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The two-dimensional (2-D) magnetotelluric (MT) inverse problem still poses difficult chal­
lenges in spite of efforts to develop fast and efficient methods for its solution. In this paper, 
we present a new approach for the solution of overparameterized cases based on regular­
ization theory and full 2-D, quasi-analytic, calculation of the Frechet derivatives. For the 
forward solution we use a fast and efficient finite difference formulation to the solution of the 
MT equations in both transverse electric (TE) and transverse magnetic (TM) modes based 
on the balance method. The Frechet derivative matrix is obtained as a solution to simple 
forward and back substitution of the LV decomposed matrix of coefficients from the forward 
problem utilizing the principle of reciprocity. Magnetotelluric data is usually contaminated 
by noise, so that its inverse problem is ill-posed. In order to constrain the solution to a set 
of acceptable models, Tikhonov regularization is applied and yields a regularized parametric 
functional. The regularized conjugate gradient method is then utilized to minimize the para­
metric functional. Results of inversion for a set of synthetic data and for a set of CSAMT 
data from Kennecott Exploration show that the method yields models which are physically 
and geologically reasonable for both synthetic and real data sets. 

1. Introduction 

The 2-D MT inverse problem has been addressed by several authors. The most well-known 
approaches for the solution of overparameterized cases are the search for a smooth model in the 
Occam code from de Groot-Redlin and Constable (1990) and the Rapid Relaxation Inverse (RRI) 
solution of Smith and Booker (1991). The main limitations of these approaches are in the smooth 
model assumed for the inversion and in the calculation of the Frechet, or sensitivity, matrix. The 
smooth model is a very artificial approximation to the real model of the earth, which contains 
sharp boundaries between structures with different conductivities. Also, the RRI method is based 
on the approximate calculation of the Frechet derivatives under the assumption that horizontal 
variations in conductivity are much smaller than vertical ones. In real inhomogeneous structures 
we can observe strong conductivity contrasts both in vertical and in horizontal directions. In the 
Occam code, the calculation of the Frechet matrix is the most time consuming part of the code. 

In this paper we present a different approach dealing with the model of an arbitrary structure 
containing both smooth subdomains and areas with sharp conductivity contrasts. This approach 
is based on regularization theory and the fast, full 2-D, quasi-analytic calculation of the Frechet 
derivatives. 

For the forward solution, we use a fast and efficient finite difference formulation to the solution 
of MT equations in both TE and TM modes based on the balance method of Zhdanov et al. (1982), 
but modified to obtain a symmetric matrix of coefficients. This modification was required in order 
to apply reciprocity using the methodology described in de Lugao and Wannamaker (1996) for 
the calculation of the Frechet matrix. 
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The calculation of the Frechet derivative matrix can be one of the most computationally 
expensive tasks in the solution of an overparameterized inverse problem. In this work, the Frechet 
derivative matrix is obtained as a solution to simple forward and back substitution of the LU 
decomposed matrix of coefficients from the forward problem with different right hand terms due 
to the sources introduced by differentiation of the inversion parameters. Utilizing the principle 
of reciprocity (Rodi, 1976; Tripp et al., 1984; Sasaki, 1989; de Lugao and Wannamaker, 1996), 
the number of forward and back substitutions performed decreases from the number of inversion 
parameters to the number of receivers of interest. 

The inverse problem in magnetotellurics is ill-posed since the data is usually contaminated 
with noise: a solution may not exist or there may be many solutions that fit the data. In the 
search for a stable solution to the two-dimensional magnetotelluric inverse problem, we apply 
Tikhonov regularization (Tikhonov and Arsenin, 1977) utilizing a stabilizing functional which 
ties the solution to an a priori model. In order to minimize the parametric functional, we utilize 
the non-linear conjugate gradient method (Zhdanov, 1993). 

We present validation for the forward code and for the calculation of the Frechet terms for 
apparent resistivity and phase data in both TE and TM modes. Inversion is first performed 
for separate sets of TE and TM synthetic apparent resistivity and phase data from COMMEMI 
model 2D-1 (Zhdanov et al., 1990) and the models obtained from inversion are consistent with the 
resolution of each mode, independently. Results are then presented for inversion of a set of TM 
mode apparent resistivity and phase CSAMT data from Kennecott Exploration and the model 
obtained from inversion resolves both known and new resistive targets. 

2. 2-D Finite Difference Forward Solution 

The forward solution utilized in the inversion was written based on a finite difference scheme 
formulated by Zhdanov et al. (1982). However, the coefficients used in the approximation were 
rearranged in order to obtain a symmetric matrix of coefficients. The symmetry of the coefficient 
matrix is a necessary condition in the method used for the calculation of the Frechet derivative 
matrix and will be discussed in the next section. 

i w t We assume time dependence e- and neglect displacement currents. In cartesian coordi­
nates, the strike direction is y to the south, x is west-east and z is down. 

For the TE mode we solve the Helmholtz equation to obtain the total electric field parallel 
to strike, E y : 

\J2Ey + K?Ey = 0, (1) 

with components of the auxiliary magnetic field: 

H = __1 oEy 
x (2)

iWllo oz 
and 

Hz = _.1_ oEy . (3) 
lWllo ox 

For the TM mode the equation to solve for the total magnetic field parallel to strike is: 

\7. (:2 \7H y ) + u, = 0, (4) 

with components of the auxiliary electric field: 

E _ loH 
x - -- -y (5) 

a oz 
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and 
E _ 1 oH z - - -y (6)

0" ox ' 

where 
",,2 = uaua, (7) 

Two meshes are constructed. Mesh ~ discretizes the fields parallel to strike Fy(Xi' Zj), where 
Fy is either E y in the TE mode or Hy in the TM mode. An auxiliary mesh ~' is constructed on 
the nodes placed in the center of the main mesh in order to discretize ",,2(Xi±1/2' Zj±1/2)' 

In the TE mode, the Laplacian of Ey is approximated by an integral over the rectangular 
boundary Lij of the cell Sij using Green's theorem: 

l °o~y dl = - J1 ",,2 Eydxdz. (8) 
} L,] s., 

In the TM mode, the integral identity resulting from approximation of Eq. (4) is: 

1 ett;2-.-dl = - . Hydxdz. (9)/, 
/1

L · · "" on s.
'tJ~J 

Evaluating these integrals by the sample values Fy(i,j) and ",,2(i± 1/2,j ± 1/2), we arrive at 
a system of difference equations for the solution of the total fields parallel to strike at the internal 
nodes of the main mesh ~: 

a~~) F(i,j) = [a~J) F(i + l,j) + a~~) F(i,j + 1) + a~~) F(i - l,j) + a~;) F(i,j - 1)] (10) 

where F is Ey in the TE mode and H y in the TM mode. 

For the TE mode the coefficient a~~) is a complex constant while a~J), a~~), a~J), a~;) are real 
constants. The indeces i and j range from i = 2, ... ,N1 - 1 and j = 2, ... ,NJ - 1, where N1 

and N J are respectively the total number of horizontal and vertical nodes in the mesh. We then 
obtain the following coefficients: 

!::>.Zj !::>.Xi !::>.Zj (4) !::>.Xi_,(1) = _ , (2) = _, (3) = _, _ 
aij !::>.Xi aij !::>.Zj aij !::>.Xi-l aij - !::>.Zj-l 

and 
4 1 1 

(0) = "" (£) _ ~ "" "" ",,2pq spq
aZ) L a Z) 4 L L Z) , (11) 

£=1 p=Oq=O 

which form a symmetric matrix ATE. 
For the TM mode all coefficients are complex and depend on the conductivity a. We obtain 

the following coefficients, which form the symmetric matrix ATM: 

1 s-» 1 sr'
Lq=o~ Lp=o K: 2p, 1 

(1) tJ (2) tJ a·· = , aij = ,
Z) 2(!::>.Xi)2 2(!::>.Zj)2 

L1 1 sp,Oso,,! 
q- 0 2"ff';/(3) - K: i j (4) Lp=o K:7.r"° 

aij = 2(!::>.Xi_d2' aij = 2(!::>.zz_d 2' 

and 

a~~) = L
4 

a~J) - s.; (12) 
£=1 
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where: 
.6.Xi = (.6.Xi - 1 + .6.x i )/ 2, .6.zj = (.6. zj - 1 + .6. zj) /2 , 

S 1''I = .6.:Ci+1'- l.6.Zj+'1-1 , Sij = .6.Xi.6. Zj, 

and 
2nn ') 1 1 

", .~"' = ",-(i+ p - - 1· + q - - ) · (13)
D 2 " 2 

Using matrix notations we have the following system of equat ions: 

A·F =C:F , (14) 

where F is t he vector of unknown valu es for th e E y or H y components over mesh 2:, A is the 

matrix of coefficients, ATEor AT M , for the system and 6 is the vector of free terms, in which 
the only non- zero terms are th ose a t the boundary nodes for mesh 2:. 

The st ructure of mat rix A essent ially dep ends on the met hod used in ordering t he vector fr 
and on t he choice of boundar y condit ions. Here, we solve for total field values at each node inside 
t he mesh and the normal (or l -D] field values are t aken as the boundary condit ion. The nodes 
of the mesh are numbered consecut ively alon g th e horizontal and vertical. 

Matrix A is complex, symmet ric, penta-diagonal and diagonally dominant . The dimensions 
of A are given by t he number of hor izontal N j - 2 and vertical N J - 2 int ernal nod es in the 
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Fig. 1. C Olv[MEMI mod el 2D-0 used to check forward code and ca lcula t ions of Frechot matrix with p eriod of 
300 s . 
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mesh. The leading dimension N is given by (N1 - 2) x (NJ - 2), and the bandwidth is given by 
2 x (N[ - 2) + 1. 

The Crout method is used to decompose matrix A in LV form and solve Eq. (14). No pivoting 
is required due to the fact that A is diagonally dominant (Lapidus and Pinder, 1982). The Crout 
subroutine creates only the five elements of A that are needed at each step in decomposing the 
matrix. The upper and lower diagonal matrices Land (; are also banded, each with bandwidth 
(N[ - 2) + 1. These matrices are then stored since they are needed for calculation of the Frechet 
derivative matrix. 

The choice of a direct method was done with the inversion scheme in mind. The calculation 
of the Frechet matrix will be performed in a quasi-analytic manner, utilizing the LV decomposed 
matrix of coefficients. The LV decomposition is the most computationally demanding task in the 
code, requiring about (N 3

) /3 computations in its primitive form. In our algorithm, the Crout 
scheme used takes into consideration the banded structure of the matrix, decreasing the number 
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Fig. 2. Comparison of TE mode results from COMMEMI (1990), program PW2D (Wannamaker et al., 1987) 
and program FD-BAL described here. 
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of computations. The forward and back substitution used here also consider the banded structure 
requiring less computations than those for a full matrix. After LV decomposition the system is 
essentially solved. 

The data is usually presented in the form of apparent resistivity pa p p and impedance phase 
cP, both derived from the impedance Z. The expressions for the TE mode are: 

Ey

ZTE = tt; (15)
 

app 1 I 2PTE = - ZTEI , (16)
W/-L 

ImZTE 
cPTE = arctan .....eZTE' (17) 
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Fig. 3. Comparison of TM mode results from COMMEMI (1990), program PW2D (Wannamaker et al., 1987) 
and program FD-BAL described here. 



1475 Fast and Stable 2-D MT Inversion 

and for the TM mode: 
Ex 

ZTM=-H
y' 

(18) 

app
PTM = 

1 2 
-/ZTMI ,
WM 

(19) 

cPTM = 
ImZTM 

arctan ,--, Z . 
e TM 

(20) 

To validate the solution of our forward code, we present comparisons of results obtained from 
our finite difference formulation (FD-BAL), from the COMMEMI project (Zhdanov et al., 1990) 
and from the finite element code of Wannamaker et al. (1987), PW2D. The model chosen for 
demonstration is COMMEMI model 2D-0 (Fig. 1) which consists of three segments of 10, 1 and 
2 n·m on the top layer underlaid by a perfectly conducting basement. Model 2D-0 has analytical 
solution (Zhdanov et al., 1990) which enables one to know how well the solution was obtained 
from a forward code. We also decided to compare our results with those of PW2D since this 
code is available to us and already checked for the same model in Wannamaker et at. (1987). 
Results for the total electric field parallel to strike E y , normalized over the total electric field of 
the normal cross-section En y at the surface, and for the apparent resistivity for the TE mode are 
shown in Fig. 2. In Fig. 3, we show results for the total auxiliary electric field perpendicular to 
strike Ex, normalized over the total electric field of the normal cross-section Enx at the surface, 
and for the apparent resistivity for the TM mode. Results from FD-BAL agree with both results 
from COMMEMI and PW2D showing that the forward calculations are valid. 

3. Regularized Inverse Solution 

The magnetotelluric inverse problem can be formulated using operator notation: 

Dm=d (21) 

where D is the forward model operator, m are the model parameters, and d is the set of observed 
magnetotelluric data. 

In the magnetotelluric problem, D is a non-linear operator, the model parameters m are the 
values of electrical conductivity a in the earth and d are the values of magnetotelluric impedances 
(or apparent resistivity and/or phases) recorded on the surface of the earth. However, the mag­
netotelluric data set is usually contaminated with noise. In inversion, noise in the data can affect 
the results to produce a formal solution which is far from any realistic model. In other words, 
small variations in the data set produced by the noise can generate dramatic variations in the 
inversion solution. For this reason, the magnetotelluric inverse problem is ill-posed. 

For the solution of this problem we utilize regularization theory (Tikhonov and Arsenin, 
1977) and introduce the parametric functional: 

pa(m, d8 ) = 8(m,d) + as(m) = minimum (22) 

where 8(m,d) = IIDm - dl1 2 is a misfit functional, S(m) = 11m - ma p r l 1 
2 is a stabilizing functional 

and m a pr is some a priori geoelectrical model. 
We use the root mean square of the function m to emphasize the closeness of the solution in 

terms of some appropriate model m to m ap r . This auxiliary condition provides the stability of 
the solution to the inverse problem. 

The regularization parameter, a is determined from the misfit condition: 

IID(ma ) - dl1 2 
= b (23) 
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where m., is the solution to Eq. (22) which minimizes the parametric functional P? for a given 
a. 

In the practical use of this method for the solution of the inverse magnetotelluric problem, 
we must remember that along with the continuous function describing the primary data, we have 
a finite set of these data (measurements of values of the electromagnetic field at a finite number 
of observation points for specific frequencies). This set of data forms a column vector of length 
N, which we will designate as d. In this case, apparent resistivity (papp) and impedance phase 
(cP) are usually obtained at several points (Xl, ... , x n ) along a profile at several frequencies, WI 

to W m . The vector dis: 

dT 
= [p(xI,wd cP(XI,WI) P(XI,W2) cP(XI,W2) 

p(Xn , WI) cP(Xn , wd . .. p(Xn , Wm ) cP(Xn , wm ) ]. 

In constructing an initial model for the geoelectric structure of the earth in two dimensions, some 
organized approach to parameterization must be used in characterizing the spatial distribution 
of resistivity in the model. In this work this is accomplished by using the same rectangular grid 
to discretize the earth conductivity model utilized in the forward computations. 

After discretizing the field data, d, and distributing conductivities over the model, (J, the 
solution to the inverse problem stated in Eq. (21) can be written in matrix form: 

D(m) = d	 (24) 

where D is the discrete matrix of nonlinear operator D, analogous to the matrix A which appears 
in the numerical solution of the Maxwell system of equations. 

Since the inverse solution to Eq. (21) is ill-posed we search to minimize the misfit parametric 
functional P" (m, do)' An additional way to constrain the solution is by introducing weights. The 
weighting matrix usually contains information on the importance of one data point with relation 
to the others. In this way, data of better quality will have more importance in the inversion than 
data of poor quality. If we apply probability theory, the weight matrix is the matrix of data 
covariances, that is, the weights used are the variance of the data. The parametric functional we 
seek to minimize is then: 

2pa(ri1o:, d) = IlltVdD(m) - w ddl1 2 + allm - mapr l 1 = minimum, (25) 

or, if developed: 

pO:(riLo:, d)	 (WdD(m) -ltvdd)*(ltVdD(m) - wdd) 

+a(m - mapr)*(ih - mapr) = minimum, (26) 

where Wd is the weighting diagonal matrix of data, mapr is some a priori model and "*,, means 
transposed complex conjugated matrix. 

The minimization problem (26) gives us the regularized weighted least-squares solution to 
the inverse problem. The method for solving this problem here, the non-linear conjugate gradient 
method, is described in the Appendix. 

4. Frechet Derivatives 

The Frechet derivative matrix is the relationship between the perturbation of the model 
parameters and the perturbation of the data. Since in magnetotellurics the data is usually 
presented in the form of apparent resistivity (papp) and impedance phase (cP), we need to obtain 
the Frechet terms for these data with respect to the model parameters, the conductivities (J of 
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the model. We obtain a full 2-D Frechet matrix in a quasi-analytical manner utilizing reciprocity 
(Rodi, 1976; Tripp et al., 1984; Sasaki, 1989) according to the methodology described in de Lugao 
and Wannamaker (1996). Here we show the derivations to obtain the Frechet terms for the case 
of our finite difference formulation. 

The Frechet terms for apparent resistivity and phase are derived by applying the variational 
operator b to Eqs. (16), (17), (19) and (20). For the TE mode, we obtain: 

°Pfl = ~ (OZTE Z* + OZYE ZTE) (27)
Bo WJ1 oa TE oa 

and 

O¢TE 1 (OImZTE R Z I Z OReZTE) 1 
2 e TE - m TE -- 2· (28) 

oa 1+ (ImZT E ) oa ou (ReZTE) 
ReZTF: 

For the TM mode the Frechet terms for apparent resistivity and phase are: 

oPfi£ _ 2 (OZTM Z*.. OZYM )-- - - --- TM + ---ZTM (29)
OU W J1 ou ou 

and 

O¢TM 1 (OImZ™ R Z I Z oReZ™) 1
2 e TM - m TM -- 2· (30)

OU 1 + (ImZTfI1) OU Be (ReZTM) 
ReZTM 

Where the derivative of the impedance with respect to conductivity for the TE mode and 
resistivity in the TM mode are, respectively: 

OZTE __1_ (DEy H _ oHx ) (31)oa - H; do x oa Ey 

and 
OZTM = _1_ (OEx H _ oHYE ) ( )

OU H~ oa y oa x . 32 

In order to obtain the Frechet derivatives for the magnetotelluric functions above, we need 
the Frechet for the fields parallel to strike and for the auxiliary fields. We first find the Frechet 
for the fields parallel to strike Fy by applying the variational operator b to the finite difference 
equation (10). 

For the TE mode we obtain the following equation: 

o:~J) bE( i, j) [o:g)bE(i + l,j) + o:g)bE(i,j + 1) 

+o:~J)bE(i - l,j) + o:~;)bE(i,j - 1)] 
. 1 1 

+E( i, j) Z~J1 L L baf] spq (33) 
p=Oq=O 

while for the TM mode the derivation is done in terms of the resistivity P, the inverse of the 
conductivity: 

o:(O)bH(i,j)
2J [o:~;)bH(i + l,j) + o:~~)bH(i,j + 1) 

+o:~TbH(i - l,j) + o:~;)bH(i,j - 1)] 

-bo:~J) H(i,j) + [bo:g) H(i + l,j) + ba~~) H(i,j + 1) 

+ba~J) H(i - l,j) + ba~;) H(i,j - 1)]. (34) 
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The last equations, in matrix notation, can be written almost like Eq. (14) but with a different 
right hand term. 

For the TE mode: 
A· bE = R(8a) (35) 

where R(8a) is the matrix-column of elements 

. 1 1 

tu, (8a) = E( i, j) 't:J1 1:I: 8afjqsn. (36) 
p=Oq=O 

For the TM mode, 
A.fiI=R(8p) (37) 

where R(8p) is the matrix-column of elements 

.) ,,",1 Sl'q8p1,q ,,",1 Sp,18pp,1 
_'t_,J_[Liq=OH( ' ZJ + _Li~p_=_o__~tJu., (8p) 
-iWJ1 2(~Yi)2 2(~Zj)2 

,,",1 SO,q8 O,q ,,",1 Sp,08 p,o
Liq=O PD Lip=o PD ] 

+ 2(~Yi_d2 + 2(6.zz_d 2 

,,",1 Sl,q8 1,.q ,,",1 Sp,18 p:1
_1_ [H(' 1") Liq=o PZJ H("' 1) Lip=o ptJ 

+ iWJ1 't + ,J 2(~Y.i)2 + 2, J + 2(~Zj)2 

,,",1 SO,q8 O,q ,,",1 Sp,08 rP: o 
H(' - 1 .) Liq=o PZJ H(" _ 1) Lip=o PiJ ] (38)+ 2 ,J 2(~Yi_d2 + 2,J 2(~zz_d2' 

Using the Crout method we have already found the direct triangular decomposition of the 
matrix A and solving the two simple forward and back substitution systems we can determine 
the variation in the fields bE and fiI for any perturbation in the conductivity 8afjq or resistivity 
8pf] of the model. 

From the general theory of variational calculus: 

8Ax = A(x + 8x) - A(x) ~ Fre x(8x) = 8A(x, 8x). (39) 

In our case 
8E = Frea8a (40) 

and 
----- --- ~ 8H = Fre p8p (41) 

where r;. and fp are the matrix-columns of model parameters perturbed. Thus, to determine the 
columns of the Frechet derivative matrix, we have to substitute on the place of r;. in Eq. (40) 
and lp in Eq. (41) a matrix-column with nonzeros only on the rows corresponding to the fields 
perturbed by 8aij (or 8Pij): 

RiC]
 

The procedure described until here is analogous to the one utilized in the Occam code of 
de Groot-Redlin and Constable (1990). In that procedure, forward and back substitutions need 
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to be performed for, at least, the number of inversion parameters, which can reach the order of 
thousands. 

Perturbation of each inversion parameter introduces a term in the RHS of Eqs. (35) and 
(37) that can be seen as a source placed at the nodes adjacent to the cell/parameter. However, 
according to reciprocity (Rodi, 1976), the role of a unit source placed at a node inside the mesh, 
can be interchanged with that of a unit source placed at the receiver of interest . 

.4.6=0(1). (42) 

Solving the systems with these unit sources yields vector 6 containing the responses at all 
nodes in the mesh. 

To obtain the Frechet terms at the nodes .:vhich correspond to the perturbation of each 
cell/parameter we only need to multiply vector G by the cell parameters. In the TE mode, this 
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procedure is: 

. 1 1 )
fE = (; 

( 
E(i ,j) Z~J.t ~ ~ spq . (43) 

In the TM mod e, the cell paramet ers multiplied by the solution to the unit source is: 

' .) ",1 s' « ",1 S p,l ",1 SO,q ",1 S p,oH ( Z,J LJq=o LJp=o LJq=o LJp=o
bH 

G 
A 

-iWJl [ 2(~Yi ) 2 + 2( ~Zj)2 + 2(~Yi -l )2 + 2 (~zz_d 2 ] 
",1 Sl ,q ",1 Sp,1 

1 [H( ' 1 ') LJq=o H( " 1) LJp=o
+ iwJ.t Z + ,J 2(~Yi)2 + Z, J + 2(~ Zj) 2 

' 1 ') L~ =o SO,q H( " 1) L~=o Sp,o]H( (44)+ Z - , J 2(~Yi_d2 + Z,J - 2(~zz_d2 ' 

After the Frechet terms are obtained for the fields parallel to strike, we need to obtain t he 
auxiliar y field Frechets. The calculat ion of the Frechet terms for the aux iliary fields also follows 
that of de Lugao and Wannamaker (1996) . Equations (2) and (3) (TE mode) , and Eqs, (5) and 

(6) (TM mode) are differentiated with respect to the model parameters &;. or lp. The Frechet 
t erms for the parallel fields ar e then used in the finit e difference approximat ion to these equations. 
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For the TE mode, the Frech et components of the auxiliary magnetic field are: 

oHx 

orJ 
_ _ l_ ~ oEy 

iW/I0 oz au (45) 

and, 
en, 
au 

_l_~ DEy 
iW/I0 o ;r; OU . 

(46) 

For the TN! mod e, the Frechet components of the auxiliary electric field are : 
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and, 
aEz _ 1E a aHy (48)ap - p z + Pax ap . 

Instead of a unit placed at the receiver on the RHS vector of Eqs. (35) and (37), weighted 
values corresponding to the finite difference coefficients used in the approximations of Eqs. (45), 
(46), (47) and (48) are loaded in the locations of the fields used in the finite difference approxima­
tion. The result is again a vector {; of responses that correspond to a perturbation at the receiver 
of interest due to perturbation at all nodes in the mesh. This response c is then multiplied by 
the cell parameters of interest as in Eqs. (43) and (44). By utilizing reciprocity, the number of 
forward and back substitutions that need to be performed in order to obtain the Frechet terms 
is now in the order of receivers of interest, which are usually less than one hundred in an MT 
survey. 

Behavior of Inversion Parameters: COMMEMI Model 20-1 
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Figure 4 shows comparison of calculation of Frechet terms for apparent resistivity and phase 
for bo th TE and TM modes for a ll nodes (corresponding to stat ions) at the sur face. The perturbed 
param eter was th e resistivity on t he cell on the first row and ninth column of COMMEMI model 
2D-O(Fig . 1) and the period used was 300 s. We compare results calc ulated using recipro city with 
t he resul t s obt ained by the difference between two forward solut ions (unpert ur bed and per turbing 
the resist ivity valu e by 10%). The results a re normalized by their maximum values, so that the 
unit valu e cor responds to t he maximum perturbation. The agreement between values o btained 
with reciprocity and by difference of two forward solut ions is within machin e precision , with some 
sma ll discrepancies which do not affect the invers ion resul ts. 

5. Inversion of Synt het ic Data 

In order to te st th e inversio n algorit hm, we performed inversion for set s of synt hetic data 
with no noise added to th em . The stoping criteria chosen were eit her to reach a maximum number 
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of it erat ions or a minimum misfit, which was calculated as the ratio: 

IIDrn - dl1 2
 

IIdl12
 

Also, in order to constrain the values of inversion param eters (resis t ivities) to bo positive, 
maximum and minimum values that these resisti vity can have are input as additiona l inver sion 
parameters . In t his par ti cular case t hese were, res pectively, 1000 . and 0.1 n ·m. The starti ng 
mo de l used in t he inver sion is the a priori model used in t he regul ari zat ion. 

T wo sets of sy nt hetic a ppare nt resisti vity and phase data for T E and TM mod es were gen­
erated usin g CO M 1'vIE~vII model 2D-1, shown in Fig. 5. CO MM EMI mod el 2D-1 consists of a 
0.5 n ·rn cond uctor buried in a 100 n ·m background. Eleven frequencies (0.01, 0.03, 0.1, 0.3, 1., 
3., 10. , 30., 100., 300. and 1000. Hz) were used to gene rate data for 27 st ations located at t he 
surface. The mesh used in t he forward calculat ions consisted of 12 rows of 28 rectangles each in 

Inversion Result for Synthetic TE App. Resistivity Data from COMME MI Model 20-1 
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a total of 336 rectangular cells. T his same mesh was used in the inversion. 
We performed inversion for TE and TM modes separ ately. St ar ting models were a 100 n ·m 

half-space and inversion par ameters were all 336 resistivit ies in t he rectangul ar cells for both TE 
and TM mode inversions . All calculations were performed 0 11 a Pent ium 100 MHz. 

Inversion for TE mod e apparent resistivity and ph ase dat a for a misfit of 0.05 yielded t he 
model shown in Fig. 6(a). The misfit was achieved aft er 52 itera tions; each iteration taking 17 
minute s . T he inversion of TM mode data, however , took only 6 minutes per it erat ion since t his 
mode does not require air layers on top of t he mesh , resul ti ng in a smaller matrix system. A 
0.002 misfit was reached after 41 itera t ions and resulted in the model shown in F ig. 6(b) . 

F igure 7 shows the behavior of normalized misfit , par amet ric funct iona l and how the regu­
lari zation parameter 0' was changed t hro ugho ut both T E and TM inversion processes. A st able 
minimization was observed for both , normalized misfit and parametric functional , at each itera­
tio n unt il the desired misfits were obtained. 

Neither TE nor TM modes alone could recover the origina l model of F ig. 5 due to the 
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Inversion Result for Synthetic TM App. Resistivity Data from COMMEMI Model2D-1 

· • 
· ·, • 
• • I •· 

Inversion Result for Synthetic TM Phase Data from COMMEMI Model 2D-1 
10-3 l "'""',_ =A z'_"" '" .... L. . 3'<h · "''''''a 3W '" . - iIL ' " ' , ..... 

10-3 
-

• 
• .... 

· 
• • · · · · 
• • •• 

102 I - ..- I 

• 
0 

o 5 10 15 20 25 30 35 
Y (km) 

Fig. 11. P seu dosect ions of data res ulting from inversio n of synthet ic T N! mode data from CO M::VIE MI mod el 
2D- 1. 

inhere nt non-uniqueness of the inverse problem. However , these models are consiste nt with the 
resolu tion of each mode separately. T he model obati ned from TN! invers ion (Fig. 6(b)) recovers 
a smaller and more cond uct ive bo dy at t he right locat ion , while the resu lt from the T E inversion 
(Fig. 6(a)) shows a resisti ve top with a large conductive body that extends to dept h. Also, both 
models generate sets of apparent resist ivit y and ph ase data that agree to the origina l synt het ic 
within t he specified misfit . Fig ures 8 and 9 show pseudoscct ions for original dat a and the one 
obtained from inversion, respect ively, for the T E mode , while F igs. 10 and 11 show the same 
result for t he TN! mode. We genera te d these pseudosections in order to compare the origina l 
synt hetic data to t hat obtained from the inversions. These pseudosections show that the result 
from inversion of synthetic data yields acceptable results. 
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6. Inversion of CSAlvlT Data from Kennecott Exploration 

A set of cont rolled sourc e audio-frequency magnetotelluric (CSAMT) field data from Ken­
necott Exploration , with drill cont rol available for comparison , is int erpreted usin g the two­
dimensional inversion scheme descri bed here. CSA1.'1T is a resistivity mapping tool which has 
excellent lat er al resolu tion , depth penetration and field production . A cont rolled source is used to 
overcome probl ems with unstable natural source fields that ar e en countered in audio-frequency 
magnet ot elluric (AMT ) surveys, CSA yIT data int erpret ation was typically achieved by one­
dimension al pseudo-d epth plot s or inver sions, which are distorted by static shift and t errain 
effects, Two-dimension al inversion and int erpretation of plane-wave CSAMT data sho uld help 
remove these art ifacts and produce a geologically reasonable resistivity model. Source effects, 
whi ch typi cally contaminate low-frequency CSAMT data, are difficult to interpret and are dis­
carded in this scheme . 

A total of 15 CSAfvIT stations, spaced 100 meters apart and for eleven frequenci es (8192., 
4096., 2048., 1024., 512., 256., 128., 64. , 32. , 16. and 8. Hz) were collected over a profile where 
Kennecott has located quartz-porphyr y dikes, breccia and sulfide vein s cutting Cretaceous Hand­
stone and limestone host rocks. Resistivity vari ations in the observed data are ca used by faulting, 
by high-resistivity quartz-porphyry dikes and by low-resistivity sulfide veins. 

A geological cross-section for the area along the profi le where the data were acquired is shown 
in Fig. 12. Results from smooth 1-D inversions of each 15 st ations , provided by Kennecot t , are 
plotted as a combined section in F ig. 13. T he combined 1-D section resolves the location of th e 
qu artz porphyry and another resistive feature close to stat ion - 150, which may be assoc iate d to 
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Fig. 12 . Geologica l cross-sec t ion a long profile of CSAMT data from Kennecot t Expl oration . 
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Fig. 1:3 . Combined section of indep en dent resu lts from I-D inversions of each station of CSA/I.'1 T dat a from 
Kennecott Exp loration . 

a fault . However , both resis t ive features are very elongated , a behavior typica l of I-D results . 
Laboratory studies of t he physical prop ert ies of th e rocks found in the area yielded res ist ivity 

valu es between 13 and 2723 n ·m for the sandstones, between 38 and 2462 n ·m for breccia, and 
between 9900 and 37000 n ·m for the qua rtz porphyry. The lowest resistivity values for t he 
sandstones and for t he br eccia are associated to the presence of lead-silver zinc veins . 

All the geological, lab oratory and 1-D inversion infor mation provided was used to construct 
the 2-D starting mod el shown in F ig. 14(a). Also, maximum and min imum resistivity values in 
t he mod el were constrained between 13 and 37000 n 'm , base d on the laboratory values. 

Two- dimensio nal inversion was performed for data in t he plan e-wave regime (10 freq uenc ies: 
8192 to 16 Hz) for all 15 stat ions. T he mesh constru cte d had 11 rows an d 16 columns , in a total 
of 176 rect an gu lar cells. The inversion paramet ers were all 176 resist ivit ies of t hese cells and t he 
calculations were performed on a Pentium 100 Mllz . Total inversion time was 17 minutes for 
13 it erations to reach a misfit of 0.02 and converge to t he model shown in Fig . 14(b). Apparent 
resist ivity and phase pseudosections of the observed data are shown in Fig . 15. These can be 
com pared to pseudosect ions of t he data obtain ed from inversion (Fig. 16) which depict all t he 
major feat ures seen in the observed data. 

T he be havior of misfit and para metric functional (Fig. 17) was stable throughout t he inversion 
process. Figure 17 also shows t he behavior of t he regularization parameter a and how the value 
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KENNECOTTCSAMTDATA 
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Fig. 14. St arting model (a) a nd resistivity model (b) res ult from 'I'M mod e 2-D inversion o f CSAMT da ta fro m 
Kennecott Explor a ti on. 

was changed during the inversion. 

The model obtained from 2-D inversion (Fig. 14(b)) reinforces the location of the quartz 
porphyry by increas ing the resist ivity of the body below station 550. Other features, such as the 
resistor below station - 150, also appear in the 2-D model, but wit hout the elongate d pattern. 
However, in order to test if the resistive body at stat ion 550 was required by the dat a or was just 
an artifact from it s presence in the starting model, inversion was performed for the same data 
and with the same par am eters but with a 100 n·m ha lf-space as starting model. The resulting 
model is shown in Fig. 18 and it does show the same resist ive structures at station 550 and 
- 150, consistent with t he location of the quar tz porphyry and a possible fau lt. The behavior 
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KENNECOn CSAMT App. Resistivity (TM) Data 
_ a ! ! ! 

I 
51 2 
. 

E 
I 

-

I 

10-3 

U 
Q)

s: 
-0 
0 

~ 10-2 

E 
s: 
Q. 
z­
'> 
~ 
'00 

~ I 1.5 
a. 
a. 
c( 

Ol 
..Q10-1 

- 400 -200 0 200 400 600 800 
Y(m) 

KENNECOn CSAMT Phase (TM) Data 

u ., Q) 60 s: ~ 
-0 Q) 
0 en. ;:: 

s: 40rf. 10-2 
0-

ctl 

20 

10-1 

0 
-400 -200 0 200 400 600 800 

Y(m) 

Fi g. 15. Pseudosect.ious o f a pparent res ist ivity a nd ph ase CS AI\·[T data (T );[ mod e) from Ken necott Ex p lora t ion. 

of invers ion param et ers is shown in Fig . 19 and it took 15 it era t ions to reach th e 0.02 misfit , 2 
more iter at ions than when some a priori infor mat ion was uti lized in t he starting mod el. The 
plane-wave apparent resistivity and phase dat a obtained for t his inversion are shown in Fig. 20 
and they, too, depict most fea t ures of the origi na l data (F ig. 15) . T hese result s show th at th e 
model obtain ed from inversion is affected little by t he starting mod el, provi ded that the init ial 
guess is based on acc urate geological informati on . 

We should also notice that these highly resist ive structures are very difficult to resolve by 
CSAMT da ta. It is ver y well known t hat induct ive techniques have low sensit ivity to resistive 
targets. That is why we ca n consider these resu lt s from 2-D inversion , with respect to t he quar tz 
porphyr y bod y and possible loca t ion of faul t st ructure at station - 150, as a success . T he two­
dimensional inversio n of plane-wave CSAMT data has accur ately resolved known quartz porphyry 
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KENNECOTT CSAMT App. Resistivity (TM) Data from Inversion 
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d ikes as well as new st ruct ural target s, 

7. Conclusions 

This work presents an approach for the solut ion of over pa rameterized 2-D M'I' inversion 
problems t hat deals wit h the model of an arbi t ra ry st ruct ure. 

For the forwar d solut ion, we use a fast and efficient finite difference formulation to t he 
solut ion of both T E and T M modes in MT based on a modifi cation of the balance method . T he 
forward code was t hen checked against known solut ions and exist ing codes. 

A full 2-D Frechet derivat ive matrix is obtained as a solut ion to simple forward and back 
substit ut ion of t he LU decomposed matrix of coefficients from t he forward problem with a different 
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Behavior of Inversion Parameters for KENNECOn CSAMT Data 
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Fig. 17. Behavior of normalized misfit, parametric functional and regularization parameter (0:) for TM mode 
inversion of Kennecott Exploration CSAMT data. 

right hand term and utilizing the principle of reciprocity. 
In order to constrain the solutions of the inverse problem to a set of possible models, a 

stabilizing functional was introduced, referencing the solution to an a priori model. 
The inverse code was first tested and provided fast and stable results for synthetic data sets 

within the resolution of each mode separately. Also, results of practical application of the method 
to CSAMT data from Kennecott Exploration demonstrate its effectiveness in the inversion of real 
data sets by resolving known and possible new structural targets. 

By utilizing an accurate and simple finite-difference formulation, reciprocity in calculation of 
the Frechet matrix, and by regularizing the inverse problem by referencing to an a priori model 
we constructed a method which is fast, stable and that provides geologically reasonable results 
which can help in the interpretation of MT and plane-wave CSAMT data. 
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KENNECOTT CSAMT Data Model Result from 2- D Inversion: Half-Space Starting Model
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Behavior of Inversion Parameters forKENNECOn CSAMTData: Half-Space Starting Model 
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Appendix: The Regularized Conjugate Gradient Method 

This method uses the same ideas as the conventional conjugate gradient method. However, 
the iteration process is based on the calculation of the regularized steepest descent directions. 
The theory presented here follows that of Zhdanov (1993). 

To obtain a stable solution for the inverse problem, we minimize the parametric functional 
of Eq. (22): 

pa(m, d) = IIWdA(m) - Wddl12 + o:S(m) = minimum (A.l) 

W
where d are the observed data, m is the unknown model, A(m) is the operator of forward modeling, 

d is the data weighting matrix and S(m) is the stabilizing functional. If we suppose that the 
space of data D is a Hilbert space with some given metric and the space of models M is also a 
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KENNEcon CSAMT App. Resistivity (TM) Data from Inversion: Half-Space Start ing Model 
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KENNEcon CSAMT Phase (TM) Data from Inversion: Half-Space Starting Mode l 
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of Kenn ecott Exploration d ata ut ilizing a 100 \l'm hal f-space as st arting model. 

Hilbert space wit h another metric , then: 

P" (m,d) = (WdA(m) - Wdd, WdA(m) - Wdd)D + a:(m - m a p n m - mapr)M (A.2) 

where mapr is some a priori given model. To solve the problem of minimization (A.I ) we have 
to calc ulate the first vari ation with respect to m : 

8po.(m ,d) 8(WdA(m) - Wdd, WdA(m) - Wdd)D + a:o(m - mapr, m - mapr )M 

2WJ (8A(m), A(m) - d) + 2a:(8m , m - mapr)' (A.3) 

Takin g into considerat ion th at the operato r A is differentiable 

8A(m) = Fm 8m (A.4) 

100 
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8P

where Fm is a linear operator, the Frechet derivative of A, we obtain 

Q(m, d) 2WJ(Fm8m, A(m) - d)D + 2a(8m, m - mapr)M 

2WJ(8m, F~(A(m) - d) + a(m - mapr)) (A.5) 

where F:" is the adjoint operator of Fm · 

In order to obtain a direction of descent at each iteration, we select 

8m = -kQ[Q(m) (A.6) 

where k" is some positive real number and [Q (m) is the direction of steepest ascent of the func­
tional PQ (m, d): 

[Q(m) = F~WJ(A(m) - d) + a(m - mapr). (A.7) 

By substituting Eqs. (A.6) and (A.7) into Eq. (A.5) we obtain
 

8PQ(m,d) = -2kQ(lQ(m), [Q(m)) < O.
 (A.S) 

The iteration process for the regularized steepest descent is constructed as follows: 

mn+l = m n + 8m = m n - kQ[Q(m). (A.9) 

The coefficient k" is obtained by the minimization of the parametric functional PQ (m, d) 
with respect to k": 

pQ(mn+l, d) = PQ(mn - k~[Q(mn)) = min. (A.I0) 

The iteration process for the regularized conj ugate gradient method combines previous and 
current "directions" of ascent: 

mn+l = mn + 8m = mn - kQlQ(m). (A.ll) 

On the first step, we use the "direction" of regularized steepest ascent:
 

lQ(mo) = [Q(mo)·
 

On the next step, the "direction" of ascent is the linear combination of the regularized 
steepest ascent on this step and the "direction" of ascent i- (mo) on the previous step: 

[Q(md = [Q(md + (3glQ(mo). 

On the nth step 

lQ(mn+d = [Q(mn+d + (3:;;lQ(mn). (A.12) 

The coefficients (3:;: are determined by the formula: 

2II[Q(mn+d11 

(A.13)(3:;; = IllQ(mn ) 112 
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