (N7 — 2) x (N, — 2), and the bandwidth is given by
2% (N;—2)+ 1.

The Crout method is used to decompose matrix A in LU form and solve Eq. (14). No pivoting
is required due to the fact that Ais diagonally dominant (Lapidus and Pinder, 1982). The Crout
subroutine creates only the five elements of A that are needed at each step in decomposing the
matrix. The upper and lower diagonal matrices L and U are also banded, each with bandwidth
(N7 —2) + 1. These matrices are then stored since they are needed for calculation of the Frechet
derivative matrix.

The choice of a direct method was done with the inversion scheme in mind. The calculation
of the Frechet matrix will be performed in a quasi-analytic manner, utilizing the LU decomposed
matrix of coefficients. The LU decomposition is the most computationally demanding task in the
code, requiring about (N?®)/3 computations in its primitive form. In our algorithm, the Crout
scheme used takes into consideration the banded structure of the matrix, decreasing the number

TE Mode—-Comparison FD_BAL, PW2D, COMMEMI- Model 2D0, T=300 s
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Fig. 2. Comparison of TE mode results from COMMEMI (1990), program PW2D (Wannamaker et al., 1987)
and program FD-BAL described here.
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of computations. The forward and back substitution used here also consider the banded structure
requiring less computations than those for a full matrix. After LU decomposition the system is
essentially solved.

The data is usually presented in the form of apparent resistivity p®P and impedance phase
¢, both derived from the impedance Z. The expressions for the TE mode are:

E
Zrg = =2, 15
TE i, (15)
P = | Zrsl” (16)
TE Wi TE| »
mZTE
= arctan , 17
éTE Trn (17)
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Fig. 3. Comparison of TM mode results from COMMEMI (1990), program PW2D (Wannamaker et al., 1987)
and program FD-BAL described here.
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and for the TM mode:

E
Zrym = ——,
M H, (18)
T = x \Zrm)? (19)
™ T on )
ImZTM
¢TMm = arctan ReZrar (20)

To validate the solution of our forward code, we present comparisons of results obtained from
our finite difference formulation (FD-BAL), from the COMMEMI project (Zhdanov et al., 1990)
and from the finite element code of Wannamaker et al. (1987), PW2D. The model chosen for
demonstration is COMMEMI model 2D-0 {Fig. 1) which consists of three segments of 10, 1 and
2 Q0-m on the top layer underlaid by a perfectly conducting basement. Model 2D-0 has analytical
solution (Zhdanov et al., 1990) which enables one to know how well the solution was obtained
from a forward code. We also decided to compare our results with those of PW2D since this
code is available to us and already checked for the same model in Wannamaker et al. (1987).
Results for the total electric field parallel to strike £,, normalized over the total electric field of
the normal cross-section Ey, at the surface, and for the apparent resistivity for the TE mode are
shown in Fig. 2. In Fig. 3, we show results for the total auxiliary electric field perpendicular to
strike E,, normalized over the total electric field of the normal cross-section E,, at the surface,
and for the apparent resistivity for the TM mode. Results from FD-BAL agree with both results
from COMMEMI and PW2D showing that the forward calculations are valid.

3. Regularized Inverse Solution
The magnetotelluric inverse problem can be formulated using operator notation:
Dm =d (21)

where D is the forward model operator, m are the model parameters, and d is the set of observed
magnetotelluric data.

In the magnetotelluric problem, D is a non-linear operator, the model parameters m are the
values of electrical conductivity o in the earth and d are the values of magnetotelluric impedances
(or apparent resistivity and/or phases) recorded on the surface of the earth. However, the mag-
netotelluric data set is usually contaminated with noise. In inversion, noise in the data can affect
the results to produce a formal solution which is far from any realistic model. In other words,
small variations in the data set produced by the noise can generate dramatic variations in the
inversion solution. For this reason, the magnetotelluric inverse problem is ill-posed.

For the solution of this problem we utilize regularization theory (Tikhonov and Arsenin,
1977) and introduce the parametric functional:

P*(m,ds) = ©(m,d) + aS(m) = minimum (22)

where ©(m,d) = || Dm —d||? is a misfit functional, S(m) = ||m —mgp,|? is a stabilizing functional
and Mgy, is some a priori geoelectrical model.

We use the root mean square of the function m to emphasize the closeness of the solution in
terms of some appropriate model m to mgp,. This auxiliary condition provides the stability of
the solution to the inverse problem.

The regularization parameter, a is determined from the misfit condition:

ID(ma) = df|* =6 (23)
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where m,, is the solution to Eq. (22) which minimizes the parametric functional P* for a given
Q.

In the practical use of this method for the solution of the inverse magnetotelluric problem,
we must remember that along with the continuous function describing the primary data, we have
a finite set of these data (measurements of values of the electromagnetic field at a finite number
of observation points for specific frequencies). This set of data forms a column vector of length
N, which we will designate as d. In this case, apparent resistivity (p*PP) and impedance phase
(¢) are usually obtained at several points (zi,...,%,) along a profile at several frequencies, w;
to wy,. The vector d is:

d¥ = [p(z1,w1) @(x1,w1) plzi,w) Gz, ws)

P($n,w1) H(Tp,wr) - P(Tn, Wm) (Z)(fﬁn,wm)]‘

In constructing an initial model for the geoelectric structure of the earth in two dimensions, some
organized approach to parameterization must be used in characterizing the spatial distribution
of resistivity in the model. In this work this is accomplished by using the same rectangular grid
to discretize the earth conductivity model utilized in the forward computations.

After discretizing the field data, d, and distributing conductivities over the model, o, the
solution to the inverse problem stated in Eq. (21) can be written in matrix form:

D(@) =d (24)

where D is the discrete matrix of nonlinear operator D, analogous to the matrix A which appears
in the numerical solution of the Maxwell system of equations.

Since the inverse solution to Eq. (21) is ill-posed we search to minimize the misfit parametric
functional P*(m,ds). An additional way to constrain the solution is by introducing weights. The
weighting matrix usually contains information on the importance of one data point with relation
to the others. In this way, data of better quality will have more importance in the inversion than
data of poor quality. If we apply probability theory, the weight matrix is the matrix of data
covariances, that is, the weights used are the variance of the data. The parametric functional we
seek to minimize is then:

P (g, d) = |WaD(1n) — Wad||? + allm — Mapr||* = minimum, (25)
or, if developed:
P(fig,d) = (WaD(m) — Wyd)*(WaD(ri) — Wyd)
+a(m — Mapr) " (M — Mgpr) = minimum, (26)

where W, is the weighting diagonal matrix of data, Mapr 1S some @ priors model and “*” means
transposed complex conjugated matrix.

The minimization problem (26) gives us the regularized weighted least-squares solution to
the inverse problem. The method for solving this problem here, the non-linear conjugate gradient
method, is described in the Appendix.

4. Frechet Derivatives

The Frechet derivative matrix is the relationship between the perturbation of the model
parameters and the perturbation of the data. Since in magnetotellurics the data is usually
presented in the form of apparent resistivity (p*P?) and impedance phase (¢), we need to obtain
the Frechet terms for these data with respect to the model parameters, the conductivities o of
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the model. We obtain a full 2-D Frechet matrix in a quasi-analytical manner utilizing reciprocity
(Rodi, 1976; Tripp et al., 1984; Sasaki, 1989) according to the methodology described in de Lugao
and Wannamaker (1996). Here we show the derivations to obtain the Frechet terms for the case
of our finite difference formulation.

The Frechet terms for apparent resistivity and phase are derived by applying the variational
operator 8 to Eqs. (16), (17), (19) and (20). For the TE mode, we obtain:

Oph 1 (8Zrg 0Z%
=— Z7 LE 7
Jo wh do “TE * do TE) (27)
and
8¢TE 1 6ImZTE aRCZTE 1
= . ReZrgp — ImZ . 28
do iz 2\ 9o CATE T AMETE TS T ) ReZrg)? (28)
1 + (RE’ZTE
For the TM mode the Frechet terms for apparent resistivity and phase are:
3p;~];€[ 2 6ZTM (r)Z%A,[
= — —Z*
do wi oo ™M i do Zrm (29)
and
Odrnm 1 ImZrm OReZr 1
= - —ReZry — ImZ i 30)
80 ImZypar do earM merTM do (ReZTM)2 ( /
1 + (R.EZ'['/\,I )

Where the derivative of the impedance with respect to conductivity for the TE mode and
resistivity in the TM mode are, respectively:

0Zrz | (OE, OH, ‘

oo H2 ( do ° B0 Ey) (31)
and 57 | (OE 9H
o4rp 4 [ 9L _ (__y

g0 H < 90 v g E> ' (32)

In order to obtain the Frechet derivatives for the magnetotelluric functions above, we need
the Frechet for the fields parallel to strike and for the auxiliary fields. We first find the Frechet
for the fields parallel to strike Fy, by applying the variational operator § to the finite difference
equation (10).

For the TE mode we obtain the following equation:

V6B, j) = [of)SE(+1,5) +alV6E(i,j+ 1)
+aD8B (i~ 1,) + ol 6E(i,j — 1)]
. 1 1
+E(i, j)% 3OS sotisee (33)
p=0g¢=0

while for the TM mode the derivation is done in terms of the resistivity p, the inverse of the
conductivity:

oV6H(i,j) = [ol)6H(i+1,5)+ o) 6H(i,j+1)
+al)6H (i~ 1,5) + ol 8H (1,5~ 1)]
~8al H(i,5) + [6a) H(i + 1, ) + 6l H(i, j + 1)
+6aVH(i ~1,j) + 6oV H(i,j - 1)) (34)
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The last equations, in matrix notation, can be written almost like Eq. (14) but with a different
right hand term.
For the TE mode: L
A.6E = R (60) (35)

where R (60) is the matrix-column of elements

. 1 1
LW
R.; (60) = B(i,5)— > > sabisre, (36)
p=0g¢=0
For the TM mode, N
A-6H = R (6p) (37)

where R (6p) is the matrix-column of elements

i 1 Lgs oL, 1 Lol
Rij(6p) = H(,Z"])[Z‘FOS ’q6pijq Z,,zosp'lépfj
J —iwp 2(Ay;)? 2Bz
Eamo S™005" | Epao S007
2(Ay;-1)? 2(Az,_1)2
1 1 l,q9 1 olcpl
L 3 | Yg=0 57700 Y opeo ST 6T
H 1, e=0" " o,y i1 D=0 SP6PY
R Tvon e TN
21_0 So,q(spr_q Zl, SprogpPzO
HG =15 =7~ iy p=0 Py
+H(i - 1,5) TINTE + H(i,j—1) e LG8

Using the Crout method we have already found the direct triangular decomposition of the
matrix A and solving the two SiInE\lC forward and back substitution systems we can determine
the variation in the fields  E and ¢ H for any perturbation in the conductivity (502’-’;1 or resistivity
5pP1 of the model.

y
From the general theory of variational calculus:

8Ar = A(x + 6z) — A(z) = Frey(6z) = §A(x, 61). (39)

In our case . o
8FE = Fre,éc (40)

and . .
8H = Fre,bp (41)

where 60 and g,\o are the matrix-columns of model parameters perturbed. Thus, to determine the
columns of the Frechet derivative matrix, we have to substitute on the place of o in Eq. (40)
and 670 in Eq. (41) a matrix-column with nonzeros only on the rows corresponding to the fields
perturbed by 80;; (or éps;):
R (1)
0

0
The procedure described until here is analogous to the one utilized in the Occam code of
de Groot-Hedlin and Constable (1990). In that procedure, forward and back substitutions need
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to be performed for, at least, the number of inversion parameters, which can reach the order of
thousands.

Perturbation of each inversion parameter introduces a term in the RHS of Egs. (35) and
(37) that can be seen as a source placed at the nodes adjacent to the cell/parameter. However,
according to reciprocity (Rodi, 1976), the role of a unit source placed at a node inside the mesh,
can be interchanged with that of a unit source placed at the receiver of interest.

A-G=U(1). (42)

Solving the systems with these unit sources yields vector G containing the responses at all
nodes in the mesh.

To obtain the Frechet terms at the nodes which correspond to the perturbation of each
cell/parameter we only need to multiply vector G by the cell parameters. In the TE mode, this

TE Mode Frechet for Resistivity and Phase
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Fig. 4. Comparison of calculation of Frechet terms obtained from difference of perturbed and unperturbed forward
solutions and analytical calculation utilizing reciprocity for apparent resistivity and phase for the TE and TM

modes.

station number

station number



1480 P. P. DE LUGAO et al.

procedure is:

” 1 1
55 =i (E(i,j)wT'u 3 sm) . (43)

p=0q=0
In the TM mode, the cell parameters multiplied by the solution to the unit source is:

Z;:O S . Z;:O srl Z;:O §o Zrlz=0 Sp’o]
2(A7 z‘)Q Q(AZJ)2 Q(Ayi_l)z 2(A2241)2
Zézo §ha Z,l,=o sPl

28y THEIT VSR

leo igthe - leo spo
Ay I Dt =

—iW

1
+—I[H(1 +1,5)
W

After the Frechet terms are obtained for the fields parallel to strike, we need to obtain the
auxiliary field Frechets. The calculation of the Frechet terms for the auxiliary fields also follows
that of de Lugao and Wannamaker (1996). Equations (2) and (3) (TE mode), and Egs. (5) and
(6) (TM mode) are differentiated with respect to the model parameters b0 or ép. The Frechet
terms for the parallel fields are then used in the finite difference approximation to these equations.

COMMEMI Model 2D-1
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Fig. 5. COMMEMI model 2D-1 used to generate synthetic apparent resistivity and phase data.
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For the TE mode, the Frechet components of the auxiliary magnetic field are:

OH, 1 0 0E, (45)
dc  iwpg Oz Oo
and,
OH, 1 0 0F, (46)
do  iwpy O do
For the TM mode, the Frechet components of the auxiliary electric field are:
oE, 1 d 0H
e O A e (47)
b P 0z Op
COMMEMI Model 2D-1
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Fig. 6. Resistivity models resulting from inversion of TE (a) and TM (b) mode synthetic data from COMMEMI
model 2D-1.
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and,
OFE, 1 i 0H,

z

a0 p Pz op

(48)

Instead of a unit placed at the receiver on the RHS vector of Eqgs. (35) and (37), weighted
values corresponding to the finite difference coefficients used in the approximations of Egs. (45),
(46), (47) and (48) are loaded in the locations of the fields used in the finite difference approxima-
tion. The result is again a vector G of responses that correspond to a perturbation at the receiver
of interest due to perturbation at all nodes in the mesh. This response G is then multiplied by
the cell parameters of interest as in Eqs. (43) and (44). By utilizing reciprocity, the number of
forward and back substitutions that need to be performed in order to obtain the Frechet terms
is now in the order of receivers of interest, which are usually less than one hundred in an MT

survey.

Behavior of Inversion Parameters; COMMEMI Model 2D-1
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Fig. 7. Behavior of normalized misfit, parametric functional and regularization parameter (a) for TE and TM
mode inversion of COMMEMI model 2D-1.



Fast and Stable 2-D MT Inversion 1483

Figure 4 shows comparison of calculation of Frechet terms for apparent resistivity and phase
for both TE and TM modes for all nodes (corresponding to stations) at the surface. The perturbed
parameter was the resistivity on the cell on the first row and ninth column of COMMEMI model
2D-0 (Fig. 1) and the period used was 300 s. We compare results calculated using reciprocity with
the results obtained by the difference between two forward solutions (unperturbed and perturbing
the resistivity value by 10%). The results are normalized by their maximum values, so that the
unit value corresponds to the maximum perturbation. The agreement between values obtained
with reciprocity and by difference of two forward solutions is within machine precision, with some
small discrepancies which do not affect the inversion results.

5. Inversion of Synthetic Data

In order to test the inversion algorithm, we performed inversion for sets of synthetic data
with no noise added to them. The stoping criteria chosen were either to reach a maximum number

Synthetic TE App. Resistivity Data from COMMEMI Model 2D-1
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Fig. 8. Pseudosections of TE mode synthetic data from COMMEMI model 2D-1.
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of iterations or a minimum misfit, which was calculated as the ratio:
| Driv — d|?
(ldl|?

Also, in order to constrain the values of inversion parameters (resistivities) to be positive,
maximum and minimum values that these resistivity can have are input as additional inversion
parameters. In this particular case these were, respectively, 1000. and 0.1 -m. The starting
model used in the inversion is the a priori model used in the regularization.

Two sets of synthetic apparent resistivity and phase data for TE and TM modes were gen-
erated using COMMEMI model 2D-1, shown in Fig. 5. COMMEMI model 2D-1 consists of a
0.5 Q-m conductor buried in a 100 Q-m background. Eleven frequencies (0.01, 0.03, 0.1, 0.3, 1.,
3., 10., 30., 100., 300. and 1000. Hz) were used to generate data for 27 stations located at the
surface. The mesh used in the forward calculations consisted of 12 rows of 28 rectangles each in

Irjc\i/ersion Result for Synthetic TE App. Resistivity Data from COMMEMI Model 2D-1
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a total of 336 rectangular cells. This same mesh was used in the inversion.

We performed inversion for TE and TM modes separately. Starting models were a 100 Q-m
half-space and inversion parameters were all 336 resistivities in the rectangular cells for both TE
and TM mode inversions. All calculations were performed on a Pentium 100 MHz.

Inversion for TE mode apparent resistivity and phase data for a misfit of 0.05 yielded the
model shown in Fig. 6(a). The misfit was achieved after 52 iterations; each iteration taking 17
minutes. The inversion of TM mode data, however, took only 6 minutes per iteration since this
mode does not require air layers on top of the mesh, resulting in a smaller matrix system. A
0.002 misfit was reached after 41 iterations and resulted in the model shown in Fig. 6(b).

Figure 7 shows the behavior of normalized misfit, parametric functional and how the regu-
larization parameter a was changed throughout both TE and TM inversion processes. A stable
minimization was observed for both, normalized misfit and parametric functional, at each itera-
tion until the desired misfits were obtained.

Neither TE nor TM modes alone could recover the original model of Fig. 5 due to the

Synthetic TM App. Resistivity Data from COMMEMI Model 2D-1
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InverS|on Result for Synthetic TM App. Resistivity Data from COMMEMI Model 2D-1
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Fig. 11. Pseudosections of data resulting from inversion of synthetic TM mode data from COMMEMI model
2D-1.

inherent non-uniqueness of the inverse problem. However, these models are consistent with the
resolution of each mode separately. The model obatined from TM inversion (Fig. 6(b)) recovers
a smaller and more conductive body at the right location, while the result from the TE inversion
(Fig. 6(a)) shows a resistive top with a large conductive body that extends to depth. Also, both
models generate sets of apparent resistivity and phase data that agree to the original synthetic
within the specified misfit. Figures 8 and 9 show pseudosections for original data and the one
obtained from inversion, respectively, for the TE mode, while Figs. 10 and 11 show the same
result for the TM mode. We generated these pseudosections in order to compare the original
synthetic data to that obtained from the inversions. These pseudosections show that the result
from inversion of synthetic data yields acceptable results.
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6. Inversion of CSAMT Data from Kennecott Exploration

A set of controlled source audio-frequency magnetotelluric (CSAMT) field data from Ken-
necott Exploration, with drill control available for comparison, is interpreted using the two-
dimensional inversion scheme described here. CSAMT is a resistivity mapping tool which has
excellent lateral resolution, depth penetration and field production. A controlled source is used to
overcome problems with unstable natural source fields that are encountered in audio-frequency
magnetotelluric (AMT) surveys. CSAMT data interpretation was typically achieved by one-
dimensional pseudo-depth plots or inversions, which are distorted by static shift and terrain
effects. Two-dimensional inversion and interpretation of plane-wave CSAMT data should help
remove these artifacts and produce a geologically reasonable resistivity model. Source effects,
which typically contaminate low-frequency CSAMT data, are difficult to interpret and are dis-
carded in this scheme.

A total of 15 CSAMT stations, spaced 100 meters apart and for eleven frequencies (8192,
4096., 2048., 1024., 512., 256., 128., 64., 32., 16. and 8. Hz) were collected over a profile where
Kennecott has located quartz-porphyry dikes, breccia and sulfide veins cutting Cretaceous sand-
stone and limestone host rocks. Resistivity variations in the observed data are caused by faulting,
by high-resistivity quartz-porphyry dikes and by low-resistivity sulfide veins.

A geological cross-section for the area along the profile where the data were acquired is shown
in Fig. 12. Results from smooth 1-D inversions of each 15 stations, provided by Kennecott, are
plotted as a combined section in Fig. 13. The combined 1-D section resolves the location of the
quartz porphyry and another resistive feature close to station —150, which may be associated to
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Fig. 12. Geological cross-section along profile of CSAMT data from Kennecott Exploration.
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Result of 1-D Inversion of KENNECOTT CSAMT Data
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Fig. 13. Combined section of independent results from 1-D inversions of each station of CSAMT data from
Kennecott Exploration.

a fault. However, both resistive features are very elongated, a behavior typical of 1-D results.

Laboratory studies of the physical properties of the rocks found in the area yielded resistivity
values between 13 and 2723 Q-m for the sandstones, between 38 and 2462 Q-m for breccia, and
between 9900 and 37000 Q-m for the quartz porphyry. The lowest resistivity values for the
sandstones and for the breccia are associated to the presence of lead-silver zinc veins.

All the geological, laboratory and 1-D inversion information provided was used to construct
the 2-D starting model shown in Fig. 14(a). Also, maximum and minimum resistivity values in
the model were constrained between 13 and 37000 2-m, based on the laboratory values.

Two-dimensional inversion was performed for data in the plane-wave regime (10 frequencies:
8192 to 16 Hz) for all 15 stations. The mesh constructed had 11 rows and 16 columns, in a total
of 176 rectangular cells. The inversion parameters were all 176 resistivities of these cells and the
calculations were performed on a Pentium 100 MHz. Total inversion time was 17 minutes for
13 iterations to reach a misfit of 0.02 and converge to the model shown in Fig. 14(b). Apparent
resistivity and phase pseudosections of the observed data are shown in Fig. 15. These can be
compared to pseudosections of the data obtained from inversion (Fig. 16) which depict all the
major features seen in the observed data.

The behavior of misfit and parametric functional (Fig. 17) was stable throughout the inversion
process. Figure 17 also shows the behavior of the regularization parameter o and how the value
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KENNECOTT CSAMT DATA
(a) Starting Model for 2-D Inversion
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Fig. 14. Starting model (a) and resistivity model (b) result from TM mode 2-D inversion of CSAMT data from
Kennecott Exploration.

was changed during the inversion.

The model obtained from 2-D inversion (Fig. 14(b)} reinforces the location of the quartz
porphyry by increasing the resistivity of the body below station 550. Other features, such as the
resistor below station —150, also appear in the 2-D model, but without the elongated pattern.
However, in order to test if the resistive body at station 550 was required by the data or was just
an artifact from its presence in the starting model, inversion was performed for the same data
and with the same parameters but with a 100 2-m half-space as starting model. The resulting
model is shown in Fig. 18 and it does show the same resistive structures at station 550 and
—150, consistent with the location of the quartz porphyry and a possible fault. The behavior
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KENNECOTT CSAMT App. Resistivity (TM) Data
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Fig. 15. Pseudosections of apparent resistivity and phase CSAMT data (TM mode) from Kennecott Exploration.

of inversion parameters is shown in Fig. 19 and it took 15 iterations to reach the 0.02 misfit, 2
more iterations than when some @ priori information was utilized in the starting model. The
plane-wave apparent resistivity and phase data obtained for this inversion are shown in Fig. 20
and they, too, depict most features of the original data (Fig. 15). These results show that the
model obtained from inversion is affected little by the starting model, provided that the initial
guess is based on accurate geological information.

We should also notice that these highly resistive structures are very difficult to resolve by
CSAMT data. It is very well known that inductive techniques have low sensitivity to resistive
targets. That is why we can consider these results from 2-D inversion, with respect to the quartz
porphyry body and possible location of fault structure at station —150, as a success. The two-
dimensional inversion of plane-wave CSAMT data has accurately resolved known quartz porphyry
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Fig. 16. Pseudosections of apparent resistivity and phase CSAMT data resulting from TM mode 2-D inversion
of Kennecott Exploration data.

dikes as well as new structural targets.
7. Conclusions

This work presents an approach for the solution of overparameterized 2-D MT inversion
problems that deals with the model of an arbitrary structure.

For the forward solution, we use a fast and efficient finite difference formulation to the
solution of both TE and TM modes in MT based on a modification of the balance method. The
forward code was then checked against known solutions and existing codes.

A full 2-D Frechet derivative matrix is obtained as a solution to simple forward and back
substitution of the LU decomposed matrix of coeflicients from the forward problem with a different
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Behavior of Inversion Parameters for KENNECOTT CSAMT Data
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Fig. 17. Behavior of normalized misfit, parametric functional and regularization parameter (a) for TM mode
inversion of Kennecott Exploration CSAMT data.

right hand term and utilizing the principle of reciprocity.

In order to constrain the solutions of the inverse problem to a set of possible models, a
stabilizing functional was introduced, referencing the solution to an a priori model.

The inverse code was first tested and provided fast and stable results for synthetic data sets
within the resolution of each mode separately. Also, results of practical application of the method
to CSAMT data from Kennecott Exploration demonstrate its effectiveness in the inversion of real
data sets by resolving known and possible new structural targets.

By utilizing an accurate and simple finite-difference formulation, reciprocity in calculation of
the Frechet matrix, and by regularizing the inverse problem by referencing to an a priori model
we constructed a method which is fast, stable and that provides geologically reasonable results
which can help in the interpretation of MT and plane-wave CSAMT data.

The authors thank the Consortium for Electromagnetic Modeling and Inversion (CEMI) at the
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Behavior of Inversion Parameters for KENNECOTT CSAMT Data: Half-Space Starting Model

0.4 T T T T T T L L T T T T T

o
(]
T

)

norm. misfit
o
N
1
1

o
-
T

L

o
-
-

-
N
w
o
o
~
©
©

10 11 12 13 14 15

x 10

T

B o
T

N
T
1

parametric functional

o
L
L

i

-
n
©
£
o
o
~
©
©

10 11 12 13 14 15

1 - +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
no. of iterations

Fig. 19. Behavior of normalized misfit, parametric functional and regularization parameter (o) for TM mode
inversion of Kennecott Exploration CSAMT data Exploration utilizing a 100 Q-m half-space as starting model.

Appendix: The Regularized Conjugate Gradient Method

This method uses the same ideas as the conventional conjugate gradient method. However,
the iteration process is based on the calculation of the regularized steepest descent directions.
The theory presented here follows that of Zhdanov (1993).

To obtain a stable solution for the inverse problem, we minimize the parametric functional
of Eq. (22):

P(m,d) = |[W4A(m) — Wad||? + aS(m) = minimum (A1)
where d are the observed data, m is the unknown model, A(m) is the operator of forward modeling,

W, is the data weighting matrix and S(m) is the stabilizing functional. If we suppose that the
space of data D is a Hilbert space with some given metric and the space of models M is also a
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KENNECOTT CSAMT App. Resistivity (TM) Data from Inversion: Half-Space Starting Model
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Fig. 20. Pseudosections of apparent resistivity and phase CSAMT data resulting from TM mode 2-D inversion
of Kennecott Exploration data utilizing a 100 Q-m half-space as starting model.

Hilbert space with another metric, then:
P%(m,d) = (WaA(m) — Wad, WagA(m) — Wyd)p + a(m — Mapr, m — Mapr)m (A2)

where mg,, is some a priori given model. To solve the problem of minimization (A.1) we have
to calculate the first variation with respect to m:

6P%(m,d) = 6(WgA(m) — Wad, WgA(m) — Wyd)p + ad(m — mapr, m — Mapr ) m
= 2WZ2(8A(m), A(m) — d) + 2a(6m,m — mgpy). (A.3)

Taking into consideration that the operator A is differentiable

6A(m) = Fp,dm (A.4)
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where F),, is a linear operator, the Frechet derivative of A, we obtain

§P*(m,d) 2W32(Fném, A(m) — d)p + 2a(6m, m — Mapy ) ar
2W (§m, Fy (A(m) — d) + a(m — mapr)) (A.5)
where Fy is the adjoint operator of Fy,.

In order to obtain a direction of descent at each iteration, we select

om = —k*I*(m) (A.6)
where k“ is some positive real number and {%(m) is the direction of steepest ascent of the func-
tional P*(m,d):

1%(m) = Fp,W3(A(m) — d) + a(m — mapr). (A7)
By substituting Eqgs. (A.6) and (A.7) into Eq. (A.5) we obtain

§P(m, d) = —2k*(1%(m), 1%(m)) < 0. (A.8)

The iteration process for the regularized steepest descent is constructed as follows:

Mpy1 = My +6m = m, — k*[*(m).

(A.9)

The coefficient k% is obtained by the minimization of the parametric functional P*(m,d)
with respect to k“:
P*(mp41,d) = P¥(my, — k21%(my)) = mun.

(A.10)

The iteration process for the regularized conjugate gradient method combines previous and
current “directions” of ascent:

Mps1 = My +m =m, — k“i“(m). (A.11)
On the first step, we use the “direction” of regularized steepest ascent:

1%(mg) = [*(my).

On the next step, the “direction” of ascent is the linear combination of the regularized
steepest ascent on this step and the “direction” of ascent [*(mg) on the previous step:

I*(m1) = 1%(my) + BT (mo).
On the nt* step

[a(mn-H) = la(mn+1) + ,Bf:lh(mn).

(A.12)
The coefficients S are determined by the formula:
Be = l‘la(mn+1)‘|2
T e (ma))?

(A.13)
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