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Abstract  

This special issue is concerned with the present state of the art in methods of numerical modelling of geo-electromagnetic 
fields in inhomogeneous media. A theoretical overview is followed by specific applications of the various modelling 
methods and computer programs (developed throughout the world) to the geo-electric test models of the international project 
on the Comparison Of Modelling Methods for ElectroMagnetic Induction problems (COMMEM0. Numerous tables and 
diagrams provide a comparison of the results obtained by these different approaches. This material is intended for 
geophysicists dealing with the modelling and interpretation of geo-electromagnetic fields, for scientists involved in the 
testing of related software, for specialists in the field of computational geophysics, and for graduate and senior 
undergraduate students studying this branch of geophysics. © 1997 Elsevier Science B.V. 
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1. Introduction 

The development of methods for numerical modelling in geo-electrics has been carried out over 
several decades, but only during the last 10-15 years have numerical algorithms been developed for 
the solution of complex two-dimensional models. More recently, sufficiently reliable three-dimen- 
sional algorithms have been developed that the investigation of non-trivial, three-dimensional 
geoelectric structures is now perfectly feasible. There are dozens of algorithms and programs for the 
numerical modelling of electromagnetic fields in inhomogeneous media now available, so there is a 
need to undertake a comparative analysis of their accuracy, their computational efficiency and their 
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universality of application. Such an analysis is timely not only as a qualitative classification of 
existing modelling techniques but also for deciding what priorities exist in the future development of 
modelling methods. 

Numerical modelling of electromagnetic fields has become an efficient tool in various theoretical 
investigations in geophysics, and two-dimensional modelling in particular is applied by hundreds of 
investigators in many organizations throughout the world. The consequences of choosing an inade- 
quate or unsuitable method, or of applying a given program improperly, may therefore be quite 
substantial. 

The original version of this special issue was published as a monograph in Russian, which was 
produced as part of an international project entitled "Comparison of Modelling Methods for 
Electromagnetic Induction" with the acronym COMMEMI. The project was initiated in 1983 by 
Working Group I-3 of the International Association of Geomagnetism and Aeronomy (IAGA) and 
was undertaken with wide international cooperation. Coordination of the project was provided by 
research workers at the Department of Deep Electromagnetic Studies at the Institute of the Earth 
Magnetism, Ionosphere and Radio Wave Propagation of the Academy of Sciences of the USSR 
([ZMIRAN) I. The monograph provided an opportunity to summarise the results of the project and to 
present in visual form the potential of modern methods for the numerical modelling of geophysical 
electromagnetic fields in horizontally inhomogeneous media. 

Limitations of space do not permit the inclusion of a detailed theoretical survey of all existing 
approaches in the field. We believe that it is more important to confine ourselves to a brief description 
of the types of algorithms which were most often used in the comparative calculations, but to present 
in detail all the submitted results for a series of two- and three-dimensional test models, along with 
the conclusions of a statistical analysis of these results. This issue is therefore a practical guide on the 
application of numerical modelling methods in geomagnetic induction and related geophysical 
disciplines, and it contains numerical results which can serve as a standard against which new 
modelling methods can be tested. 

2. Survey of methods for modelling inhomogeneous media in electromagnetism 

2.1. The problem o f  numerical  modelling in geoelectrics 

In the method of numerical modelling a physical phenomenon under investigation is represented by 
a mathematical system which can be solved numerically. The results obtained from the mathematical 
investigation of such a model are then interpreted in terms of the original phenomenon and serve to 
develop an understanding of the physical processes involved. The most important task in geophysical 
modelling is the prediction of the geophysical field for a specified distribution of the physical 
parameters characterizing the region of the Earth in which the field exists. Geoelectric modelling 
involves calculating the total electromagnetic field in a model defined by a postulated distribution of 
electric and magnetic parameters in the medium under study, together with the exciting field. The 
calculated fields given by the particular technique under investigation can then be compared with the 
measured response. 

A fundamental mathematical model in electrodynamics is represented by Maxwell 's equations, 
which prescribe the analytical relationship in the form of a system of first order vector equations 
between the components of the magnetic and electric fields, and the parameters of the medium 
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(electric conductivity, permittivity and magnetic permeability). A detailed analytic investigation of 
such models for the most general case is given in the monographs by Svetov (1984), Berdichevsky 
and Zhdanov (1984), Zhdanov (1986), Weaver (1994) and Zhdanov and Keller (1994). In the present 
work we shall be interested only in the following simplified form of Maxwell's equations: 

curlH = o-E +j" 
curl E = i w/zH 
divH = 0 (1) 

d i v e  = - ( E - g r a d  ~r + iogq ' ) /o -  

where E and H are complex vectors denoting the electric and magnetic fields, respectively, j s is the 
density of extrinsic currents, and q" is the density of extrinsic charges, and a time dependence 
e x p ( -  iw t )  is understood. Since it is these apNoximate equations that are generally used in problems 
of electromagnetic induction in the Earth, they are the equations on which COMMEMI was based. 

Let us assume that the region of modelling consists of an upper half-space (atmosphere), and a 
lower conducting half-space (Earth) characterized by an inhomogeneous distribution of conductivity. 
The system of equations (Eq. (1)) in the conducting medium may be modified so that the first two 
equations involve only the electric and magnetic fields, respectively: 

curlcurlE - ito/xo-E = i toj '  

o- cur l [ (cur lH)/o-]  - ito/xo-I-I = o- curl(j~/o-).  (2) 

Introducing the Laplacian operator in Eq. (2) with the aid of the identity: 

curl curl = grad div - V 2 

we obtain: 

V 2E + grad[(E,  grad o- + iooq') /~r]  + iwlxo 'E  = - i w t x j  "~ 
(3) 

I7 2H + [(grad o - ) / c r  ] X curl H + i , o ~ o - H  = - o- c u r l ( j y o - ) .  

These two equations form the basis of the majority of algorithms for modelling magnetic fields in 
inhomogeneous media. Depending upon the particular problem under investigation, only one of Eq. 
(3) is solved and is supplemented by Eq. (1) as required. 

In the nonconducting medium only the first equation in system (2) is of interest. Since no free 
charges exist in the medium, it reduces to: 

V 2E = - i ootxj ' .  (4) 

Finally we consider the equations for a stationary field which are obtained by passing to the limit 
6o --0 0. The equation for the stationary magnetic field is obtained from the second Eq. (2): 

curl[ (curl(H) / cr ] = curl(j s/o- ). (5) 

To simulate the electric field in regions of piecewise homogeneous media of uniform conductivity we 
may use the first equation from Eq. (2), which in this case reduces to Helmholtz's equation. 

Let us now be more specific in our description of the analytic electrodynamic model expressed by 
system (1) by discussing the structure of the non-uniform conductivity distribution in the region being 
modelled, and the form of the primary electromagnetic field exciting it. The distribution of electrical 
conductivity is written as a superposition of normal and anomalous parts: 

o-(r) = cr"(r) + o-a(r). (6) 
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The normal part is understood to be a (simpler) distribution of electric conductivity for which the 
solution of the modelling problem is known. Usually the spatial dimensionality of the normal 
conductivity is lower than that for the total conductivity. A classical example of a one-dimensional 
normal distribution is one that is divided into uniform horizontal layers. There may also be more 
complicated situations; for example, a two-dimensional distribution may play the role of the normal 
conductivity in a three-dimensional problem. Usually the normal distribution is chosen so that the 
anomalous part is described by a bounded function which differs from zero only within the limits of a 
finite region 7/~. 

In the majority of modelling methods dealing with electromagnetic fields in inhomogeneous media 
a limited set of rather simple primary source fields is employed (elementary electric and magnetic 
dipoles, finite distributions of dipoles, etc.). The simplest source is a uniform field or a 'plane wave'. 
With this idealization, which corresponds to the source being infinitely far from the modelling area, 
Eqs. (1)-(5) are assumed to be free from the terms revolving external current and charge densities in 
the region under investigation. Associated with the decomposition (Eq. (6)) of the electrical 
conductivity, there is a separation of the electromagnetic field into normal and anomalous parts. Thus, 
when the model is excited by a plane wave, the normal field is the plane wave field in a medium with 
the normal distribution of electric conductivity. If the plane wave propagates perpendicularly into a 
normal medium comprising horizontally uniform layers, the normal field equations become one-di- 
mensional and may be easily solved in explicit form (Weaver, 1994; Zhdanov and Keller, 1994). 
Equations for the anomalous fields E" and H" follow from Eq. (2) in the following form: 

V2E~ + grad[E~. (grad o - ) / o - ] - i w # ~ r E  ~ = -io~/zo-~En - grad[E" • (grad o-~)/cr] 

V 2 H  " -  [(grad ~r)/~r] × c u r l H ~ -  i w # o - n  ~ = - i w l ~ c r ~ H n - o - g r a d ( o - ~ " / o - ) × E  ". 

(7) 

In the remainder of this section a brief theoretical analysis of various general methods for 
calculating the electromagnetic field in the model are discussed and some specific algorithms are 
described. Section 3 includes an analysis of the modelling programs used in the COMMEMI project, and 
in Sections 4 and 5, where the results of the comparative study are given, the advantages and 
limitations of these various programs are discussed. The majority of the various approaches to solving 
problems of numerical modelling fall into two basic classes--the integral equation method and 
methods based on differential equations governing the behaviour of the field, as described, for 
example, in the surveys by Varentsov (1983), Zhdanov and Spichak (1984), Hohmann (1983, 1987), 
Kaikkonen (1986), Chave and Booker (1987),(~erv and Pek (1990), Wannamaker (1991) and Xiong 
(1992). 

2.2. Integral equation method 

Since the mid-1960's the Fredholm integral equation method has been successfully applied to the 
problem of modelling of electromagnetic fields in inhomogeneous geoelectric media. The method of 
volume integral equations, which is widely applicable, has become one of the most effective means 
for solving two- and three-dimensional problems involving media with local heterogeneities of rather 
complex structure (Dmitriev, 1969; Weidelt, 1975; Hohmann, 1975, 1983; Dmitriev et al., 1977; 
Hvozdara, 1981; Ting and Hohmann, 1981; Wannamaker et al., 1984a,b; Dmitriev and Zaharov, 
1987; Hvozdara et al., 1987; Wannamaker, 1991; Zhdanov and Spichak, 1992; Xiong, 1992; Xiong 
and Tripp, 1993a). The method of surface integral equations, which has performed well for the class 
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of homogeneous inclusions of simple form was developed in parallel (Kaufman, 1974; Taborovsky, 
1975). The first reliable results from the numerical modelling of electromagnetic fields in geoelectric 
problems in both two-dimensional (Dmitriev, 1969; Hohmann, 1971) and three-dimensional media 
(Weidelt, 1975; Hohmann, 1975) were obtained by means of the method of integral equations, and 
there are now many different computer programs available based on this method. The general 
theoretical principles of the approach are outlined below. 

2.2.1. Volume integral equations 
Let us confine ourselves to the analysis of a geoelectric model in which the anomalous conductivity 

in Eq. (6) is concentrated in a local (and in the general case multiply connected) region T a, while the 
distribution of normal conductivity is a one-dimensional horizontally layered structure. 

The main advantage of the method of volume integral equations is that the most tedious part of the 
modelling problem is restricted to just the anomalous region ~ a .  This simplification is achieved 
simply by converting the differential Eq. (2) into an integral equation by volume integration, an 
application of Green's theorems, and the introduction of elementary or fundamental solutions 
(Green's operators) (Berdichevsky and Zhdanov, 1981; Berdichevsky and Zhdanov, 1984; Svetov, 
1984; Dmitriev and Zaharov, 1987; Zhdanov and Keller, 1994; Weaver, 1994). 

The electromagnetic field in the model can be represented by the operator (Weidelt, 1975): 

U(r)  = U"(r)  + fT /G"( r l r ' )  • j ( r ' )  d ~ '  (8) 

where U = E or H is the total vector field, U n is the corresponding normal vector field, j = o-aE is 
the density of excess conduction currents, and G u is the Green tensor (electric G e or magnetic G h) for 
the normal structure. The Fredholm vector equation of second order for the electric field in ~ a  is 
therefore given by: 

E(r )  = En(r)  + f g G e ( r l r ' )  • j ( r ' )  d T ' .  (9) 

The primary or source field is completely taken care of by the normal field. 
The vector components G 7 and G~ of the tensor satisfy the first of Eq. (2) and the second of Eq. 

(1) for the electromagnetic field: 

V 2G~(rlr ') + i o J / ~  n(r)GT(rlr ') 

G~(rlr ' )  

= - i t o / x 6 ( r  - r ' )~i  

= curl GT(rlr')/iwlx 

and give the electromagnetic field at the point that originates with a current dipole of unit moment 
placed at the point r '  and oriented along axis ~i- 

The traditional approach to the numerical solution of integral Eq. (9) involves subdividing region 
~pa into prismatic cells ~ (k = 1, 2 . . . . .  K) and assuming that the functions E(r) and o-a(r) are 
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constant in each cell. In this case the problem defined by Eq. (9) is reduced to a linear system with the 
following structure: 

K 

akc~ __ 6i~i) . Ek n i =  1,2, ,X (10) E ( O" ~ i k  = -- E k  . . . .  
k = l  

where 

f 
Gi~.= ] G U ( r i l r ' ) d ~  ', i= 1,2 . . . . .  K; k = i =  1,2 . . . . .  K ( l l )  

JT /  

and E k = E(rk), E~ = En(rk), o -"k = o-U(rk). Here r k is the centre of the cell ?7~, I is the unit tensor, 
and 6i~ is the Kronecker delta. The discrete representation of Eq. (8) takes the form: 

K 

u i :  u; + E (  kEk) (12) 
k - I  

where i is the index of the observation point. 
The discrete problem Eqs. (10)-(12) has virtually the same form in most of the algorithms based 

on the volume integral equation method. What differences there are affect principally the accuracy of 
solution and the computational effectiveness. They usually arise in the way the Green's tensor is 
represented and in the different methods of integrating Eq. (11) (Weidelt, 1975; Ting and Hohmann, 
1981; Hvozdara, 1981; Das and Verma, 1981a,b, 1982; Wannamaker et al., 1984b; Hvozdara et al., 
1987; Wannamaker, 1991; Xiong, 1992; Xiong and Tripp, 1993a). Most of the computational 
resources are required for solving the linear system Eq. (10) even for models of average complexity. 
Altogether there are 3 K scalar equations, a number which can typically go into the many hundreds, 
although the size of the system can sometimes be reduced by taking into consideration the 
symmetries, if any, in the problem (Hvozdara, 1981; Hohmann, 1983; Tripp and Hohmann, 1984; 
Xiong and Tripp, 1993b). Direct and iterative methods are equally applicable for solving such 
problems. For systems of just a few hundred equations the method of direct elimination is preferable 
(Hohmann, 1983; Hvozdara et al., 1987). When solving larger systems on computers of average 
capacity it is necessary to switch to iterative techniques such as the block method of over relaxation 
(Hvozdara and Varentsov, 1988) or the Gauss-Seidel method (Hvozdara, 1981) and others (Xiong, 
1992). 

When transferring to a two-dimensional model in which the field and model parameters are 
independent of the spatial variable y the method of integral equations is separated into two 
independent sub-problems, corresponding to the cases of E- and H-polarization of the field. In 
E-polarization, the scalar equation for the electric field component E,, follows from the general Eq. 
(9) (Dmitriev et al., 1977; Dmitriev and Mershikova, 1979; Berdichevsky and Zhdanov, 1981, 1984; 
Zhdanov and Keller, 1994); in H-polarization a system of two equations for components E, and E_ 
must be solved. Direct methods are usually used to solve numerical problems in two-dimensions. 

2.2.2. Surface integral equations 
This approach offers the possibility of reducing still further the region over which the basic 

modelling problem is solved by reducing it, in the case of a single homogeneous inclusion, to the 
surface O ~  a of the anomaly or, when the anomalous region 7fa is divided into homogeneous 
elements, to the boundary surfaces where the elements adjoin each other. A system of Fredholm 
equations is defined on this surface (Taborovsky, 1975; Dmitriev and Zaharov, 1987). We shall not go 
into further details of this method here since no algorithms of this class were used in the project. It 
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should be emphasized, however, that the usefulness of this approach, even for models with 
inhomogeneities of only average complexity, is very limited because the number of elements of 
discretization on the boundary surfaces becomes great compared with that required in the volume 
integral method. Moreover, problems of numerical stability arise because the system of Fredholm 
equations includes equations of first order (Dmitriev and Zaharov, 1987). The situation for stationary 
fields is somewhat different; for to solve the three-dimensional problem of an anomalous inclusion of 
uniform conductivity in an otherwise homogeneous medium, it is sufficient to employ just one scalar 
Fredholm equation of second order on the inclusion surface. Solutions of stationary problems obtained 
by the method of surface integral equations were used in the three-dimensional part of the project for 
comparison with the low frequency results obtained by the more general methods. Therefore let us 
briefly discuss one such solution, due to Hvozdara (1982, 1983, 1985). 

The electric field E in each inhomogeneous region is expressed in terms of the potential U, defined 
by: 

E(r )  = grad U(r).  

Outside the inhomogeneity the potential takes the form: 

U(r )  = U n ( r )  + / ( r ' )  d S  p' (13)  
~. c9 n' 

where f is the density of the dipole (double) layer sources distributed on the inhomogeneity surface 
and oriented in the direction of the outward normal, and where the normal derivative of the 

Green's function G specifies the potential of an elementary dipole placed at the point r'. The prime 
on the element of area d~5 p' indicates surface integration over the primed coordinates. 

It follows that on the surface of the inhomogeneity (Hvozdara, 1982): 

f ( r )  2 /3[U"( r )  q] + ~ f o ~ f ( r '  ) 0G(rlr ' )  = - d27" (14) 
On' 

1 
f~ U " ( r ) d ~  cP, / 3 = - - o ' a / ( Z O n - t - o a ) .  

When the inhomogeneity is embedded in a homogeneous half-space, the Green's function takes the 
simple analytic form: 

1 1 
- -  r ' = ( x ' , y ' , z ' ) ,  r + = ( x ' , y ' ,  - z ' ) .  G ( r l r ' ) -  I r - r ' l  + I r - r + l  ' 

With a plane wave source the normal potential is chosen to be proportional to the horizontal 
coordinate that corresponds to the polarization of the field, thereby ensuring the uniformity of the 
normal electric field. 

Eq. (13) is discretized in the same manner as Eq. (9). The resulting linear system may be solved 
either by direct or by iterative methods. It is significant that the number of real equations per element 
of discretization is here six times less than with Eq. (9). 

The value of the potential U on the Earth's surface is obtained by substituting the f given by the 
discrete solution of Eq. (13) back into Eq. (12). The corresponding electric fields are then determined 
either by a direct difference calculation of the potential gradient, or according to Eq. (13) with the 
gradient taken under the integral sign. 
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The anomalous magnetic field, corresponding to the anomalous current density j~ 
the inhomogeneity, satisfies the equations: 

curlH ~ = - o-grad U ~, d ivH ~ = 0 

and are also represented in terms of surface integral operators (Hvozdara, 1983). 

= (~r" + o -~) in 

2.3. Differential equation methods 

Methods of modelling electromagnetic fields based on the boundary-value problems that follow 
from Maxwell 's differential equations, have been intensively developed over the last 15 years. Most 
of the two-dimensional problems of geoelectrics, as well as a number of important ones in higher 
dimensions (quasi three-dimensional and three-dimensional problems) have been solved by such 
methods. 

Finite differences and finite elements are most often used for the numerical solution of differential 
equations. It is difficult to distinguish between these two approaches, especially with rectangular 
meshes (elements) when the resulting discrete systems of equations are essentially the same. A 
number of combined approaches have also been developed, for example the variation difference 
scheme (Vanyan et al., 1984). Therefore, we first discuss the general problem of setting up the 
boundary-value problems which are relevant to both finite differences and finite elements. In Section 
2.3.2 we examine in more detail the finite difference approach and in Section 2.3.3 we briefly 
consider the essential steps in the finite element method. 

2.3.1. Representation of modelling problems as boundary-value problems 
In the methods of finite differences or finite elements it is first necessary to write down the 

complete and consistent system of electromagnetic field equations in the limited region of modelling 
~/  which has an anomalous electrical conductivity o-~. Within the region of modelling it is usual to 
specify the second order partial differential equation for either the (total or anomalous) electric or 
magnetic field U as: 

L [ U ( R ) ]  = R ( r ) ,  r ~ ~'/. (15)  

Eq. (15) is supplemented with a boundary-value condition, i.e. with an additional equation for the 
field U on the boundary 0 ~  of the region ~/: 

Lb[U(r)] = Rb(r) ,  r ~ 0~ ' .  (16) 

The system of equations defined by Eqs. (15) and (16) forms a boundary-value problem. 
In three dimensions the equations for the vector boundary-value problem satisfied by the electric 

field are usually treated with the first equation in Eq. (3) or Eq. (7) playing the role of Eq. (15). The 
magnetic field is then found from the second Eq. (1). 

In the two-dimensional case, when the distribution of the electric conductivity in the model does 
not vary along axis O y, the modelling problem is separated into two independent scalar boundary-value 
problems corresponding to the two polarizations of the field--electric (EP) and magnetic (HP). In this 
case Eq. (15) takes the following general form: 

L[U(r)]  = d iv (pgrad  U) + qU = R(r) ,  r ~ 

and in accordance with Eq. (1): 

= - o u / o z ,  = o V / O x .  

In the case of E-polarization: 

U= E,., V~= iw/tH~, V_= ito/tH:, p= 1, q = i w/to-, 

(17) 

(18) 
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while for H-polarization: 

U=H~.,  V~=°-Ex,  ~ = o - E ¢ ,  p =  1/o-,  q=io~/x.  

In the problem for the total field (U = U t) the right-hand side of Eq. (17) is identically equal to zero. 
The quantity R for the anomalous field problem (U = U a = U t - U n) takes the form: 

or aEn EP 

R = div[(cr a/or)grad Hyn] HP. 

The classical statements of the boundary-value problems of electrodynamics are based on an 
application of Dirichlet boundary-value conditions of the first, second and the third order, prescribed 
generally by means of linear combinations of the field itself and its derivative normal to the boundary 
(Tikhonov and Samarsky, 1972). 

The simplest Dirichlet condition of the first order requires specification of field boundary values. 
Usually the boundary of the modelling region is set so far from the conductivity anomaly that it is 
possible to neglect the anomalous field there. It is then possible to choose the normal field values as 
the boundary values--usually one-dimensional, but sometimes two-dimensional if the normal distri- 
bution of electric conductivity is two-dimensional. Such is the approach taken in the majority of 
algorithms, including those of participants in the COMMEMI project (Sections 3.3.2 and 3.3.3). In the 
general case, where the modelling region of finite dimensions, it is very approximate--the error in the 
boundary conditions are of order O(1/[rl). Note that in some cases, however, such conditions are 
quite precise; for example, those on the surface of an ideal conductor in the two-dimensional case of 
E-polarization, or on the surface of an ideal insulator (in particular on the Earth's surface) in the case 
of H-polarization. 

Another possibility is to apply the second order condition which requires the normal derivative of 
the solution to vanish on the boundary. This condition is natural and is therefore widely used in 
algorithms based on the method of finite elements. In a number of approaches, the two types of 
conditions are combined on different sections of the boundary (Vardanyanz, 1978, 1979, 1983). It 
should be noted, however, that application of the aforementioned boundary conditions requires the 
dimensions of the modelling region to exceed the dimensions of the inhomogeneous region ~ a  
many times over, which results in an unreasonably large number of discrete problems to be solved. 
Any attempt to decrease the number by choosing a coarser discretization of the medium near the 
boundaries introduces considerable difficulties when approximating boundary-value problems. 

It is very helpful to reduce the extent of the modelling region by taking into consideration the 
boundary-value operator t b defining the spatial structure of the anomalous magnetic field. The most 
obvious method that comes to mind is an application of various integral representations (Weidelt, 
1975). For example it is possible to use operator (10), connecting the electric field on the boundary 
with the field inside the modelling region (Lee et al., 1981; Petrick et al., 1981). However in this case 
the structure of the resulting discrete system of equations is highly complicated, and is treated in the 
special class of hybrid schemes discussed in Section 2.4. Another approach is to apply the boundary 
conditions at a relatively small distance from the inhomogeneities in the medium by analyzing the 
asymptotic behaviour of the electromagnetic field far away from the geoelectrical anomalies (Berdi- 
chevsky and Zhdanov, 1981, 1984). 

A first step in this direction was taken by Weaver and Brewitt-Taylor (1978) for the two-dimen- 
sional case of E-polarization. Asymptotic boundary value conditions were obtained in the noncon- 
ducting half-space in the form of a differential equation of first order. In a subsequent paper 
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(Varentsov and Golubev, 1980a,b) this result was generalized to the three-dimensional case, and 
written down in the following form: 

L ' ~ ' [ U - U " ]  = 0 ,  L ~ ' = ( 1  + r - g r a d )  (Ir[>> 1). (19) 

The error in condition (19) is O(1/]rlZ). In the work of Zhdanov et al. (1982a,b) and Berdichevsky 
and Zhdanov (1984), two-dimensional and three-dimensional asymptotic boundary-value conditions 
of higher order were constructed for a non-conducting half-space. 

The analogue of conditions (19) for a conducting half-space was obtained for the two-dimensional 
case by Varentsov and Golubev (1985) in the form: 

( ' ) L'~,'~[U - g °] = O, L~b ' r -  klrl + 7 + r .grad (I/crl >> 1) (20) 

where k 2 = i co~cr (Re k > 0), and the corresponding three-dimensional form by Spichak (1985), as 
follows 

L~ 'r [U - U"] = 0, L~ '~ (1 - ikr + r .  grad). (21) 

Finally, Varentsov and Golubev (1985) have specified conditions of the form (20) and (21) on the 
surface of a stratified conducting base of the model. 

The ensemble of aforementioned asymptotic boundary value conditions in the upper and lower 
half-spaces, in combination with the one-dimensional equations for the normal field on the vertical 
side boundaries, provide possibilities for decreasing the modelling region. To a certain extent this 
approach was taken in all of the algorithms used in the COMMEMI project (see Section 3.3.3). 

The advantage of first order asymptotic boundary conditions lies in their similarity to the classical 
Dirichlet boundary conditions of the third order (the difference is that an oblique rather than a normal 
boundary derivative is used) so that they do not complicate the discrete approximatization of the 
problem to be solved. 

2.3.2. Fini te-di f ference approx imat ion  o f  boundary  ~,alue p rob l ems  
In the majority of algorithms the finite-difference approximation of a three-dimensional boundary 

value problem is based on a rectangular, uneven mesh: 

= { ( x i , y j , z k ) ,  i =  1,2 . . . . .  U~-; J = 1,2 . . . . .  U>.; k = 1,2 . . . . .  N~}. 

It is necessary to find the linear relation between the values Uij of the function U at the nodes of the 
mesh X, according to the boundary-value problem defined by Eqs. (15) and (16). Various approaches 
are used for this purpose. The simplest one is based on a direct replacement of the differential 
operators in the boundary-value problem by analogous difference expressions. This approach was 
adopted widely in the first finite difference algorithms for geoelectrics (Jones and Pascoe, 1971, 1972; 
Pascoe and Jones, 1972; Praus, 1976; Yudin and Kazanceva, 1977). It should be noted that these early 
finite difference schemes were not always of high quality; the nature of the errors of approximation 
arising with inappropriate averaging of the discrete values of electric conductivity was clarified in the 
middle of the 1970's (Williamson et al., 1974; Jones and Thomson, 1974; Brewitt-Taylor and 
Weaver, 1976; Cerv and Praus, 1978). 

The most convenient means of obtaining a finite difference approximation turns out to be the 
balance method (Samarsky, 1984). In this method the local approximations of the equations at the 
nodes of the mesh are used to construct a quadrature solution of integral identities that hold in this 
problem. For example it is possible to use the integral identities obtained by integrating Eqs. (15) and 
(16) over the elementary cell Si+, of the auxiliary mesh X+ which is composed of the central points 
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in the cells of the mesh X (Berdichevsky and Zhdanov, 1981; Zhdanov et al., 1982a,b). In the 
two-dimensional case the identity takes the form (Varentsov and Golubev, 1980a): 

L p(OU/On)df+f~,, qUd~9~=fu Rd~.  (22) 

Substituting discrete values of U and R at the nodes of mesh N, and the nodal values of p and q 
on the mesh X +, we arrive by quadratures at the system of five-point difference equations that 
approximate the two-dimensional problem to second order of accuracy (Varentsov and Golubev, 
1980a, 1985; Zhdanov et al., 1982a,b). In the three-dimensional case the simplest application of the 
balance method produces seven-point difference schemes (Zhdanov et al., 1982a,b; Spichak, 1983; 
Zhdanov and Spichak, 1992). The key point in the balance method is that the field components and 
conductivity values are defined at nodes on their own separate grids. This approach is also called the 
method of 'staggered grids' (Mackie et al., 1993, 1994; Weaver, 1994). Application of variation 
integral identities (considered in Section 2.3.6) yields the so-called variation difference schemes 
(Vanyan et al., 1984). 

Note that the three approaches we have considered here will all yield the same coefficients, or ones 
that differ only by second order quantities, in the difference equations for two-dimensional structures. 
For example, the coefficients in the five-point difference equations for two-dimensional E-polariza- 
tion problems are identical in each method (Brewitt-Taylor and Weaver, 1976; Cerv and Praus, 1978; 
Varentsov and Golubev, 1980a; Yudin, 1981a,b, 1983; Zhdanov and Keller, 1994). 

2.3.3. Numerical methods for the solution of difference systems 
The system of equations obtained by discretization has the matrix representation: 

A U = R  (23) 

where the matrix A is complex and band diagonal. In the two-dimensional case the matrix has 
dominant symmetrical and hermitian parts and is characterized by diagonal dominance. In the 
three-dimensional case, however, the last property may not be true (Spichak, 1983; Zhdanov and 
Spichak, 1992). 

The dimension of Eq. (23) varies in two-dimensional problems from several hundreds in the 
simplest applications to many thousands in intricate models of complicated regional structures. In 
three-dimensional problems, the system represents many thousands of equations in even the simplest 
problems, and the band width of the matrix is also bigger than in the two-dimensional case. 

The methods of solving these types of linear systems arising in l~roblems of geoelectrics have been 
discussed in papers by Varentsov and Golubev (1985) and Cerv and Segeth (1982). In the 
two-dimensional case they were studied in detail. The direct methods seem to be more accurate and 
effective here. Examples of direct methods are the Gaussian symmetrical decomposition ((~erv and 
Segeth, 1982), the block elimination algorithm (Samarsky and Nikolaev, 1977; Varentsov and 
Golubev, 1982), and the specialized Gauss block algorithm of asymmetrical factorization without 
choice of leading element (Varentsov and Golubev, 1982). The last algorithm provides the possibility 
of solving Eq. (23) in N complex operations of addition and multiplication where: 

U = Nmax Nm3in , Nma x ~ max(N~,Nz), Nmi n ~- min(Nx,N:). 

The iterative method most widely applied to difference problems of this class is over-relaxation, 
but for the majority of two-dimensional applications it is inferior to direct methods (Varentsov and 
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Golubev, 1982; Cerv and Segeth, 1982). The great difficulties encountered in the iterative solutions of 
two-dimensional problems were clearly demonstrated in a paper by Miiller and Losecke (1975). The 
basic problem is bound up with the complexity of specifying effective criteria for terminating the 
iterations given their slow convergence under complex geoelectric conditions (Berdichevsky and 
Zhdanov, 1984). 

To improve the convergence of the over-relaxation method, a certain decomposition of the 
modelled region using the alternating Schwartz method has been proposed by Yudin (198 l b, 1983) as 
a way of decreasing the size of the difference system. A more general approach to optimization of 
iteration methods--solving the boundary-value problem on a converging sequence of grids--was 
demonstrated within the framework of the method of alternating directions by Vardanyanz (1978). 

Another line of attack is to combine the advantages of both the direct and iteration methods. An 
example of such an approach in two-dimensions (Meijerink and Van der Vorst, 1981) is a quick, 
approximate (incomplete) five-diagonal factorization of the system matrix in Eq. (23): 

A ~ L * U *  

together with the subsequent solution of the equivalent system with the matrix (L*) ~A(U*) ~ by 
means of three-layer iteration methods--conjugate directions, Chebyshev three-layer, etc. (Varentsov, 
1985; Smith and Booker, 1988). 

In three-dimensional problems, direct methods become too cumbersome for most present-day 
computers, and it is evidently timely to implement them on powerful supercomputers. The disadvan- 
tages associated with traditional iteration methods are even more aggravated in three dimensions 
(Yudin, 1983; Spichak, 1983; Zhdanov and Spichak, 1992). A very promising innovation which offers 
great hope in these problems is the introduction of multiple-grid methods. 

2.3.4. Transformation of difference solution 
As already noted above, it is sufficient to solve a boundary-value problem for one scalar 

component of the electromagnetic field in each of the two-dimensional polarizations or one vector 
component in the three-dimensional case. Other components may be calculated by means of simple 
differentiation according to Eq. (18). Two problems arise here: the accuracy, and the stability, of the 
discrete representations of Eq. (18). A simple difference approximation of the derivatives on rough 
grids gives rise to large errors. In the two-dimensional case, judicious design of the numerical grid 
can reduce such errors considerably. Alternative methods have also been proposed for improving the 
accuracy of numerical differentiation (Weaver et al., 1985, 1986; Weaver, 1994). Therefore, the 
problem in two-dimensions is not critical. 

In the three-dimensional case, however, it is still necessary to solve the problem on rough grids and 
much attention has to be paid to devising reliable methods of numerical differentiation. A radical 
solution here is to apply the integral operator (9) to recalculate excess currents by a difference 
solution in the anomalous region 7/a into the required solution components, but that constitutes a 
departure from the pure difference problem and falls under the class of hybrid schemes which are 
discussed in Section 2.4. The integral estimation of the vertical magnetic component is: 

1 1 
= f j  H_ d ~ -  - -  / (d~CP× E)~ (24) 

where ~" is the volume of the cell ~,jk, is of interest with the horizontal magnetic components found 
by Hilbert transformation (Zhdanov, 1984; Zhdanov and Spichak, 1992). 
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Finally, in both the two-dimensional and three-dimensional cases, it may be appropriate to 
construct local analytic approximations of the difference solution, thereby providing the possibility of 
calculating the required derivatives explicitly. In two dimensions, the solution approximated by a 
plane wave field has been used successfully (Jones and Pascoe, 1971; Varentsov and Golubev, 1985). 
Such an approach with the possible use of inclined plane waves is also deserving of attention in the 
three-dimensional case. 

2.3.5. Control of modelling accuracy 
The most important problem is control of numerical modelling accuracy. Errors are generated 

while setting up the boundary-value problem, forming its discrete approximations, and finally at the 
stage of conversion to a finite difference solution. 

When applying asymptotic boundary conditions and a direct method for solving the linear system, 
the dominating errors are those involved with the discrete approximation of the field equations. The 
natural way of controlling them is through a grid convergence analysis. 

In the two-dimensional case of E-polarization there are two useful integral tests of accuracy--the 
Hilbert transform connecting magnetic field components on the Earth's surface, and the integral Eq. 
(10). The misfit obtained with these integral tests on the finite difference solution characterizes the 
modelling error (Zhdanov et al., 1982a,b). 

Finally, an important way of investigating and controlling accuracy is to compare the performance 
of various methods and modelling problems on a series of test models. Such is the essence of the 
international project on the comparison of modelling methods for electromagnetic induction problems 
(¢OMMEMI), described in this article. 

2.3.6. Method of finite elements 
The method of finite elements is one of the basic methods for numerical solution of boundary-value 

problems. Its origin can be traced back to Courant (1943), the present name having been introduced in 
the publication of Turner et al. (1956). The method became widely known through the work of 
Zienkiewicz and Cheung (1967) and Zenkevich (1975). Pilot studies on applying the method to 
problems of geoelectrics appeared quite later (Coggon, 1971; Silvester and Haslam, 1972; Reddy and 
Rankin, 1973). At present a number of different programs exist for modelling electromagnetic 
anomalies with finite elements in both two and three dimensions (Kisak and Silvester, 1975; Rodi, 
1976; Kaikkonen, 1977; Reddy et al., 1977; Pridmore et al., 1981; Wannamaker et al., 1987). The 
most complete theory of the method applied to electrodynamics is stated in the monograph by 
Silvester and Ferrari (1990). 

The basic principle in the method of finite elements is a division of the region in which the 
boundary value problem is solved, into a number of comparatively small sub-regions (finite 
elements), and the approximation of the unknown function in each element as a combination of some 
basic functions. 

Let us consider the simplest application of the method to a two-dimensional boundary-value 
problem in geoelectrics in which the modelling area is approximated by triangular elements of the 
first order and excitation is by an incident E-polarized plane wave. The local inhomogeneity ~ a  is 
taken to be near the centre of the model. The electric field satisfies the two-dimensional scalar 
Helmholtz Eq. (17). At the upper and lower bounds of the modelling region ~ (located quite far from 
the local inhomogeneity) Dirichlet boundary conditions of the first order are specified. Neumann 
boundary conditions OEy/On = 0 are specified on vertical boundaries. 

Let us divide the solution region into triangular elements and consider one of them with top 
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coordinates (r~,r2,r3), and let us suppose that inside the triangle the field is approximated by the 
equation: 

E~. = a + bx + cz. (25) 

Thus the true solution is replaced by a piecewise planar approximation which is continuous across the 
sides of the triangular elements. 

Eq. (25) may be rewritten for an elementary triangle in the form: 

3 

E,.= Y'~ E~.ai(x,z  ) (26) 
i I 

where the E~. represent the values of the field at the vertices of the triangle, and where a are linear 
functions dependent only upon the positions of the triangle's vertices. In this approximation the 
solution of the boundary-value problem reduces to the determination of the field values E~. at the top 
points of triangular elements which cover the region. This transformed problem is usually solved by 
variational methods or by methods of weighted residuals. 

Consider first the variational methods, in which the boundary-value problem for the differential 
equation is regarded as corresponding to a stationary functional of the unknown function. That 
function for which the functional is minimized, and which satisfies the boundary conditions, is the 
solution of the boundary-value problem. The functional for the two-dimensional problem above takes 
the form: 

1 f/div( E,. grad E~)d7 y = I  L[(grad E,,). (grad E , , ) -  k2E~] dU ~. F(E,,) = ~- 2 (27) 

By solving the discrete problem for the functional minimum Eq. (27) in which E~. is approximated 
according to Eq. (26), we determine the E~. values at the top points, i.e. we obtain the approximate 
solution of the boundary-value problem. The functional Eq. (19) may be represented as: 

1 
F(Ey) = Y'~/F/(Ey)= ~ ~/fz4[(grad Ey). (grad E y ) -  k2E 2] d ~ .  (28) 

The component of the functional for an elementary triangle ~ takes the form: 

l 3 3 

f/~ (grad i j .(grad -k2ceicej] F/ (E, . )  = -~ ~,, E,.E;. [ %) e~j) dY ~. 
i =  j = l  J) 

(29) 

Introducing matrix elements defined by: 

~5~ = L~i[(grad %) .  (grad c~/)- k2%cei] dg/ ,  (30) 

we may express Eq. (29) in the matrix form: 

1 
F / ( E , . ) = - - E T S / E  (31) 

2 

where S / is the 3 × 3 matrix defined in Eq. (30), and E v means the transpose of the matrix. Elements 
of the matrix S/' are easily calculated and Eq. (31) provides the possibility of obtaining the 
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approximate value of the stationary functional for each element. Specific forms of the matrices S / for 
the cases of contracting and noncontracting elements is given in the monograph by Silvester and 
Ferrari (1990). In the final result, the functional is expressed by the values of all the top points. The 
problem of minimizing this quadratic functional is equivalent to solving the linear system: 

OF/OE~.=O, i= 1,2 . . . . .  N (32) 

where N is the total number of top points in the region. The functional Eq. (19) is a positively defined 
one and Eq. (32) would have the trivial solution E~, = 0 if the Dirichlet boundary conditions were not 
taken into account at the upper and lower boundaries. In accordance with these conditions the values 
of E~. at the top points belonging to these boundaries are considered to be known and the 
corresponding equations are excluded from Eq. (32). Thus the dimension of the system of linear 
equations obtained from Eq. (32) is equal to the total number N of the top points of region • minus 
the number of top points belonging to the horizontal boundaries. It should be noted that homogeneous 
Neumann conditions on the vertical side boundaries are natural for this problem and are satisfied 
automatically. 

The matrix for the system of Eq. (32) possesses band type structure and is solved by known direct 
or iterative methods. The solution of Eq. (32) gives the values E~, at all top points and hence the 
piecewise-planar approximation Ey in the whole region. 

The piecewise-planar approximation is often a rather rough one for obtaining a good approximation 
to the modelled function and it is therefore necessary to keep the element dimensions small. In 
addition, it introduces discontinuities in the spatial derivatives of the solution which do not correspond 
to the nature of the electromagnetic field. The obvious method of improving the approximation is to 
use triangular elements of higher order. This means that additional points are added to the triangular 
elements and the function Ey is approximated on the element by a combination of basic isoclines 
subject to the condition that the solution and its derivatives are continuous at the element boundaries. 
The order of polynomials is determined by the number of additional points. Such an approximation 
provides a more exact solution and reduces the number of elements needed to cover the region. At 
present there exist programs for modelling electromagnetic anomalies with sixth order triangular 
elements. 

In three-dimensional models, the region of solution is usually divided into tetrahedric elements and 
rectangular prisms. The unknown components of the vector field are approximated to by means of 
three-dimensional basis functions. For the variational definition of a problem, the functional which 
minimizes the field energy is usually employed (Coggon, 1971), i.e.: 

F :  1 f [k2E. E - (cur iE) .  (curlE)] d 7 /  (33) 

where E is the unknown vector field. The problem (as in the two-dimensional case) reduces to the 
solution of a system of linear equations, with the difference that the system is now so much larger that 
direct methods of solution, even with the most modern computers, is practically impossible. 

It is appropriate to mention a second method of boundary-value solution in the method of finite 
elements-- the method of weighted residuals. It is usually used when construction of the stationary 
functional for the problem is not helpful or when it is difficult. 
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Consider, for example, the equation for H,, in the two-dimensional case of H-polarization: 

L[ H~,] = R. (34) 

Let us determine the residual T =  L[H,,] - R ,  where H v is the approximated solution constructed on 
finite elements. The boundary-value problem Eq. (34) is replaced by the equation: 

fTWT dT/= 0 (35) 

where W is a weight function. The boundary conditions are analogous to those in the case of 
E-polarization considered above. The well-known Galerkin method is a modification of the method of 
weighted residuals in which the basis functions are also taken as the weights. As shown by many 
authors the resulting system of linear equations in this case is analogous to the system obtained as a 
result of the variational approach. Thus both methods give similar approximations to the unknown 
function. 

In conclusion we attempt to list the advantages and disadvantages of the method of finite elements 
compared with other methods, primarily the method of finite differences. Its principal advantage over 
finite-differences is the possibility it gives of designing a model which more naturally approximates to 
the intricate boundaries of a real inhomogeneity. A second advantage is that an approximation to the 
unknown function is constructed on the whole region of the solution, not just at the discrete nodes of 
the mesh as in the finite difference method. This means that once the solution has been obtained, it is 
not necessary to resort to further approximations of the field before it can be further treated in some 
mathematical manner. 

A disadvantage of the finite element method is the complicated procedure required to subdivide the 
region properly into triangular elements. Formalization of this procedure does not always ensure the 
required quality of triangulation, while manual triangulation has the disadvantage of requiring much 
time spent on tedious work. A poor choice of mesh for the finite elements often leads to considerable 
field distortions; for example asymmetry can appear in symmetric models, and so on. 

Elements which are greatly stretched in one direction can seriously affect the accuracy of the 
solution, just as in the finite-difference method. In three-dimensional problems, where fields have 
strong gradients, the tetrahedral elements often do not meet the requirements of the approximation to 
the extent that researchers have been forced to use a division into rectangular prisms, which nullifies, 
of course, the principal advantage of the finite element method. In a number of two-dimensional 
applications, it is necessary to resort to rectangular elements as well. The large dimensions of the 
matrices arising in three-dimensional problems render direct methods of solution practically impossi- 
ble, and demand the use of iterative methods with a resulting loss of accuracy. 

The use of natural Neumann boundary conditions by the majority of researchers is especially a 
source of uncertainty. This practice can be explained in all probability by the fact that the 
finite-element method originated in mechanics, where the objects of investigation are considerably 
limited in size, and has only recently entered geoelectrics. In typical problems of geoelectric 
modelling, Neumann boundary conditions may be applied only at very great distances from the 
inhomogeneity. This causes the finite elements to be excessively prolate with a resulting deterioration 
of the approximation. Conversely, if the boundary conditions themselves are seriously error-prone, 
then the accuracy of solution also deteriorates. 

From all that has been said above, it follows that subject to the application of more exact boundary 
conditions and the creation of effective algorithms for subdividing the region into elements, the 
method of finite elements is one of the basic tools for the solution of numerical modelling problems in 
geoelectrics. 
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2.4. Hybrid schemes 

Let us consider modelling algorithms which combine elements of both integral equation and 
differential equation methods. As we have remarked already, the natural way of constructing hybrid 
schemes is to select integral boundary conditions, created by the operator (9), while setting up the 
modelling boundary-value problem. This idea was developed by a number of authors (Petrick et al., 
1981; Lee et al., 1981; Best et al., 1985). The first numerical results were presented by Lee et al. 
(1981). 

With this approach, systems of discrete linear equations of a specific kind are formed. For the 
electric field they are: 

Abi Abb Eb  R b  

where indices i and b refer to field values at the interior and boundary points, respectively. The square 
matrix A ~i has banded structure while A bb is the unit matrix. The rectangular matrices A ib and A ~b 
are, respectively, dense and sparse. 

Solving system (36) with respect to the interior field (Lee et al., 1981) we obtain: 

(Aii - A i b A b i ) E i  = R i - A i b R  b. 

In the above mentioned work the authors proposed a special method for the solution of this 
problem, based on the inversions of the banded matrix A ~i and subsequent iteration. Compared with 
the standard three-dimensional approach, the number of internal equations is considerably reduced 
and is determined by the discretization of the inhomogeneous region. We note, however, that there are 
difficulties with the convergence of iterations in this method despite the application of special 
procedures for convergence acceleration (Lee et al., 1981). 

Another approach is based on the solution of system (36) for the boundary values of the field (Best 
et al., 1985): 

( I -  AbiA~b ' ) rb=  R b -  AbiA•lRi . 

The dimension of the dense system obtained is determined by the number of boundary equations, 
and we have here some analogy with the method of surface integral equations. Therefore it is 
necessary to investigate the problem of stability of the solution for this system. To solve it, we may 
apply the direct methods when the number of equations is approximately equal to 1000. Solving the 
problem by means of the first of Eq. (36) we may recover the solution in terms of interior values. 

One more example of a hybrid scheme is the algorithm of Yudin (1983) in which in the 
background of the three-dimensional iterative solution a redefinition of the Dirichlet boundary 
conditions of the first order is formulated by analytic continuation. In this manner it is possible to 
contract the boundary of the model to a position considerably closer to the inhomogeneities. There 
remains only the problem of ensuring convergence of such a procedure, but numerical experiments 
with analogous two-dimensional schemes represented in the COMMEMI project look quite hopeful. 

2.5. Analytical and quasi-analytical methods 

The first mathematical models of non-uniform geoelectric structures were solved analytically at the 
beginning of the 1960s, when direct methods of numerical solution on the computer were not feasible. 
The analytical models provided the initial impetus for studying the properties of electromagnetic 
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fields in non-uniform media. They are still relevant today as benchmarks against which the more 
complicated and general methods of modelling can be tested. It turned out, that such solutions could 
be obtained only for a very limited class of the simplest two-dimensional models [see the catalogue of 
results by Porstendorfer (1976)], namely a two-dimensional model, uniform along the horizontal axis 
Oy, and consisting of flat layer, lying on a perfectly conducting or a perfectly insulating half-space. 
The layer can be divided by several vertical boundaries into segments with different uniform electrical 
conductivities. The model is excited by a vertically incident H-polarized plane wave. 

The solution for the simplest case of one vertical boundary was derived in a paper by D'Erceville 
and Kunetz (1962) and then generalized (Rankin, 1962) to the case of a dike in an otherwise 
homogeneous layer. More general formulae for a model in which the layer consisted of three 
segments of different electrical conductivities were obtained by Wait and Spies (1974). All these 
results have since been used by many researchers and, in particular, solutions for model 2D-0 have 
been calculated analytically by such methods and then proposed as the first test for the COMMEMI 
project (Weaver et al., 1985, 1986). One can also find an overview of different analytical solutions for 
some simple models in the recent books by Weaver (1994) and Zhdanov and Keller (1994). 

Let us consider briefly the basic steps in the construction of the analytical solution for the 
three-segment model (Weaver, 1994). Suppose that a horizontal layer lies on a perfectly conducting 
lower half-space. This layer consists of three different constant conductivities 0-~, 0-2 and (/-3 from 
left to right. The segments are divided by planes x = - a and x = a, and the thickness of the layer is 
d. For the H-polarization case under consideration, Helmholtz equations for the magnetic field Hy are 
valid in each segment, i.e.: 

"~ j 2 j V - H , + k i H , = O ,  j =  1,2,3 (37) 

where kj 2 = i to/x 0 0-j is the squared wave number, and H;! is the magnetic field in the jth segment. 
The magnetic field satisfies the following boundary conditions: 
1. H,~ = H 0 (const) when z = 0; 
2. OH;!/Oz = 0 when z = d; 

1 ~ v 3 3. H , . -  H,7 when x = - a ,  and H~.-= H,  when x = a; 
4. 0- 2 (OH)!/Ox)= 0-, (OH,2/Ox) When x =  - a ,  and 0-3 (og~2/OX)  = 0-2 (6~H.3/OX) when x =  a. 

The first condition is explained by the absence of a vertical component of current at the Earth's 
surface, the others by continuity of the tangential components of electric and magnetic fields across 
conductivity boundaries. 

Let us seek a solution of the form: 

= 

subject to normalization H,(");(0) = 1 where H~! " j  is the one-dimensional solution (the normal field) 
for the j th segment given by: 

= c o s h [ ( a -   j]/cosh(dk  ). 

The function .)~) is a solution of Eq. (37) and satisfies the conditions Ji = 0 when z = 0, and 
d f J d  z = 0 when z = d. The function may be found by the method of separation of the variables. 

The z-dependent part of the function is expressed as a Fourier series and the x-dependence may be 
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expressed in terms of exponential functions. In general, the solution in the three segments takes the 
form: 

~c 

f l ( x , z )  = ~ P, ,exp(n'~x)sin(lmz) 
m = O  

a c  

f 2 ( x ' z )  = E [Qm(H#~ x)  -t- Rm(--n'~x)](lmZ ) 
m = O  

~c 

~ ( x , z )  = Y'~ S m e x p ( - n ~ x ) s i n ( l m z  ) 
m = O  

(38) 

where 1 m = (2m + 1) r r /2d  and n~" = (12m + k~) 1/2. The coefficients Pm,Qm,Rm and S m a r e  deter- 
mined by matching the Fourier series at the boundaries x = + a with the aid of boundary conditions 
(3) and (4). See the paper by Weaver et al. (1985) and Weaver (1994) for details. 

To obtain the solution for a model in which the basement is perfectly insulating, it is necessary to 
change boundary condition 2 to H)~ = 0 when z = d. The derivation of the solution remains the same 
with the final formulae differing by the fact that d is replaced by d / 2  and the summation of the 
Fourier series is over only the even numbered terms. 

Thus the solution in both cases has the following form: 

H / ( x , z )  = H,! n)j + Y'~ B~(x ) s in ( lmz  ). (39) 
m = O  

Equations for the other components of the field, E x and E~, are obtained from Eq. (39) by 
differentiating H~. Also the infinite series on the right-hand side of Eq. (39) is easily evaluated on the 
computer to any desired accuracy with minimal demand on cpu time. This makes the analytical model 
particularly attractive as a test of numerical solutions of the forward problem in geoelectrics. 

Attempts to obtain an analytical solution for the same model in the E-polarization mode have not 
been successful because in this case there is no simple boundary condition on the Earth's surface. By 
means of a number of transformations of the original problem, however, it is possible to reduce the 
problem to the solution of a simple one-dimensional integral equation which involves minimal 
numerical calculations. Because of this, such solutions have been named 'quasi-analytical'. The first 
results for the layer divided by one vertical boundary were obtained by Weidelt (1966), with further 
developments by Mann (1970), Kliigel (1977) and Rodemann (1978). 

In the work of Weaver et al. (1986) and Weaver (1994) the numerical solution of the integral 
equation was simplified considerably with the aid of some complicated mathematical transformations 
and a general solution for the three-segment layer was obtained. An outline is now presented of the 
solution by successive approximations of the E-polarization problem for the model considered in this 
section (Weidelt, 1966; Weaver, 1994). In each segment of the model, the two-dimensional Helmholtz 
equation is satisfied by the component E~, of the electric field, subject to the following boundary 
conditions: 
1. E ~ = 0 w h e n  z = d ;  

2 3 2. E ~ = E ~  when x = - a ,  and E y = E  v when x = a ;  
3. oE~,/oX = OE2/Ox when x = - a ,  and OE~lOx = OE3/Ox when x = a. 

The first boundary condition represents the vanishing of the electric field on the surface of a perfect 
conductor, and the others the continuity of the tangential components of the electric and magnetic 
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fields at the segment boundaries. The additional condition is OEy/Ox--* 0 when Ix] ~ % which 
corresponds to the vanishing of the vertical component of the magnetic field at infinity. As it was 
already noted, in the case of E-polarization no component of the surface field is constant and we are 
forced to use an integral boundary condition based on the Hilbert transform, namely: 

H,.(x,O) = H~ ) + ~//H:( x,O), (40) 

where 

1 r~  H:(~,O) 
x,O) 7 J 7 -  -i de.  

and H~ ) is the surface magnetic field for a homogeneous slab. Let us introduce the Green's function 
G;j(r ]r') where the position vector belongs to the ith segment, and r '  to the jth segment. The Green's 
function is the solution of the equation: 

(V 2 + k 2)Gq(r]r ' )  = 6 ( r -  r ' )  (41) 

in the ith segment, and satisfies the following boundary conditions: 

Gij(  x , d l r '  ) = O, OG;/( x,Olr')/Oz = O. 

If we multiply Eq. (41) by E~., the Helmholtz equation by G;j and then integrate over the ith 
segment, we obtain: 

J J l  , ' '  ' ' ' ' , '  q f f [ E ; ' t r ' V e G ; / r ] r " - G ; / r l r ' ' V 2 E ; / r d d x d : =  E{.(r') ( i = j )  (423 
' 0 (i4=j) 

The left side of Eq. (42) can be transformed to a closed linear integral around the segment 
boundary by means of Green's formula as follows: 

( I  0Gq(rlr ' )  , aE{.(r) ] 
' = E,,(r ) (43) ,~J"!<IEy(r) On G q ( r ] r ) ~ - 7 - - n  ] d r ,  J ' 

Here the contours ~ and g~3 extend to infinity and alan means the normal derivative on the 
contour. 

Eq. (43) is considerably simplified if we take into consideration all the boundary conditions for E, 
and G;j, i.e.: 

,, 0 < ( x , 0 )  ~ 0E~(x,0) 
f G,j(x,Olr ')  Oz dx  + f G2j (x,Olr') ,9Z dx  

3C - -  ~l  

3 Z  

j~f G31(x,OIr') OE3( x'O) j , + " d x  = E , , ( r  ) ( 4 4 )  
" 0 z  

which, with an application of Maxwell's equations, can be written in general as: 
3C 

Ey(r) = - i w t x f  G( x, z,u)Hx(u,O ) du (45) 

where G = G;j. Differentiating Eq. (45) in accordance with Maxwell's equations, we obtain for the 
other components: 

H~(r) = f { OG(r,u)/Oz] H~(u,0) du, (46) 

H:(r)  = - f [OG(r,u)/Ox] H,(u,O)du.  (47) 
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Substituting Eq. (47) in Eq. (40) we obtain: 

Hx( x,O) = H ° - ~ /  f_~ [ OG(r,u)/Ox ]H. (u ,0 )  du,  (48) 

which leads to Weidelt's scheme of successive approximations: 

H~+ ' (x ,0 )  = H ° - ~ f  [ OG(r,u)/Ox] H;(u,O) du. (49) 

Choosing the first approximation to be H°(x,0)  = H °, we determine Hx(x,0) as: 

Hx(x,0) = lim H~'(x,0). (50) 
N---) ~c 

This scheme generally converges. The full electromagnetic field in the conducting layer is then 
determined from Eqs. (45)-(47). Other researchers have since devised a number of alternative 
schemes of successive approximations based on Eqs. (45)-(47). 

The solution is completed by determining the Green's functions. They are found from Eq. (41) by 
separation of the variables, also taking into account the boundary conditions for the Green's functions. 
The form of the Green's function is (Weaver, 1994): 

1 
Gij( x,Z,u) : -d E Gi~* ( X'U)COS(ImZ) (51) 

m = O  

where 

Gi jm. ( x,u) =amexp(TliiJ m x) _F Bmexp(_~lmx) _ 6i jexp(_~77[x_ 

and 6i / is the Kronecker delta. Thus, all the functions in Eqs. (45)-(50) are expressed analytically so 
that the successive approximations can be calculated on the computer without difficulty. 

The matter is much more complicated when the basement of the model is a perfect insulator. In this 
case the procedure is simplified if the layer thickness exceeds several skin depths in the layer, which 
means that actually the underlying uniform half-space can be ignored, i.e. it is a particular case of the 
previous model corresponding to d ---) oo. 

We have examined methods of obtaining analytical and quasi-analytical solutions for the simplest 
models. Evidently the ease with which these solutions can be generated on the computer and the high 
accuracy that is attainable, makes them ideal models for testing two-dimensional modelling programs 
which are based on the various methods of numerical analysis. Therefore the first test in the 
two-dimensional part of the COMMEMI project becomes model 2D-0. 

3. Comparison of modelling programs 

3.1. Program comparison 

3.1.1. Sources of error 
The various schemes for modelling electromagnetic fields numerically in inhomogeneous media 

reduce in essence to the following steps: 
Construct a discrete model of the geoelectric medium; 
Approximate the electromagnetic field equations in the model by a system of discrete equations; 
Obtain the solution of the discrete system of equations; 
Perform various operations on the solution obtained. 
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The errors associated with the approximations above accumulate at every stage of the scheme and 
impose an ultimate limit on the accuracy of the numerical modelling. The principal sources of error 
will now be considered for each step of the calculation in turn. 

3. I. 1.1. Constructing a discrete model. The initial geoelectric model is designed as an assemblage of 
conducting bodies in each of which the electrical conductivity is uniform. Regular or irregular meshes 
composed of discrete elements of simple shape--triangles and rectangles in two dimensions, 
tetrahedra and hexahedra in three dimensions--are most often used. Elements of simple shape are 
preferred because the more complicated the design of the model, the greater the difficulties arising in 
the subsequent calculation of the field. 

Certain shapes of the elements are more appropriate for some models than for others. For example, 
two-dimensional structures in which the conductivity boundaries are curvilinear can be more 
effectively modelled with triangular elements than with rectangular ones. Note, however, that 
whatever the discretization scheme used, it will always be impossible to model certain geoelectric 
objects of intricate shape without introducing some errors. By increasing both the size of the mesh 
and the complexity of its elements, it is possible, in theory, to reduce such errors; but it should be 
remembered that such measures may introduce further problems at later stages of the calculation 
because of the enlargement and structural alteration of the system of equations and a consequent 
deterioration of their conditioning and numerical stability which can severely affect the accuracy of 
the final results. 

3.1.1.2. Approximating by a system of  discrete equations. Various approximations of the original 
electromagnetic field equations may be chosen. The resulting discrete system of equations depends on 
several factors, ranging from the basic choice of method, i.e. differential or integral equation, to the 
way the problem is represented numerically, i.e. grid design and size, and to the assumptions made 
when determining the coefficients in the system of equations. The final result is a compromise 
between having the best possible approximation to the geometry of the real geoelectric structure and 
being able to solve a large system of linear equations whose coefficient matrix may be dense and 
complex. A majority of researchers therefore limit their attention to models with piecewise constant 
distributions of electrical conductivity which, at least in the differential equation method, lead to 
systems of equations with banded matrices. 

3.1.1.3. Sol~'ing the system of equations. At this stage of the procedure, the number of possible 
directions that can be taken expands because, even within the confines of one overall approach, there 
are several numerical methods that can be used. It is again necessary to choose between general but 
less efficient methods, and specialized techniques which are more limited in application but more 
effective under particular circumstances. For example, over-relaxation is an iterative technique in 
widespread use because the class of problems to which it can be applied in practice is not restricted. 
However, its effectiveness in solving systems with complex rather than real coefficients still leaves 
much to be desired. More efficient methods under development are dependent on a number of 
conditions being satisfied which impose limits on the range of choices available in the earlier stages 
of the modelling procedure. 

Much the same can be said about techniques for solution by direct elimination. Thus, the methods 
designed to handle dense matrices can always be used to solve systems of up to a few hundred 
equations, but more efficient methods which take advantage of the sparsity of matrices are restricted 
to certain selected modelling procedures. The nature of the non-vanishing elements in the coefficient 
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matrix can be more readily used to advantage in iterative schemes than in the direct methods of 
solution but the uncertainty in how to formalize the criterion for completion of the iterative process 
can greatly reduce the effectiveness of such schemes, to the extent that it is quite possible to obtain 
different and incorrect results depending on how proficient the different users of the program are in 
numerical methods. 

As a rule, modellers have developed their own numerical procedures to meet their own particular 
needs. This is partly because for many specific applications to real geoelectric structures, the 
effectiveness of universal software packages is lower than that of specialized algorithms. There is 
always the fear, however, that the performance levels of such locally developed, specialized programs 
will not match those of the standard packages when subjected to general comparison tests. 

3.1.1.4. Performing computational operations on the solution. The system of equations yields a basic 
solution in one or several field components. The other field components then have to be obtained 
from a further calculation in which the possibility of additional errors being introduced arises. A 
typical example is in the finite difference method where numerical differentiation of the basic solution 
must be undertaken. 

It is clear from what has been said that errors are accumulated at each stage of the modelling 
procedure. A theoretical estimation of the probable error is very complicated, however. It is therefore 
usual in practice to evaluate the accuracy of a given program experimentally. For each model, what 
appears to be most difficult is making a balanced choice which is suitable for all approximations of 
the model, the discretization of the equations, and the method of their solution, directed towards 
obtaining an effective algorithm. 

Programs for modelling electromagnetic fields are quite intricate and their testing requires a great 
deal of additional work which is not always feasible for the programmer. As a rule, the complex 
components are thoroughly studied, but final testing requires a knowledge of the actual field for a 
whole range of models, which complicates the checking of a program taken in isolation. Another 
difficulty in error estimation is the fact that results may vary considerably from one computing system 
to the next if they use different word lengths and different round-off procedures when executing 
arithmetical operations. 

Because of the difficulty in making a priori estimates of modelling errors, it is recognized that it is 
most effective to incorporate internal diagnostics and error analysis in the program itself. However, 
for the majority of algorithms it is simply not possible to adopt this all-embracing and reliable 
approach to error estimation. The most general method is to study a convergent sequence of 
discretizations. An important method of control is to compare results with some standard calculations. 
For a number of simple models we may obtain analytic solutions, but good agreement with such 
analytic results does not guarantee that the program is equally accurate for more complicated models. 

Thus, it is rather difficult to ensure complete control of accuracy, and the quality of numerical 
modelling algorithms may depend ultimately on the qualifications of their authors. Given this 
conclusion, the most acceptable way of ensuring quality control in modelling is to compare directly 
the results of different programs. Comparison of a considerable number of modelling results for a set 
of models provides the following opportunities: 
• to reveal those programs that give results in closest agreement; 
• to set numerical standards, based on simple and complicated models, and to select those solutions 

that are most probably the ones of greatest accuracy; 
• to compile the statistics of the set of all solutions obtained and to determine the reasons for 

deviations in some results; 
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to make recommendations on the application of modelling methods and the various techniques 
used in their implementation. 
The success of this exercise will depend to a considerable extent on the set of test models chosen 

and the method of analysing the results obtained. 

3.1.2. A review of the program comparisons 
One of the most important stages of software development is program testing. Since the develop- 

ment of a comprehensive set of real test models is not a simple task, previous checks used on software 
have been conducted without the availability of standard solutions. In such cases, problems which 
were most interesting from a practical point of view were solved by all available methods. 

Originally comparisons were made with the sole purpose of ensuring the identity of the programs 
operating under complicated situations. Eventually, the community of participants was enlarged and 
the number of models investigated was increased so that the comparisons took on a new character--  
they formed a set of numerical standards against which new approaches could be tested. With the 
increase in the number of participants, there appeared yet one more development, namely the 
standardization of various facets of the comparison project, which included modelling methods, 
formats for the presentation of results, and methods of ranking them, etc. 

One of the first of such projects was a comparison of a number of algorithms of two-dimensional 
modelling on a rather simple geoelectric mode l - - a  homogenous, vertically elongated rectangular 
conducting anomaly embedded in a uniform medium. The electromagnetic field was excited by an 
infinitely long cable placed on the Earth's surface. Ten participants presented a description of their 
algorithms and their calculated results. All these papers were published in a special issue of 
Geophysics with a preceding reviewing article by Ward (1981). This exercise provided all those who 
were interested in the problem an opportunity not only to have their own algorithms publicized, but 
also to select those that showed the most promising trends for further development. 

Later, a similar project was initiated by the Commissions for Planetary Geophysics of the various 
Academies of Sciences in Eastern European countries for two-dimensional models excited by a 
vertically incident plane wave. Well-known scientists working in geoelectrics suggested models which 
were of interest to them, and then all the participants in the comparison test calculated the responses 
for these models. A study of the results obtained by the various programs exposed the basic 
difficulties that had arisen during the modelling. Foremost among such difficulties were the problems 
of approximating intricate geoelectric structures, the utilization of very non-uniform grids, devising 
criteria for ensuring the accuracy of iterative processes, and so on. A summary of this project was 
discussed at the conference of the Commissions on Geophysics of the Academies of Science in 
Dresden, Germany in 1978. Even with only qualitative, visual comparisons of the results, precise 
information was exchanged, calculation techniques were improved, and modelling algorithms were 
perfected. 

At the beginning of the 1980's one more comparison of programs was carried out in the former 
USSR under the supervision of Professor M.N. Berdichevsky. The basic objective of this project was 
not only to confirm the equivalence of different algorithms, but also to study the possibility of their 
application to extreme theoretical models, as well as to the modelling and interpretation of real 
regional sections. Theoretical models were devised with complicated structures possessing large 
conductivity gradients in the horizontal direction and requiring study for a very wide range of 
frequencies. Such models required different discretizations of the geoelectric medium for the various 
frequencies in the range studied. As a result of this comparison those conductive bodies which are the 
most difficult to model were discovered, and those programs which most often gave deviations from 
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the results of many of the others were exposed. Unfortunately this particular project was not 
completed and no recommendations of a constructive kind were ever published. 

Experiments on the comparison of numerical modelling programs were also carried out for 
three-dimensional models, one of the first examples being the comparison of methods of modelling in 
three-dimensional media with controlled sources discussed at the international working conference on 
electromagnetic modelling in Berkeley, USA, in 1978. 

Previous experience gained in these early comparisons of modelling programs was invaluable in 
stimulating expertise in the design of models, the presentation of results, and in setting new standards 
for future projects of this kind. 

3.2. The international project COMMEMI 

3.2.1. Project aims 
The international project on the Comparison Of Modelling Methods for ElectroMagnetic Induction 

(COMMEMI) was proposed and adopted at the VIth International Workshop in Electromagnetic 
Induction (Victoria, B.C., Canada, 1982) under the aegis of Working Group I-3 (since renamed I-2) of 
the International Association on Geomagnetism and Astronomy (IAGA). The basic aim of this project 
was to compare the accuracy and effectiveness of various algorithms and programs for the numerical 
modelling of electromagnetic fields in inhomogeneous media. In all the models devised for COMMEMI 
it was assumed that the source field is a vertically incident plane wave with a time-dependence exp 
( - i o) t) in the quasi-stationary approximation. 

A number of essential, practical problems were investigated in the project--evaluating the 
practicability of specific programs, comparing results of numerical modelling with analytical solu- 
tions, comparing the performance of different algorithms on a set of simple models, and finally 
comparing their modelling capability for real geoelectrical structures. The accumulation of a large 
number of results for a whole range of models enables one to identify those algorithms which are 
reliable and readily useable in a variety of situations. There arises, also, the possibility of examining 
how the approximation of the geoelectric fields affects the computed model fields, and which 
programs are most efficient at solving the systems of linear equations, and calculating the field 
components and transfer functions. The availability of so many results, obtained by participants using, 
in the majority of cases, quite different programs, also raises the possibility of preparing some 
standard solutions for certain complex models and, in the case of those solutions that do not conform 
to the standard solution, of ascertaining which properties of the algorithm or its method of application 
explain the deviation from the standard solution. Thus, another purpose of the project was to assemble 
results for complex standard models which cannot be solved analytically. Such standards are very 
useful for developing and testing new methods and algorithms for the modelling of electromagnetic 
fields. 

It should be noted that general consent on what field components and transfer functions are needed 
in practice has gradually evolved over the years, and that the comparison projects have contributed to 
the standardization of the output data. Some programs have appeared, however, with their own 
individual peculiarities in the way they present results, thereby hindering their comparison with 
others. 

An important objective of the project was to identify general programs which perform precisely 
and reliably when modelling a variety of geoelectric structures. Quantitative measures of program 
effectiveness were not estimated since this is a task which would require a special investigation. 
Calculations were carried out on various computers; to compare their speed is a difficult problem in 



158 M.S. Zhdanov et al . /  Journal of Applied Geophysics 37 (1997) 133-271 

--tO 0 10 x 
0 

50 

tO 

(4)  

T = 300 
z = 0 ,  (15) 
z = --'2_5. 4-15, 4-10, 4-7, O, 30, 50 

0 
0.25 

2.25 

Z 

-0 .5  0 0.5 z 

100 

T = 0.1. i0 
= = o, (1 .25 )  
z = 0 ,  0.5, 1 , 2 , 4 , 8 ,  16 

(b) 

Fig .  1. COMMEMI tes t  m o d e l s  ( a )  2 D - 0  ( u p p e r  d i a g r a m ) ,  a n d  (b )  2 D - I  ( l o w e r  d i a g r a m ) .  C o o r d i n a t e s  a r e  g i v e n  in k i l o m e t r e s ,  

periods in seconds, and resistivities in ohm-metres. The periods and the coordinates of the observation points for which the 
fields are to be calculated are stated in brackets. 

itself. Many participants did not present information about the speed of computation, since it depends 
very much on grid size and it would always be necessary to select the grid of least dimension for 
which accuracy is not sacrificed, to obtain the most rapid results. Some participants were opposed in 
principle to any comparison of computing speeds, as they considered such information to be primarily 
of commercial interest and incompatible with the purely research aims of the project. 

3.2.2. Structure of  the test models 
In 1983 a set of two-dimensional and three-dimensional models together with brief instructions 

describing the parameters of the models and standard formats for the presentation of results, were 
distributed to potential participants. Some suggestions for modifying the project were received along 
with the first results. As a result of this feedback from the early participants a new set of models was 
proposed in 1985, including six two-dimensional and two three-dimensional structures. Some were 
rather simple theoretical models but the last two approached real geoelectrical structures in complex- 
ity. 

Model 2D-0 in Fig. la is a layer, consisting of three segments of different conductivities, lying on a 
perfectly conducting basement. The analytical solutions (Weaver et al., 1985, 1986) for this model 
enable one to estimate how well the original geoelectric problem is described by the discrete 
equations used by the participants. This model is useful for checking the basic correctness of a 
program. 

Model 2D-I in Fig. lb is a symmetrical, rectangular, highly conducting anomaly embedded in a 
uniform conducting half-space. The anomalous field is quite large, the contrast in electric conductivity 
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Fig. 2. COMMEMI test models (a) 2D-2 (upper diagram),and (b) 2D-3 (lower diagram). 

is considerable, and the anomaly is located near the surface. In spite of its apparent simplicity this 
model imposes high requirements on the ability of algorithms to approximate the model, and on the 
method of solving linear systems with highly varying coefficients. 

Model 2D-2 in Fig. 2a is characterized by an even higher contrast of electrical conductivity, and 
anomalies of small thickness but considerable length. The resulting system of linear equations also 
has a high condition number. 

In Model 2D-3 shown in Fig. 2b all the anomalies are surficial. There are four distinct regions. 
Those at the edges of the model have equal conductivities in the first version, but in the second the 
conductivity of the right-hand region is decreased considerably. There are large variations in the 
H-polarization field in this model. It may also be possible to apply thin sheet modelling algorithms to 
this model. The greatest difficulties arise in the differentiation of the basic field at points where the 
vertical boundaries separating regions of different conductivity reach the surface. 

In contrast to the previous models, Model 2D-4 (Fig. 3) has a rather more complicated structure, 
including inclined boundaries and a thin surficial layer. In this model the result is affected not only by 
the choice of discrete equations and the method of solution, but also by the capability of the program 
to approximate different structures which include, perhaps, factors which are more subjective in 
nature. 

Model 2D-5 (Fig. 4) is the most complicated model of all. It is an idealized representation of the 
Carpathian geomagnetic anomaly, in which the Ukrainian shield, characterized by highly resistive 
rocks down to large depths, is located in the region x > 0, and the Pennon depression, which has a 
quite thick conductive jacket of residual rocks, occupies x < 0. The model is complicated in structure, 
requires a detailed representation of the section, and necessitates the use of a grid with a large number 
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of nodes because of its large dimensions. Thus, it is suitable for determining how well programs 
perform when modelling real geoelectric structures. 

Three-dimensional models are represented by two configurations. Model 3D-1 in Fig. 5a is a 
rectangular insert in a homogenous half-space. The section of this model in the plane xOz is the 
same as model 2D-l,  thereby providing a link between the two- and three-dimensional parts of 
COMMEMI. Although the model is geometrically simple, it has a rather high contrast of electric 
conductivity and the inhomogeneity is placed near the surface, resulting in a relatively large 
anomalous field. Two versions of the model are proposed: first an insert whose horizontal dimensions 
are in the ratio 1:2, and secondly, a more elongated insert for which the corresponding ratio is 1:10. 
The field values are calculated only on the surface along the coordinate axes. 
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Fig. 5. COMMEMI test models (a) 3D-1 (upper diagram), and (b) 3D-2 (lower diagram). 

The second model 3D-2  given in Fig. 5b is much more complicated. It consists of  two 
perpendicular, rectangular inserts in the upper layer of  a three-layer section. The section along the 
x-axis reproduces exactly the first version of  model  2D-3.  Two versions of  the model  corresponding 
to different elongation of  the inserts are again considered. 

3.2.3. Presentation of results 
The two-dimensional  calculations were made for both polarizations of  the field and for both a 

standard set, and an additional set of  periods and observation points. The fol lowing field components  
were compared: 

Ey = E,,/E~,, I4 x = H x / H  ; ,  14= = H J H ~ ,  (EP) 

I4 = H , , / H ,  n, ~ = E J E ~ ,  (HP) 

where E~, E,"., H~", H,?, are components  of  the normal field at x = - 2 ,  z = 0 on the surface of  the 
left-hand, one-dimens{onal section of  the model.  At points where the electric field in HP was 
discontinuous,  the two limiting values of  field were presented as far as possible. When anomalous 
fields were calculated, the results were converted back into total fields. 
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The electromagnetic fields were tabulated as complex values in the form (Re, Im). Apparent 
resistivities were calculated according to the formulae: 

p. = Izl2/(o ) 

where Z = -E~./H~. for E-polarization, and Z = E . S H  ~, for H-polarization. In the case of three-di- 
mensional calculations, two polarizations of the normal field were defined as follows: 

E" = (E",0,0),  H r'= (0,H",0) ,  (EXN) 

E n=  (0,E'I,0), H " =  (H",0 ,0) ,  (EYN) 

and designated EXN and EYN, respectively, as indicated. The components of the total electric and 
magnetic fields were normalized by the complex values E n and H n, and again presented in the 
complex form (Re, Im). At points on the surface where the electric field is discontinuous, the limiting 
values on each side of the discontinuity were recorded. 

In addition to the field components themselves apparent resistivity values were calculated from the 
impedance tensor. Since the designated points in Model 3D-1 lie on the coordinate axes which are in 
planes of vertical symmetry, only the off-diagonal elements of the impedance tensor are non-vanish- 
ing in the given coordinate system, from which we obtain two principal apparent resistivities P~I" and 

R 
~ ' X .  

All results were stored in a data base ready for further processing. Along with the results, the 
participants' numbers given in Tables 1 and 2 were stored, as well as the period, components, 
identification, depth and the horizontal coordinates of the points where the fields were determined. In 
this way it was possible to process the results automatically and to apply various comparison 
algorithms. 

The main purpose of the data bank was to provide ready access to all the existing results /'or any 
specified period, level, components and coordinates. Secondly it facilitated the application of 
algorithms which calculated the statistical characteristics of the results, and finally it facilitated 
procedures for printing tables and plotting diagrams. It therefore provided the authors with the 
opportunity to test and choose from several algorithms for calculating the statistics and different ways 
of plotting the diagrams, and also simplified the inclusion of new results and the re-organization of 
the tables. 

For the present, we have restricted our statistical calculations at each point to the mean and 
standard deviation 6 o of all the submitted results for the separate real and imaginary parts of each 
component. The standard deviation characterizes to some extent the quality of the model calculations, 
but the mean values may be considerably distorted by outliers, especially when the number of 
available results for a particular model is small. In order to improve the quality of the analysis by 
reducing the influence of such outliers, new statistics were calculated by first removing all results 
displaced more than 26¢~ from the mean value, and then calculating a new mean and standard 
deviation ¢~1 for the reduced data set. 

It should be noted that this algorithm does not necessarily guarantee accurate mean values. It 
several results still differ markedly from the mean, then the standard deviation 6 o may be great 
without these values being rejected. Therefore an examination of the tables of components above is 
not always convenient for determining numerical benchmarks. For this reason, graphical diagrams of" 
results are presented at the end of this article. 

The minimum and the maximum values are shown on the diagrams by dashed lines with the mean 
value and error bars defining the interval 26~ depicted by three continuous lines. In the lower part of 
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Table 1 
List of COMMEMI participants (two-dimensional calculations) 

163 

No. Country Method of Authors of 
(Organization) calculation Programs 

1 2 3 4 
Calculations 

Calculated 
models 

5 

1 Canada (Univ. Victoria), Switzerland A 
(Neucb~tel) 

2 Canada, Switzerland FD(D) 

3 Canada (Univ. Victoria) FD(D) 
4 Finland (Univ. Oulu) FD(D) 
5 Finland FE(D) 
6 Poland (Inst. Geophys. Acad. Sci.) FD(D) 

7 Hungary (Inst. Geod. Geophys. Sci.) FD(I) 
8 Russia (IZMIRAN) FD(D) 
9 Russia (IZMIRAN) IE(D) 

Weaver, Fischer, LeQuang 

Weaver, Brewitt-Taylor 

Weaver, Brewitt-Taylor 
Weaver, Brewitt-Taylor 
Kaikkonen 
Tarlowskii 

Tatralya 
Varentsov, Golubev 
Varentsov, Golubev, 
Chernyak 

10 Uzbekistan (Tashkent State Univ.) FD(I) Varentsov, Golubev 
1 I Russia (St. Petersburg State Univ.) FD(I,SG) Varadanyanz 

12 Czechoslovakia (Inst. Geophys. FD(I) (~erv, Pek, Praus 
Acad. Sci.) 

13 Germany (Freiberg, Acad. Mines) FD(I) Veller, Porstendorfer, 
Rosler 

14 Russia (MGRI) FD(I) Yudin, Ananevich, 
Veselovskiy 

15 Russia (MGRI) FD(I) Yudin, Ananevich, 
Veselovskiy 

16 Russia (MGRI) FD(I) Yudin, Kazantsev 
17 USA (Univ. Utah) FE(D) Wannamaker et al. 

FD(I) Schmucker 
IE(D) Fliiche 
FD(I) Dmitriev, Barashkov 

IE(D) (TS) Weaver et al. 

18 Germany (GiSttingen) 
19 Germany (GiSningen) 
20 Russia (Moscow State Univ.) 

21 Canada (Univ. Victoria) 

22 Canada (Univ. Alberta) IE(D) (TS) Weaver et al. 
23 Canada (Univ. Victoria) FE(D) Kizak, Silvester 
24 Russia (Moscow State Univ.) IE(D) Dmitriev, Mershikova 
25 Russia (Krasnoyarsk Computation IE(I) Baburina, Bersenev 

Centre) 
26 Russia(Krasnoyarsk Computation FE(I,D,SG) Bogdanov 

Centre) 
27 Russia (IZMIRAN) FE(I,SG) Varentsov, Golubev 

Weaver, Fischer, 
LeQuang 
Weaver 
Kaikkonen et al. 

Jankowskii et al. 

Adfim et al. 

Belyavskiy 

2D-0 

2D-l, 2D-3 

2D-0-2D-5 
2D-2, 2D-5 
2D-4 (EP) 
2D- 1-2D-5 

2D-2 
2D-0-2D-5 
2D-l, 2D-2 

2D- 1-2D-4 
2D- 1-2D-5 

2D-l-2D-5 

2D- 1-2D-5 

2D- 1-2D-4 

2D-1 

Kuznetsov et al. 2D-1-2D-5 
2D-0, 2D- l, 
2D-3, 2D-5 
2D- 1-2D-5 
2D- 1-2D-3 
2D-0-2D-4 
(HP)  
2D- 1-2D-3 
(HP) 

McKirdy 2D-0-2D-4 
Weaver 2D-0 

2D-0 
2D-0-2D-5 

2D-0-2D-4 

2D- 1, 2D-4 

For a list of abbreviations, see Table 2. 

the  d i a g r a m s  the resu l t s  are  p r e s e n t e d  in l a rge r  sca le  for  s e l ec t ed  coo rd ina t e s .  E a c h  po in t  has  its o w n  

sca le  and  the  va r i ous  resu l t s  o b t a i n e d  af te r  the r e j ec t ion  o f  ou t l ie r s  are d e n o t e d  by  d i f f e ren t  s y m b o l s .  

N e w  a v e r a g e  va lues ,  and  the in te rva l  o f  roo t  m e a n  square  er rors  61 are  g iven .  I t  is e a sy  to d e t e r m i n e  
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Table 2 
List of COMMEMI participants (three-dimensional calculations) 

No. Country Method of Authors of programs Calculated 
(Organization) calculation and calculations models 

l 2 3 4 5 

1 Czechoslovakia (Inst. Geophys., Acad. Sci.), IE(D) Varentsov, Hvodzara 
Russia (IZMIRAN) 

2 Czechoslovakia (Inst. Geophys., Acad. Sci.), IE(D,S) Varentsov, Hvodzara 
Russia (IZMIRAN) 

3 Russia (IZMIRAN) FD(D) Zhdanov, Spichak 3D- 1, 3D-2 
4 Russia (MGRI) FD(I) Yudin, Ananevich, Veselovskiy 3D- 1 
5 Russia (MGRI) FE(1) Yudin, Veselovskiy, Ananevich 3D- 1 
6 Russia (Moscow State Univ.) IE(D) Dmitriev, Pozdnyakova 3D-1 
7 USA (Univ. Utah) IE(D) Wannamaker, Hohmann et al. 3D- 1 
8 Canada (Univ. Victoria) IE(I,TS) Weaver et al. 3D-2 
9 Germany (G~ittingen) IE(D,S) Xiong, Schmucker 3D-1 

10 Russia (UTE) FD(I) Druskin et al. 3D-1 
11 Russia (Moscow State Univ.) IE(D,S) Yakovlev, Modin 3D-I 
12 Russia (IO.AS) IE(I,TS) Weidelt, Palshin 3D-2 
13 Canada (Univ. Alberta) IE(I,TS) McKirdy et al. 3D-2 
14 Russia (IZMIRAN) IE(I,TS) Singer, Fainberg 3D-2 
15 Hungary (Univ. Budapest), IE(I) Farzan, Dmitriev 3D-1 

Russia (Moscow State Univ.) 

3D-1 

3D-I 

Abbreviations: A = analytic solution; FE = finite element method; T S -  thin sheet approximation; I = iterative solution; 
FD = finite difference method: IE = integral equation method; S -  stationary field approximation; D -  direct solution; 
SG = solution on a sequence of grids. 

from these diagrams the behaviour of the various solutions along the profile and to discern the group 
of solutions which are nearly coincident. 

3.3. Packages of modelling programs 

The methods for solving problems of modelling electromagnetic fields in inhomogeneous media 
described in Section 2 were only theoretical in nature. Concrete results are obtained with the aid of 
computer programs, and various practical realizations of the same theoretical method, in the form of a 
computer code, depend on several factors including the algorithm chosen, the numerical method and 
programming technique employed, and above all on the skill of the programmer. Therefore, when 
comparing algorithms in future we shall always refer to a particular program written by a specified 
author rather than a theoretical method. 

The first programs for modelling in two dimensions based on the three fundamental methods--the 
method of integral equations (Dmitriev, 1969; Hohmann, 1971 ; Kaufman, 1974), the method of finite 
elements (Coggon, 1971; Silvester and Haslam, 1972) and the method of finite differences (Jones and 
Price, 1970; Jones and Pascoe, 1971; Madden and Swift, 1972; Pascoe and Jones, 1972; Cerv and 
Praus, 1972)--were already in use at the very beginning of the 1970's. Since then, all three methods 
have been extensively developed, but not to the same degree for two-dimensional modelling, since 
programs based on the method of integral equations are now only rarely used in two dimensions. This 
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is because of difficulties encountered in this method with complex geoelectric models, especially 
those that extend laterally beyond the limits of the host normal section. It should be noted, however, 
that our fundamental understanding of electromagnetic field distortions in inhomogeneous media were 
formed over the last twenty five years with the aid of programs of this type which are very effective 
in yielding results of high accuracy for simple bounded bodies of a local nature. 

A wider selection of programs has been based on the method of finite elements. Such programs 
permit flexibility in model design with the use of triangular finite elements generated automatically in 
some cases. It becomes necessary in the finite element method, however, to solve linear systems with 
irregular structures. The increased complexity of the method of finite elements has meant that the 
development of general programs has been carried out by mathematicians who, having only a general 
knowledge of potential applications, do not always appreciate fully the effectiveness and convenience 
of such methods for solving particular problems in geoelectrics. Programs intended specifically for 
geoelectrics, which have usually been developed by geophysicists themselves, have tended to be 
coded only for rectangular finite elements (which are the simplest to handle) and have therefore failed 
to take full advantage of the flexibility in design offered by this method. 

In widest use are finite-difference programs written especially for the solution of geoelectric 
problems. Because of their simplicity, accessibility and reliability, and the ease with which they can 
be modified to accommodate new features, the majority of COMMEMI participants favoured them. 

For modelling in three dimensions, however, the distribution of methods used among the various 
participants was somewhat different with the greatest number of programs being based on the integral 
equation method. As already noted in Section 2.2, this method requires only that the problem be 
solved within the boundaries of an anomalous body, which enables one to use quite fine and accurate 
discretizations. Finite difference and finite element programs were used only rarely by participants in 
the three-dimensional part of the project. 

The different modelling programs employed by the various participants in COMMEMI will now be 
discussed in detail. 

3.3.1. Programs using integral equation methods 

3.3.1.1. Two-dimensional programs. The first programs based on this method were intended for 
application to a narrow class of geoelectrical anomalies of simple shape (Dmitriev, 1969; Kaufman, 
1974; Taborovsky, 1975). Without alteration these programs permitted only a limited set of model 
parameters to be varied, e.g. the diameter and depth of a circular cylinder, its electrical conductivity, 
and the conductivity of the host half-space or, in another example, the dimensions of a rectangular 
insert in a surficial layer, its electrical conductivity, and the electrical conductivities and thicknesses 
of three layers of the normal section. In the last case, if one wanted to include a four-layer normal 
section, it was necessary to rewrite the program. More flexible and universal programs did not appear 
until later. 

First of all, attention is drawn to program N24 (Dmitriev and Mershikova, 1979, 1980). The 
applicability of this program has been considerably enhanced in recent years and it now affords the 
possibility of treating homogeneous inclusions embedded in an arbitrary stratified section. 

A similar program is No. 9, which offers the capability of modelling several inhomogeneous 
inclusions in an arbitrary stratified medium. Finally, it should be mentioned that the only solution of 
an H-polarization problem by the integral equation method, for which a vector problem has to be 
solved instead of scalar one, was submitted by participant 19 (Flfiche, Germany). 
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The complexity associated with the application of the integral equation method to various models 
with different normal sections has meant that the method has had limited appeal in two-dimensional 
studies. A more promising approach can be taken when the upper inhomogeneous part of the model 
can be approximated by a infinitely thin sheet or, more accurately, by a thin layer of finite thickness. 
This approach is represented by results 21 and 22 (Green and Weaver, 1978; McKirdy and Weaver, 
1984). Thin sheet programs can effectively model fields over a quite complicated surficial structure of 
variable electric conductance, which may extend to infinity on the right and left sides of the model, 
not only at low frequencies but also in a wider band. 

In all two-dimensional programs the discrete systems were solved by means of direct methods. 

3.3.1.2. Three-dimensional programs. For three-dimensional calculations the majority of participants 
used the method of integral equations. With present computing facilities, however, it is still not 
possible to model real distributions of electric conductivity within the limits of this method and the 
programs have been used primarily for studying simple three-dimensional synthetic models which 
provide information on various three-dimensional responses and are also useful for testing methods of 
interpretation. 

In such investigations it is possible to limit models to those involving local bodies of simple shape, 
for which the effectiveness of the integral equation method is not in question, especially if model 
symmetries are taken into account with a consequent and considerable simplification of the calcula- 
tions. 

Participants 1 and 2 presented two programs of three-dimensional modelling; one for the general 
case of an alternating field (Hvozdara, 1981; Hvozdara et al., 1987; Hvozdara and Varentsov, 1988) 
and another for the particular limiting case of a stationary field (Hvozdara, 1982, 1983, 1985). 

In program 1, the analytical potential of the integral equation method was exploited to the full for 
those models comprising an inhomogeneous insert in a homogeneous half-space. In particular, the 
algorithm took into account the properties of the Green's operators and their volume integrals for a 
one-dimensional conducting half-space, thereby reducing the number of dimensions in which the 
numerical procedures were carried out. Thus it was possible with this program to undertake a detailed 
study of model 3D-1 with only moderate demands on computing resources. Algorithm 5 (Dmitriev 
and Pozdnyakova, 1989) resembles the aforementioned one closely, but is more universal since it can 
include an arbitrary layered structure for the normal section. The results of the earlier algorithm 15 
(Dmitriev and Farzan, 1980) turned out to be very rough and were not considered. Number 7, a U.S. 
program (Wannamaker et al., 1984a,b) seemed to be more general, since it allowed for a non-uniform 
discretization of the inhomogeneity. Computations of the coefficients for the discrete system were 
based on a three-dimensional interpolation of previously tabulated values of the Green's operator. An 
arbitrary stratified normal section as well as the non-uniform structure of the insert can be 
accommodated in this program. The results obtained by participants 9 (Xiong et al., 1986) were 
obtained on a supercomputer and involved a maximum discretization of model 3D-1. In all of the 
aforementioned programs, symmetries of the geoelectric model were taken into consideration. 

A second solution valid for stationary fields was submitted by participants 11 (Yakovlev and 
Modin, 1988). 

Algorithms based on the method of integral equations applied to the class of thin sheet models, 
were employed by participants 8 (Dawson and Weaver, 1979; Agarwal and Weaver, 1987), 12 
(Weidelt, 1977), 13 (McKirdy et al., 1985) and 14 (Zinger and Fainberg, 1985; Weaver, 1994). 
Results obtained with these algorithms were for model 3D-2, but their analysis lies outside the scope 
of this article. 
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Except for programs 9 and 14 the algorithms based on the integral equations used direct methods to 
solve the discrete linear systems. Program 1 provides an option of selecting both direct and iterative 
methods of solution. 

3.3.2. Programs using finite difference methods 

3.3.2.1. Two-dimensional programs. A considerable number of results obtained with two-dimensional 
finite-difference programs was submitted to COMMEMI. Some of them were produced by different 
versions of programs prepared by the same authors. Several algorithms, developed at different times, 
have similar structures and differ only in isolated but not very essential details. Results 2, 3, 4, 6, 8, 
12 were obtained by means of such algorithms. They are characterized by the fact that the systems of 
difference equations are all solved by elimination methods which yield stable high quality calcula- 
tions. The second main group of programs (7, 10, 11, 13-16, 20, 27) employed iterative methods of 
solution. The results for this group were very variable in quality. 

Let us characterize the main programs briefly. Results 2 - 4  were obtained with a Canadian program 
(Brewitt-Taylor and Weaver, 1976; Weaver and Brewitt-Taylor, 1978; Weaver, 1986) which has been 
widely distributed around the world. The specific features of this program are-- the  systems of linear 
equations are solved by elimination, asymptotic boundary conditions of the first order are applied in 
the atmosphere and Dirichlet conditions of the first order on other boundaries, the method of 
differentiating of the finite difference solution for calculating the secondary components of the field 
takes into account the boundaries of separation between regions of different conductivity. 

Result 6 was obtained with a Polish program (Tarlowsky, 1977) which also employed a direct 
method for solving the system of finite difference equations, and boundary conditions of the first 
order. The calculations were performed on very fine grids with the number of nodes exceeding 5000. 

A rather old Hungarian program (Tatrallyay, 1978) was used to obtain result 7. It also employed 
the usual Dirichlet boundary conditions of the first order, while the difference system was solved by 
means of an iterative method of over-relaxation. 

The same iterative method was also applied in program 10 (Varentsov and Golubev, 1980a,b, 
1982; Zhdanov et al., 1982a,b). Asymptotic boundary conditions in the nonconducting atmosphere 
were used, as in program 2. Perfection of this program led to a new development labelled 8 - - a  
package of modelling programs called FDM2D (Varentsov and Golubev, 1982, 1985). This package 
features an effective treatment of the finite difference system by direct solution, as well as successive 
applications of asymptotic boundary conditions, including those in a homogeneous conducting or 
nonconducting basement (as well as in a non-homogeneous basement by taking into account the 
apparent electric conductivity at boundary points). The FDM2D package also offers the opportunity to 
plot the solution for both the total and the anomalous fields, to take into account the model 
symmetries, to minimize computation requirements by optimally enumerating the difference equations 
and to calculate accurately the derivatives of the discrete solution by taking into special consideration 
those points where possible breakdowns occur. This package was made available to all geophysical 
organizations belonging to the former Soviet Union. 

Algorithm 27 (Varentsov, 1985) differs from algorithm 10 in only one essential detail: the direct 
method of solution is replaced by a hybrid method which combines the advantages of both direct and 
iterative methods. Here we use incomplete factorization of the matrix of the difference system, and 
then a conjugate gradient iterative scheme which provides for quick and reliable convergence of the 
process. This program also includes the option of performing the calculations on a converging 
sequence of grids. 
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Algorithm l l (Vardanyanz, 1976, 1979, 1983) is very interesting and the program has been used 
by a number of researchers. Its main characteristics are the use of boundary conditions of second 
order (vanishing derivative of the normal field) on the side boundaries and impedance boundary 
conditions (of third order) on the lower boundary, as well as the method of solving the finite 
difference equations--on a converging sequence of grids using an iterative method of variable 
directions. 

Algorithm 12 is based on the exclusion methods of Cerv and Praus (1972, 1978) and (~erv et al. 
(1984); it uses Dirichlet boundary conditions of first order. In program 13, developed in Germany (the 
former GDR), over-relaxation and Dirichlet boundary conditions of the first order are used. Algorithm 
14 (Yudin (1981b, 1983) is widely known in the countries of the former USSR. It employs an 
iterative solution based on the Gauss-Seidel method and over-relaxation. 

Dirichlet boundary conditions of the first order are dynamically corrected during iterations by the 
Schwartz method. The results are normalized by the values of the normal field. Calculation 14.1 was 
performed by running this same algorithm on another computer (IMB PC). 

Calculation 16 is based on an old adaptation (Yudin and Kazanceva, 1977) of the well-known 
Jones program (Jones and Pascoe, 1971). The adapted program inherited many of the disadvantages 
of its prototype and in spite of its widespread use in the former USSR during the 1970's and early 
1980's it is seldom used today. 

Algorithm 18 (Schmucker, Germany) is characterized by the application of integral boundary 
conditions which reduce the regions of finite difference modelling, and by direct solution of the 
system of difference equations on a uniform grid with equal step sizes. 

Program 20 (Dmitriev and Barashkov, 1969) has been devised specifically for the case of 
H-polarization. Here the difference equations with Dirichlet boundary conditions of the first order are 
solved by the method of variable directions. 

3.3.2.2. Three-dimensional programs. Algorithm 3 (Zhdanov and Spichak, 1980, 1992; Zhdanov et 
al., 1982a,b; Spichak, 1983) is characterized primarily by asymptotic boundary conditions in the 
non-conducting atmosphere, a seven-point vector finite difference scheme and an iterative solution by 
the method of over-relaxation. It is similar in structure to the corresponding two-dimensional program 
and forms part of a powerful program package. 

The results labelled 4 were obtained with the program of Yudin (1981b, 1983) and Vanyan et al. 
(1984). In this approach, as in the two-dimensional algorithm numbered 14, the simplest iterative 
solution is formed, and in the process of iteration Dirichlet boundary conditions of the first order are 
refined by the Schwartz method. 

Finally, we consider the results labelled 10 (Druskin and Knizhnerman, 1987). Their method is 
unusual in that the calculations for a harmonic field are reached via a program for modelling 
non-stationary fields in a temporary area. A stabilized non-stationary solution for harmonic excitation 
of the model is considered. The spatial approximation of the operator for non-stationary modelling is 
performed by the method of finite differences. The vector differential equation in time domain is 
approximated in the specified time range by the Galerkin method and is solved by means of the 
Lanczos scheme (Druskin and Knizhnerman, 1994). 

3.3.3. Programs using the finite element method 

3.3.3.1. Two-dimensional programs. These programs were submitted to the COMMEMI project by six 
participants. A leading program in the category is number 23 from Canada (Kisak and Silvester, 1975; 
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Kisak et al., 1977). It represented a particular version of a general purpose finite element package 
(Silvester and Ferrari, 1990) with standard subroutines--description of the model, triangulation of the 
area of modelling, formulation and solution of the system of discrete equations. In this application 
triangular elements of high order were used, which provided accurate approximations with natural 
boundary conditions. 

On the contrary program 17 from the United States (Wannamaker et al., 1986, 1987) is a 
specialized program specifically designed for the solution of geo-electric problems and it does not use 
standard software for application of the finite element method. Triangular elements are used; the 
approximation is carried out by the method of weighted errors with linear functions. Accurate 
calculation of the discontinuous spatial derivatives in the solution as well as the inclusion and analysis 
of topographic effects at the boundary between Earth and atmosphere are incorporated in the program. 

A scheme with rectangular elements is also found in algorithm 15 (Yudin, 1981a,b, 1983), but the 
approximation is carried out on the basis of a variational principle with linear basis functions 
horizontally and exponential functions vertically. The solution of the discrete system is the same as 
for the finite difference program numbered 14. The other version of these calculations, 15.1, was 
obtained by adapting the same algorithm for running on another computer (IBM PC). 

Triangular elements with linear basis functions are employed in program 5 from Finland (Kaik- 
konen, 1977, 1983). The solution of the discrete system is carried out by direct elimination and 
Dirichlet boundary conditions of the first order are used. 

Algorithm 25 (Alekseev et al., 1986; Bersenev, 1988) is also characterized by choosing triangular 
elements with linear basis functions. Approximation is carried out by the Galerkin method and the 
linear system is solved by the method of over-relaxation. 

The results of participant 26 (Bogdanov, 1988) were obtained by a program which differs from the 
previous one only in the way the system of equations is solved. Here the classic scheme of solution on 
converging grids was used with direct solutions obtained on coarse grids. The method of over-relaxa- 
tion was employed for the required iterations. 

The finite-element algorithms 15 and 17 are structurally very close to the finite-difference 
algorithms 6, 12 and 14, respectively. 

3.3.3.2. Three-dimensional  programs.  In the three-dimensional case only one algorithm, number 5 
(Yudin, 1981b; Vanyan et al., 1984), is based on the method of finite elements. Rectangular prisms 
were used with linear basis functions in the horizontal direction and exponential functions vertically. 
The approximation of the model was developed in the same manner as in its two-dimensional 
analogue 15. Dirichlet boundary conditions of the first order were corrected during the process of 
solution by over-relaxation using the Schwartz method as in the three-dimensional finite difference 
method 4. 

4. Comparison of 2D results 

4.1. Model  calculations 

4.1.1. Participants 

The set of two-dimensional data comprises 27 results submitted by participants from l0 countries. 
While most of these calculations were performed by the authors of the algorithms themselves, in 
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several cases the calculations presented were performed by other researchers some of whom were, in 
fact, authors in their own right of different algorithms. Only a few participants submitted calculations 
for the entire set of two-dimensional models, the majority limiting themselves to individual calcula- 
tions. 

To make the assimilation of the material more convenient, essential infbrmation on the participants 
is given in Table 1, in the following format: 
1. participant number, which serves as an identification of the results; 
2. country and institution where the calculations were performed; 
3. method of calculation and the symbol used to identify the result on the diagrams in Appendix C; 

the method of solving the system of linear equations is shown in brackets; 
4. author of the program used and, if they are not the same, the name of the contributor who 

performed the calculations; 
5. list of models for which results were submitted. 

The characteristics of the various algorithms have been described in Section 3.3. 
Participants from the former USSR and Canada are featured most widely. The spectrum of methods 

used is very wide. Five algorithms are based on the method of integral equations, three of them 
suitable for arbitrary models, and two for use in the thin sheet approximation. Six submissions used 
the finite-element approach. The most popular method turned out to be the finite-difference method 
for which there were fifteen contributions. 

The results are collected together by components in various tables which are enumerated succes- 
sively and presented in Appendix B. These tables also include information on the coordinates along 
the profile. Appendix C contains diagrams and plots of the most interesting field components. 

4.1.2. Analytical model 

4.1.2.1. Model 2D-O. This model is a single slab consisting of three segments of different electrical 
conductivities lying on the surface of a perfect conductor as shown in Fig. la. The field in this model 
is calculated for one period ( T =  300 s) on the Earth's surface and also at the depth of 15 kin (Tables 
B. 1 -B.5). The complications that arise in the calculations for this model are determining the values of 
field components over the vertical boundaries separating the three homogeneous segments and in 
handling the perfect conductor at the base of the model. 

The results, some of which were published earlier, were contributed by ten participants. There is 
one analytical (quasianalytic in case of EP) solution (1), one algorithm (22) using the method of 
integral equations (approximation with thick layer), four finite-element calculations (17, 23, 25, 26) 
and four finite-difference calculations (3, 6, 18, 20). Three participants (20, 25, 26) used iterative 
methods for the solution of the system of linear equations; the others all used direct methods. 

In the case of E-polarization, eight results were presented, all of them with solutions for both the 
Earth's surface (z = 0) and for a depth of 15 km. The comparatively small number of contributors for 
this model is explained by two factors: first, the model was included in COMMEMI considerably later, 
when many of the most punctual participants had already submitted their results; second, the model 
has different geoelectric sections on the left and right which poses difficulties for the method of 
integral equations. 

Let us consider the calculations as presented. Component E~, has been calculated by all algorithms 
without noticeable deviations from the standard solution (1), as is well seen on the plot in the upper 
part of Fig. 6. The dashed lines on this plot connect the maximum and the minimum values for each 
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Table 3 
Correspondence between participant numbers and the letters used in the diagrams in Appendices C and E 
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1 2 3 4 5 6 7 8 9 l0  II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

point of comparison. Although the maximum and the minimum values may belong to different 
solutions at the various points, on average they predict a rough estimate of the deviations in solutions. 
The three continuous lines display the mean value Ey for all sections and the error interval 61 (see 
Section 3.2.3) on either side of it. They give a qualitative picture of the root-mean-square range of the 
solutions. Specific information about the distribution of various solutions is found on the diagram in 
the lower part of Fig. 6. The results for a number of comparison points are denoted by letters which 
correspond to the different participants according to the key given in Table 3. The mean value and 
error interval 61 are given there also. Reference to the lower diagram suggests that some of the data 
(1, 3, 8 - - symbols  A, C, H) are almost completely confined to points near the mean value, and that 
data (23) (symbol W) are consistently lower, but by a small value. The deviation of calculation (22) 
(symbol V) from the mean value cannot be predicted as some points lie above the mean value and 
some below it. It should be noted that values which do not lie in the range 2 go are not shown on the 
diagram. 

Complete information about the behaviour of Ey may be obtained from Table B. 1 where all the 
separate real and imaginary parts of the submitted results are tabulated. Following the field values at 
each point the mean value and standard deviation g0 are recorded. While calculating the statistics of 
the data, all results differing from the mean value by more than 2 g0 were discarded for a subsequent 
calculation of the statistics on the remaining limited sample. Thus, a marked difference between 61 
and 60 indicates the presence of considerable scatter in the results. 

An analysis of the tabulated results suggests a possible overestimation of the imaginary part of E,. 
in algorithm 18 (Table B. 1) at the points of horizontal discontinuity in the electric conductivity, but it 
is almost invisible on the diagram itself. 

Errors in the absolute value of the component E,, at a depth of 15 km are nearly the same as those 
on the surface with all the algorithms yielding similar results. This testifies to the absence of 
fundamental errors in the approximation of the boundary conditions on the lower boundary. 

The magnetic field components in this polarization are characterized by a great range of values. 
The component H x has standard deviations 6 o which are of an order higher than those of Ey. Even 
after the rejection of highly outlying values, the error remains large. Sometimes three results deviate 
at the same time from the standard solution and go is so big that outlying data are not rejected for the 
repeated statistical analysis. Most of the deviations from the mean are observed in algorithms 25, 26 
and more rarely 23. 

The range of differences between the values obtained for the vertical magnetic component Hz has 
almost the same magnitude as for Hx it being especially great at the points on the vertical 
conductivity boundaries (Fig. 7). At these points H: reaches its extrema, and their amplitudes very 
much depend upon the method of numerical differentiation used and the grid spacing around the 
boundary under consideration. The majority of results fall below the analytic solution (how far 
depends on the quality of numerical differentiation) and only the integral equation method of 
algorithm 22 gives values exceeding the analytic ones. Apparent resistivities are close over the whole 
profile (see Fig. 8), excluding the very left side. 

In the case of H-polarization the range of the different values of E~ among ten results is very small 
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(around 0.005). A considerable deviation at the left end of the profile is seen in the results generated 
by algorithm 23 (Fig. 9). Large deviations from the standard solution arise only in algorithm 25. The 
values of the apparent resistivities simply confirm their expected physical behaviour. 

In summary, the following conclusions may be drawn about model 2D-0. Several algorithms (3, 8, 
17, 20) give results which are very close to the standard solution 1. Algorithms 18 and 22 have 
moderate deviations at some points. In H-polarization algorithm 23 gives significant deviations 
associated with errors in the calculation of H~. in the Earth near the left boundary of the modelling 
region (evidently due to the boundary conditions applied there). Algorithms 25 and 26 have multiple 
deviations from the standard solution, which most probably arise with the differentiation of the 
discrete solution. 

4.1.3. Models with simple geoelectric structures 

4.1.3.1. Model 2D-1. This model has the simplest geometrical shape. It comprises a symmetrical 
rectangular insert embedded in a homogeneous half-space as shown in Fig. lb. Calculations for this 
model were carried out for two periods, T =  0.1 s and 10 s on the Earth's surface and along two lines 
intersecting the insert at different depths inside the Earth. Results were received from twenty 
participants, seven calculations being presented tbr the two levels inside the Earth. Three algorithms 
(9, 19, 22) are based on the method of integral equations, five use finite elements (15, 17, 23, 25, 26), 
and twelve use finite differences (2, 3, 6, 8, 10-14, 18, 20, 27). In seven cases out of twenty, the 
algorithms used iterative methods for the solution of the linear systems; the others used methods of 
direct elimination. It is of interest to note that the values of 61 calculated after rejection of the 
outlying results, show negligible decrease (Table B.6) which is explained by the small number of 
participants. 

For the E-polarized field at period T = 0.1 s the value of 6 o for the component E, is always less 
than 0.022; considerable deviations from the mean result were obtained by participants 10, 18 and 24. 
Algorithm l0 uses an iterative solution and the decreased accuracy is explained by an insufficient 
number of iterations and a rough grid. A similar effect in algorithm 24 is probably caused by the 
rough approximation of the anomalous body (4 × 6 elements). In this case the skin-depth turns out to 
be less than the cell dimensions in the insert. For the longer period, the results calculated with this 
algorithm more nearly coincide with those found by the other participants. In the results presented by 
participant 18, the anomalous E~, is too high and this is evidently associated with the strong influence 
exerted by the side boundary where integral boundary conditions are used. Errors in H,~ are roughly 
double on an average. Since algorithms 14 and 15 used a nonstandard normalization of the field 
amplitude with respect to the normal field, it is only possible to compare them by apparent 
resistivities. Results 25 and 26 appear to have considerable errors as in the case of model 2D-0. 
Discrepancies in H_ are lower and ~ does not exceed 0.03. Deviations from the mean value in the 
H-polarization results are generally prevalent but only sharp deviations are rejected (Table B.7). We 
refer here to the results 6, 18, and 26 over the centre of the insert. The E-polarization apparent 
resistivities show a large spread. The minimum values of apparent resistivity over the insert are given 
by algorithms 14 and 18, the maximum ones by 10 and 24. 

The picture changes significantly for the period T =  10 s. The field penetrates into the insert and 
becomes horizontally more smooth, so that the mechanism producing the errors becomes different. In 
the case of E-polarization, the maximum deviations in E,. are observed in algorithms 10, 13, 15, 25, 
and 26 which solve the system iteratively (Table B.9). However, iteration is not in itself a cause of 
errors, because the interactive solution (14), which continued for a long time, or those which employ 
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special methods (11 and 27), yield results that cannot be distinguished from those obtained by direct 
methods. Errors in the magnetic components of the field are mainly inherited from the grid-generated 
solution. The greatest deviations here are also associated with those algorithms which employ an 
iterative solution (see Table B.9). Errors noticeable in the field components are somewhat smoothed 
out in the apparent resistivities although a number of them, specifically 14, 15, 25, 26, do deviate 
from the mean values quite considerably (Table B. 11). 

On the whole, the H-polarized fields in model 2D-1 caused less trouble for the participants. 
Differences in the results at depths are much bigger than those obtained on the surface, and their 
number varies from eight to three. Thus, it is only marginally possible to rely on the statistical 
estimates. These results are presented in Tables B.12-B. 15. 

4.1.3.2. Model 2D-2. In this model, depicted in Fig. 2a, calculations of 16 participants are presented. 
Among them are four algorithms using the method of integral equations (19, 21, 22, 24), three using 
the method of finite elements (15, 25, 26), and nine using finite differences (3, 6, 8, 10, 12, 13, 14, 
18, 20). In eight of these algorithms iterative methods of solution were employed. 

Modelling was carried out for the two periods 10 s and 1000 s. In E-polarization and with T =  10 
s, the values of 6 o and 61 for the component Ey are higher than those for the previous models, i.e. 
about 0.02-0.03 (Table B. 16). It is difficult to draw firm conclusions from the mean solution because 
the individual results do not fall into concentrated groups, although only a few particular algorithms 
give solutions outside the confidence range of 2 60. Since the magnetic components do not have large 
amplitudes in this range, the small absolute values of the errors are not in themselves proper 
indicators of the scatter in the results. The number of apparent resistivities included in Table B. 17 is 
more complete with the addition of algorithms 5 and 7 and contributions from participants 14, 15, 16, 
all of which had been omitted in the comparison of the magnetic components because of nonstandard 
normalizations. The results are distributed quite uniformly within the limits of the confidence interval. 
The H-polarization anomalous fields are small and errors in them reach 25% of the maximum 
anomaly. The apparent resistivities on the other hand, coincide quite well but only eight results are 
included (Table B.17). 

For T =  1000 s some researchers also used algorithms based on the thin sheet approximation 
applied to the upper inhomogeneous part of the model. The majority of such algorithms give very 
similar values of Ey with only algorithm 21 differing noticeably because of an extremely crude and 
inappropriate approximation of the anomalous region by a surface rather than a buried thin sheet, 
which essentially results in the electric field being overestimated. Another group of participants (16, 
25, 26) have underestimated the value of electric field (Table B. 18). 

The magnetic field components are characterized by large errors, reaching 0.14. The thin sheet 
algorithm 21 is also very noticeable here, and a number of other algorithms overestimate the values of 
H X and H~ (13, 25, 26). When calculating apparent resistivities the errors are smoothed out and are 
not big (Table B.20). It may be noted from Fig. 14 that the results of several algorithms are grouped 
together at the majority of points in the profile (code names C, F, J, K, L, N--participants 3, 6, 8, 9, 
11, 12). The other algorithms give differing results, many of them considerably smaller at all points. 

For H-polarization the spread of values is very great because of algorithm 21 (Fig. 15). The curves 
describing the maximum and the minimum values differ a great deal from the mean and exceed the 
error considerably. The same picture is apparent in the results for apparent resistivity. The maximum 
deviations in the results for this model arise in some algorithms because of the decision to use an 
iterative solution. The influence of the approximation of thin layers of high conductivity contrast 
cannot be neglected either. 
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4.1.3.3. M o d e l  2D-3.  This model, shown in Fig. 2b, comes in two versions (A) and (B). In (A) the 
electric conductivities of the surficial layer on the left and right sides are equal, while in (B) they 
differ. Calculations were carried out for periods T = 100 and 1000 s. Seventeen results are presented, 
three of which (19, 21, 22) were obtained by the method of integral equations, four (15, 17, 25, 26) by 
the method of finite elements and ten (2, 3, 6, 8, 10, i l, 12, 13, 16, 18) by the method of finite 
differences. This model is one of the most effective ones for making comparisons. Let us consider the 
two versions separately. In version (A), for E-polarization and period T =  100 s, the errors in 
component E,. do not exceed 0.01 or approximately 2% of the anomalous field (Table B.21). The 
magnetic component H x has errors of the same order and only at a few points, - 25, - 20, - 15 km, 
is the error larger. Component H. has large errors, most notably at the points - 2 0  and 0 kin, where 
vertical boundaries between regions of different electrical conductivities are present. Over each such 
boundary, H. attains an extremum whose magnitude becomes greater with increasing conductivity 
contrast. 

It is evident that the smaller the grid spacings near the boundary the greater the accuracy in the 
calculated value of H~. To evaluate qualitatively the influence of grid spacing on the value of H_ the 
results of algorithm 8 are entered in Table B.24 for two different spacings (Fig. 16)--version 8.4 with 
gridpoint separations of 2 km near the contact and version 8.5 with spacings of 0.15 km. It is clear 
that the finer spacings bring the values of H. closer to the results presented by participants 2 and 3 
whose method of numerical differentiation accounts more accurately for the different resistivities on 
either side of the contact. In this example the statistical characteristics only indicate where the results 
have maximum divergence but they are unable to reveal the correct values because of the asymmetri- 
cal distribution of data. The values of apparent resistivities are obtained with such relatively small 
errors (Table B.24) that it is impossible to separate the participants (Fig. 17). 

The model is no less interesting in the H-polarization mode. When discussing model 2D-0 we 
touched on the problem of calculating the electric field directly over the vertical contacts where E, 
has a discontinuity. All participants used one-sided derivatives with that theoretical model. For model 
2D-3, however, there are other variations: some participants presented both one-sided derivatives, 
while others presented only one of them either on one particular side or the maximum one of the two 
(Fig. 18). The remainder of the participants calculated the derivative over the contact in the same way 
as at normal points, thereby obtaining an average result. In Table B.22 the values of E X are tabulated 
for most of the points of comparison. The greatest errors are observed over the vertical contacts (Fig. 
19). All the values of E x (both one-sided and average values) over the contacts have been brought 
together in a special Table B.23 for comparison. The apparent resistivities for this polarization 
coincide well also (Table B.24), with a greater number of participants having calculated them. 

The number of results at longer periods increases with the additional appearance of two thin sheet 
solutions. Even so, the thin sheet conditions are barely satisfied at this period for the application of 
algorithm 21, but the model is well-suited for the more accurate program used by participant 22 in 
which the thin sheet is allowed to have some vertical structure. The submitted results reflect this 
difference. The apparent resistivities in E-polarization agree well across the whole profile, with 
discrepancies existing only for participants 21 and 26 (Table B.26). For H-polarization, the results of 
participants 13, 16, 21 and 26 differ quite considerably. 

In the second version--model 2D-3b--the resistivity of the block on the right of the surface layer 
is changed to 1000 ~ m. Only nine participants submitted results, less than for model 2D-3a. 
However, the results are of high quality, with only some deviations evident in those given by 
algorithm 21 and at some points by algorithms 25 and 26. For the period of I00 s, components E,. 
and H~ (Table B.27) exhibit very good agreement, in which the differences between the five 
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algorithms 3, 8, 17, 18 and 22 do not exceed 0.02, and only those results associated with algorithms 
25 and 26 have consistent deviations. The discrepancies are more pronounced in H~ over the vertical 
contact, just as in version 3a. The apparent resistivities are also very similar (Fig. 20). Results from 
the H-polarization calculations are very good as well (Fig. 21). At the period of 1000 s the same 
general trends hold except that the results produced by algorithm 27 now contribute to an increase in 
error. The results are given in Tables B.31 and B.32. 

The model under consideration here is particularly informative about the accuracy of the methods 
for differentiating the solution obtained on the grid. It becomes very evident that the magnetic 
components derived from E,, in an E-polarized field are dependent on the grid spacing near the 
Earth's surface. Basic errors in the component H~ arise as a result of the nonlinear behaviour of the 
electric field in the conductor due to exponential attenuation. This effect is mostly noticeable at short 
periods and is further confirmed by a decrease in the error of H x relative to Ey at longer periods for 
which the exponential attenuation is reduced. The main method of overcoming such errors is by 
decreasing the vertical grid spacings near the surface and using differentiation procedures which take 
into account the exponential behaviour of the field. The horizontal spacing of the grid near vertical 
conductivity boundaries is of greatest importance in calculating the /4~ component. The departures of 
the values at these points are very large, and the methods of combating the errors are much the same 
--designing fine grids and using specialized formulae which take into account the discontinuity of 
electrical conductivity at the boundary. 

In the case of H-polarization the vertical conductivity boundaries exert an even greater influence. 
Straightforward central differences at the boundary points are the least accurate derivative formulae to 
use because they give an averaged result, and this average depends upon the scheme for computing 
the difference coefficients (and consequently upon how the electrical conductivities are averaged) and 
on how the grid is designed. When taking one-sided derivatives it is useful to calculate both 
derivatives or the maximum one of the two, since in cases of high conductivity contrasts the smaller 
derivative may have considerable errors. 

The difficulties encountered in estimating the statistical parameters for the results of this model 
calculation are very apparent from a visual inspection. First, we see that the distribution of results for 
component H, are asymmetrical, because all the errors have the same sign. The values 6 are 
considerably distorted and can therefore only provide a qualitative estimate of the spread since the 
true solution is obviously displaced from the mean one. These distortions are aggravated by the 
presence of some algorithms with sharply differing results, namely 21, 25 and 26. In fact, ~o is so 
great, that not all of the poor results are rejected, and the final value 6~ does not reflect the real 
accuracy of modelling. Under these circumstances it is possible to isolate a number of algorithms 
whose results agree with each other to a very high degree of accuracy and the majority of which also 
performed well when compared with the analytic solution for model 2D-0. Generally these are the 
algorithms (3, 6, 8, 11, 12, 17, 22) which solve the linear system by a direct rather than a iterative 
method. The similarity of their outputs allows one to select the most probable solution even for 
models for which there are no reliable statistics or in which even up to one-half of the solutions are 
substantially different. 

4.1.4. Complex geoelectric structures 
Prior to a detailed comparison of the results we comment briefly on the set of calculations received 

for complex geoelectric structures. In model 2D-4, sixteen submissions were received (Table 1). 
Twelve of them were obtained by finite-difference programs, three by the method of finite elements, 
and one by the method of integral equations for which the model was represented by a thick 
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inhomogeneous layer. In seven cases the systems of linear equations were solved by direct methods, 
the rest by iteration. For model 2D-5 only nine sets of calculations were submitted, seven of which 
were by the method of finite differences and two by finite elements. In seven of these submissions, 
direct methods were used for the solution of the system of linear equations. 

Thus, fewer submissions were received for models with complex geoelectric structures (especially 
model 2D-5) than for the earlier simpler models (2D-0-2D-3), a fact that is readily explained by the 
complexity of model design required. It should also be noted that not all contributors submitted 
complete sets of calculations; some of them limited themselves only to one of the polarizations, while 
others sent in calculations for selected periods and points along the profile. A number of submissions 
were excluded from the analysis because, in one way or another, they did not meet the defined project 
format (e.g. magnetic fields were presented by participants 14 and 16 in nonstandard form). The 
smallness of the sample of calculations hinders their statistical analysis somewhat, but since a large 
proportion of them are finite-difference calculations coupled with a direct solution of the resulting 
system of linear equations which performed well on the simple models, it is still possible to carry out 
an analysis with some confidence. The results of calculations for these models are presented in Tables 
B.33-B.41 and in Figs. 22-25. 

The calculations for these final two 2D models reveal some specific problems which cause 
additional errors that are not present in the simple models. The basic problem is the complexity of the 
discrete representation of the geoelectric structure. Even in model 2D-4 (see Fig. 3) which is not an 
unduly complicated one, the errors associated with the geometry of the structure (especially the 
inclined boundaries) are superimposed on the usual errors due to other sources. To describe complex 
models the researcher has to use grids of large dimension, which often exceed the capabilities of the 
computational facilities available. In this event the model must be simplified or the region modelled 
must be reduced, either choice leading to the introduction of new modelling errors. The rate of 
convergence is sharply decreased and the time taken for one iteration is longer, when iterative 
solutions of the large systems of linear equations arising from complex structures are used. It is 
therefore extremely difficult for inexperienced users of such programs to obtain a precise result by 
iteration. 

4.1.4.1. Model 2D-4. Let us consider the differences apparent in the calculations for model 2D-4. 
Modelling was carried out for both polarizations at the periods T =  1, 9 and 100 s. The best 
agreement is reached with the primary field component E,. in E-polarization at the period T = 1 s 
where the error is only 1-2%, but as the period increases up to 100 s, this error in E,. grows up to 
5-6%. In the case of the secondary fields this value reaches 5-10%, and for the secondary 
components H: and E x the error exceeds this value at a number of points. 

Errors in the apparent resistivities were within the limit of 10%, and were greater for the 
H-polarization calculations than for those in E-polarization. It should be noted that the errors are most 
apparent in the region of the vertical contact at x = 6 km (especially for H-polarization at period 
T = 9 s) and also in the region of the inclined boundary at x = 2-5 km. The former errors are 
connected with the sharp discontinuity in the electric field across the boundary separating the two 
regions of strongly differing conductivities (the influence of this boundary is most noticeable at the 
Earth's surface for the period of T = 9 s); the latter are associated with the different representations of 
the inclined boundary by various researchers. Considerable errors often appear on boundaries in the 
model which are principally attributed to non-precise boundary conditions. 

Let us now consider in detail the results obtained by the various programs. Good agreement was 
given by programs 3, 4, 6, 8, 11, 12, 14 (FD), 22 in practically all sets of calculations, and these 
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results were taken as the standard for comparison purposes. Results 13, 19, 20 gave large errors only 
in some examples, while the rest differed from the main group in many of the results. 

The largest errors present in the calculations are from program 26. The character of the distribution 
of these program errors (considerable systematic deviation along the whole profile, including the 
boundaries of the modelling region, and approximation to the main results at the turning points) 
testify to the presence of two main causes of errors. The first, which is typical for finite-difference 
algorithms, originates with the use of non-precise boundary conditions, and gives errors on the 
boundaries of the modelled region; the second is the use of an insufficient number of iterations for 
solving the system of linear equations. Evidently the method of converging nested grids, with only a 
few iterations on the original rough grid, is not wholly effective. Typical shortcomings of programs 
25 and 26 are evident in the errors of calculations for the derived fields at some neighbouring points 
on the profile where equal values are obtained which most probably indicates a very crude 
approximation over large elements. 

Significant errors caused by an insufficient number of iterations are typical for results 10, 14.1 
(FE), 16, 25 and to a lesser degree 13 and 20. Non-precise boundary conditions account for 
inaccuracies near the model boundaries in results 14.1 and 25. Failure to model the geoelectric 
structure adequately is especially noticeable in the finite-difference results of participant 18. This is 
possible because the errors are mainly observed in the region of the vertical and inclined contacts 
against a background of very insignificant errors from other sources. It is also observed that in the 
application of program 18 the right edge of the modelling region was not always placed sufficiently 
far away so that the boundary conditions turned out to be inaccurate. It should be noted once more 
that while calculating the field H z (values in Table B.35 are corrected) the signs were changed 
occasionally in program 11. At the same time it is the only one of the above mentioned iterative 
programs in which mistakes due to a small number of iterations are not present. 

In summary, analysis of the calculations for model 2D-4 made it possible to identify and classify 
the errors of widest scatter and thence to plot a satisfactorily narrow band of 'best coincidence' for all 
sets of calculations. 

4.1.4.2. Mode l  2D-5.  In this model (see Fig. 4), the complexity of the geoelectric section influences 
the accuracy of results to an even greater degree. As a rule an error is increased by 1-3% compared 
with model 2D-4 and at some typical points, for example x = - 5 0  km, it may reach much more. The 
results of calculations by programs 3, 6, 8, 11, 17 are taken as a standard since they agree well. 

Program 12 gives small errors in some cases, but the results obtained by programs 4, 18 and 25 
look worse. As we mentioned, the differences in model design are especially apparent at such points 
as x = - 5 0  km in the H-polarization model. Around this point a surface anomaly of very small 
dimensions and large contrast of electric conductivity is inserted. Thus it is not surprising that there is 
a disparity between the values of E x around this point as calculated by the various researchers. The 
greatest departures at this point belong to results 4 and 18. Evidently the basic errors in programs 4, 
12 and 18 are explained simply in terms of shortcomings in the model design which are, in turn, a 
consequence of insufficient grid dimensions. The errors in 25 are due to non-precise boundary 
conditions and an insufficient number of iterations as in model 2D-4. On the whole the results of 
calculations for model 2D-5 may be considered satisfactory and suitable for producing standard 
curves against which other modelling programs can be tested. 

Summing up the results of our analysis of calculations for complex models, we note that the quality 
of results turned out to be much better than might have been expected. Two reasons are offered in 
explanation: the most effective programs employed direct methods of solution for the system of linear 
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equations in general, and the participants paid close attention to model design and exploited the 
potential of their computing facilities to the full. 

4.2. Analysis o f  results 

4.2.1. Typical misfits of results and their sources 
With the exception of occasional mishaps such as faulty input-output information, failure during 

the solution of a program, small programming errors, etc., all errors may be subdivided into three 
main groups: 
1. those introduced when setting up the modelling program; 
2. those arising in the discretization of the program; 
3. those associated with the solution of the discrete program. 

Random errors are not subject to systematic study and therefore will not be discussed here. 
Errors in the first group can arise when certain assumptions and simplifications are introduced. One 

such example is provided by algorithm 21 in which the conducting medium is approximated by a thin 
sheet. Since the thin sheet conditions are not properly satisfied by models 2D-2 and 2D-3, errors of 
type (1) are bound to occur. Another assumption in differential equation methods is how the boundary 
conditions are determined. Usually the 1D solutions on the side boundaries of the model, or equality 
of the normal derivatives to zero there, are used as boundary conditions. The validity of such 
conditions is evidently only exact when the side boundaries are at infinity. Inaccurate prescriptions of 
the boundary conditions may cause considerable deviations of the calculated results from the true 
solution. 

Errors in the second group arise when coarse subdivisions of the region into discrete elements are 
used. Several factors are involved here: 

Approximation of the inhomogeneities. Too small a number of elements decreases the field 
anomaly. Thus in simple models, too rough a subdivision turned out to be an essential source of 
error, even if applied only to the row of elements (cells) on the boundary of the anomalous region. 
Presence of considerably elongated elements. Such elements usually appear towards the boundaries 
of the grid. To satisfy the boundary conditions more exactly, the edge of the grid should be well 
removed from any inhomogeneities, a condition which is usually fulfilled by means of a 
progressive increase in the spacing of the grid points out towards the edge. Thus, the rectangular 
cells at the level of inhomogeneities become very elongated. Since coefficients in the system of 
linear equations are proportional to the square of cells' sides, the conditioning of the matrix of the 
linear system deteriorates due to the elongation of the cells. In iterative methods of solution, the 
field anomaly behaves as though it is not spread across the short sides of the cell. 
Derived fields. A rough subdivision of the grid near the Earth's surface introduces errors during 
the calculation of derivatives. Even if the accuracy of the horizontal derivatives is not affected by 
the grid spacing, the vertical derivatives may still be disturbed since they are also sensitive to the 
electric conductivity of the surface layer. For highly conducting surface material, more accurate 
subdivisions are required. 
Approximation of inclined boundaries. In complex models inclined boundaries cannot be repre- 
sented properly by rectangular subdivisions of the geoelectric structure. 
It should be noted that in practically all these cases, the same problems also arise if the region is 

divided into triangular elements. 
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The third group of errors arise mainly in the application of iterative methods of solution. The 
majority of iterative methods used in geoelectrics are not equipped with sufficiently reliable stoppage 
criteria so that the number of iterations performed is usually limited by some technological or 
economic factor. Thus, many algorithms (10, 13, 15, 25, 26) do not take the iterative process far 
enough to solve complex problems, and produce a solution which has not converged to a steady state. 
The most successful methods seem to be applications of more detailed iterative schemes (27) and the 
organization of iterations on a nested sequence of grids (11, 25, 26). In general the most common 
cause of modelling errors is the early cessation of an iterative solution, while second in frequency of 
occurrence is a poorly chosen representation of the modelled structure by discrete elements. Other 
types of error have considerably less impact compared with those occurring in these two classes. 

Several algorithms (3, 6, 8, 11, 12, 17, 22) which are based on different approaches and methods of 
solution yield results which are in close agreement for all models. It seems evident, therefore, that 
they define the actual solution to within the error bounds specified by the standard deviation of this 
set of results. The results from this group of algorithms testify to the fact that all approaches are 
feasible if they are properly realized and are implemented by well-qualified specialists. A next step in 
the comparison of the various programs is to check their effectiveness and workability in the hands of 
researchers who do not have a great deal of experience in modelling. At this stage of the investigation 
it would be appropriate not only to compare the 'user-friendliness' of the programs themselves but 
also the documentation provided for the general user. 

In conclusion let us note that algorithms 25 and 26 gave results which are considerably worse than 
those expected on the basis of errors in program realization alone, and that algorithm 21 also did not 
perform well because, despite the guidelines circulated to the participants in COMMEMI, it turned out 
that the use of thin sheets was completely inappropriate for those two models where it was suggested, 
with a resulting exaggeration of the field anomalies. However, algorithm 22 which models a surficial 
inhomogeneous layer of finite thickness, yielded results which compare well with the best calcula- 
tions provided by the more rigorous and universal methods. 

4.2.2. Main problems in 2D modelling 
There are two main concerns which should be considered separately from all the other problems 

arising in 2D modelling. They are the absence of precise criteria for evaluating modelling accuracy, 
and the great number of diverse modelling programs which have been developed by various 
researchers in an uncoordinated manner. It is known, for example, that for historical and economic 
reasons, several tens of programs for geoelectrical modelling have been independently produced in 
many different scientific and industrial research centres throughout the world. More than ten such 
programs exist in the former Soviet Union alone. The absence of analytical solutions and other criteria 
for testing the accuracy of the majority of these programs meant that individual researchers considered 
their solutions to be the correct ones, even though, in some cases, they differed from others. A result 
of the completion of COMMEMI is that a set of various standard test results (including rather complex 
models) has been obtained, which allows the adjustment of existing and new electromagnetic 
modelling programs and the determination of their effectiveness. Several shortcomings in existing 
programs have already been exposed in the course of this study. But on the other hand, there were 
authors of specific algorithms and programs who submitted excellent material for analysis. 

Let us now discuss the less significant difficulties encountered in two-dimensional modelling. One 
of them was caused by the lack of adequate computational facilities for the task at hand. Reasonably 
fast computers with sufficient memory were not available in all the research centres with the result 
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that it was not possible to simulate properly some of the complex structures; the consequent necessary 
simplifications of the models introduced undesirable errors. One solution here has been the creation of 
processing centres such as ILONEM in Oulu, Finland where powerful computers are available, although 
recent advances in desk-top computing power will eventually eliminate this particular problem. 
Another problem is the unreliability of solutions generated by programs which use iterative schemes 
that stop iterating before proper convergence is achieved. For now it is evidently simpler to abandon 
all use of iterative schemes in favour of direct methods of solution rather than to persevere with the 
search for reliable criteria for stopping the iterative procedure. 

The problem of determining precise boundary conditions should also be noted, as we have already 
seen that non-exact boundary conditions can be the cause of considerable errors. Since the simplest 
boundary conditions are almost always inapplicable in geoelectric modelling, authors of programs are 
forced to use more complicated conditions (asymptotic, integral, etc.). Great attention should be paid 
to this problem when modelling programs are developed. 

The fact that different users often obtain different results even when applying the same program is 
usually explained by the level of experience of the user, the care put into the design of the discrete 
model, and the choice of regimes and parameters for numerical calculation. 

This section is concluded with the recommendation that the leading modellers in the field of 
electromagnetic induction be urged to cooperate closely on the most effective way of eliminating the 
problems alluded to here. 

5. Comparison of 3D results 

5.1. Model calculations 

5.1.1. Participants 
The set of results for three-dimensional models is much more limited than those for two-dimen- 

sional models, and the total number of participants listed in Table 2 is only half the number who took 
part in the 2D calculations. For the comparison project only a very limited program of testing (Section 
3.2) was offered since three-dimensional modelling is still extremely demanding on computing 
resources. Nevertheless virtually no one was able to complete all the tests, and many participants 
presented only single results. 

In the end it was only possible to compare the various methods and algorithms in a fairly 
presentable manner and to draw reasonable statistical conclusions for the first and simplest model 
3D-I. The largest number of results included here were submitted by scientists from the former 
USSR, and Czechoslovakia. Analysis of test calculations for the more complicated model 3D-2 was 
abandoned because of insufficient results and the discrepancy between them. 

In the aggregate of methods in Table 2 one class of algorithm dominates--that based on the 
method of integral equations (see Section 2.2). Algorithms of this class were used by six participants 
to solve model 3D-l,  four of whom used the method of volume (vector) integral equations for 
alternating magnetic fields. The four algorithms in question are 1, 6, 7 and 9 (by analogy with the 
practice in Section 4 we shall continue to refer to the results obtained by the various participants and 
programs according to the code number of the participant indicated in Table 2), which are very 
similar in their structure. The first two algorithms, which employ a homogeneous discretization of the 
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geoelectric inhomogeneity in each direction, are closely related. Algorithm 7 differs from them 
mainly because an inhomogeneous scheme of discretization is used (see Section 2.2.1). The first three 
algorithms (1, 6 and 7) apply direct solvers to the system of linear equations, while the fourth one (9) 
utilizes an iterative method of solution. Two other algorithms (2 and 4) are based on the method of 
surface integral equations for stationary electromagnetic fields (see Section 2.2.2). We note in passing 
that the application of the method of integral equations to model 3D-2 was even more varied with 
participants 8 and 12-14 using different variations of the thin sheet version of this method. In the 
majority of calculations made with the integral equation method, the symmetry in model 3D-1 was 
exploited. 

Calculations performed with algorithms based on differential equation methods, which dominated 
the 2D part of COMMEMI, were presented in the three-dimensional comparison by only four of the 
participants. Nevertheless they demonstrated a very wide range of approach. For example, the finite 
difference schemes submitted by participants 3 -5  are markedly different. Even more specific, and 
difficult to compare with the previous ones, is method 10, which is also based on finite differences. 

A summary of those results for model 3D-1 received before June 1, 1989 is presented in Appendix 
D (Tables D.1-D.24) and Appendix E (Figs. 26-35).  The format of the tables and figures is similar to 
that used in Section 4. Three-dimensional calculations are also presented for two field polarizations as 
in the two-dimensional case, but there are now a greater number of field components to be compared 
along the two coordinate axes (see Section 3.2). The reader is reminded that the participant number in 
the tables coincides with the number given in the list of participants. Where a participant submitted 
several versions of results obtained with the same algorithm, the number of the calculation is specified 
by an additional digit appearing after the participant number and separated from it by a decimal point 
(for example, 1.2 indicates participant 1, version 2). The symbols on the figures in Appendix E are 
related to the participant number according to Table 3. 

5.1.2. Model 3D-1 (variant A) 
This model is a prismatic conducting insert in a homogenous half-space (see Fig. 5a) as described 

in Section 3.2. Its section in the plane y = 0 coincides with the two-dimensional model 2D-l,  
investigated in Section 4.1.3. Calculations for this model were carried out along the two coordinate 
axes on the Earth's surface for two periods ( T =  0.1 and 10 s) and for two different lengths of the 
insert parallel to the axis Oy  (Fig. 2). Even though the structure of this model is very simple, it is 
characterized by a large contrast in electric conductivity (o-~ /o-n=200)  and the nearness of 
inhomogeneity to the surface of observation, both of which render the numerical calculations quite 
difficult to perform. 

Let us consider the first variant of model 3D-1A with an isometric insert (ly = 1) of dimensions 
1 X 2 X 2 km, with the reminder that in accordance with the estimation made in Section 4.1.1, the 
skin-depth for the short period T--  0.1 s is many times less than the dimensions of the insert, so that 
the essential skin-effect attenuation occurs within the volume of the insert itself, thus creating the 
anomalous electromagnetic field. For the long period, T = 10 s, the skin-effect is much reduced, the 
field varies smoothly, with the galvanic mode dominating, the anomalous magnetic field becomes 
negligibly small, and the electric field loses its frequency dependence and behaves much like the 
limiting solution for a stationary field ( oJ = 0). Because of this, the results of the test calculations for 
the period T = 0.1 s provide information on the quality of the various schemes of approximation for 
dealing with a strongly damped electromagnetic field, while those for the period T = 10 s inform us, 
above all, on the ability of the various algorithms to take into account the stationary component of the 
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solution, and for those algorithms based on differential equations, on their ability to choose correctly 
the dimensions of the modelling area and the type of boundary operators on its boundary. 

For the period T =  0.1 s, the number of different calculations varies from 5 to 10 (Tables D.1-D.4, 
D.9, D.10 and Figs. 26-30). Each table contains the mean values and standard errors 60 and 61 
(defined in Section 3.1.2), while graphs of mean values, the intervals of width 261 of best fit, and the 
bounds of maximum spread, are shown in the figures. 

The most complete comparisons of results are those for electric fields and apparent resistivities. 
Best agreement is found for the field E~. in E,,-polarization, i.e. when the source electric field is in the 
y-direction (see Table D.2; Fig. 28). Here the results 8 of participants 1, 3--7, 9, and 10 are confined 
to the range with error 6~ which does not exceed the values 0.03-0.04. Good agreement is found for 
all the components calculated by algorithms based on the method of integral equations (1, 6, 7, 9). 
Results 1.1 and 6 obtained by closely related algorithms with similar discretizations of the insert (with 
homogenous spacing of 0.25 km in all directions and dimensions of 4 X 8 X 8 = 256) are almost 
identical. Result 1 differs from result 1.1 in that the discretization is twice as f ine-- the vertical grid 
spacing of 0.125 km becoming comparable with the skin-depth. This allows the values of the 
components of the electromagnetic field in the region above the insert to be specified within a range 
of about 0.02-0.05. 

The dimensions of the discretization of the inhomogeneity in solution 9 are equal to 8 X 16 X 10 = 
1280, which is the finest discretization among all the solutions. Constant spacings in each direction 
are, respectively, equal to 0.125, 0.125 and 0.1 km here. Solution 7 is obtained with a reasonably 
detailed discretization of the inhomogeneity with 216 elements and a minimum spacing of 0.125 km 
in each direction. An earlier, somewhat rougher calculation by this participant is present in the 
alternative solution 7.1. Calculations 7 and 7.1 usually agree to an accuracy of 1%; qualitatively the 
later results look better. The field components computed in 1, 7 and 9 differ by values within the 
limits of 0.01-0.03 in the case of Ey-polarization, and within the limits of 0.01-0.05 in the case of 
Ex-polarization. Here it should be borne in mind that the lower part of the inhomogeneity in solution 7 
is approximated less precisely. The apparent resistivities (Tables D.9 and D.10) calculated by the 
method of integral equations lie in a band of width of 1-2 1) m (E,.-polarization) and 2 -5  ~ m 
(E~.-polarization). It is important to emphasize that the results 1.6, 7 and 9 practically coincide outside 
the boundary of the insert. 

Results computed by the method of integral equations show a greater scatter. Solution 10 was 
presented only for E,.-polarization and it agrees qualitatively with the trend exhibited by solutions 1, 
6, 7 and 9, but it differs from them systematically by values of up to 0.05-0.07 for the electric fields, 
and 0.03-0.05 for the magnetic fields. Solutions 3 -5  show satisfactory agreement with the previous 
ones only for the electric fields. For the magnetic fields such agreement is found only for the 
components Re H~ and Re H~ (Table D.2; Figs. 29 and 30). 

Analysis of the deviations of results 3 -5  from the mean values of the electric field calculations in 
1, 6, 7 and 9, shows that the maximum divergences occur at the points of discontinuity in the 
variation of electric conductivity--i.e, at the vertical boundaries of the insert (x  = 0.5 km, y = 1.0 
km). In the region of the insert boundaries we observe an underestimation of the fields. These effects 
are primarily associated with the rough discretization of the insert (for example, only 2 X 2 X 4 = 16 
elements in solution 3) and, possibly, an insufficiently accurate approximation of the electric field in 
the region of sharp changes in the electric conductivity. At the same time, in the surrounding region 
of the model, the divergences of the results disappear with increasing distance from the insert. For 
such high quality calculations the problem of choice of boundary conditions is not essential; the 
solution in the host region is greatly influenced by the geometry of the numerical grid. 
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For the second period, T = 10 s, the overall picture is not very different. As usual the results of 
algorithms using the method of integral equations (1, 6, 7, 9 in Tables D.5, D.6, D.11, D.12) agree 
well, with the respective values of the anomalous magnetic fields differing by extremely small 
absolute values which do not exceed 0.02-0.04. These results for the magnetic field indicate a low 
level of computational errors in the method of integral equations. Slightly less impressive are the 
results for the electric field and apparent resistivities in the dc approximation (2 and 11). Solution 2 
virtually coincides with solution 1.2, both obtained by means of the same algorithm 1 for the 
extremely long period T = 105 s for which the field is also essentially dc. In this connection the dc 
solution 11 in Ey-polarization seems to be overestimated. Results 7, and especially 7.1, seem 
unreliable at points over the insert which in a number of cases gave electric field and apparent 
resistivity values considerably lower than those obtained in solutions 1, 6, 9 and is very close to the 
dc solutions 1.2 and 2. Solution 10 is in better agreement with solutions 1, 6, 7 and 9 for all 
components in Ey-polarization than for the previous period; for the electric field and apparent 
resistivity, it is practically impossible to distinguish the results. The finite difference algorithms 3-5  
were not able to produce satisfactory results for this period. 

5.1.3. Model 3D-1 (variant B) 
The second variant of model 3D-1 (Fig. 10a) contains an insert which is prolate along axis Oy  

( l y = 5 )  and has dimensions of 1 X 1 0 ×  2 km. The other parameters in model 3D-1 remain 
unchanged. 

This model is more complex than the previous one to a certain extent, since it requires a large 
number of discrete elements to reach comparable accuracy in the electromagnetic field approximation. 
At the same time the field is of quasi two-dimensional character within the largest part of the insert. 
The degree of two-dimensionality of the field over the centre of the insert is controlled by the ratio of 
the half-length of the insert and the wavelength in the medium (Ting and Hohmann, 1981; Vanyan et 
al., 1984). For periods T =  0.1 and 10 s, this ratio is equal to 0.5 and 5, respectively. Thus, for the 
first period in Ey-polarization, the field in the central part of the inhomogeneity is of pronounced 
two-dimensional character, and for the second it is essentially three-dimensional. 

Because of this, the tables of results for this model (Tables D.13-D.24) contain both three-dimen- 
sional and two-dimensional solutions, the latter indicated by the notation 2D and calculated only for 
an insert infinitely elongated along the axis O y. This solution is the result of participant 8 in model 
2D-1. For the period T = 0.1 s only the three-dimensional calculations 1, 6 and 7 can be compared 
with the two-dimensional one; all of them are obtained by the method of integral equations. The insert 
was subdivided uniformly into 4 X 10 X 8 = 320 and 4 X 8 X 8 = 256 elements, as well as non-uni- 
formly into 240 elements. Model symmetry was taken into account in obtaining the solutions. Within 
the limits of algorithm 1, direct and iterative methods of solution of the linear system were used, with 
both sets of results not differing significantly. The three-dimensional results 1, 6 and 7 agreed 
satisfactorily as in model 3D-1A with the electric and magnetic fields not usually differing by more 
than 0.02-0.03, and the apparent resistivities by not more than 2 -3  12 m. Only for the electric field 
and apparent resistivity in the Ex-polarization does solution 7 give results considerably lower than the 
other ones. The structure of the solution on axis Ox  is close to being two-dimensional outside the 
boundaries of insert, but over the insert the discrepancies between two-dimensional and three-dimen- 
sional fields may reach a value of 0.1 (Tables D.13 and D.14). The corresponding differences for the 
apparent resistivities do not exceed 10 ~ m. 

For the second period T--  10 s there are four three-dimensional solutions, since the dc solution was 
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added to the three mentioned above. For both polarizations, solutions l, 6 and 7 gave the components 
of the electromagnetic field in the range 0.2-0.5, and several 12 m for apparent resistivities. Let us 
note, however, that in solution 7, the electric field and apparent resistivity values calculated along the 
axis O y over the inhomogeneity, lie below those given by the dc solutions 2 and 1.2. Solution 2 
corresponds qualitatively to solutions 1, 6 and 7, but has more pronounced extrema. The latter fact 
may be partially explained by the more detailed discretization, 8 X 20 X 16 = 2560, used in the dc 
calculations. 

Solutions obtained by differential equation methods were not submitted for this model. 

5.2. Conclusions 

The first conclusion to be drawn from the comparison of the three-dimensional calculations is that 
with model 3D-1A, which is simple in form but non-trivial in geo-electric structure (because of the 
sharp contrast in electrical conductivities and the nearness of the insert to the Earth's surface), we 
found a qualitative agreement between the results of several algorithms of various kinds. The second 
conclusion is that the majority of these algorithms belong to the class of integral equation methods. 
Let us emphasize that the discrepancies among the latter algorithms are within 1% and are determined 
primarily by the fineness of discretization of the insert. A good correspondence between the results of 
three algorithms based on the method of integral equations (1, 6 and 7) was also demonstrated for 
model 3D-lB. These algorithms performed successfully for the whole program of calculations with 
model 3D- 1. 

It should be noted, however, that even for this simple model, calculations involving the method of 
integral equations resulted in linear systems comprising 200-300 complex equations which is quite 
demanding on computer resources. In order to apply this method to more complicated configurations, 
therefore, such as models with inhomogeneous inserts or a whole group of anomalous domains, it is 
necessary to improve its efficiency considerably. 

As we have mentioned, the principal demands on computing resources in this approach are 
associated with the solution of the system of linear equations. For a detailed analysis of more complex 
models, therefore, one will need access to increased computing power as well as special processors. 
Some advantage may be gained if the direct methods for solving the linear systems are replaced by 
iterative ones, but there arises the danger here of a loss of accuracy and reliability. An alternative 
approach is to decrease the dimension of the linear system by using discrete elements of higher order 
when approximating the integral equation, but at present this possibility has not been properly 
investigated and it is difficult to estimate what advantages it offers. 

The third conclusion refers to the differential equation method itself. The comparison revealed 
certain shortcomings in their theoretical and, above all, their practical development. None of the 
traditional algorithms of this class were applied to the complete set of comparisons in any of the test 
models. Thus, it seems impossible to present an appropriately detailed, well-informed analysis of the 
potential suitability of specific programs, or of differential equation methods in general, because of 
the paucity of material available. As disadvantages of the algorithms we draw attention, first of all, to 
the large errors generated in the calculation of the magnetic field components from the electric field 
by difference formulae. The difference formulae in the region of conductivity discontinuities should 
be also improved. Finally, it is evidently necessary to perfect the iterative schemes for the solution of 
the of system difference equations--the Gauss-Seidel method and over-relaxation-- since their slow 
and unreliable convergence places limits on the size of the grids that can be used. It seems appropriate 
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to a p p l y  m o r e  e f f i c i en t  i t e r a t ive  m e t h o d s ,  as we l l  as to use  a l g o r i t h m s  d e v i s e d  fo r  the  so lu t ion  o f  

s y s t e m s  o f  d i f f e r e n c e  e q u a t i o n s  on a s e q u e n c e  o f  gr ids .  

T h e  resu l t s  o f  a l g o r i t h m  10, in w h i c h  the  s t eady- s t a t e ,  t i m e - h a r m o n i c  so lu t ion  was  sough t  as par t  o f  

a m o r e  gene ra l  t r e a t m e n t  o f  the  p r o b l e m  o f  m o d e l l i n g  a rb i t r a ry  n o n s t a t i o n a r y  m a g n e t i c  f ie lds ,  are  a l so  

ve ry  in te res t ing .  T h e  d i f f e r ence  a p p r o x i m a t i o n  is a l so  u sed  in this  a l g o r i t h m  as the  o p e r a t o r  on the 

spa t i a l  pa r t  o f  the  f ie ld .  In  sp i te  o f  the  ra the r  o v e r l y  c o m p l i c a t e d  m a n n e r  in w h i c h  the p r o b l e m  is 

s ta ted  in th is  m e t h o d  ( fo r  the  p u r p o s e  o f  m o d e l l i n g  harmonic f ie lds) ,  s a t i s f ac to ry  resu l t s  we re  

o b t a i n e d  qu i te  u n i f o r m l y  fo r  al l  the  c a l c u l a t e d  c o m p o n e n t s .  

The  f ina l  c o n c l u s i o n  w e  m a k e  is that  it  is  n e c e s s a r y  to con t inue  the  c o m p a r a t i v e  ca l cu l a t i ons  for  

t h r e e - d i m e n s i o n a l  m o d e l s - - i n  pa r t i cu la r ,  to e x t e n d  the set o f  so lu t ions  for  m o d e l  3D-1 and  a lso  to 

a s s e m b l e  ca l cu l a t i ons  for  m o d e l  3 D - 2  w h e r e  there  ex i s t s  the  p o s s i b i l i t y  o f  i n c l u d i n g  resu l t s  p r o v i d e d  

b y  a l a rge  n u m b e r  o f  thin shee t  a l g o r i t h m s  as wel l .  
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Appendix A 

This article has five appendices containing the material which constitutes the project: Appendix B contains the tables of 
data which compare the calculated components of the electromagnetic fields and the apparent resistivities for two-dimen- 
sional models; Appendix C includes the plots and diagrams of the electromagnetic field components for the two-dimensional 
models; Appendices D and E provide the analogous material for the three-dimensional models. Appendix F contains a late 
submission of calculations for Model 3D-2 by Z. Xiong (University of Utah). They are tabulated separately and have not 
been analysed or even referred to in the main text of this article. 

The first line of each table for the two-dimensional models (Appendix B) contains the name of the model followed by (in 
brackets): the field polarization index, the period T, and the level (z = const.) for which the field is calculated. For example, 
the statement: Model 2D-0 (EP, T = 300, z = 15) in a first line indicates that the values given are for the components and 
apparent resistivity associated with the E-polarized field in Model 2D-0, calculated at the depth of 15 km and for a period of 
300 s. The identification HP is used to designate the corresponding H-polarized field. The only difference in the first line of 
the tables for the three-dimensional models (Appendix D) is in the polarization indices, the two designations of polarization 
used here being EXN and EYN which indicate that the model is excited by an electric field oriented in the direction of the 
axes Ox and Oy, respectively. In the second line of all tables, the positions x at which the data are presented are given in 
kilometres. For example, the line reads: "participant/x = 0, 0.25, 0.5 . . . .  " meaning that the data are given for the positions 
x = 0 km, x = 0.25 km, x = 0.5 km and so on. The data values corresponding to these positions are tabulated in the 
underlying columns in the main part of the table. 

In the three-dimensional tables the field is presented along the axis Oy as well. In this case it is the y-coordinates of the 
points where data are tabulated that are indicated in the second line of the table. The format of the tables is the same as for 
the other two- and three-dimensional results with each section corresponding to one of the field components at the stated 
period and depth. The first line in the table of each section indicates the name of field component; for example, Re E~, 
means the real part of the component Ey. 

In Tables 1 and 2, corresponding to two-dimensional and three-dimensional models, respectively, the first columns 
contain the names of participants, and the name of their countries is given in the second column. The results of the 
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calculations then follow. Each table is concluded with four lines containing some statistics relating to the comparison of the 
results. They include the mean values and standard deviations from the mean results, compared at each point both prior to 
and after the rejection of large deviations (see Section 3). If there is no rejection of deviations only two lines of statistical 
information are given. In cases where the table is continued to another page, the second line with the positions of the data 
values is repeated at the beginning of the new page. A dashed line in the table instead of a numerical value means that this 
participant has not provided results for this particular point. The tables were computer-compiled, which, it is hoped, has 
avoided the possibility of misprints. The tables were re-formatted for this English version, however, and the numerical 
results re-entered in them by hand; but they have been independently checked and it is again hoped that no typographical 
errors have occurred. 

The plots and diagrams of the absolute values of the electromagnetic field components for two- and three-dimensional 
models are given in Appendices C and E, respectively. The format of the figures in both appendices is identical. Graphs 
depicting the collective behaviour along the profile Ox of all the results for each normalized field component (in the case of 
three-dimensional models possibly along Oy as well) are placed in the upper part of the figures. The central continuous line 
goes through the mean values of the field at the points of calculation. Two continuous lines which lie above and below the 
central line, indicate the limits of the band of width 26, 6 being the standard deviation, obtained after rejecting outliers at 
each point of comparison. The broken lines are drawn through the maximum and minimum values at each point. The 
horizontal scale gives the coordinates of the points of comparison in kilometres. 

A detailed comparison of the results of the various participants at selected points along the profile is displayed in the 
lower part of each figure. In Fig. 6, for example, the lower diagram is divided into seven columns in each of which the 
results at one of seven different points on the profile are compared. The coordinate (in kilometres) of the point on the profile 
is indicated at the foot of each column, and the magnitude of the field component is measured on the left-hand vertical scale 
of the column. The horizontal dashed line marks the mean value of the field at the given point, and the two continuous lines 
indicate the band of width 26 obtained after rejecting outliers. The results of the various participants at the given point is 
indicated by Roman letters defined according to Table 2.3. 

The model name, the type of polarization, the field component name, the depth z, and the period T for which the results 
are presented, are indicated in the caption for each figure. 



M.S. Zhdanov et a l . /  Journal of Applied Geophysics 37 (1997) 133-271 

Appendix B. Results for two-dimensional models 

187 

Table B.1. Model 2D-0 (EP, T = 300, z = 0) 

Par t ic ipant /x  = - 25.0 - 15.0 - 10.0 - 7 . 0  0.0 7.0 10.0 15.0 30.0 50.0 

Re Ey 
1 Canada 0.727 0.606 0.529 0.483 0.413 0.397 0.403 0.418 0.436 0.441 

3 Canada 0.726 0.605 0.528 0.482 0.412 0.396 0.402 0.417 0.435 0.441 

8 Russia 0.728 0.606 0.528 0.482 0.411 0.396 0.402 0.417 0.439 0.440 

18 Germany 0.725 0.604 0.528 - -  0.411 - -  0.402 0.416 0.43 0.441 

22 Canada 0.731 0.608 0.528 0.479 0.408 0.394 0.402 0.419 0.437 0.441 

23 Canada 0.714 0.593 0.522 0.475 0.406 0.392 0.397 0.413 0.438 0.441 
25 Russia 0.722 0.602 0.528 0.483 0.415 0.395 0.399 0.412 - -  0.434 

26 Russia 0.734 0.608 0.532 0.486 0.413 0.397 0.402 0.417 - -  0.435 

Average (0) 0.726 0.604 0.528 0.481 0.411 0.395 0.401 0.416 0.437 0.439 

St. dev. (0) 0.006 0.005 0.003 0.004 0.003 0.002 0.002 0.002 0.001 0.003 

Average ( I )  0.726 0.606 0.529 0.481 0.411 0.395 0.402 0.416 0.437 0.439 

St. dev. (1) 0.006 0.002 0.001 0.004 0.003 0.002 0.001 0.002 0.001 0.003 

hn E v 

1 Canada - 0 . 1 0 6  - 0 . 0 5 6  0.006 0.043 0.065 0.050 0.034 0.012 0.000 0.000 

3 Canada - 0 . 1 0 3  - 0 . 0 5 3  0.009 0.046 0.068 0.053 0.037 0.015 0.003 0.002 

8 Russia - 0 . 1 0 4  - 0 . 0 5 5  0.008 0.044 0.066 0.051 0.035 0.013 0.001 0.002 

18 Germany - 0 . 0 9 6  - 0 . 0 4 4  0.024 - -  0.087 - -  0.054 0.028 0.014 0.013 

22 Canada - 0.107 - 0.059 0.006 0.045 0.063 0.048 0.032 0.010 - 0.001 0.000 

23 Canada - 0 . 0 9 7  - 0 . 0 4 8  0.010 0.046 0.068 0.055 0.040 0.019 0.007 0.011 

25 Russia - 0.089 - 0.045 0.009 0.046 0.065 0.052 0.041 0.016 - -  - 0.001 

26 Russia - 0.095 - 0.042 0.008 0.047 0.071 0.054 0.038 0.015 - -  0.003 

Average (0 )  - 0.100 - 0 . 0 5 0  0.010 0.045 0.069 0.052 0.039 0.016 0.004 0.004 

St. dev. (0) 0.006 0.006 0.006 0.001 0.008 0.002 0.007 0.006 0.006 0.005 

Average ( 1 ) - 0.100 - 0.050 0.008 0.045 0.067 0.052 0.037 0.014 0.004 0.004 

St. dev. (1) 0.006 0.006 0.002 0.001 0.003 0.002 0.003 0.003 0.006 0.005 

Re H x 
1 Canada 0.863 0.929 1.140 1.295 1.313 1.242 1.159 1.058 1.031 1.032 

3 Canada 0.863 0.926 1.132 1.298 1.314 1.244 1.156 1.058 1.031 1.032 

8 Russia 0.861 0.922 1.124 1.307 1.321 1.248 1.157 1.056 1.031 1.032 
18 Germany 0.859 0.918 1.144 - -  1.324 - -  1.163 1.055 1.031 1.033 

22 Canada 0.860 0.914 1.135 1.321 1.316 1.247 1.151 1.052 1.031 1.032 

23 Canada 0.860 0.926 1.070 1.300 1.310 1.250 1.170 1.070 1.040 1.030 

25 Russia 0.890 0.956 1.061 1.274 1.269 1.218 1.115 1.073 - -  1.021 

26 Russia 0.895 0.977 0.977 1.216 1.284 1.247 1.114 1.114 - -  1.026 

Average (0) 0.869 0.933 1.098 1.287 1.306 1.242 1.148 1.067 1.032 1.030 

St. dev. (0) 0.015 0.022 0.058 0.034 0.019 0.011 0.021 0.020 0.004 0.004 

Average (1) 0.869 0.927 1.115 1.299 1.306 1.246 1.148 1.060 1.031 1.031 

St. dev. (1) 0.015 0.014 0.035 0.015 0.019 0.003 0.021 0.008 0.000 0.002 

lm H x 

1 Canada 0.016 0.073 0.031 0.008 0.092 0.095 0.099 0.093 0.050 0.027 

3 Canada 0.018 0.075 0.034 0.004 0.091 0.093 0.100 0.093 0.051 0.026 

8 Russia 0.017 0.076 0.046 0.004 0.094 0.096 0.103 0.094 0.040 0.028 

18 Germany 0.021 0.085 0.020 - -  0.077 - -  0.091 0.094 0.049 0.024 

22 Canada 0.013 0.072 0.029 0.003 0.099 0.095 0.099 0.089 0.038 0.026 

23 Canada 0.017 0.079 0.088 0.014 0.100 0.100 0.101 0.103 0.053 0.045 

25 Russia 0.028 0.078 0.059 0.033 0.076 0.096 0.092 0.093 - -  0.019 

26 Russia 0.009 0.057 0.057 0.030 0.083 0.095 0.088 0.088 - -  0.019 

Average (0) 0.017 0.074 0.046 0.014 0.089 0.096 0.097 0.093 0.047 0.027 

St. dev. (0) 0.006 0.008 0.022 0.013 0.009 0.002 0.005 0.005 0.006 0.008 
Average (1) 0.017 0.077 0.046 0.014 0.089 0.095 0.097 0.092 0.047 0.024 
St. dev. (1) 0.006 0.004 0.022 0.013 0.009 0.001 0.005 0.002 0.006 0.004 
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T a b l e  B . I  ( c o n t i n u e d )  

P a r t i c i p a n t / x  = - 2 5 . 0  - 15.0  10 .0  - 7 .0  0 .0  7 .0  10.0  15.0  3 0 . 0  5 0 . 0  

Re H_ 
I C a n a d a  - 0 . 1 7 5  - 0 . 3 3 5  - 0 . 4 9 2  - I ) . 3 2 1  0 . 0 7 9  0 . 0 7 3  0 . 1 5 0  I).1178 0 . 0 0 8  0 . 0 0 2  

3 C a n a d a  0 . 1 8 0  - 0 . 3 4 0  - 0 . 4 8 3  - 0 . 3 2 5  0 .081  0 . 0 7 5  0 . 1 4 5  0 . 0 8 0  0.1109 0 . 0 0 0  

8 Russ i a  - 0 . 1 7 0  - 0 . 3 3 5  - 0 . 4 7 6  - 0 . 3 2 2  - 0 . 0 7 9  0 . 0 7 4  0 . 1 4 2  0 . 0 7 8  0 . 0 0 6  - 0.0112 

18 G e r m a n y  - 0 . 1 6 7  - 0 . 3 3 2  - 0 . 4 5 9  - -  - 0 . 0 6 9  0 . 1 5 0  0 .091  0 . 0 2 6  0 . 0 0 9  

22 C a n a d a  - ( I . 1 7 8  - 0 . 3 4 3  - 0 . 5 1 9  - 0 . 3 2 8  - 0 . 0 7 4  0 . 0 7 8  0 . 1 5 9  0 . 0 7 8  0 . 0 1 4  - 0 . 0 0 1  

23  C a n a d a  - 0 . 1 3 7  - 0 . 2 8 4  - 0 . 3 8 1  - 0 . 2 7 3  - 0 . 0 6 0  0 . 0 7 0  0 . 1 1 6  0 . 0 6 9  0 . 0 0 6  - 0 .001  

25  R u s s i a  - 0 . 1 8 7  - 0 . 3 1 6  - 0 . 3 9 6  0 . 2 8 5  0 . 0 8 5  0 . 0 4 3  0 . 1 3 2  0 . 0 8 6  0 . 0 1 0  

26  R u s s i a  - 0 . 1 4 0  - 0 . 3 6 4  - 0 . 3 6 4  11.299 - 0 . 0 4 9  0 . 0 6 0  0 . 1 0 9  I) .109 0 . 0 1 2  

A v e r a g e ( ( ) )  - 0 . 1 6 7  - 0 . 3 3 1  - 0 . 4 4 6  0 . 3 0 8  0 . 0 7 2  0 . 0 6 8  0 . 1 3 8  0 . 0 8 4  I1.1112 0 . 0 0 2  

St. dev .  (0 )  0 . 0 1 8  0 . 0 2 3  0 . 0 5 8  0 . 0 2 2  0 . 0 1 2  0 . 0 1 2  0 . 0 1 8  0 . 0 1 2  0 . 0 0 8  0 . 0 0 6  

A v e r a g e ( I )  - 0 . 1 6 7  0 . 3 3 8  - 0 . 4 4 6  - 0 . 3 0 8  - 0 . 0 7 2  11.1172 0 . 1 3 8  0 . 0 8 0  1/.1/12 0 . 0 0 2  

St. dev .  ( 1 ) 0 . 0 1 8  0 . 0 1 4  0 . 0 5 8  0 . 0 2 2  0 . 0 1 2  0 . 0 0 6  0 . 0 1 8  0 . 0 0 7  0 . 0 0 8  0.1106 

l m  H_ 

I C a n a d a  - 1 1 . 1 1 7  0 . 0 8 8  - 0 . 0 1 5  - 0 . 0 9 1  - 0 . 0 9 2  - 0 . 0 4 1  - 0 . 0 5 6  I).0111) 0.1/08 11.0112 

3 C a n a d a  - 0. I 14 - 0 . 0 8 3  - 0 . 0 1 0  0 . 0 8 7  0 . 0 9 2  11.1143 - 11.1156 0 . 0 0 2  0 . 0 0 8  - 0 . 0 0 4  

8 Russ i a  - 0 .121  - 0 . 0 9 0  - 0 . 0 0 4  0 . 0 9 4  0 . 0 9 3  0 . 0 4 0  - 0 . 0 4 9  0 . 0 0 2  0 . 0 0 8  - / ) .1103  

18 G e r m a n y  - 0 . 1 0 2  - 0 . 0 6 6  0 . 0 0 8  0 . 0 8 0  - -  - 0 . 0 3 9  0 . 0 0 9  0 .021  0.1)11 

22 C a n a d a  - 0 . 1 1 7  - 0 . 0 9 0  0 . 0 1 2  0 . 1 0 0  0 . 0 9 2  - 0 . 0 3 4  - 0 . 0 5 2  0 . 0 0 3  0 . 0 0 8  - 11.002 

23 C a n a d a  - 0 . 1 1 6  0 .101  0 . 0 6 7  0 . 1 0 4  0 . 0 8 5  - 0 . 0 2 6  - 0 . 0 2 0  0 .011  0.01 [ 0 . 0 0 0  

25 R u s s i a  - 0 . 1 2 0  - 0 . 0 9 2  0 . 0 5 3  0 .101  - 0 . 1 0 4  - 0 . 0 4 6  - 0 . 0 4 4  - 0 . 0 1 3  0 . 0 0 2  

26  Russ i a  - 0 . 1 2 1  - 0 . 0 8 1  - 0 . 0 8 2  0 . 0 9 6  - 0 . 0 8 8  0 .051  0 .021  - 0 . 0 2 1  - -  0 . 0 0 3  

A v e r a g e ( 0 )  - 0 . 1 1 6  0 . 0 8 6  - - 0 . 0 2 6  0 . 0 9 6  - 0 . 0 9 1  - 0 . 0 4 0  - 0 . 0 4 2  - 0 . 0 0 1  0 .011  0.1101 

St. dev .  (0 )  0 . 0 0 6  0 . 0 1 0  0 . 0 3 6  0 . 0 0 6  0 . 0 0 7  0 . 0 0 8  0 . 0 1 5  0 .011  I).0115 I)./1115 

A v e r a g e  ( I )  - 0 . 1 1 8  - 0 . 0 8 6  - 0 . 0 2 6  - 0 . 0 9 6  - 1 1 . 0 9 1  - 0 . 0 4 0  0 . 0 4 2  0 .001  0 .011  t)./101 

St. dev .  ( 1 ) 0 . 0 0 3  0 . 0 1 0  0 . 0 3 6  0 . 0 0 6  0 . 0 0 7  0 . 0 0 8  0 . 0 1 5  0 .01 I 0 . 0 0 5  0 . 0 0 3  

T a b l e  B.2 .  M o d e l  2 D - 0  ( H P ,  T = 3 0 0 ,  z = 0)  

P a r t i c i p a n t / x  = - 2 5 . 0  - 15.0  - 10 .0  - 7 .0  0 .0  7 .0  10.0  15.0  311.0 5/).1/ 

Re  E~ 
I C a n a d a  1 .006  1 .076  1 . 2 3 0  0 . 2 3 5  0 . 3 0 1  0 . 2 8 8  0 . 2 4 7  0 . 4 4 3  0 . 4 2 4  0 . 4 2 6  

3 C a n a d a  1 .003  1.071 1 .218  0 . 2 3 9  0 .301  0 . 2 8 9  0 . 2 4 6  0 . 4 4 2  0 . 4 2 6  0 . 4 2 6  

8 R u s s i a  1 .007  1 .076  1 .222  0 . 2 3 8  0 . 3 0 2  0.2911 0 .251  I) .443 0 . 4 2 6  0 . 4 2 7  

17 U S A  1.005 1 . 0 7 6  1 . 2 3 0  0 . 2 3 5  0 . 3 0 0  0 . 2 8 7  0 . 2 4 7  0 . 4 4 3  0 . 4 2 4  0 . 4 2 6  

18 G e r m a n y  1 .007  1 .070  0 . 3 0 3  - -  - -  0 . 4 3 9  0 . 4 2 6  0 . 4 2 6  

2 0  R u s s i a  1 . 0 1 0  1 . 0 8 0  1 . 2 3 0  11.237 0 .301  0 . 2 8 8  I ) .249 0 . 4 4 2  0 . 4 2 7  0 . 4 2 6  

22  C a n a d a  1 .004  1 .066  1 .220  0 . 2 5 4  0 . 3 0 6  0 . 2 9 4  0 . 2 4 5  0 . 4 3 8  0 A 2 6  I) .426 

23  C a n a d a  0 . 9 4 0  1.021 I. 105 0 . 2 3 6  0 . 2 9 9  0 . 2 9 1  0 . 2 5 4  0 . 4 4 3  11.426 0 . 4 2 6  

25 R u s s i a  1.001 1 .052  1 . 1 6 6  0 . 2 1 6  0 .281  0 . 2 6 9  0 . 4 2 3  0 . 4 0 8  

2 6  R u s s i a  1 .008  1 .085  1 . 1 6 4  0 . 2 4 4  0 . 3 0 3  0 . 2 9 1  0 . 4 4 2  0 . 4 2 6  

A v e r a g e  (0)  11.999 1 .067  1 .198  0 . 2 3 7  0 . 3 0 0  0 . 2 8 7  0 . 2 4 8  0 . 4 4 0  ( I .426 / ) .424 

St, dev .  (0)  0 .021  0 . 0 1 9  0 . 0 4 4  0 . 0 1 0  0 . 0 0 7  0 . 0 0 7  0 . 0 0 3  0 . 0 0 6  0 .001  0 . 0 0 6  

A v e r a g e  ( 1 ) 1 .006  1 .072  1 .210  0 . 2 4 0  0 . 3 0 2  0 . 2 9 0  0 . 2 4 8  0 . 4 4 2  0 . 4 2 6  0 . 4 2 6  

St. dev .  ( 1 ) 0 . 0 0 3  0 . 0 0 9  0 . 0 2 8  11.1106 I).1102 0.0(12 0.0113 0.1102 0 .001  0 . 0 0 0  

lm  E ,  

1 C a n a d a  0 . 0 3 3  0 . 0 4 7  - 0 . 0 0 9  - 0 . 0 4 8  - 0 . 0 3 3  - 0 . 0 2 5  - 0 . 0 0 7  0 . 0 0 2  0 . 0 0 9  0 .011  

3 C a n a d a  0 . 0 2 9  0 . 0 4 6  - 0 . 0 0 7  - l l . 052  - 0 . 0 3 6  - 0 . 0 2 8  - 0 . 0 0 8  0 .001  0 .011  0 . 0 1 4  

8 Russ i a  0 .031  0 , 0 4 7  - 0 . 0 0 5  - 0 . 0 4 9  - 0 . 0 3 4  - 0 . 0 2 6  - 0 . 0 1 1  0 .001  - 0 . 0 1 0  - 0 . 0 1 2  

17 U S A  0 .031  0 . 0 4 7  0 . 0 0 9  0 . 0 4 8  0 . 0 2 9  0 . 0 2 0  0 . 0 0 5  0 . 0 0 6  0 . 0 0 7  0 . 0 0 7  

18 G e r m a n y  0 . 0 3 2  0 . 0 5 0  - -  - -  - 0 . 0 5 6  - -  - -  - 0 . 0 1 3  - 0 . 0 2 2  0 . 0 2 4  

20  R u s s i a  0 . 0 2 8  0 . 0 4 6  0 . 0 0 7  0 . 0 4 8  0 . 0 3 3  0 . 0 2 5  0 . 0 0 7  0 .001  0 . 0 0 8  - 0 .01 I 

2 2  C a n a d a  0 . 0 3 0  0 . 0 5 0  0 . 0 0 4  0 . 0 5 2  0 . 0 2 9  0 . 0 2 4  0./106 0 . 0 0 2  - 0 . 0 0 8  - 0.01 I 

23  C a n a d a  0 . 0 0 5  0 . 0 0 4  0 . 0 0 4  - 0 . 0 5 3  - 0 . 0 3 4  - 0 . 0 2 7  - 0 . 0 1 3  0 . 0 0 2  0 . 0 0 7  0 .011  

25  R u s s i a  0 . 0 7 0  0 . 1 0 9  0 . 0 7 9  0 . 0 0 7  0 . 0 2 0  0 . 0 3 3  - -  0 . 0 5 9  0 . 0 3 4  

2 6  Russ i a  0 .031  0 . 0 4 0  0 . 0 3 2  0 . 0 5 4  l l . 036  0 . 0 2 8  0 . 0 0 0  0 .01 I 

A v e r a g e  (0 )  0 .031  0 . 0 4 9  0 . 0 0 8  - 0 . 0 4 4  - 0 . 0 3 0  - 0 . 0 1 9  - 0 . 0 0 8  I) .006 - 0 . 0 1 0  - 0 . 0 0 8  

St. dev .  (I)) 0 . 0 1 8  0 . 0 2 5  0 . 0 3 0  0 . 0 1 9  0 . 0 1 9  0 . 0 2 0  0 . 0 0 3  0 . 0 1 9  0 . 0 0 5  0 . 0 1 5  

A v e r a g e ( l )  0 .031  0 . 0 4 2  0 .001  0 .051  I ) .036 0.1125 0 , 0 0 8  0 . 0 0 0  - 0 . 0 0 9  - 0 . 0 1 2  

St. dev .  ( 1 ) 0 . 0 0 2  0 . 0 1 5  0 . 0 1 4  0 . 0 0 3  0 . 0 0 8  0 . 0 0 3  0 . 0 0 3  0 . 0 0 5  0 . 0 0 2  /).0/)5 
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Par t ic ipant /x  = - 25.0 - 15.0 - 7.0 7.0 10.0 15.0 30.0 

p ,  (EP) 

1 Canada 8.00 4.70 

3 Canada 7.90 4.70 

8 Russia 8,00 4,70 
18 Germany 8,00 4.70 

22 Canada 8.10 4.88 

23 Canada 7.60 4.50 

25 Russia 7.33 4.35 

26 Russia 7.50 4.26 

Average (0) 7.80 4.60 
St. dev, (0) 0,29 0.21 

Average ( I )  7.80 4.60 

St. dev. (1) 0.29 0.21 

p,, (HP) 

20 Russia 11.50 12.75 

22 Canada 11.08 12.52 

25 Russia 11.05 12.30 

26 Russia l 1.20 13.00 

Average (0) I 1.21 12.64 

St, dev, (0) 0,21 0.30 

Average ( I )  11.21 12.64 

St. dev. (1) 0.21 0.30 

1.50 1.10 1.30 1.70 2.00 

1 , 5 0  1.10 1 .30  1 .70  1 . 9 0  

1 . 5 0  1 . 1 0  1 . 3 0  1 . 7 0  2 . 0 0  

1 . 6 0  1 .10  1 . 3 0  1 . 7 0  1 .90  

1 .45  1.11 1 . 3 4  1 .73  1 .97  

1 . 5 0  1 . 1 0  1 . 3 0  1 . 6 0  1 . 9 0  

1 ,59  1.17 1.41 1,61 - -  

1.77 1.13 1.43 1,53 - -  

1,55 1.11 1.34 1,66 1.94 

0.10 0.03 0.05 0,07 0.05 

1,52 1.11 1.34 1.66 1.94 

0,05 0.01 0,05 0.07 0.05 

17,00 1.01 0.68 2.15 2.03 

16,35 1.04 0.66 2.11 1.99 

1 5 . 0 0  0 . 8 7  - -  2 . 0 1  - -  

- -  1 .02  - -  2 . 1 5  - -  

16.12 0,98 0.67 2,11 2.01 

1.02 0.08 0.01 0.07 0.03 

16.12 0,98 0,67 2.11 2,01 

1.02 0.08 0,01 0.07 0,03 

Table B.4. Model 2D-0 (EP, T = 300, z = 15.0) 

Par t ic ipant /x  = - 2 5 . 0  - 15,0 - 10.0 - 7 . 0  0.0 7.0 t0.0 15.0 30.0 50.0 

Re E v 
1 Canada 0.337 0.204 0.106 0.049 - 0 . 0 1 6  - 0 . 0 1 7  - 0 . 0 0 4  0.019 0.041 0.046 

3 Canada 0.335 0.203 0.105 0.048 - 0 . 0 1 7  - 0 . 0 1 8  - 0 . 0 0 5  0.018 0.040 0.045 

8 Russia 0.337 0.204 0.106 0.049 - 0 . 0 1 7  - 0 . 0 1 8  - 0 . 0 0 5  0.018 0.044 0.045 

18 Germany 0.333 0.200 0.103 - -  - 0 . 0 1 7  - -  - 0 . 0 0 5  0.016 0.039 0.043 

22 Canada 0.337 0.203 0.107 0.052 - 0 . 0 1 1  - 0 . 0 1 4  - 0 . 0 0 2  0.019 0.041 0.046 

23 Canada 0.338 0.205 0.106 0.049 - 0 . 0 1 8  - 0 . 0 t 9  - 0 . 0 0 6  0.018 0.043 0.044 

25 Russia 0.329 0.203 0.104 0.052 - 0 . 0 1 9  - 0 . 0 1 5  - 0 . 0 0 4  0.019 - -  0.048 

26 Russia 0.338 0.202 0.107 0.050 - 0 . 0 1 7  - 0 . 0 1 7  - 0 . 0 0 4  0.020 - -  0.047 

Average (0 )  0.335 0.203 0.105 0.050 - 0 . 0 1 7  - 0 . 0 1 7  - 0 . 0 0 4  0.018 0.041 0.045 

St. dev. (0) 0.003 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.002 

A v e r a g e ( l )  0.336 0.203 0.105 0.050 - 0 . 0 1 7  - 0 . 0 1 7  - 0 . 0 0 4  0.018 0.041 0.045 

St. dev. (1) 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.002 

lm E~, 

1 Canada 0.130 0.131 0.143 0.144 0.119 0.102 0.101 0.103 0.112 0.122 

3 C a n a d a  0.131 0.132 0.144 0.144 0.118 0.102 0.101 0.103 0.112 0.121 

8 R u s s i a  0.131 0.132 0.144 0.144 0.119 0.102 0.101 0.103 0.116 0.122 

18Germany  0.133 0.133 0.144 - -  0.116 - -  0.099 0.102 0.113 0.121 

22Canada  0.132 0.134 0.144 0.143 0.117 0.102 0.102 0,105 0.115 0.122 

23 Canada 0.132 0.134 0.145 0.146 0.120 0.104 0.103 0,106 0.120 0.127 

25 Russia 0.135 0.134 0,147 0.145 0.122 0,104 0.102 0.104 - -  0.121 
26 Russia 0.137 0.134 0,149 0.149 0.122 0.105 0.104 0.104 - -  0.121 

Average (0 )  0.133 0.133 0,145 0.145 0.119 0.103 0.102 0,104 0.115 0.122 

St. dev. (0) 0.002 0.001 0,002 0.002 0,002 0.001 0.002 0,001 0.003 0.002 

A v e r a g e ( l )  0.133 0.133 0,145 0.145 0.119 0,103 0.102 0.104 0.115 0.121 

St. dev. (1) 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.00t 0.003 0,001 
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Table B.5. Model 2D-0 (HP, T = 300, z = 15.0) 

Par t ic ipant /x  = - 2 5 . 0  - 15.0 - 10.0 - 7 . 0  0.0 7.0 10.0 15.0 30.0 50.0 

Re E~ 
1 Canada 0.514 0.500 0.475 0.029 0.007 0.007 0.013 0.038 0.045 0.046 

3 Canada 0. 513 0. 5110 0.476 0.030 0.009 0.008 0.015 0.039 0.047 0.048 

8 Russia 0.509 0.488 0.459 0.050 0.013 0.010 0.015 0.033 0.044 0.045 
17 USA 0.515 0.501 0.478 0.030 0.007 0.008 0.014 0.1139 0,047 0.048 

18 Germany 0.515 0.503 - -  - -  1/.012 - -  0.044 0,049 1/.051 

22 Canada 0.515 0.496 0.482 0.042 0.011 0.010 0.014 0.036 0,044 0,046 

25 Russia 0.470 0.557 0.472 0.022 0.002 0.007 - -  0.045 0.053 

26 Russia 0.530 0.520 0.493 0.047 0.016 0.015 0.044 0.055 

Average (0) 0.510 0.508 0.476 0.036 0.010 0.009 0.014 0.040 /),046 0.049 

St. dev. (0) 0.017 0.022 0.010 0.011 0.004 0.003 0.001 /).01/4 0,002 0.004 

Average (1) 0.516 0.501 0.476 0.036 0.010 0.008 0.014 0.040 0,046 0.049 

St. dev. (1) 0.007 0.010 0.010 0.011 0.004 0.001 0.001 0.004 0.002 0.004 

Im E~ 

1 Canada 0.306 0.331 0.354 0.048 0.059 0.060 0.060 0.119 0,117 0.117 

3 Canada 307 0.331 0.353 0.048 0.058 0.060 1/.060 0.118 0.116 0.117 

8 Russia 0.301 0.327 0.352 0.051 0.066 0.067 0.065 0.124 0.122 /).122 

17 USA 0.306 0.330 0.355 0.048 0.058 0.061 0.060 0.118 0. 117 0.117 

18 Germany 0. 306 0. 330 - -  0.057 - -  - -  0.114 11.113 0.113 

22 Canada 0.306 0.331 0.349 0.048 0.060 0.061 0.059 O. 117 0.117 0.117 

25 Russia 0.319 0.324 0.355 0.055 0.056 0.063 - -  0.124 0. 119 

26 Russia 0.304 0.322 0.353 0.054 0.070 0.070 - -  0.123 - -  0.121 

Average (0) 0.307 0.328 0.353 0~050 0.060 0.063 0.061 0.120 0.117 0. I 18 

St. dev. (0) 0.005 0.004 0.002 0.003 0.005 0.004 0.002 0.004 0.003 0.003 
Average (1) 0.305 0.328 0.353 0.050 0.060 0.063 /).061 0.120 0.117 0.118 

St. dev. (1) 0.002 0.004 0.002 0.003 0.005 0.004 0.002 0.004 0.003 0.003 

Table B.6. Model 2D-1 (EP, T = 0.1, z - 0) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Re E v 
2 Canada 0.399 0.482 0.660 t/.870 0.986 0.997 l .I100 

3 Canada 0.401 0.485 0.664 0.872 0.988 1.000 1.000 

6 Poland 0.400 0.484 0.679 0.914 1.000 1.000 1.000 

8 Russia 0.384 0.471 0.654 0.868 0.985 0.997 0.998 

8.1 Russia 0.385 0.472 0.656 0.870 0.987 1.000 1.000 

9 Russia 0.401 0.493 0.672 0.880 0.995 1.000 1.000 

l0  Uzbekistan 0.440 0.520 0.680 0.880 0.990 0.996 (I.997 

l 1 Russia 0.386 0.473 0.655 0.869 0.987 0.999 1.000 

12 Czech 0.393 0.477 0.659 0.871 0.987 0.998 0.998 
13 Gemaany 0.397 0.480 I).659 0.870 0.985 0.997 0.998 

14 Russia 0.354 0.446 0.638 0,852 0.975 0.998 1.000 

15 Russia 0.390 0.477 0.654 0.866 0.995 1.000 1.000 

14.1 Russia 0.399 0.479 0.657 0.869 0.987 1.000 1.000 

15.1 Russia 0.401 0.487 0.667 0.877 0.990 1.000 1.000 

17 US A 0.405 0.488 0.665 0.875 0.990 1.000 1.000 

18 Germany 0.345 0.440 0.637 0.856 - -  - -  - -  

19 Germany 0.422 0.502 0.675 0.881 0.993 - -  

24 Russia 0.449 0.524 0.690 0.893 1.000 1.004 1.001 

25 Russia 0.389 0.468 0.636 0.849 0.979 0.994 1.000 
26 Russia 0.374 0.460 0.587 0.820 0.999 0.998 1.001 

27 Russia 0.399 0.479 0.657 0.869 0.987 1.000 1.000 
27.1 Russia 0,399 0.479 0.657 0.869 0.987 1.000 1.000 

27.2 Russia 0.399 0.479 0.657 0.869 0.987 1.000 1.000 
Average (0) 0.396 0.480 0.657 0.870 0.989 0.999 1.000 

St. dev. (0) 0.022 0.019 0./)20 0.017 0.006 0.002 0.001 

Average (11 0.396 0.478 0.660 0.870 0.990 0.999 1.000 
St. dev. (11 0.017 0.012 I).014 0.010 0.005 0.001 0.001 
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T a b l e  B . 6  ( c o n t i n u e d )  

P a r t i c i p a n t / x  = 0 .0  0 .5  1.0 2 .0  4 .0  8 .0  16 .0  

I m  Ey  

2 C a n a d a  - 0 . 1 1 5  - 0 , 1 2 9  - 0 . 1 6 9  - 0 . 1 4 8  - 0 . 0 6 0  - 0 . 0 1 1  0 . 0 0 0  

3 C a n a d a  - 0 . 1 1 6  - 0 , 1 3 1  - 0 . 1 7 2  - 0 . 1 5 1  - 0 . 0 6 4  - 0 , 0 1 3  - 0 . 0 0 4  

6 P o l a n d  - 0 . 1 1 2  - 0 . 1 2 7  - 0 . 1 6 9  - 0 . 1 3 1  - 0 . 0 2 8  - 0 . 0 0 6  - 0 . 0 0 1  

8 R u s s i a  - 0 . 0 9 8  - 0 , 1 1 5  - 0 . 1 6 3  - 0 . 1 4 7  - 0 . 0 6 0  - 0 . 0 1 0  - 0 . 0 0 1  

8.1 R u  s s i a  - 0 , 0 9 9  - 0 . 1 1 6  - 0 . 1 6 5  - 0 . 1 4 9  - 0 . 0 6 3  - 0 . 0 1 3  - 0 . 0 0 3  

9 R u s s i a  - 0 . 1 1 6  - 0 . 1 5 0  - 0 . 1 8 3  - 0 . 1 5 4  - 0 . 0 6 2  - 0 . 0 1 0  - 0 . 0 0 4  

10 U z b e k i s t a n  - 0 . 1 2 0  - 0 . 1 2 0  - 0 , 1 5 0  - 0 . 1 3 0  - 0 . 0 4 0  0 . 0 0 0  0 . 0 0 9  

11 R u s s i a  - 0 . 0 9 8  - 0 . 1 1 6  - 0 . 1 6 3  - 0 . 1 4 9  - 0 . 0 6 3  - 0 . 0 1 3  - 0 . 0 0 3  

12 C z e c h  - 0 , 1 0 3  - 0 . 1 1 9  - 0 . 1 6 4  - 0 . 1 4 7  - 0 . 0 6 0  - 0 . 0 1 0  - 0 . 0 0 1  

13 G e r m a n y  - 0 . 1 0 1  - 0 . 1 1 3  - 0 . 1 5 4  - 0 . 1 3 7  - 0 . 0 5 4  - 0 . 0 0 8  - 0 . 0 0 1  

14 R u s s i a  - 0 . 0 9 5  - 0 . 1 0 4  - 0 , 1 5 5  - 0 . 1 4 5  - 0 . 0 6 5  - 0 . 0 1 2  0 . 0 1 0  

15 R u s s i a  - 0 , 1 1 5  - 0 . 1 3 0  - 0 . 1 6 8  - 0 . 1 4 4  - 0 . 0 5 1  0 . 0 0 0  0 . 0 0 0  

14.1 R u s s i a  - 0 . 1 1 2  - 0 . 1 2 3  - 0 . 1 6 6  - 0 , 1 4 9  - 0 . 0 6 3  - 0 . 0 1 2  - 0 . 0 0 2  

15.1 R u s s i a  - 0 , 1 1 6  - 0 . 1 2 9  - 0 , 1 6 9  - 0 . 1 4 9  - 0 . 0 6 1  - 0 . 0 1 2  - 0 . 0 0 3  

17 U S A  - 0 . 1 1 7  - 0 . 1 3 1  - 0 . 1 7 0  - 0 , 1 5 1  - 0 . 0 6 2  - 0 . 0 1 2  - 0 . 0 0 4  

18 G e r m a n y  - 0 , 0 9 6  - 0 . 1 0 6  - 0 , 1 5 7  - 0 . 1 4 0  - -  - -  - -  

19 G e r m a n y  - 0.  152 - 0 . 1 6 0  - 0 . 1 8 5  - 0 . 1 5 6  - 0 . 0 6 3  - -  - -  

2 4  R u s s i a  - 0 . 1 7 3  - 0 . 1 7 7  - 0 . 1 9 3  - 0 . 1 5 7  - 0 . 0 6 2  - 0 . 0 1 0  - 0 . 0 0 1  

25  R u s s i a  - 0 . 0 9 5  - 0 . 1 1 0  - 0 . 1 4 5  - 0 . 1 4 1  - 0 . 0 5 9  - 0 . 0 0 0  0 . 0 0 0  

26  R u s s i a  - 0 . 0 8 8  - 0 . 1 0 3  - 0 . 1 2 0  - 0 . 1 4 3  - 0 . 0 6 6  - 0 . 0 0 6  0 . 0 0 1  

27 R u s s i a  - 0 . 1 1 2  - 0 . 1 2 4  - 0 . 1 6 6  - 0 . 1 4 9  - 0 . 0 6 3  - 0 . 0 1 3  - 0 . 0 0 3  

27.1 R u s s i a  - 0 . 1 1 3  - 0 . 1 2 4  - 0 , 1 6 6  - 0 . 1 5 0  - 0 . 0 6 3  - 0 . 0 1 3  - 0 . 0 0 3  

2 7 . 2  R u s s i a  - 0 , 1 1 3  - 0 . 1 2 4  - 0 . 1 6 6  - 0 . 1 4 9  - 0 , 0 6 3  - 0 . 0 1 3  - 0 . 0 0 3  

A v e r a g e  ( 0 )  - 0 . 1 1 2  - 0 , 1 2 5  - 0 , 1 6 4  - 0 . 1 4 6  - 0 . 0 5 9  - 0 . 0 1 0  - 0 . 0 0 1  

St ,  d e v .  ( 0 )  0 . 0 1 9  0. 0 1 7  0 . 0 1 4  0 . 0 0 7  0 . 0 0 9  0 . 0 0 4  0 . 0 0 4  

A v e r a g e  ( 1 )  - 0 . 1 0 7  - 0 . 1 2 3  - 0 . 1 6 6  - 0 . 1 4 8  - 0 . 0 6 1  - 0 . 0 1 1  - 0 . 0 0 2  

St.  d e v .  ( 1 )  0 . 0 1 0  0 . 0 1 4  0 . 0 1 1  0 . 0 0 5  0 . 0 0 4  0 . 0 0 3  0 , 0 0 2  

R e  H x 
2 C a n a d a  1 , 4 1 9  1 . 3 0 8  0 . 9 5 7  0 , 9 0 4  0 , 9 7 1  0 . 9 9 7  1 . 0 0 0  

3 C a n a d a  1 . 4 2 2  1 . 3 1 0  0 . 9 5 0  0 . 9 0 4  0 . 9 7 0  0 , 9 9 9  1 . 0 0 0  

6 P o l a n d  1 . 4 2 2  1 .311  0 . 9 4 4  0 . 9 1 1  0 . 9 8 5  0 , 9 9 2  0 . 9 9 2  

8 U z b e k i s t a n  1 . 4 7 0  1 , 3 7 0  0 . 9 2 8  0 . 8 9 4  0 . 9 6 8  0 . 9 9 7  0 . 9 9 9  

8,1 R u s s i a  1 . 4 7 0  1 . 3 7 0  0 . 9 3 0  0 , 8 9 5  0 , 9 7 0  0 . 9 9 9  1 , 0 0 0  

8 .2  R u s s i a  1 . 5 1 0  1 . 3 7 0  0 . 9 5 6  0 . 9 0 7  0 . 9 7 2  0 . 9 9 9  1 . 0 0 0  

9 R u s s i a  1 .483  1 . 2 5 6  0 . 9 5 2  9 0 7  0 . 9 7 8  1 . 0 0 0  1 . 0 0 0  

10 R u s s i a  1 . 3 8 0  1 . 2 8 0  0 . 9 6 0  0 , 9 0 0  0 , 9 6 0  0 . 9 8 0  0 , 9 8 0  

11 R u s s i a  1 . 4 4 0  1 . 3 3 0  0 . 9 5 1  0 . 9 0 2  0 , 9 7 0  0 . 9 9 8  1 . 0 0 0  

12 C z e c h  1 . 4 3 0  1 . 3 2 0  0 . 9 5 3  0 . 8 9 9  0 , 9 6 5  0 . 9 9 1  0 . 9 9 2  

13 G e r m a n y  1 . 4 2 4  1 . 3 2 2  0 . 9 6 1  0 . 9 0 5  0 . 9 7 1  0 . 9 9 9  1 . 0 0 0  

17 U S A  1 . 4 3 0  1 . 3 1 0  0 . 9 5 7  0 . 9 0 3  0 . 9 7 2  0 . 9 9 9  1 . 0 0 0  

18 G e r m a n y  1 .443  1 . 3 5 6  0 . 9 4 4  0 . 8 9 7  - -  - -  - -  

19 G e r m a n y  1 .373  1 . 2 7 7  0 . 9 6 6  0 . 9 0 9  0 . 9 7 4  - -  - -  

2 4  R u s s i a  1 . 3 4 7  1 . 2 6 6  0 . 9 7 7  0 . 9 1 9  0 . 9 8 0  1 . 0 0 3  1 .001  

25  R u s s i a  1 . 4 0 6  1 . 1 4 9  0 . 9 8 6  0 . 9 2 7  0 . 9 6 7  1 . 0 0 0  1 . 0 0 0  

2 6  R u s s i a  1 . 3 3 0  1 . 0 7 7  1 . 0 7 7  0 . 9 8 3  0 . 9 6 0  1 . 0 0 0  1 . 0 0 0  

27  R u s s i a  1 . 4 4 0  1 . 3 5 0  0 . 9 6 3  0 . 9 0 5  0 . 9 7 1  0 . 9 9 9  1 . 0 0 0  

27 .1  R u s s i a  1 . 4 4 0  1 . 3 5 0  0 . 9 6 3  0 . 9 0 5  0 . 9 7 1  0 . 9 9 9  1 . 0 0 0  

2 7 . 2  R u s s i a  1 . 4 4 0  1 . 3 5 0  0 . 9 6 3  0 . 9 0 5  0 . 9 7 1  0 . 9 9 9  1 . 0 0 0  

A v e r a g e  ( 0 )  1 .426  1 . 3 0 2  0 . 9 6 2  0 . 9 0 9  0 . 9 7 1  0 . 9 9 7  0 . 9 9 8  

St.  d e v .  ( 0 )  0 . 0 4 4  0 . 0 7 4  0 . 0 3 0  0 . 0 1 9  0 . 0 0 6  0 . 0 0 5  0 . 0 0 5  

A v e r a g e  ( 1 ) 1.431 1 .323  0 . 9 5 6  0 . 9 0 5  0 . 9 7 0  0 . 9 9 8  0 . 9 9 9  

St.  d e v .  ( 1 )  0 . 0 3 8  0 . 0 3 6  0 . 0 1 4  0 . 0 0 8  0 . 0 0 5  0 . 0 0 3  0 . 0 0 3  
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T a b l e  B .6  ( c o n t i n u e d )  

P a r t i c i p a n t / x  - 0 .0  1).5 1.0 2 .0  4 . 0  8 .0  16 .0  

l m  H~ 

2 C a n a d a  0 . 3 7 1  0 . 2 6 2  0 . 1 0 7  0 .021  0 . 0 4 5  0 . 0 1 4  - 0 . 0 0 9  

3 C a n a d a  0 . 3 7 3  0 .2 6 1  0 . 1 0 4  0 . 0 2 5  0 . 0 4 4  0 . 0 1 4  - 0 . 0 0 5  

6 P o l a n d  0 . 3 7 9  0 . 2 7 0  0 . 1 0 5  0 . 0 2 8  0 . 0 1 9  0.1102 0 . 0 0 6  

8 U z b e k i s t a n  0 . 4 0 2  0 . 2 6 7  0 . 1 0 8  0 . 0 2 3  0 . 0 4 3  0 .011  - 0 . 001  

8. I R u s s i a  0 . 4 0 0  0 . 2 6 5  0 . 1 0 6  - 0 . 0 2 5  0 . 0 4 5  0 . 0 1 3  I).11113 

8 .2  R u s s i a  0 . 3 7 6  0 . 2 5 8  0. I 01 - 0 . 0 2 3  0 . 0 4 3  0 . 0 1 3  0 . 0 0 3  

9 R u s s i a  0 . 3 4 1  0 . 2 8 9  0 . 1 0 6  - 0 . 0 2 3  - 0 . 0 4 5  0 . 0 1 0  0 . 0 0 0  

10 R u s s i a  11.420 0 . 3 0 0  0 . 1 4 0  0 . 0 0 8  0 . 0 1 7  0 . 0 1 0  I).1/211 

1 I R u s s i a  0 . 3 7 5  0 . 2 5 5  0 . 1 0 8  - 0 . 0 2 0  - 0 . 0 4 4  - 0 . 0 1 3  11.003 

12 C z e c h  11.376 I) .267 0 . 1 1 7  - 0 .01  I - 0 . 0 3 3  - 0 . 0 0 3  0 . 0 0 6  

13 G e r m a n y  0 . 4 0 0  I) .282 0 . 1 2 5  0 . 0 0 7  - 0 . 0 3 4  - 0 . 0 0 8  - 0 . 0 0  I 

17 U S A  0 . 3 8 2  0 . 2 7 2  0. I 1 I 0 , 0 2 2  0 . 0 4 5  - 0 . 0 1 2  - 0 . 0 0 4  

18 G e r m  any  0 . 4 0 9  0 . 2 5 4  0 . 1 0 4  0 . 0 1 6  - -  - -  

19 G e r m a n y  0 . 3 7 8  0 . 2 7 7  0 . 1 0 4  - 0 , 0 2 3  - 0 . 0 4 5  - -  

2 4  R u s s i a  0 . 3 8 0  I) .282 0.1(14 - 0 . 0 2 3  - 0 . 0 4 3  - 0 .011  0 .001  

25 R u s s i a  0 . 3 5 4  0.1811 0 . 0 9 3  0 . 0 0 0  - 0 . 0 3 2  - 0 . 0 0 8  0 . 0 0  I 

26  R u s s i a  0 . 3 1 2  0 . 1 1 5  0. I 15 0 . 0 4 9  0 . 0 3 2  0 . 0 0 7  - 0 . 0 0  I 

27 R u s s i a  0 . 3 7 9  0 . 2 5 9  0 . 1 0 7  0 .021  0 . 0 4 4  - 0 . 0 1 3  - 0 . 0 0 3  

27.1 R u s s i a  0 . 3 7 9  0 . 2 5 9  0 . 1 0 7  - 0 . 021  0 . 0 4 4  0 . 0 1 3  0 . 0 0 3  

2 7 . 2  R u s s i a  0 . 3 7 9  0 . 2 5 9  0 . 1 0 7  - 0 . 021  0 . 0 4 4  0 . 0 1 3  - 1t.I)113 

A v e r a g e  (0 )  0 . 3 7 8  0 . 2 5 7  0 . 1 0 9  0 . 0 1 3  - 0 . 0 3 9  - 0 . 0 0 9  0 . 0 0 0  

St .  dev .  (0 )  0 . 0 2 4  0 .041  0 . 0 1 0  0 . 0 1 9  0 . 0 0 9  0 . 0 0 6  0 . 0 0 6  

A v e r a g e  ( I ) 0 . 3 8 2  0 . 2 6 4  0 . 1 0 7  0 . 0 1 6  - 0 . 041  - 0 . 0 1 0  0.1/02 

St .  dev .  ( 1 ) 0 . 0 1 8  0 . 0 2 4  0 . 0 0 7  0 . 0 1 2  0 . 0 0 5  0 . 0 0 4  0 . 0 0 4  

Re  H_ 

2 C a n a d a  0 . 0 0 0  0 . 3 4 3  0 . 2 7 8  0 . 0 6 9  - 0 . 0 1 0  - 0 . 0 0 3  0 .001  

3 C a n a d a  0 . 0 0 0  0 . 3 4 6  11.283 0 . 0 7 1  - 0 . 0 1 0  - 0 . 0 0 3  0 . 0 0  I 

6 P o l a n d  0 .00(I  0 . 3 4 7  0 . 2 6 4  0 . 0 3 9  0 . 0 0 9  - 0 . 001  0 . 0 0 0  

8 U z b e k i s t a n  0 . 0 0 0  0 . 3 7 5  0 .2 9 1  0 . 0 6 1  - 0 . 0 1 2  0 . 0 0 3  0 . 0 0 0  

8.1 R u s s i a  0 . 0 0 0  0 . 3 7 7  0 . 2 9 3  0 . 0 6 2  11.012 - 0 . 0 0 3  0 . 0 0 0  

9 R u s s i a  0 . 0 0 0  0 . 3 6 0  0 . 2 6 4  0 . 0 6 0  0 . 0 1 4  - -  - -  

I 0 R u s s i a  0 . 0 0 0  I) .290 0 . 2 4 0  0 . 0 6 0  0 . 0 0 7  0 . 0 0 3  0 . 0 0 0  

I I R u s s i a  0 . 0 0 0  0 . 3 5 5  0 . 2 9 2  0 . 0 7 3  0 . 0 0 9  0 . 0 0 3  0 . 0 0 0  

12 C z e c h  0 . 0 0 0  I) .354 0 . 2 8 7  0 . 0 7 3  0 . 0 0 9  0 . 0 0 3  0 . 0 0 0  

13 G e r m a n y  0 . 0 0 0  0 . 3 3 6  0 . 2 8 2  0 . 0 7 0  0 . 0 0 9  - 0 . 0 0 2  0 . 0 0 0  

17 U S A  0 . 0 0 0  (}.339 0 . 2 7 9  0 . 0 7 6  0 . 0 0 8  0 . 0 0 4  - 0 . 0 0  I 

18 G e r m a n y  0 . 0 0 0  0 . 4 2 4  I).3112 0 . 0 6 7  0 . 0 0 0  

19 G e r m a n y  0 , 0 0 0  0 . 3 0 6  0 . 2 5 9  / ) .059 - 0 . 0 1 2  - -  

2 4  R u s s i a  0 . 0 0 0  0 . 2 7 8  11.243 / ) .054  - 0 . 0 1 5  0 . 0 0 3  0 . 0 0 0  

25  R u s s i a  0 . 0 0 0  0 . 3 2 6  0 . 2 6 2  0 . 0 6 7  11.005 - 0 . 0 0 2  0 . 0 0 0  

26  R u s s i a  0 . 0 0 0  0 . 2 2 9  0 . 2 2 9  0 . 1 9 2  - 0 . 0 1 3  0 .001  0 . 0 0 0  

27  R u s s i a  0 . 0 0 0  0 . 3 4 6  0 . 2 8 3  0 . 0 6 7  0 . 0 1 3  - 0 . 0 0 3  0 . 0 0 0  

27 .1  R u s s i a  0 . 0 0 0  0 . 3 4 6  0 . 2 8 3  0 . 0 6 7  - 0 . 0 1 3  0 . 0 0 3  0 . 0 0 0  

2 7 . 2  R u s s i a  0 . 0 0 0  0 . 3 4 6  0 . 2 8 3  0 . 0 6 7  0 . 0 1 3  - 0 . 0 0 3  0 . 0 0 0  

A v e r a g e  (0 )  0 . 0 0 0  0 . 3 3 8  0 . 2 7 4  0 .071  11.009 - 0 . 0 0 2  0 . 0 0 0  

St .  d e v .  ( 0 )  0 . 0 0 0  0 .0 4 1  0 . 0 2 0  0 . 0 3 0  0 . 0 0 6  0 . 0 0 2  0 . 0 0 0  

A v e r a g e  ( 1 ) 0 . 0 0 0  0 . 3 3 9  0 . 2 7 6  0 . 0 6 5  0 . 0 1 0  - 0 , 0 0 3  0 . 0 0 0  

St .  d e v .  ( 1 ) 0 . 0 0 0  11.027 0 . 0 1 7  0 . 0 0 9  0.11114 0 .001  0 . 0 0 0  
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Table B.6 (continued) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

lm H_ 

2 Canada 0.000 0.196 0.220 0.142 0.040 0.003 0.001 

3 Canada 0.000 0.196 0.218 0.142 0.040 0.003 0.001 

6 Poland 0.000 0.198 0.220 0.117 0.015 0.001 0.000 

8 Uzbekistan 0.000 0.193 0.220 0.141 0.036 0.002 0.000 

8.1 Russia 0.000 0.193 0.220 0.141 0.036 0.002 0.000 

9 Russia 0.000 0.201 0.233 0.142 0.036 - -  - -  

10 Russia 0.000 0.190 0.210 0.130 0.030 0.003 0.000 

11 Russia 0.000 0.193 0.218 0.142 0.040 0.003 0.000 

12 Czech 0.000 0.192 0.219 0.143 0.040 0.003 0.000 

13 Germany 0.000 0.198 0.219 0.140 0.038 0.002 0.000 

17 US A 0.000 0.196 0.219 0.143 0.044 0.003 - 0.001 

18 Germany 0.000 0.227 0.225 0.140 0.000 - -  - -  

19 Germany 0.000 0.213 0.232 0.143 0.037 - -  - -  

24 Russia 0.000 0.217 0.235 0.144 0.037 0.002 0.000 

25 Russia 0.000 0.213 0.199 0.134 0.047 0.002 0.001 

26 Russia 0.000 0.173 0.173 0.163 0.037 0.002 - 0.001 

27 Russia 0.000 0.201 0.221 0.141 0.036 0.002 0.000 

27. I Russia 0.000 0.201 0.221 0.141 0.036 0.002 0.000 

27.2 Russia 0.000 0.201 0.221 0.141 0.036 0.002 0.000 

Average (0) 0.000 0.200 0.218 0.141 0.035 0.002 0.000 

St. dev. (0) 0.000 0.012 0.013 0.008 0.011 0.001 0.001 

Average (1) 0.000 0.200 0.221 0.141 0.037 0.002 0.000 

St. dev. (1) 0.000 0.008 0.008 0.003 0.007 0.001 0.001 

Table B.7. Model 2D-I (HP, T =  0.1, z = 0) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Re E~ 
2 Canada 0.282 0.681 0.975 0.995 1.002 1.003 1.003 

3 Canada 0.282 0.679 0.974 0.992 0.998 1.000 1.000 

6 Poland 0.266 0.659 0.960 0.978 0.984 0.984 0.984 

8 Uzbekistan 0.290 0.689 0.971 0.993 1.000 1.000 1.000 

8.1 Russia 0.289 0.689 0.971 0.993 1.000 1.000 1.000 

10 Russia 0.320 0.690 0.930 0.960 0.970 0.970 0.970 

11 Russia 0.289 0.687 0.971 0.992 0.999 1.000 1.000 

12 Czech 0.289 0.680 0.970 0.992 1.000 1.000 1.000 

17 USA 0.278 0.670 0.975 0.992 0.999 1.000 1.000 
18 Germany 0.315 0.734 0.966 0.991 - -  - -  - -  

19 Germany 0.249 0.656 1.003 0.997 0.999 - -  - -  

20 Russia 0.290 0.725 0.980 0.993 0.997 0.999 0.999 

25 Russia 0.289 0.761 0.911 0.994 0.989 0.997 0.995 

26 Russia 0.313 0.841 0.909 0.987 0.999 1.001 1.000 

Average (0) 0.289 0.703 0.962 0.989 0.995 0.996 0.996 
St. dev. (0) 0.019 0.049 0.027 0.010 0.009 0.010 0.009 

Average ( I ) 0.292 0.692 0.962 0.991 0.997 0.999 0.998 
St. dev. ( 1 ) 0.015 0.030 0.027 0.005 0.005 0.005 0.005 
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T a b l e  B .7  ( c o n t i n u e d )  

P a r t i c i p a n t / x  = 0 .0  0.5 1.0 2 . 0  4 .0  8 .0  16.0  

Im E~ 

2 C a n a d a  - 0 . 1 4 0  0 . 0 5 9  0 . 0 0 3  0 . 0 0 0  - 0 . 0 0 4  0 . 0 0 3  

3 C a n a d a  - 0 . 1 3 9  - 0 . 0 5 7  0 . 0 0 6  0.(103 - 0 .001  0 . 0 0 0  

6 Po l and  - 0 . 1 2 6  - 0 . 0 4 5  0 .021  0 . 0 1 6  0 . 0 1 5  0 . 0 1 5  

8 U z b e k i s t a n  - 0 . 1 5 5  - 0 . 0 6 3  0 . 0 0 4  0 . 0 0 2  - 0 .001  0 . 0 0 0  

8.1 R u s s i a  - 0 . 1 5 4  0 . 0 6 3  0 . 0 0 4  0 . 0 0 2  - 0 . 0 0 1  0 . 0 0 0  

I 0 R u s s i a  - 0 . 1 3 0  - 0 . 0 4 0  0 . 0 2 0  0 . 0 3 0  0 . 0 2 4  0 .03( /  

11 Russ i a  - 0 . 1 5 6  - 0 , 0 6 4  0 . 0 0 4  0 . 0 0 3  - 0 . 0 0 1  0 . 0 0 0  

12 C z e c h  - 0 . 1 4 8  - 0 . 0 5 8  0 .011  0 . 0 0 6  - 0 .001  0 . 0 0 0  

17 U S A  - 0 . 1 3 9  - 0 . 0 5 9  0 . 0 0 7  0 . 0 0 3  0 .001  0 . 0 0 0  

18 G e r m a n y  - 0 . 1 9 0  0 . 0 6 8  0 . 0 0 0  0 . 0 0 2  - -  - -  

19 G e r m a n y  0 . 1 2 4  - 0 . 0 5 9  0 . 0 1 5  0 . 0 0 8  0 . 0 0 0  - -  

20  Russ i a  - 0 . 1 4 0  0 .061  0 . 0 0 6  0.0(12 - 0 .001  - 0 . 0 0 1  

25 R u s s i a  - 0 .121  - 0 . 0 0 5  0 . 0 1 6  0 . 0 2 7  0 . 0 2 9  0 . 0 2 7  

2 6  R u s s i a  - 0 . 1 5 6  - 0 . 0 3 6  - 0 . 0 1 6  0 .001  (I .002 - 0 .001  

A v e r a g e  (0 )  - 0 . 1 4 4  - 0 . 0 5 3  0 . 0 0 7  0 . 0 0 8  0 . 0 0 4  0 . 0 0 6  

St. dev .  (0 )  / / .018  0 . 0 1 7  0 . 0 0 9  0 . 0 1 0  0 .011  0 . 0 1 2  

A v e r a g e  ( 1 ) 0 .141  - 0 . 0 5 6  0 . 0 0 9  0 . 0 0 6  0 . 0 0 2  0 . 0 0 3  

St. dev .  (1 )  0 . 0 1 3  0 . 0 1 0  0 . 0 0 7  0 . 0 0 8  0 . 0 0 8  0.(109 

0 . 0 0 0  

0 . 0 0 0  

0 . 0 1 5  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 3 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

- 0 . 0 0 1  

0 . 0 1 2  

- 0 . 0 0 2  

0 . 0 0 4  

0 . 0 1 0  

0 . 0 0 2  

0 . 0 0 6  

T a b l e  B .8 .  M o d e l  2D-1  ( T  = 0 .1 ,  z = 0)  

P a r t i c i p a n t / x  = 0 .0  0 .5  1.0 2 .0  4 . 0  8 .0  16 .0  

Pa ( E P )  

2 C a n a d a  8 . 0 3  14.01 4 9 . 9 9  9 5 . 1 8  1 0 3 . 2 0  9 9 . 6 0  11X1.3(I 

3 C a n a d a  8 . 0 7  1 4 . 1 0  5 1 . 5 0  95.711 1 0 4 . 0 0  1 0 0 . 0 0  1 0 0 . 0 0  

6 P o l a n d  8 . 0 0  1 4 . 0 0  5 4 . 2 0  1 0 2 . 7 0  103.  I 0 1 0 1 . 7 0  I 01 .6( I  

8 U z b e k i s t a n  6 . 8 0  12 .13  5 2 . 0 5  9 6 . 7 8  1 0 3 . 6 0  9 9 . 9 7  9 9 . 7 8  

8.1 R u s s i a  6 . 8 0  1 2 . 1 4  5 2 . 1 5  9 7 . 0 3  1 0 3 . 8 5  100 .21  100 .01  

8 .2  R u s s i a  6 . 5 5  1 2 . 0 9  4 9 . 4 2  9 4 . 6 7  1 0 3 . 2 7  100.1 I 9 9 . 9 8  

9 R u s s i a  7 . 5 3  1 5 . 9 9  5 2 . 8 7  9 6 . 9 6  1 0 3 . 6 9  1 0 0 , 0 0  1 0 0 . 0 0  

10 R u s s i a  1 0 . 0 0  1 6 . 4 8  5 1 . 5 2  9 7 . 6 8  106 .49  1 0 3 . 2 8  1 0 3 . 4 6  

11 R u s s i a  7 . 1 4  12 .80  4 9 . 7 0  9 5 . 6 0  104.011 1 0 0 . 0 0  1 0 0 . 0 0  

12 C z e c h  7 . 5 0  13 .37  5 0 . 0 0  9 6 . 6 6  1 0 5 . 0 0  1 0 1 . 4 0  1 0 1 . 1 0  

13 G e r m a n y  7 . 6 8  13.31 4 8 . 7 6  9 4 . 6 7  103.  I 0  9 9 . 7 2  9 9 . 6 2  

14 R u s s i a  5 . 2 4  9 . 1 5  5 3 . 2 0  9 6 . 9 0  104.011 1 0 1 . 0 0  t 0 0 . 0 0  

15 R u s s i a  7 . 4 6  1 3 . 6 0  5 4 . 7 0  9 7 . 4 0  1 0 5 . 0 0  I 0 1 . 0 0  1 0 0 . 0 0  

14.1 R u s s i a  7 . 8 3  13 .07  4 9 . 7 7  9 5 . 8 7  1 0 3 . 8 6  1 0 0 . 0 0  1 0 0 . 0 0  

15.1 R u s s i a  7 . 8 7  13 .93  5 2 . 6 9  9 7 . 3 5  104 .05  1 0 0 . 0 0  1 0 0 . 0 0  

17 U S A  8 . 0 6  14.11 5 0 . 5 3  9 6 . 8 1  1 0 4 . 4 0  1 0 0 . 1 0  9 9 . 6 9  

18 G e r m a n y  5 . 7 0  10 .74  4 7 . 8 2  9 3 . 4 4  - -  - -  - -  

19 G e r m a n y  9 . 9 2  16 .26  5 1 . 8 9  9 6 . 8 2  1 0 4 . 1 4  - -  - -  

2 4  R u s s i a  1 1 . 8 2  18 .15  5 3 . 2 3  9 7 . 2 2  104 .21  1 0 0 . 2 0  100.01 

25  R u s s i a  7 . 6 0  1 7 . 1 0  4 3 . 4 0  86.311 1 0 2 . 8 0  9 8 . 7 0  1 0 0 . 1 0  

2 6  R u s s i a  7 . 9 2  1 8 . 9 0  3 0 . 5 0  7 1 . 5 0  1 0 9 . 0 0  9 9 . 6 0  1 0 0 . 0 0  

27  R u s s i a  7 .71  12 .95  4 8 . 9 4  9 4 . 9 7  1 0 3 . 5 0  1 0 0 . 1 8  1 0 0 . 0 0  

27 .1  R u s s i a  7 .71  12 .95  4 8 . 9 4  9 4 . 9 8  1 0 3 . 5 0  1 0 0 . 1 9  1 0 0 . 0 0  

2 7 . 2  R u s s i a  7 .71  12 .95  4 8 . 9 4  9 4 . 9 8  1 0 3 . 5 0  1 0 0 . 1 9  1 0 0 . 0 0  

A v e r a g e  (0 )  7 . 7 8  13.93 4 9 . 8 6  9 4 . 9 2  104 .14  100 .33  100 .26  

St. dev .  (0)  1 .34 2 . 2 6  4 . 7 9  5 . 6 7  1 .32 0 . 9 2  0 . 8 4  

A v e r a g e  ( I ) 7 . 6 0  13 .92  5 0 . 7 0  9 5 . 9 4  1 (13.92 100 .18  100 .10  

St, dev .  (1)  1 .04 1 .82 2 . 4 8  2 .75  0 , 8 0  0 . 6 5  0 . 4 4  
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Table B.8 (continued) 

Par t i c ipan t /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Pa(HP) 
2 Canada  9.93 46.80 95.10 99.10 100.00 101.00 101.00 
3 Canada  9.86 46.40 94.80 98.30 99.70 100.00 100.00 
6 Poland 8.65 43.59 92.28 95.67 96.87 96.87 96.87 
8 Uzbekis tan  10.79 47.85 94.32 98.60 99.96 100.24 100.23 
8.1 Russ ia  10.73 47.83 94.32 98.60 99.96 100.24 100.23 
11 Russ ia  10.80 47.70 94.40 98.50 99.80 100.00 100.00 
12 Czech  10.55 46.59 94.16 98.47 101.00 100.40 100.40 
14 Russ ia  10.90 49.50 94.30 98.50 99.70 100.00 100.00 
15 Russ ia  8.23 47.60 94.20 97.80 99.50 99.80 100.00 

14.1 Russia  10.22 48.57 94.75 98.54 99.66 99.92 99.91 
15.1 Russ ia  9.50 45.28 93.65 98.16 99.79 100.00 100.00 
17 U S A  9.64 45.19 95.13 98.48 99.78 100.00 100.00 
18 Ge r m any  13.54 54.37 93.22 98.28 100.00 100.00 100.00 

20 Russ ia  10.10 45.90 95.10 98.40 99.10 99.50 99.90 
25 Russ ia  9.80 57.90 83.00 98.80 97.90 99.40 98.90 
26 Russ ia  12.20 70.90 82.40 97.40 99.80 100.00 99.90 
Average  (0) 10.34 49.50 92.82 98.22 99.53 99.84 99.83 
St. dev. (0) 1.26 6.71 4.02 0.78 0.94 0.87 0.89 

Average  ( 1 ) 10.13 48.07 94.27 98.40 99.71 100.03 100.03 
St. dev. (1) 0.96 3.65 0.79 0.40 0.64 0.37 0.42 

Table B.9. Model  2D- I  (EP, T = 10.0, z = 0) 

Par t i c ipan t /x  - 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Re Ey 
3 Canada  0.423 0.440 0.475 0.543 0.640 0.751 0.865 
6 Poland 0.424 0.441 0.479 0.562 0.689 0.803 0.908 
8 Uzbekis tan 0.419 0.435 0.470 0.538 0.634 0.747 0.862 
8.1 Russ ia  0.423 0.439 0.475 0.543 0.640 0.754 0.869 

9 Russ ia  0.420 0.436 0.472 0.555 0.639 0.753 0.869 
10 Russ ia  0.440 0.460 0.498 0.570 0.680 0.790 0.896 
11 Russ ia  0.426 0.443 0.478 0.546 0.643 0.756 0.871 
12 Czech  0.429 0.445 0.478 0.544 0.640 0.752 0.867 
13 Ge rm any  0.524 0.546 0.592 0.678 0.791 0.896 0.964 

14 Russ ia  0.445 0.461 0.495 0.561 0.655 0.768 0.878 
15 Russ ia  0.475 0.492 0.531 0.598 0.690 0.794 0.893 
14.1 Russ ia  0.410 0.427 0.463 0.532 0.631 0.746 0.866 
15.1 Russia  0.422 0.439 0.474 0.543 0.642 0.757 0.874 
17 U S A  0.432 0.449 0.484 0.553 0.651 0.765 0.869 
18 Ge rm any  0.410 0.427 0.462 0.530 0.628 0.753 0.861 
19 Ge rm any  0.422 0.439 0,474 0.543 0.640 - -  - -  

22 Canada  0.419 0.437 0,474 0.543 0.641 0.754 0.868 
24 Russ ia  0.423 0.440 0,476 0.544 0.642 0.757 0.873 
25 Russia  0.468 0.486 0,530 0.611 0.730 0.864 0.989 
26 Russia  0.476 0.494 0,533 0.612 0.733 0.863 0.988 
27 Russ ia  0.428 0.444 0,479 0.547 0.643 0.756 0.870 
27.1 Russ ia  0.429 0.445 0,480 0.548 0.644 0.757 0.871 

27.2 Russ ia  0.429 0.446 0,481 0.548 0.645 0.757 0.871 
Average  (0) 0.435 0.453 0,489 0.561 0.661 0.777 0.888 
St. dev. (0) 0.027 0.028 0,030 0.034 0.041 0.043 0.039 
Average  (1) 0.431 0.448 0.485 0.555 0.655 0.762 0.878 
St. dev. ( l )  0.019 0.019 0,021 0.023 0.030 0.016 0.023 
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Table B.9 (continued) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

lm E., 

3 Canada 0.228 0.213 0.184 0.132 0.066 0.003 0.035 

6 Poland 0.222 0.207 0.175 0. I 11 (/.028 - 0.027 - 0.047 

8 Uzbekistan 11.225 0.211 0.181 0.130 0.064 0.001 0.1/38 

8.1 Russia 0.228 0.213 0.184 0.132 0.065 0.001 0.039 

9 Russia 0.220 0.212 0.182 0.130 0.062 0.001 - 0.04 I 

10 Russia 0.306 11.290 0.260 0.220 0.150 0.080 0.030 

I 1 Russia 0.228 0.213 0.184 0.132 0.065 0.001 - 0.039 

12 Czech 0.229 0.215 0.187 0.136 0.070 0.005 - 0.036 

13 Germany 0.368 0.350 0.314 0.249 0.164 0.081 0.023 

14 Russia 0.225 0.210 0.180 0.128 1/.064 0.000 - 11.1/34 

15 Russia 0.169 0.146 0.115 0.075 1/.028 - 0.017 0.1/38 

14.1 Russia 0.241 0.227 0.2011 0.152 0.091 0.033 0.1/03 

15.1 Russia 0.230 11.216 0.187 0.136 0.071 0.009 - 0.027 

17 USA 11.234 0.219 0.189 0.137 0.071 0.065 0.028 

18 Germany 0.230 0.215 0.186 0.136 0.070 0.003 0.029 
19 Germany 1/.226 0.212 0.182 0.131 0.064 - -  

22 Canada 0.228 0.213 0.182 0.129 1/.1/63 0.000 0.039 

24 Russia 0.224 (1.210 0.180 0.129 0.062 - 0.002 0.041 

25 Russia 0.308 (/.294 0.262 0.207 0. 134 0.061 0.005 

26 Russia 0.295 0.281 0.254 0.199 0.122 0.053 0.004 

27 Russia 0.228 0.213 0.184 0.132 0.065 0.000 0.040 

27. I Russia 0.228 0.214 0.184 0.132 0.065 0.000 0.040 

27.2 Russia 0.229 0.214 0.184 0.132 0.065 0.000 - 0.039 

Average (0) 0.241 0.226 0.197 0.145 0.077 0.016 - 0.023 

St. dev. (0) 0.041 0.041 0.040 0.038 0.034 0.031 0.025 

Average (1) 0.235 I).221 0.195 0.140 0.069 0.009 - 0.029 

St. dev. ( 1 ) 0.031 0.031 0.027 0.031 0.024 0.024 0.019 

Re H, 
3 Canada 3.112 2.645 1.933 1.348 1.042 0.943 (5.932 

6 Poland 3.100 2.649 1.9(54 1.257 0.977 0.931 0.948 

8 Uzbekistan 3.210 2.690 1.930 1.340 1.040 0.938 0.93 I 

8.1 Russia 3.240 2.710 1.940 1.340 1.040 0.938 0.931 

8.2 Russia 3.220 2.710 1.950 1.350 1.040 0.939 0.931 

9 Russia 3.080 2.6411 1.950 1.360 1.050 0.944 0.884 

I 0 Russia 3.360 2.880 2.130 1.470 1.1 l 0 0.990 (I.970 

l 1 Russia 3.120 2.660 1.950 1.360 1.040 0.942 0.933 

12 Czech 3.230 2.720 1.950 1.360 1.1160 0.947 0.938 

13 Germany 4.016 3.386 2.424 1.606 1.16[1 1.005 0.981 

17 USA 3.180 2.710 1.980 1.360 1.040 0.943 0.938 

18 Germany 3.060 2.608 1.923 1.351 0.981 0.938 0.933 

19 Germany 3.090 2.640 1.951 1.362 1.046 - -  - -  

22 Canada 3.157 2.656 1.912 1.338 1.1138 0.940 I).931 

24 Russia 3./1911 2.644 1.956 1.366 1.1551 0.946 0.936 

25 Russia 3.435 2.527 2.092 1.576 1.230 1.046 1.001 

26 Russia 3.173 2.167 2.167 1.754 I. 189 1.047 1.002 

27 Russia 3.180 2.700 1.950 1.350 1.040 11.937 0.929 

27. I Russia 3.190 2.700 1.960 1.350 1.040 (5.938 0.931 
27.2 Russia 3.190 2.700 1.960 1.350 1.040 (5.938 0.931 
Average (0) 3.222 2.687 1.996 1.397 1.1/63 0.957 1/.943 

St. dev. (01 0.209 0.211 0.123 0.117 0.063 0.036 0.028 
Average (1) 3.180 2.677 1.973 1.379 1.046 0.947 0.939 

St. dev. ( I ) 0.095 0.1/69 0.073 0.083 0.1/411 0.020 0.015 
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Table B.9 (continued) 

Pa r t i c ipan t /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Im H~ 

3 Canada  0.304 0.282 0.246 0.162 0.092 0.046 0.009 
6 Poland 0.288 0.271 0.235 0.141 0.068 0.028 - 0.004 
8 Uzbekis tan 0.315 0.289 0.251 0.163 0.092 0.047 0.010 

8.1 Russia  0.317 0.290 0.252 0.163 0.092 0.047 0.009 
8.2 Russia  0.311 0.287 0.249 0.161 0.091 0.046 0.009 
9 Russ ia  0.307 0.287 0.248 0.164 0.087 0.048 0.007 

10 Russia  0.680 0.590 0.450 0.260 0.140 0.070 0.030 
I 1 Russia  0.294 0.274 0.242 0.160 0.091 0.045 0.008 
12 Czech 0.303 0.281 0.247 0.162 0.094 0.047 0.01 [ 
13 Germany  0.625 0.529 0.379 0.192 0.075 0.030 0.013 
17 US A 0.319 0.295 0.254 0.164 0.090 0.045 0.018 
18 Germany  0.332 0.302 0.262 0.173 0.086 0.049 0.014 
19 Germany  0.317 0.292 0.250 0.164 0.092 - -  - -  
22 Canada 0.319 0.286 0.244 0.158 0.090 0.045 0.008 

24 Russia  0.312 0.286 0.245 0.161 0.090 0.044 0.007 
25 Russ ia  0.503 0.387 0.316 0.208 0.112 0.040 0.003 
26 Russia  0.450 0.298 0.298 0.232 0.109 0.047 0.003 
27 Russ ia  0.300 0.277 0.243 0.160 0.091 0.047 0.009 

27.1 Russ ia  0.299 0.277 0.243 0.160 0.092 0.047 0.010 
27.2 Russ ia  0.299 0.277 0.242 0.160 0.091 0.047 0.010 
Average  (0) 0.360 0.318 0.270 0.173 0.093 0.046 0.010 
St. dev. (0) 0.114 0.087 0.054 0.029 0.014 0.008 0.007 
Average  (1) 0.327 0.291 0.254 0.165 0.091 0.045 0.009 
St. dev. (1) 0.056 0.025 0.020 0.014 0.009 0.004 0.004 

Re H_ 

3 Canada  0.000 0.897 1.048 0.840 0.514 0.251 0.093 
6 Poland 0.000 0.900 1.041 0.757 0.374 0.166 0.051 
8 Uzbekis tan 0.000 0.902 1.050 0.829 0.497 0.245 0.089 

8.1 Russ ia  0.000 0.911 1.060 0.837 0.502 0.247 0.089 
9 Russ ia  0.000 0.908 1.060 0.840 0.505 0.237 0.068 
10 Russ ia  0.000 0.910 1.065 0.840 0.510 0.250 0.090 
11 Russia  0.000 0.892 1.050 0.837 0.509 0.250 0.094 
12 Czech  0.000 0.835 0.998 0.827 0.511 0.253 0.096 
13 Germany  0.000 1.146 1.341 1.041 0.585 0.229 0.059 
17 U S A  0.000 0.910 1.060 0.847 0.519 0.261 0.133 
18 Germany  0.000 0.907 1.040 0.826 0.494 0.226 0.087 
19 Ge r m any  0.000 0.909 1.060 0.841 0.509 - -  - -  

22 Canada  0.000 0.979 1.082 0.845 0.518 0.259 0.098 
24 Russ ia  0.000 0.909 1.060 0.841 0.509 0.249 0.092 
25 Russ ia  0.000 1.209 1.185 0.940 0.625 0.283 0.126 
26 Russ ia  0.000 1.057 1.057 1.065 0.534 0.258 0.124 

27 Russ ia  0.000 0.920 1.060 0.835 0.498 0.243 0.090 
27.1 Russia  0.000 0.921 1.070 0.837 0.499 0.243 0.090 

Average  (0) 0.000 0.944 1.077 0.861 0.511 0.244 0.092 
St. dev. (0) 0.000 0.093 0.073 0.075 0.047 0.023 0.021 
Average  (1) 0.000 0.917 1.062 0.839 0.512 0.249 0.092 
St. dev. ( I ) 0.000 0.045 0.035 0.033 0.021 0.013 0.021 
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Table B.9 (continued) 

Participant/x - 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

lm H_ 

3 Canada 0.0(X) 0.060 0.107 0.131 0.113 0.088 0.064 

6 Poland 0.000 0.055 0.105 0.123 0.097 0.075 0.049 

8 Uzbekistan 0.000 0.1/61 0.111 0.135 (1.113 0.088 0.1164 

8.1 Russia 0.000 0.062 0. I 11 0.135 0.113 0.088 0.064 

9 Russia 0.000 0.065 0.115 0.136 0.116 0.091 0,065 

10 Russia 0.000 0.13/) 0.201 0.190 0.130 0.070 0.031 

11 Russia 0.000 0.056 0.1/)4 0.128 0.110 0.087 0,064 

12 Czech 0.000 0.054 0.099 0.123 0.108 0.086 0.063 

13 Germany 0.000 0.115 0.175 0.154 0.076 0.022 0.006 

17 USA 0.(X)0 0.066 0. I 13 0.134 0.114 0.088 0.067 

18 Germany 0.000 0.073 0.122 0.142 0.129 0.091 0.069 

19 Germany 0.000 0.070 0.118 0.138 0.116 - -  

22 Canada 0.000 0.071 0.116 0.133 (I. 113 0.089 0.065 

24 Russia 0.000 0.070 0.117 0.136 0.115 0.089 0.065 

25 Russia 0./100 0.188 0.205 0.204 0.161 0.093 0.054 

26 Russia 0.000 0.184 0.184 0.192 0.143 0.092 0.062 

27 Russia 0.01/0 0.058 0.106 0.127 0.108 0.086 0.1/64 

27.1 Russia 0.(X)0 0.057 0.106 0.127 0.108 0.086 0.064 

Average (0) 0.000 0.082 0.127 0,143 0.115 0.083 0.058 

St. dev. (0) 0.000 0.042 0.035 0.025 0.017 0.016 0.016 

Average ( 1 ) 0.000 11.1169 0.118 0.136 0.115 0.087 0.061 

St. dev. ( 1 ) 0.000 (1.(121 0.024 0.016 0.011 0.006 0.009 

Table B.10. Model 2D-1 (HP, T =  10.0, ,~ = 0) 

Par t ic ipant /x  = 0.0 1/.5 1.0 2.0 4.0 8.0 16.0 

Re E~ 
3 Canada 0.126 0.687 1.069 1.079 1.039 1.014 1 ./)06 

6 Poland 0. l 18 0.659 1.088 1.082 1.035 1.019 1.(116 

8 Uzbekistan 0.124 0.672 1.073 1.084 1 .//43 1.018 1.009 

8.1 Russia 0.124 0.672 1.073 1.084 1.043 1.018 1.009 

10 Russia 0.176 0.680 1.040 1.070 1 ./140 1.030 1.031/ 

11 Russia 0. 122 1/.666 1.070 1.080 1.030 1.010 1.1/0/) 

12 Czech 0.138 0.690 1.08/) 1.090 1.050 1.020 1.010 

17 USA 0.113 0.644 1.070 1.080 1.030 1.01 (1 1.000 

18 Germany 0.143 0.711 1.048 1.073 1.034 1.008 1.001 

19 Germany //.//95 0.613 1.080 1.080 1.040 - -  

20 Russia 0.120 0.690 1. 100 1.080 1.040 1.020 1.010 

22 Canada 0.1 (11 0.692 1.078 1.075 1.034 1.009 1.001 

26 Russia 0.151 0.872 0.966 1.062 1.031 1.007 1.000 

Average (0) 0.127 0.688 1.064 1.078 1.038 1.015 1.008 

St. dev. (0) 0.021 0.060 0.033 0.007 0.006 0.007 0.009 

Average ( 1 ) 0.123 0.673 1.072 1.080 1.037 1.014 1.006 

St. dev. ( 1 ) 0.016 0.026 0.016 0.005 0.005 0.005 0.006 



M.S. Zhdanov et al. / Journal of  Applied Geophysics 37 (1997) 133-271 199 

Table  B.10 (cont inued)  

Pa r t i c i pan t / x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

lm E x 
3 Canada  - 0 .032 - 0 .015 0 .000  0 .006 0 .004  0 .000  

6 Poland - 0 .029 - 0 .006 0 .014 0 .020  0.015 0 .012 

8 Uzbekis tan  - 0.031 - 0 .012 0.005 0.011 0 .009 0.005 

8.1 Russia - 0.031 - 0 .012 0 .005 0.011 0 .009 0.005 

10 Russia - 0 .030  - 0 .010  0.003 0 .009 0.008 0.007 

11 Russia - 0.031 - 0 .012 0 .004  0.011 0.008 0 .004 

12 Czech - 0 . 0 3 0  - 0 . 0 1 2  0 .003 0 .010 0.008 0.005 

1 7  U S  A - 0.031 - 0 .013 0 .003 0 .010 0.008 0 .004 

18 Germany - 0 .032 - 0 .012 0 .002  0 .009 0.007 0 .004 

t9 Germany - 0 .028 - 0 .014 0 .002  0 .010 0.008 - -  

20 Russia - 0 .029 - 0 . 0 1 7  - 0 .007 - 0.001 - 0 .002 - 0 .006 

22 Canada - 0 .033 - 0 .012  0 .005 0 .010  0.008 0 .004 

26 Russia - 0 .032 - 0 .009  - 0 .005 0 .002  0.003 0.001 

Average  (0)  - 0.031 - 0 .012  0 .003 0 .009  0.007 0 .004  

St. dev. (0) 0.001 0 .003 0 .005 0 .005 0 .004 0 .004  

Average  (1) - 0.031 - 0 .012  0 .002  0 .009 0.007 0.005 

St. dev. (1) 0.001 0 .002  0 .004  0 .003 0.002 0.003 

- 0 .002 

0 .010 

0.003 

0 .003 

0 .010  

0 .002 

0 .002 

0.001 

0 .002 

- 0 .006 

0.001 

0 .000 

0 .002 

0 .004 

0 .002 

0 .004 

Table  B.11.  Model  2D-1 ( T =  10.0, z = 0) 

Pa r t i c i pan t / x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

p~ (EP)  

3 Canada  2 .36 3.38 6.83 16.90 37.80 63 .30  86.20 

6 Poland 2 .40 3 .30 7 .10  20 .50  49 .50  74 .30  92 .40  

8 Uzbekis tan  2.17 3.19 6 .74 16.86 37 .60  64 .30  85.76 

8.1 Russia 2.18 3.21 6 .80  17.06 38.19 64.47 87 .40  

8.2 Russia 2.21 3.21 6 .74 16.99 38 .10  64 .34  87.28 

9 Russia 2.35 3.33 6 .62 17.32 37.13 63 .46  96 .84  

10 Russia 2 .44  3.42 6 .66  16.75 38 .74  64.01 85.34 

1 l Russia 2 .37 3.37 6.77 16.70 37 .80  64 .00  86.90 

12 Czech 2 .24  3 .26 6.81 16.86 36.89 62.89 85.49 

13 Germany 2 .48 3 .58 7 .46  19.96 48 .29  80.09 96 .70  

14 Russia 1.98 3.05 7 .02 18.40 40 .30  66 .90  87.70 

15 Russia 1.70 3 .76 10.20 24 .20  45 .30  70 .60  89 .30  

14.1 Russia 2.23 3 .20  6.51 16.09 35.67 59.81 81.69 

15.1 Russia 2 .29 3 .28 6 .68 16.66 37.42 62 .99  85.58 

17 U S A  2.35 3.33 6 .68 16.80 37.78 63.28 83.45 

18 Germany 2.33 3.31 6 .59 16.13 41 .26  64.25 85.36 

19 Germany 2.38 3 .37 6 .66  16.58 37 .52  - -  - -  

22 Canada  2 .26 3.31 6 .94  17.19 38.15 64.18 87.07 

24 Russia 2.38 3 .36 6 .66 16.51 37 .42  63 .84  87.06 

25 Russia 2 .60  4 .90  7 .80  16.50 36 .10  68 .50  97 .50  

26 Russia 3.05 6.75 7 .28 13.20 38 .80  68 .10  97 .30  

27 Russia 2 .30 3.31 6 ,80  17.10 38 .59  64 .92  87.89 

27.1 Russia 2 .30 3.31 6 .80  17.12 38.58 64 .90  87.82 

27.2  Russia 2 .30  3.32 6 .82 17.17 38.67 65 .00  87.83 

Average  (0)  2.32 3.53 7 .00 17.31 39.23 65.76 88.52 

St. dev. (0) 0.23 0.77 0 .74 1.97 3.52 4 .30 4 .49 

Average  (1)  2.31 3.39 6 .86 17.19 38.35 65.11 88.52 

St. dev. (1) 0.12 0.36 0 .30 1.09 1.96 3.03 4 .49 
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Table B,I I (continued) 

Par t i c ipan t /x  0.0 0.5 1.0 2.0 4.0 8.0 16.(1 

p .  (HP)  
3 Canada 1.68 47.20 114.00 
6 Poland 1.47 43.48 118.39 
8 Uzbekistan 1.63 45.23 115.17 
8.1 Russia  1.63 45.23 115.17 
I I Russia  1.58 44.6(I 114.00 
12 Czech 2.00 47.66 I 15.90 

14 Russia  1.59 43.90 107.00 
15 Russia  1.37 54.00 1(18.00 
14.1 Russia  1.72 47.66 I 19.4(I 
15.1 Russia  1.31 42.72 114.7(I 
17 USA 1.37 41.47 114.40 
18 Germany  2.14 5(/.52 109.74 

20 Russia 1.75 52.20 144.(10 
22 Canada 1.12 47.96 116.20 
26 Russia 2.37 76.10 93.3(1 
Average  (0) 1.65 48.66 114.62 
St. dev. (0) 0.33 8.36 111.311 
Average  ( 1 ) 1.611 46.70 I 14.01 
St. dev. (1) 0.27 3.64 3.69 

I 16.00 108.00 103.(10 101.00 
117.19 107.16 103.95 103.14 
117.44 108.84 103.56 101.90 
117.44 108.84 103.56 101.90 
116.00 108.00 102.00 101.00 
118.50 109.7(/ 104.50 102.81/ 

110.0(/ 103.00 99.70 100.00 
116.00 106.00 1111.00 99.80 
121.90 113.10 107.60 11/5.70 
115.80 107.10 I 01 .90  100.30 
115.60 107.00 I 01.80 1 I10.00 
115.04 1 (/6.97 I 01.65 100.28 

145.0(1 135.00 128.(X) 125.00 
15.6(1 106.92 1 (11.87 100.26 
13.0(/ 106.00 1111.00 100.00 
18.03 11)9.44 104.34 102.87 
7.89 7.40 6.81 6.33 

16.11 1(17.62 102.65 11/1.29 
2.67 2.25 1.94 1.67 

Table B,12. Model 2D 1 (EP, T =  10.0, z = 1.25) 

Par t ic ipant /~  - 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Re E~ 

3 Canada 0.205 0.255 11.338 0.433 (/.558 0.676 11.792 
8 Uzbekistan 0.202 I).251 0.333 0.438 11.553 0.672 I).788 
I I Russia 0.206 (/.256 0.339 0.445 0.561 0.680 0.797 

13 Germany  0.226 (/.296 0.412 0.553 0.692 0.8118 0.882 
18 Germany  0.193 0.243 0.325 0.429 0.546 0.678 (I.788 
22 Canada (/.205 (1.255 0.339 0.444 0.559 1/.678 1/.795 
25 Russia  0.273 0.372 0.497 0.638 0.782 11.910 
26 Russia (I.218 1/.280 0.370 0.501 1/.641 0,781 0.910 
Average  (0) 11.21/8 0.264 1/.354 0.467 1/.594 1).719 1/.833 
St. dev. (0) 0.1/1 I 11.018 1/.(129 0.045 I).055 0.059 0.057 
Average  ( 1 ) 0.208 1/.264 0.345 0.467 11.594 0.719 1/.833 
St. dev. ( I ) (1.011 0.018 0.018 0.045 0.055 0.059 (/.057 

hn E~ 
3 Canada  0.368 0.336 0.279 0.207 (1.131 0.068 (I.031 
8 Uzbekistan 0.364 0.333 0.277 0.205 0.130 0.065 0.029 
I I Russia 0.369 0.337 0.280 0.207 0.131 0.065 (/.1128 
13 Ge rm any  0.531 0.494 0.426 11.336 0.239 0.152 (/.095 

18 Ge rm any  0.363 0.334 0.280 0.209 0.135 0.067 0.038 
22 Canada 0.366 0.335 0.278 0.205 0.129 1/.064 0.028 
25 Russia  1t.422 0.364 (1.289 0.2116 0.130 0.1176 

26 Russia (I.451 0.417 0.361 0.281 11.197 0.124 0.076 
Average  (0) 1/.41/2 0.376 0.318 0.242 0.162 11.1192 0.050 
St. dev. (0) 0.065 0.061 0.058 0.052 0.044 1/.1137 0.027 
Average  ( I ) 0.402 0.376 0.318 1/.242 0.162 1/.1/92 0.050 
St. dev. ( 1 ) 0.065 0.061 0.058 0.052 0.044 11.1/37 0.027 

Re H~ 
3 Canada  0.722 (/.753 0.794 0.817 0.827 0.836 0.854 
8 Uzbekistan 1.337 0.534 0.644 0.755 (/.807 0.831/ 0.853 
11 Russia  I).724 0.755 0.796 0.818 0.827 11.836 0.855 
13 Germany  1.358 1.158 0.950 0.985 0.992 0.981 0.952 
18 Germany  0.716 0.746 0.786 0.811 0.821 0.832 0.852 

22 Canada 0.829 0.780 0,754 0.810 0.825 0.835 0.854 
25 Russia 1.754 0.758 0.8311 0.715 0.757 I).862 (I.932 
26 Russia 0.(/87 (/.598 0.761/ 0.880 1/.894 0.904 0.92(/ 
Average  (0) 0.941 0.760 0.789 0.824 0.844 0.864 0.884 
St. dev. (0) 0.518 11.184 0.(185 0.081 0.1/71 0.053 0.1143 
Average  ( 1 ) 0.941 11.7113 0.789 (/.824 0.823 1/.848 1/.884 
St. dev. ( 1 ) 0.518 1/.096 0.085 0.081 0.040 0.027 0.1/43 
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Table B. 12 (continued) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

lm Ht  

3 Canada 0.366 0.298 0.201 0.140 0.113 0.094 0.071 

8 Uzbekistan 0.543 0.234 0.171 0.131 0.111 0.094 0.072 

11 Russia 0.372 0.303 0.203 0.141 0.113 0.094 0.071 

13 Germany 0.695 0.475 0.294 0.219 0.178 0.144 0.108 

18 Germany 0.368 0.302 0.207 0.147 0.121 0.099 0.066 

22 Canada 0.378 0.282 0.189 0.137 0.112 0.093 0.071 

25 Russia 0.717 0.300 0.211 0.134 0.113 0.108 0.067 

26 Russia 0.160 0.228 0.194 0.145 0.108 0.093 0.075 

Average (0) 0.450 0.303 0.209 0.149 0.121 0.102 0.075 

St. dev. (0) 0.189 0.076 0.037 0.029 0.023 0.018 0.014 

Average ( 1 ) 0.450 0.278 0.197 0.139 0.113 0.096 0.070 

St. dev. (1) 0.189 0.033 0.014 0.006 0.004 0.006 0.003 

Table B.13. Model 2D-I (HP, T =  10.0, z = 1.25) 

Par t ic ipant /x  = 0.0 0.5 0.5 1.0 2.0 4.0 8.0 16.0 

Re E r 
3 Canada 0.006 - -  - -  1.056 0.997 0.956 0.935 0.928 

8 Uzbekistan 0.014 - -  1.090 1.064 1.001 0.959 0.938 0.931 

11 Russia 0.006 0.719 - -  1.050 0.995 0.952 0.931 0.923 

18 Germany 0.005 0.545 - -  1.056 0.994 0.951 0.929 0.922 

22 Canada - -  - -  1.075 1.052 0.993 0.952 0.930 0.923 

25 Russia 0.011 - -  1.078 1.039 0.986 0.930 0.907 0.933 

26 Russia 0.014 - -  1.094 1.054 0.997 0.950 0.926 0.921 

Average (0) 0.009 0.632 1.084 1.053 0.995 0.950 0.928 0.926 

St. dev. (0) 0.004 0.123 0.009 0.008 0.005 0.009 0.010 0.005 

Average ( I ) 0.009 0.632 1.084 1.053 0.995 0.953 0.931 0.926 

St. dev. (1) 0.004 0.123 0.009 0.008 0.005 0.003 0.004 0.005 

lm E ,  

3 Canada 0.001 - -  - -  0.087 0.081 0.076 0.073 0.070 

8 Uzbekistan - 0.003 - -  0.101 0.095 0.086 0.081 0.078 0.075 

1 I Russia 0.001 0.064 - -  0.092 0.085 0.080 0.077 0.074 

18 Germany 0.001 0.047 - -  0.090 0.083 0.079 0.076 0.074 

22 Canada - -  - -  0.095 0.092 0.085 0.080 0.076 0.074 

25 Russia - 0.002 - -  0.093 0.088 0.092 0.094 0.090 0.063 

26 Russia - 0.003 - -  0.098 0.089 0.079 0.076 0.075 0.073 

Average (0) - 0.001 0.056 0.097 0.090 0.084 0.081 0.078 0.072 

St. dev. (0) 0.002 0.012 0.004 0.003 0.004 0.006 0.006 0.004 

Average ( 1 ) - 0.001 0.056 0.097 0.090 0.084 0.079 0.076 0.073 

St. dev. ( 1 ) 0.002 0.012 0.004 0.003 0.004 0.002 0.002 0.002 

Table B.14. Model 2D-I (EP, T =  10.0, z = 6.0) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 

Re E ,  

8 Uzbekistan 0.314 0.315 0.318 0.329 0.362 0.433 0.529 

11 Russia 0.320 0.321 0.324 0.335 0.368 0.440 0.537 

13 Germany 0.444 0.442 0.441 0.445 0.466 0.520 0.585 

lm E~. 

8 Uzbekistan 0.266 0.265 0.264 0.258 0.241 0.213 0.195 

I I Russia 0.266 0.266 0.264 0.258 0.242 0.213 0.194 

13 Germany 0.387 0.387 0.385 0.378 0.355 0.312 0.269 
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Table B.15. Model 2D-I (HP, T =  10.0, z = 6.0) 

Par t ic ipant /x  = 0.0 0.5 1.0 2.0 4.0 8.0 16.0 16.0 

Re E~ 
8 Uzbekistan 0.619 0.620 0.622 0.627 0.638 0.646 0.646 0.646 

I 1 Russia 0.609 0.610 11.612 0.620 0.633 0.641 0.640 0.640 

lm E~ 

8 Uzbekistan 0.252 11.252 0.252 0.253 0.254 0.255 0.254 0.254 

1 I Russia 0.251 0.251 0.251 0.252 0.254 0.254 0.254 0.254 

Table B.16. Model 2D-2 (EP, T -  10.0, z = 0) 

Par t ic ipant /x  = - 42.0 - 22.0 - 14.0 - 4.0 2.0 10.0 16.0 22.0 42.0 80.0 

Re E~ 
3 Canada 0.974 0.727 0.649 0.669 0.704 0.682 0.676 11.735 0.976 1 .(X)9 

6 Poland 0.971 0.723 0.646 0.666 0.699 0.678 0.673 /).730 0.972 I ~005 

8 Uzbekistan 0.972 0.722 0.646 0.664 0.698 0.676 0.672 0.730 0.973 1.002 

10 Russia 0.910 0.651/ 0.610 0.630 0.680 0.670 0.650 11.690 0.920 0.970 

12 Czech 0.970 0.715 0.640 0.656 0.689 0.668 0.664 0.721 I).971 1.004 

13 Germany 0.966 0.707 0.531 0.550 0.684 0.661 0.656 0.714 0.968 1.003 

14 Russia 0.958 0.676 0.603 0.615 0.649 0.629 0.633 0.687 0.961 1.000 

15.1 Russia 0.969 0.713 0.640 0.657 0.691 0.669 /).665 0.721 (I.971 1.011/ 

15.2 Russia 0.977 0.742 0.664 0.688 0.723 0.7/)1 0.692 0.750 0.978 1.010 

16 Russia - -  0.702 0.631 0.649 0.681 0.659 0.657 0.714 - -  

18 Germany - -  0.684 0.607 0.624 0.657 0.636 0.632 0.691 - -  

19 Germany 0.980 0.742 0.661 0.685 0.721 0.699 0.691 0.748 - -  

24 Russia 0.982 0.735 0.650 0.675 0.710 0.684 1/.679 0.751 0.983 1.009 

25 Russia 0.966 0.719 0.643 0.657 0.687 0.669 0.667 0.723 0.968 1.006 

26 Russia 0.965 0.698 0.641 0.656 0.682 0.668 0.669 0.721 0.967 1.006 

Average (0) 0.966 0.710 0.631 0.649 0.690 0.670 0.665 0.722 0.967 1.003 

St. dev. (01 0.018 0.025 /I.033 0.034 0.020 0.019 0.018 0.021 0.016 0.011 

Average ( 1 ) 0.971 0.7 l 5 0.638 0.656 0.693 0.673 11.665 0.722 0.972 1.006 

St. dev. ( 1 ) 0.007 0.020 0.019 0.02 l 0.018 0.016 0.018 0.021 0.006 (I.003 

Im E~ 
3 Canada - 0 . 1 2 8  - 0 . 2 5 7  - 0 . 2 8 5  - 0 . 3 0 3  - 0 . 3 1 0  - 0 . 2 9 7  - 0 . 2 8 0  - 0 . 2 5 6  0.126 - 0 . 0 3 3  

6 Poland - 0 . 1 2 9  0.254 - 0 . 2 8 4  - 0 . 3 0 2  - 0 . 3 0 9  - 0 . 2 9 6  - 0 . 2 7 9  - 0 . 2 5 5  - 0 . 1 2 8  0.023 

8 Uzbekistan - 0 . 1 2 8  0.258 - 0 . 2 8 6  - 0 . 3 0 3  - 0 . 3 1 0  - 0 . 2 9 7  - 0 . 2 8 0  - 0 . 2 5 7  - 0 . 1 2 7  0.026 

10 Russia - 0 . 1 2 0  - 0 . 2 6 0  - 0 . 2 8 0  0.290 - 0 . 2 9 0  - 0 . 2 8 0  - 0 . 2 7 0  - 0 . 2 4 0  - 0. I00 - 0 . 0 2 5  

12 Czech - 0 . 1 2 8  - 0 . 2 5 6  - I ) .282  - 0 . 2 9 9  - 0 . 3 0 8  - 0 . 2 9 3  - 0 . 2 7 7  0.255 - 0 . 1 2 7  - 0.021 

13 Germany - 0 . 1 2 1  - 0 . 2 4 8  - 0 . 2 7 5  0.291 - 0 . 2 9 9  0.285 - 0 . 2 7 0  0.247 - 0 . 1 2 1  0.019 

14 Russia 0.126 - 0 . 2 6 8  0.297 - 0 . 3 1 1  - 0 . 3 1 8  - 0 . 3 0 2  - 0 . 2 8 5  - 0 . 2 5 9  - 0 . 1 2 0  - 0 . 0 0 8  
15.1 Russia 0.112 - 0 . 2 3 5  - 0 . 2 6 3  - 0 . 2 7 8  -11.281 - 0 . 2 7 2  - 0 . 2 5 7  - 0 . 2 3 4  - 0 . 1 0 7  0.000 

15.2 Russia - 0 . 0 9 9  0.228 - 0 . 2 5 8  0.274 - 0 . 2 7 9  - 0 . 2 6 7  - 0 . 2 5 1  - 0 . 2 2 6  - 0 . 0 9 7  /).1100 

16 Russia - -  - 0.249 - 0.276 - 0.291 - 0.299 - 0.285 - 0.270 - 0.248 - -  

18 Germany - -  - 0 . 2 4 7  - 0 . 2 7 2  0.289 - 0 . 2 9 7  - 0 . 2 8 3  - 0 . 2 6 8  - 0 . 2 4 7  - -  

19 Germany - 0 . 1 2 7  - 0 . 2 6 5  - 0 . 2 9 5  - 0 . 3 1 5  - 0 . 3 2 1  - 0 . 3 0 8  - 0 . 2 9 0  11.264 - -  

24 Russia - 0 . 1 2 7  - 0 . 2 5 8  - 0 . 2 8 6  - 0 . 3 0 2  - 0 . 3 0 5  0.277 - 0 . 2 3 6  0.264 - 0 . 1 2 5  0.021 
25 Russia - 0 . 1 2 4  - 0 . 2 5 2  0.281 - 0 . 2 9 5  - 0 . 3 0 3  0.289 - 0 . 2 7 4  - 0 . 2 5 0  - 0 . 1 2 2  0.013 

26 Russia - 0 . 1 3 3  - 0 . 2 5 8  - 0 . 2 8 7  - 0 . 3 0 6  0.315 - 0 . 3 0 1  - 0 . 2 8 1  - 0 . 2 5 5  - 0 . 1 3 3  - 0 . 0 1 1  
Average (0 )  --0.123 - 0 . 2 5 3  --0.280 0.297 - 0 . 3 0 3  0.289 --0.271 - 0 . 2 5 0  - 0 . 1 1 9  0.017 

St. dev. (0) 0.009 0.011 0.011 0.011 0.012 0.012 /I.014 0.011 0.012 0.010 

A v e r a g e ( l )  - 0 . 1 2 5  - 0 . 2 5 5  - 0 . 2 8 2  - 0 . 2 9 7  0.303 - 0 . 2 8 9  - 0 . 2 7 4  - 0 . 2 5 2  -11.119 - 0 . 0 1 7  
St. dev. (1) 0.005 0.008 0.009 0.011 0.012 0.012 0.010 0.009 0.012 O.010 
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Table B.16 (continued) 

Par t ic ipant /x  = - 42.0 - 22.0 - 14.0 - 4.0 2.0 10.0 16.0 22.0 42.0 80.0 

Re H x 
3 Canada 0.958 1.043 1.077 1.022 0.944 1.029 1.081 1.049 0.959 1.005 

6 Poland 0.949 1.041 1.075 1.020 0.944 1.027 1.078 1.048 0.950 0.995 

8 Uzbekistan 0.958 1.047 1.079 1.024 0.944 1.031 1.084 1.052 0.959 1.003 

10 Russia 0.930 1.050 1.050 1.020 0.930 0.990 1.050 1.040 0.950 0,990 

12 Czech 0.943 1.040 1.070 1.020 0.943 1.030 1.080 1.050 0.944 0.988 

13 Germany 0,952 1.048 1.074 1.025 0.944 1.032 1.080 1.053 0.953 1.001 

18 Germany - -  1.058 1.087 1.036 0.953 1.043 1.093 1.063 - -  - -  

19 Germany 0,959 1.033 1.075 1.014 0.940 1.020 1.077 1.036 - -  - -  
24 Russia 0,961 1.033 1.081 1.010 0.937 1.027 1.123 1.040 0.963 1,005 

25 Russia 0.956 1.046 1.062 1.003 0,969 1.039 1.064 1,045 0.963 1.001 

26 Russia 0.961 1.051 1.058 1.029 0.998 1.033 1.056 1,039 0.967 1.003 
Average (0) 0,953 1.045 1.072 1.020 0.950 1.027 1.079 1.047 0.956 0,999 

St. dev. (0) 0.010 0.008 0.011 0,009 0.019 0,014 0.019 0.008 0.008 0.006 

Average (1) 0,955 1,045 1.072 1.020 0,945 1,031 1.074 1.045 0.956 0.999 

St. dev. (1) 0.006 0.008 0.011 0,009 0.010 0.006 0.013 0.006 0.008 0.006 

Im H~ 

3 Canada - 0,059 0.137 0.178 0.121 0.071 0. t31 0.179 0.140 - 0 . 0 5 8  - 0 . 0 3 4  

6 Poland - 0 . 0 4 8  0,148 0.189 0,132 0.084 0,142 0.189 0.151 - 0 . 0 4 8  - 0 . 0 1 5  

8 Uzbekistan - 0 , 0 5 8  0.142 0.182 0.124 0.073 0.134 0.184 0.145 - 0 . 0 5 8  - 0 . 0 2 2  

10 Russia - 0 . 0 2 8  0.190 0.180 0.140 0,090 0.130 0,190 0.170 - 0 . 0 3 1  - 0 . 0 1 3  

12 Czech - 0 . 0 0 4  0.159 0.192 0,140 0.094 0,150 0.194 0.162 - 0 . 0 3 9  - 0 . 0 0 7  

13 Germany - 0 . 0 4 7  0,160 0.196 0.140 0.091 0,150 0,198 0.162 - 0 , 0 4 7  - 0 . 0 1 8  

18 Germany - -  0.146 0,183 0.127 0.079 0.138 0.185 0.149 - -  - -  

19 Germany - 0 . 0 5 8  0.134 0.182 0,121 0.069 0.131 0,182 0.135 - -  - -  

24 Russia - 0 , 0 5 7  0.136 0.190 0,126 0.074 0.141 0.157 0.138 - 0 . 0 5 6  - 0 . 0 2 2  

25 Russia - 0 . 0 4 1  0.148 0,171 0,115 0.097 0.144 0.170 0.142 - 0 . 0 3 8  - 0 . 0 1 4  

26 Russia - 0 . 0 2 8  0.134 0.148 0,125 0.109 0.127 0.135 0.099 - 0 . 0 2 6  - 0 . 0 1 3  

Average (0 )  - 0 , 0 4 3  0,149 0.181 0,128 0.085 0.138 0.178 0.145 - 0 , 0 4 5  - 0 . 0 1 8  

St. dev. (0) 0,018 0.017 0.013 0,009 0.013 0.008 0.018 0.019 0.012 0.008 

Average (1) - 0 . 0 4 7  0.144 0,184 0A28 0.085 0.138 0.183 0.149 - 0 . 0 4 5  - 0 . 0 1 5  

St. dev. (11 0,012 0.010 0.007 0~009 0.013 0.008 0,012 0.012 0,012 0.005 

Table B.17. Model 2D-2 ( T =  10.0, z = 0) 

Par t ic ipant /x  = - 42.0 - 14.0 - 4.0 2.0 10.0 16.0 22.0 

p,~ (EP) 

3 Canada 105.00 42.10 51.00 66.10 51.50 44.50 54.10 

5 Finland 87.80 41.50 50.40 62.00 50.20 43.90 53.50 

6 Poland 106.30 41.90 50.50 65.00 50.90 44.20 53.60 

7 Hungary - -  40.80 48.60 63.80 48.90 42.80 - -  

8 Uzbekistan 104.47 41.66 50.07 65.03 50.45 43.85 53.12 

10 Russia 97.32 39.70 45.38 62.60 52.89 43.51 48.06 

11 Russia 105.00 41.80 49.90 64.50 50.60 44.10 53.20 

12 Czech 107.50 41.17 48.65 63.47 49.03 43.22 51.96 

13 Germany 104.40 38.76 47.52 81.92 47.68 41.78 50.38 

14 Russia 105.00 38.90 43.90 60.40 44.00 40.30 45.50 

15.1 Russia 104.80 39.40 46.50 61.70 46.90 41.30 49.30 

15.2 Russia 105.40 41.40 51.70 69.10 52.00 43.50 54.10 

16 Russia - -  39.33 46.92 62.83 46.20 41.05 49.52 
18 Germany - -  39.87 47.46 62.14 47.86 41.96 51.10 

19 Germany 105.79 44.08 54.51 70.12 55.17 47.07 57.64 

Average (0) 103.23 40.82 48.87 65.38 49.62 43.14 51.79 

St. dev. (01 5.45 1.47 2.70 5.29 2.84 1.69 3.07 
Average (1) 104.63 40.59 48.46 64.20 49.62 42.85 52.28 
St. dev. (1) 2.59 1.21 2.29 2.76 2.84 1.34 2.57 
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Table B. 17 (continued) 

Par t ic ipant /x  = - 42.0 - 14.0 - 4.0 2.0 I 0.0 16.0 22.0 

p~, (HP) 

5 Finland 108.50 44.60 72.10 97.00 75.10 54.90 76.81/ 

6 Poland 95.20 4(}.65 63.83 85.81 66.30 49.45 68.02 

8 Uzbekistan 98.79 43.35 66.86 88.97 69.39 52.15 71.13 

11 Russia 98.00 43.40 66.90 88.61/ 69.10 52.20 7(}.80 

l 2 Czech 98.62 44.45 68.82 89.67 71.53 54.14 73.66 

16 Russia - -  43.19 60.53 84.58 59.10 47.75 65.10 

18 Germany 46.56 72.89 95.64 76.08 56.87 78.17 

20 Russia 99.60 41.80 64.70 87.90 67.00 5(}.05 68.60 

Average (0) 99.78 43.50 67.08 89.77 69.20 52.19 71.54 

St. dev. (0) 4.53 1.811 4.16 4.39 5.38 3.04 4.46 

Average ( 1 ) 99.78 43.50 67.08 89.77 69.20 52.19 71.54 

St. dev. (1) 4.53 1.80 4.16 4.39 5.38 3.04 4.46 

Table B.18. Model 2D-2 (EP, T -  1000.0, ~ - 0) 

Par t ic ipant /x  = 42.0 - 22.0 14.0 4.0 2.0 10.0 16.0 22.0 42.0 80.0 

Re E ,  

3 Canada 0.581 (}.418 0.360 1/.361} 0.377 0.385 0.400 0.442 0.594 I).743 

6 Poland 0.593 0.427 0.369 0.368 0.385 0.394 (}.409 0.451 (}.606 0.759 

8 Uzbekistan 0.582 0.419 0.361 0.361 0.377 0.386 0.401 0.442 0.595 0.743 

9 Russia - -  0.419 0.361 0.360 0.377 0.386 0.401 0.442 --- 

1 I Russia 0.583 0.417 0.359 0.359 0.375 0.384 0.400 0.441 0.596 0.747 

12 Czech 0.589 0.423 1/.365 0.364 0.382 0,390 0.405 (}.447 0.602 1/.755 

I3 Germany 0.617 0.432 0.367 0.366 0.384 0.394 1/.411/ 0.457 0.630 1/.796 

15. I Russia 0.582 0.415 0.357 0.356 0.372 0.383 (}.399 0.440 0.595 0.749 

15.2 USR 0.585 0.417 0.36(/ 0.358 0.373 0.384 0.401 0.441 0.597 I).752 

16 Russia 0.477 0.407 0.405 0.425 0.437 1/.457 0.507 

19 Germany 0.579 0.411 0.352 0.351 (}.368 0.377 0.393 0.426 - -  

21 Canada 0.562 0.315 0.176 0.241 0.310 0.270 0.234 0.343 I).576 0.739 

22.1 Canada 0.588 1t.426 0.368 0.367 0.383 0.391 1/.405 0.447 0.600 0.750 

24 Russia 0.585 1/.420 0.362 0.361 (}.378 0.386 0.401 0.443 1/.598 0.749 

25 Russia 0.691 0.488 0.417 0.414 0.433 0.444 0.464 0.513 0.704 0.915 

26 Russia 0.689 0.483 0.419 0.411 0.429 0.447 0.472 0.522 0.704 (}.916 

Average (0) 0.600 0.425 0.360 0.363 (}.383 0.390 0.403 0.450 0.615 0.778 

St. dev. (0) 0.040 0.039 0.054 0.038 0.029 0.039 0.052 0.041 0.041 0.063 

Average (1) 0.586 0.433 0.372 0.371 0.388 0,398 0.415 0.457 0.599 0.753 

St, dev. ( I )  0.012 0.026 (}.(}22 0.021 0.022 0.024 0.026 0.030 0.013 0.015 

lm E~, 
3 Canada 0.109 0.199 0.228 0.230 0.225 0.228 0.224 0.2(}2 (}. 112 0.037 

6 Poland 0. I07 0.198 0.228 0.230 0.225 0.227 0.229 0.202 0.110 0.033 

8 Uzbekistan 0.104 0.195 0.224 (}.226 0.221 (}.224 0.220 0.198 0.107 1/.(}33 

9 Russia 0.193 0.223 1/.225 0.220 0.223 0.218 0.195 - -  

11 Russia 0.103 (}.194 (}.223 0.226 0.221 (}.223 0.219 0.197 0.11/6 0.030 

12 Czech 0.113 0.205 0.234 0.236 0.231 0.234 0.230 0.208 0.115 0.038 

13 Germany 0.150 0.239 0.267 0.270 0.266 0.269 0.265 0.244 0.152 1/.071 

15.1 Russia 0,122 0.211 0.239 0.243 0.238 0.241 (}.236 0.216 0,125 0.050 

15.2 Russia 0.116 0.203 0.230 0.233 0.229 (}.232 0.227 0.207 0,119 0.045 

16 Russia - -  0.251 (}.283 0.288 0.283 1/.286 0.281 0.256 - -  
19 Germany 0.102 O. 194 0.223 0.225 0.220 0.223 0.219 0.196 - -  
21 Canada 1/.119 0.277 0.338 0.309 0.272 0.314 0.345 1t.285 0.121 0.035 

22.1 Canada 0.098 0.185 0.213 0.216 0.211 0.213 0.210 0.189 0.101 0.028 

24 Russia 0.103 0.193 0.222 0,224 0.219 0.222 0.218 0.196 0.105 0.031 

25 Russia 0.135 0.239 0.273 0.276 0.271 0.274 0.268 0.244 (). 138 0.036 

26 Russia 0.145 /).255 0.287 0.293 0.290 0.289 0.282 0.256 0.150 0.039 
Average (0) 0.116 0.214 0.246 0.247 /).240 0.245 0.243 0.218 0.120 0.039 
St. dev. (0) 0.017 0.028 0.034 0.030 0.026 0.031 0.036 0.029 0.1117 0.01 I 

A v e r a g e ( l )  0.114 0.210 0.240 0.243 0.240 0.241 1/.236 0.214 0.120 0.036 

St. dev. (11 0.014 0.023 0.025 0.026 0.026 0.025 0.025 0.024 0.017 0.006 
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Table  B.18 (cont inued)  

Pa r t i c i pan t / x  = - 42 .0  - 22.0  - 14.0 - 4 .0  2.0 l 0.0 16.0 22.0 42.0  80.0 

Re H~ 

3 Canada  1,038 1.846 2 ,312 1.986 1.697 1.936 2 .124  1.805 1.030 0 .917 

6 Poland 1.048 1.892 2 ,357 2 .020  1.731 1.972 2 .164  1.849 1.040 0 .926  

8 Uzbekis tan  1.028 1.858 2.325 1.984 1.690 1.938 2 .138  1,818 1,022 0 ,920  

9 Russia - -  1.851 2 .299  1.974 1.695 1.932 2 .118 1.808 - -  - -  

I 1 Russia 1.030 1.850 2 .310 1.980 1.700 1.930 2 .130  1.820 1.020 0 .914  

12 Czech 1.050 1.880 2 .340  2 .020  1.720 1.960 2 .150  1.830 1.040 0.925 

13 Germany 1.105 1.998 2 .480  2.131 1.831 2 .086  2 .289  1.957 1.096 0 .966  

19 Germany 1.036 1.865 2 ,320  1.988 1,705 1.943 2 .132 1.838 - -  - -  

21 Canada 0 .868  1.705 3 .302 1.792 0 .864  1.976 3 .522 1.751 0 .869  0 .882  

22 Canada  1,027 1.855 2.355 1.984 1,631 1.945 2 .199 1.830 1.021 0 .917 

22.1 Canada  1.033 1.826 2 .274  1.972 1.686 1.930 2 .110  1.798 1.027 0 .918 

24 Russia 1.036 1.853 2 .302 1.975 1,695 1.929 2.115 1.812 1.029 0 .918 

25 Russia 1,204 2 .208 2.571 2 .179  2 ,040  2 .246 2 .308  2 ,084 1,194 1.023 

26 Russia 1.242 2 .100  2 .372 2 .254  2 ,090  2.125 2 .095 1.827 1.230 1.021 

Average  (0) 1.057 1.899 2.423 2.017 1.698 1.989 2.257 1.845 1.051 0 .937 

St. dev. (0) 0 .090 0.125 0 .265 0 .110  0 ,276 0.095 0 3 7 0  0.082 0.091 0 .044  

A v e r a g e ( I )  1.058 1.875 2.355 2 .016 1.762 1.969 2.159 1.826 1.051 0 .937 

St. dev. (1) 0 .053 0 .092 0 .082 0.068 0 .142 0.063 0 .067 0 .046 0.091 0 .044 

Im Hx 

3 Canada  0 .058 - 0 .008 0 .023 0 .035 0,025 - 0 .040  - 0 .090 - 0 .072 0.487 0.413 

6 Poland 0.06 l - 0 .004 0 .025 0.038 0.027 - 0 .039 - 0 .089 - 0 .070  0 .052 0.045 

8 Uzbekis tan  0 .062 - 0 .005 0.025 0.038 0 .028 - 0 .038 - 0 .089 - 0 .070 0 .054 0.045 

9 Russia - -  - 0,001 0.025 0.037 0 ,022 - 0 , 0 5 0  - 0 . 0 8 4  - 0 . 0 5 1  - -  - -  

11 Russia 0 ,057  - 0 .003 0 .029 0 ,040  0 ,026  - 0 ,037 - 0 ,084 - 0 ,068 0.048 0 ,040 

12 Czech 0.061 - 0 . 0 1 6  0 .030  0.037 0 .026 - 0 , 0 4 1  - 0 , 0 8 8  - 0 , 0 7 7  0.053 0 .046 

13 Germany 0,081 0 .082  0 .154  0 .140  0 .104 0 .053 0,015 0 .006 0 ,070 0 .050  

19 Germany 0,057 0 .002 0.031 0 ,044  0 .030  - 0 ,033 - 0 .082 - 0 .040 - -  - -  

21 Canada 0.073 - 0 . 2 1 2  0 ,150 - 0 , 0 5 1  0 .100  - 0 . 1 3 9  - 0 . 1 5 6  - 0 . 2 5 8  0 .072 0.043 

22 Canada 0 ,057 - 0 ,020 0 .029 0.033 0 .028 - 0 ,043 - 0 ,095 - 0 ,085 0.049 0 .040 

22.1 Canada 0 ,055 - 0 , 0 0 2  0 .039 0 ,044 0.031 - 0 . 0 2 8  - 0 . 0 6 6  - 0 . 0 6 l  0 ,047 0 .039 

24 Russia 0 .056  0 .004  0.023 0 ,037 0 .026 - 0 ,037 0 ,086 - 0 ,067 0,048 0 .040 

25 Russia 0 ,036  - 0 .004 0 .034  0 .032 0.023 - 0 .054 - 0 .092 - 0 ,080  0 ,024 0 .012 

26 Russia 0 ,030 - 0 .010 0 ,005 0 .014  - 0 , 0 0 6  - 0 , 0 5 4  - 0 . 0 8 1  - 0 . 0 6 1  0 .014 0.011 

A v e r a g e ( 0 )  0 .057 - 0 , 0 1 5  0 ,044 0,037 0 .035 - 0 . 0 4 1  - 0 . 0 8 3  - 0 . 0 7 5  0.085 0,069 

St. dev. (0)  0 .013 0 .062 0 .046 0.038 0 .030  0.038 0,035 0.057 0 .128 0 .109 

A v e r a g e ( l )  0 ,059 0.001 0 .026 0 .036 0 ,024 0.041 - 0 , 0 8 5  - 0 . 0 6 1  0 ,048 0.037 

St. dev. (1) 0,011 0 .025 0 ,008 0 .008 0 .010 0 .008 0.007 0,023 0,017 0,013 

Re H:  

3 Canada  - 0 ,626 - 0 .948 - 0 .405 0.261 0.183 0 ,064 0 .454  0 ,869 0.601 0.271 

6 Poland - 0 , 6 2 7  - 0 , 9 6 9  - 0 . 4 0 9  0.273 0 .187 0 ,058 0 .458 0 ,889 0,603 0.272 

8 Uzbekis tan  - 0 . 6 0 8  - 0 , 9 5 7  - 0 , 4 0 4  0 ,269 0 .186  0.057 0,451 0 .879 0.585 0.235 

9 Russia - -  - 0 . 9 6 8  - 0 . 4 0 8  0 .272 0 ,185 0.055 0 .460 0 ,890 - -  - -  

11 Russia - 0 . 6 3 0  - 0 . 9 6 5  - 0 . 4 0 9  0,265 0 .184 0 .062 0 .458 0.885 0,605 0 .274 

12 Czech - 0 , 6 3 7  - 0 , 9 3 6  - 0 . 4 0 7  0 .259 0 .186 0.081 0 ,460 0 .863 0.611 0 .279 

13 Germany - 0 .662  - 1.040 - 0 ,440 0 ,279 0 .194 0.068 0 .494 0,955 0,635 0,282 

19 Germany - 0 , 6 3 1  - 0 . 9 8 3  - 0 , 4 1 3  0,278 0 .188 0 ,054 0.461 0 ,929 - -  - -  

21 Canada  - 0 . 6 5 5  - 3 . 0 4 8  0,463 2 .152 0 ,318 - 1.876 0 ,460 3,042 0 .630  0 .262 

22 Canada - 0 , 6 2 1  - 1.047 - 0 , 4 1 3  0 .348 0 .196  - 0 . 0 2 5  0 ,454 0,977 0,597 0,273 

22.1 Canada - 0 , 6 1 5  - 0 . 9 6 0  - 0 . 4 0 8  0 ,260 0 .177 0 ,052 0 ,454 0.887 0 .594 0 .270 

24 Russia - 0 .625 - 0.971 - 0 ,407 0 ,278 0.187 0 ,053 0,455 0 .890  0.597 0 .267 

25 Russia - 0 . 7 6 9  - 1.096 - 0 , 3 4 9  0 .295 0,263 0.173 0 .599 0,998 0.765 0 .433 

26 Russia - 0 . 8 1 7  - 0 , 8 1 5  - 0 , 5 3 6  0 .068 0 ,242 0,301 0 .587 1.044 0.853 0 .432 

Average  (0) - 0 . 6 5 6  - 1.122 - 0 . 4 1 9  0 .397 0 .205 - 0 . 0 5 9  0,479 1.071 0 ,640  0 ,296 

St. dev. (0)  0 ,063 0 ,558 0.041 0 .509 0.041 0 .528 0 .049 0 .570  0,083 0,065 

A v e r a g e ( l )  - 0 , 6 4 2  - 0 , 9 7 3  - 0 . 4 1 0  0 .262 0,197 0.081 0 ,460 0 .920  0 .620 0,269 

St. dev. ( I )  0 ,043 0 .066  0.025 0.063 0 ,026 0 ,078 0.011 0 ,057 0 ,050 0.013 



2 0 6  M.S. Zhdanou et a l . /  Journal of  Applied Geophysics 37 (19971 133-271 

Table  B. 18 (continued) 

Pa r t i c ipan t /x  = - 42.0 - 22.0 - 14.0 - 4.0 2.0 10.0 16.0 22.0 42.1/ 80.0 

lm H.  

3 Canada 0 .019 11.036 - 0 .003 0 .034 0 .056 0 .070 0.019 - 0,061 - 0.035 1).015 

6 Poland 0 .018 0 .036  0.003 0 .034 0.057 0.071 0.019 0 ,062 - 0 .034 0.015 

8 Uzbekis tan  0 .018 0 .038 - 0 . 0 0 4  0.033 0.055 0 .070 0,019 - 0 . 0 6 4  11.033 0.021 

9 Russia - -  0 ,034 - 0 . 0 0 3  0.037 0 .060 0 .064 - 0.001 - 0 . 0 6 5  - -  - -  

~1 Russia 0 .016 0 .030  - 0 . 0 0 5  0.037 0 .058 0 .070 0 .020 - 0 . 0 5 8  - 0 . 0 3 2  0 .016 

12 Czech 0.022 0 .030 - 0 . 0 0 5  0.037 0 .058 0.069 0 .020 - 0 . 0 5 7  - 0 .038 0 .014 

13 Germany - 0 . 0 0 6  - 0 . 0 2 9  0 .030 0.061 0 .074 0.073 0.045 - 0 . 0 1 6  0.011 

19 Germany 0.012 0 .030 - 0 .007 0.035 0.1159 0,073 0.022 0.045 

21 Canada 0.012 0.258 - 0 . 1 5 6  0,032 0.073 0 .286 11.144 - 0 . 4 1 5  0.030 0.022 

22 Canada 0 .018 0 .046 - 0.011 0.033 0 .056 0 . 0 8 l  0 .023 - 0 . 0 8 0  - 0 . 0 3 4  0,015 

22.1 Canada 0.011 0.026 0 .010 0 .034 0 .054 0 .066 0.022 - 0 . 0 5 2  - 0 . 0 2 6  0.018 

24 Russia 0 .015 0.1135 - 0 . 0 0 5  0.032 0 .056 0.072 0 .020 - 0 . 0 6 1  - 0 . 0 3 1  0.017 

25 Russia 0 .000 0 .004 - 0 .007 0.051 0.062 0.079 0 .030 - 0 ,036 11.1124 0.019 

26 Russia 0 .018 0.031 - 0.001 0.037 0.077 0,043 0 .029 0.058 - 0 .055 0.006 

Average (0) 0 .013 0.043 - 0 . 0 1 8  0.1/38 0.061 0.085 0.031 - 0 . 0 8 0  - 0 . 0 3 2  0.016 

St. dev. (0) 0 .008 0.065 0 .040 0.008 0 .008 0.059 1/.034 0.098 I).01/9 0 .004 

Average ( 1 ) 0.015 0.027 - 0 .007 ll~036 0 .060 0 .069 0 .022 - 0 .055 0 .030 0.017 

St. dev. (1) 0 .006  0.019 0.007 0.005 0 .006 0 .009 0 .010 0,016 0 .006 0.003 

Table  B.19.  Model  2D-2 (HP, T =  1000.0, z = 0) 

Pa r t i c i pan t / x  = 42.0  - 22.0 - 14.0 - 4.0 2.0 10.0 16.0 22.0  42.0  80.0 

Re E x 

3 Canada  1.096 0 .905 0 .392  0 .932 1.201 0 .942  0.613 0 .903 1.1178 1.023 

6 Poland 1.095 0 .859  0 .373 0 .897  1.200 0 .914  0 .592  0 .862 1.076 1.(/17 

8 Uzbekis tan  1.107 0 .870  0 .378 0 .910  1.214 0 .927 0 .600  I).874 1.089 1.031 

12 Czech 1.090 0.921 0 .436  0 .913 1.160 0 .948 0 .677 0.913 1.070 1.1120 

19 Germany 1.086 0 .817 0 .356 0 .815 1.130 0 .798 0.533 0 .796  1.051 1.011 

20 Russia 1.090 0 .840  0 .358 0 .860  1.195 0 .900  0.571) 0 .840  1.080 1.008 

21 Canada  1.193 0 .033 0.013 0 .030  1.765 0 .025 0.011 0.031 1.173 I .(140 

22 Canada  1.095 0 .902 0 .300  0 .918 1.248 0 .923 0.483 0 .894  1.1176 1.019 

22.1 Canada 1.094 0.831 0 .396  0 .823 1.181 0 .849 0.618 0.911 1.071 1.018 

25 Russia 1.081 0 .869  0 .385 0 .936 1.177 0 .949 0 .615 0 .883 1.061 1.1)03 

26 Russia 1.083 0 .933 (I.414 0 .923 1.201 0 .932 0 .642  0.931 1.063 1.010 

Average  (0) 1.101 0.798 0 .346 0 .814 1.243 0.828 0.541 0.803 1.081 1.018 

St. dev. (01 0.031 0.257 0 .116 0.263 0 .176 0 .270 0.183 0.259 0.032 0.011 

Average  ( I )  1.092 0.875 0.379 0.893 1.191 0.908 0 .594 0.881 1.071 1.016 

St. dev. ( I ) 0 .008 0.039 0,037 0 .044 0.032 0.049 0.055 0 .040 0.011 0.008 

Im E x 

3 Canada 0 .009  0 .002 - 0 .023 /).004 0.018 0.005 - 0.0 l 2 0.001 0.007 0.001 

6 Poland 0.021 0 .010 - 0 . 0 1 9  0.013 0.031 0.013 - 0 . 0 0 6  0 .009 0.019 0.012 

8 Uzbekis tan 0.023 0 .010 - 0 .019 0.013 0 .032 0.014 - 0 . 0 0 6  0 .010 11.021 0.l)14 

12 Czech 0.012 0 .004 - 0 .020 0.004 0.017 0.005 0 .008 0.003 0 .010 0 .004 

19 Germany 0.012 0 .000 - 0 . 0 2 4  0 .000 0.015 - 0 . 0 0 5  - 0 .017 - 0 . 0 0 5  0.006 0.003 

20 Russia 0.013 0.002 - 0 . 0 2 3  0.006 0.023 0 .006 - 0 . 0 1 2  0.002 0.011 11.002 

21 Canada 0 .030 0.001 0 ,000 0.001 0 .056 0.001 0 .000 0,001 0 .028 0.013 

22 Canada 0 .016 0.005 0.027 0.005 0.028 0.005 0.017 0.007 0 .014 0.007 

22.1 Canada 0.017 0.000 - 0 . 0 2 3  0 .000 0.023 0.001 - 0.011 0.007 0.013 0.006 

25 Russia 0 .018 0 .010 - 0 . 0 1 5  0 .014 0.025 0 .014 - 1 / . 0 0 4  0.009 0.015 0.010 

26 Russia 0 .007 0.001 - 0 . 0 2 5  0.001 0.014 0 .000 - 0 . 0 1 5  0.001 0 .006 0.00(1 

Average  (0) 0 .016 0 .004 0 .020 0 .006 0.026 0 .005 0 .010 0.004 0 .014 0.007 

St. dev. (0) 0.007 0 .004 0.007 0.005 0.012 0 .006 0 .006 0.005 0.007 0.005 

Average  (1) 0 .015 0 .004  - 0 .022 0.006 0.023 0.005 - 0 .010 0.004 0.012 0.007 

St. dev. (1) 0 .005 0 .004  0 .004 0.005 0 ,006 0 .006 0 .006 0.005 0.005 0.005 
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Table B.20. Model 2D-2 (T  = 1000.0, z = 0) 

Pa r t i c ipan t /x  = - 42.0 - 14.0 - 4.0 2.0 10.0 16.0 22.0 

Pa (EP) 
3 Canada  20.30 2.14 

5 Finland 16.10 2.00 
6 Poland 20.70 2.10 
8 Uzbekis tan  20.69 2.10 
9 Russ ia  - -  2.14 
11 Russ ia  20.80 2.12 
12 Czech  20.47 2.14 
13 Ge r m any  20.35 2.06 
15.1 Russ ia  20.90 1.82 
15.2 Russ ia  21.30 1.80 
16 Russ ia  - -  1.96 
19 Ge r m any  20.16 2.03 

21 Canada  22.60 0.70 
22 Canada  20.87 2.01 
22.1 Canada  20.89 2.19 
Average  (0) 20.47 1.95 
St. dev. (0) t .45 0.37 
Average  ( 1 ) 20.84 2.04 

St. dev. (1) 0.64 0.12 

p,, (HP)  
5 Finland 79.00 10.40 
6 Poland 75.37 8.74 
8 Uzbekis tan  77.00 9.02 

11 Russ ia  77.30 9.18 
12 Czech  74.06 11.96 
16 Russ ia  - -  4.02 
20 Russ ia  79.00 8.50 
22 Canada  75.26 5.71 

22.1 Canada  75.10 9.87 
Average  (0) 76.51 8.60 
St. dev. (0) 1.86 2.40 

Average  ( l )  76.51 8.60 
St. dev. (1) 1.86 2.40 

2.90 4.20 3.36 2.93 4.54 
2.90 3.80 3.00 2.90 4.80 

2.90 4.20 3.30 2.90 4.50 
2.89 4.20 3.33 2.87 4.46 

2.90 4.16 3.34 2.91 4.48 
2.89 4.17 3.34 2.90 4.47 
2.91 4.20 3.37 2.94 4.53 
2.80 4.02 3.23 2.82 4.34 
2.68 4.21 3.05 2.51 3.97 
2.74 4.44 3.09 2.50 3.99 
2.75 4.11 3.18 2.72 4.42 
2.76 3.97 3.19 2.79 4.09 

2.50 11.70 2.30 0.70 3.30 
2.88 4.53 3.29 2.68 4.39 
2.92 4.22 3.35 2.94 4.57 
2.82 4.68 3.18 2.67 4.32 

0.12 1.95 0.27 0.56 0.36 
2.84 4.17 3.24 2.81 4.40 

0.08 0.18 0.12 0.15 0.23 

54.00 92.00 56.00 25.70 50.50 
50.52 90.49 52.52 22.11 46.66 
51.98 95.55 54.01 22.61 47.91 
52.60 92.80 54.00 22.90 48.10 
52.37 84.90 56.38 28.77 52.32 

34.52 75.73 31.33 l 1.60 33.77 
51.50 95.00 53.70 21.60 47.20 
52.87 97.80 53.43 14.69 50.19 
42.52 87.56 45.31 23.98 52.12 
49.21 90.20 50.74 21.55 47.64 

6.45 6.74 7.95 5.30 5.60 
51.05 92.01 53.17 21.55 49.37 

3.59 4.28 3.43 5.30 2.20 

Table B.21. Model  2D-3A (EP, T =  100.0, z = 0) 

Pa r t i c ipan t /x  = - 40.0 - 25.0 - 20.0 - 15.0 - 5.0 0.0 5.0 15.0 20.0 25.0 

Re Ey 
2 Canada  0.848 0.622 0.489 0.375 0.401 0.535 0.671 0.847 0.904 0.943 
3 Canada  0.848 0.623 0.489 0.375 0.401 0.535 0.672 0.848 0.904 0.943 
6 Poland 0.851 0.625 0.491 0.376 0.402 0.536 0.673 0.849 0.905 0.944 
8 Uzbekis tan  0.853 0.624 0.488 0.373 0.399 0.532 0.670 0.847 0.903 0.943 
l0  Russia  0.870 0.640 0.500 0.380 0.400 0.540 0.680 0.860 0.920 0.950 
11 Russ ia  0.851 0.624 0.490 0.376 0.403 0.536 0.672 0.849 0.905 0.944 
12 Czech  0.851 0.623 0.488 0.373 0.399 0.534 0.671 0.848 0.905 0.944 

15 Russia  0.864 0.635 0.499 0.383 0.410 0.547 0.687 0.866 0.920 0.956 
16 Russ ia  0.872 0.635 - -  0.381 0.404 0.538 0.675 0.852 0.907 0.946 
17 U S A  0.851 0.625 0.491 0.376 0.402 0.535 0.672 0.848 0.904 0.942 
18 Ge r m any  0.845 0.619 0.487 0.373 0.400 0.535 0.670 0.845 0.901 0.940 
19 Ge r m any  0.859 0.637 0.502 0.389 0.415 0.548 0.686 0.861 0.916 0.953 

22 Canada  0.851 0.627 0.490 0.372 0.397 0.533 0.672 0.849 0.906 0.945 
25 Russ ia  0.827 0.607 0.493 0.386 0.413 0.531 0.656 0.830 0.894 0.936 

26 Russ ia  0.842 0.590 0.488 0.388 0.408 0.527 0.664 0.847 0.907 0.939 
Average  (0) 0.852 0.624 0.492 0.378 0.404 0.536 0.673 0.850 0.907 0.945 
St. dev. (0) 0.011 0.012 0.005 0.006 0.005 0.006 0.008 0.008 0.007 0.005 
Average  (1) 0.854 0.626 0.491 0.378 0.403 0.535 0.674 0.851 0.907 0.944 
St. dev. (1) 0.009 0.008 0.004 0.006 0.005 0.005 0.006 0.006 0.007 0.004 
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Table B.21 (continued) 

Par t ic ipant /x  = - 40.0 - 25.0 - 20.0 - 15.0 - 5.0 0.0 5.0 15.0 20.0 25.0 

lm E~, 

2 Canada 0.104 0.065 0.021 0.1178 0.065 0.035 0.180 0.259 1/.226 0.176 

3 Canada - 0.101 - 0 . 0 6 4  11.1123 0.079 0.067 - 0 . 0 3 4  - 0 . 1 8 0  0.26l) 0.226 t).176 

6 Poland 0.103 - 0 . 0 6 5  0.020 0.075 0.062 0.037 0.182 0.262 0.228 0.177 

8 Uzbekistan 0.102 - 0 . 0 6 3  0.024 0.078 0.065 0.032 0.178 0.259 0.225 0.175 

10 Russia - 0 . 0 9 0  - 0 . 0 6 0  0.030 0.080 0.070 - 0 . 0 3 0  - 0 . 1 8 0  - 0 . 2 6 0  - 0 . 2 2 0  - 0 . 1 7 0  

I1 Russia - 0 . 1 0 2  - 0 . 0 6 3  0.023 0.079 0.066 - 0 . 0 3 5  - 0 . 1 7 9  - 0 . 2 6 0  - 0 . 2 2 7  - 0.177 

12 Czech 0.101 - 0 . 0 6 2  0.024 0.079 0.066 0.032 0.178 0.259 11.225 0.175 

15 Russia - 0 . 0 7 9  - 0 . 0 4 0  0.044 0.096 0.083 - 0 . 0 1 1  0.155 0.235 0.202 - 0.152 

16 Russia - 0 . 0 9 0  - 0 . 0 4 7  - -  0.095 0.083 - 0 . 0 1 5  - 0 . 1 5 9  - 0 . 2 3 7  - 0 . 2 0 4  - 0 . 1 5 5  

17 USA - 0 . 1 0 3  - 0 . 0 6 5  0.020 0.074 0.061 - 0 . 0 3 8  - 0 . 1 8 1  - 0 . 2 6 0  - 0 . 2 2 6  - 0 . 1 7 6  

18 Germany - 0.095 - 0.056 0.032 0.086 0.073 - 0.024 - 0.174 - 0.258 - 0.225 - 0.175 

19 Germany 0.104 0.071 0.011 0.064 0.051 0.046 - 0 . 1 8 7  - 0 . 2 6 2  0.227 0.176 

22 Canada - 0 . 1 0 3  - 0 . 0 6 8  0.020 0.074 0.062 0.036 0.184 0.263 0.227 0.176 

25 Russia - 0 . 0 8 1  - 0 . 0 2 9  0.036 0.097 0.079 0.001 0.131 0.213 0.198 0.155 

26 Russia - 0 . 0 9 1  - 0 . 0 1 9  0.029 0.086 0.073 0.013 0.147 - 0 . 2 3 1  0.205 0.169 

Average(())  - 0 . 0 9 7  - 0 . 0 5 6  0.026 0.081 0.068 - 0 . 0 2 8  - 0 . 1 7 2  - 0 . 2 5 2  - 0 . 2 1 9  - 0 . 1 7 1  

St. dev. (0) 0.008 0.1115 0.008 0.009 0.009 0.012 0.016 0.015 0.011 0.009 

A v e r a g e ( l )  0.098 0.058 0.024 0.081 0.070 - 0 . 0 3 0  - 0 . 1 7 5  - 0 . 2 5 5  - 0 . 2 1 9  - 0 . 1 7 2  

St. dev. ( I )  0.007 0.012 0.006 0.009 0./108 0.010 0.012 0.011 0.011 0.008 

Re H, 
2 Canada 0.911 0.941 1.234 1.485 1.509 1. 189 0.820 0.746 0.812 0.897 

3 Canada 0.913 0.941 1.234 1.484 1.508 1.189 0.821 0.747 0.812 0.897 

6 Poland 0.905 0.942 1.228 1.437 1.459 1.187 0.827 0.745 0.809 0.890 

8 Uzbekistan 0.912 0.938 1.241 1.498 1.524 1.188 0.817 0.740 0.806 0.900 

10 Russia 0.900 0.910 1.200 1.390 1.410 1.160 0.800 0.730 0.800 0.880 

I I Russia 0.914 0.945 1.230 1.480 1.510 1.180 0.825 0.747 0.814 11.900 

12 Czech 0.898 0.937 1.200 1.390 1.410 1.160 0.827 0.746 0.806 11.883 

17 US A 0.912 0.946 1.268 1.494 1.517 1.223 0.823 0.742 0.811 0.898 

18 Germany 0.908 0.943 1.266 1.483 1.509 1.225 0.824 0.747 0.814 0.899 
19 Germany 0.915 0.449 1.249 1.465 1.489 1.210 0.827 0.749 0.818 0.902 

22 Canada 0.914 0.939 1.244 1.482 1.508 1.223 0.822 0.746 0.817 0.902 

25 Russia 0.932 1.175 1.175 1.301 1.484 1.155 0.812 0.767 I).866 0.910 

26 Russia 0.991 1.126 1.126 1.439 1.3211 1.054 0.876 0.857 0.885 0.885 

Average (0) 0.917 0.933 1.223 1.448 1.474 1.180 0.825 0.755 0.821 0.896 

St. dev. (0) 0.024 0.166 0.039 0.1157 I).060 0.045 0.017 0.032 0.025 0.009 

A v e r a g e ( l )  0.911 0.974 1.231 1.461 1.486 1.191 0.820 0.746 0.815 0.896 

St. dev. (11 0.009 0.084 0.027 0.038 0.040 11.1/25 0.008 0.008 0.017 0.009 

lm H~ 
2 Canada - 0 . 0 2 1  0.094 0.134 0.248 0.188 0.089 0.145 0.091 0.016 - 0 . 0 4 9  

3 Canada 0.018 0.096 0.135 0.249 0.189 0.089 0.146 0.092 0.1118 - 0 . 0 4 9  

6 Poland -0.0111 0.104 0.152 0.277 0.220 0.106 0.149 0.095 0.024 0.040 

8 Uzbekistan - 0 . 0 2 1  0.097 0.145 0.263 0.200 0.105 0.149 0.096 0.024 0.052 

10 Russia 0.000 0.120 0.170 0.310 0.260 0.130 0.160 0.100 0.030 - 0 . 0 3 0  

11 Russia - 0 . 0 1 8  0.097 0.138 0.250 0.189 0.092 0.147 0.094 0.018 0.050 

12 Czech 0.000 0.111 0.171 0.304 0.251 0. I26 0.149 0.097 0.031 - 0 . 0 2 8  

17 USA 0.018 0.099 0.132 0.262 0.200 0.087 0.150 0.095 0.019 (l.050 

18 Germany 0.023 0.1(ll 0.117 0.244 0.182 0.060 0.149 0.095 0.019 - 0 . 0 4 9  
19 Germany - 0 . 0 1 9  0.093 0.131 0.250 0.191 1/.083 0.140 0.087 0.014 0.052 

22 Canada - 0 . 0 1 9  0.092 0.130 0.256 0.197 0.068 0.145 11.093 0.012 I).053 
25 Russia 0.017 0.150 0.150 0.191 0.274 0.103 0.162 0.101 0.043 - 0 . 0 2 2  

26 Russia 0.076 0.138 0.138 0.267 /).164 0.134 0.135 0.061 0.043 0.043 
Average(0)  0.006 0.107 0.142 0.259 0.208 0.098 0.148 0.092 0.1124 - 0 . 0 3 7  

St. dev. (0) 0.027 0.018 0.016 0.029 0.033 0.023 0.007 0.010 0.010 0.026 
A v e r a g e ( I )  0.013 0.104 0.142 0.265 0.208 0.098 0.148 0.095 0.024 0.044 

St. dev. ( I )  0.012 0.014 0.016 0.022 0.033 0.023 0.007 0.004 ().()111 ().ill 1 
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Table  B.21 (cont inued)  

Pa r t i c i pan t / x  = - 40 .0  - 25.0  - 20.0  - 15.0 - 5.0 0 .0  5.0 15.0 20.0  25.0 

Re H :  

2 Canada  - 0 . 0 7 2  - 0 . 3 2 1  - 0 . 5 6 7  - 0 . 1 4 5  0 .240 0.731 0.428 0 .093 - 0 . 0 4 4  - 0 . 0 4 1  

3 Canada - 0 . 0 7 0  - 0 . 3 2 2  - 0 . 5 7 1  - 0 . 1 4 5  0 .242 0 .735 0 .430 0 .092 - 0 . 0 4 6  - 0 . 0 4 3  

6 Poland - 0 . 0 6 8  - 0 . 3 1 3  - 0 . 5 2 8  - 0 . 1 4 0  0 .236 0 .688 0 .420 0 .089 - 0 . 0 4 0  - 0 . 0 4 3  

8 Uzbekis tan  - 0 . 0 6 1  - 0 . 3 1 2  - 0 . 5 5 8  - 0 . 1 2 1  0.212 0 .717 0 .414 0.091 - 0 . 0 4 3  - 0 . 0 4 1  

8.4 Russia - -  - -  - 0 . 5 1 7  - -  - -  0 .675 - -  - -  - 0 . 0 3 9  - -  

8.5 Russia - -  - -  - 0.561 - -  - -  0 .720 - -  - -  - 0 .043 - -  

10 Russia - 0 . 0 6 0  - 0 . 2 9 0  - 0 . 5 4 0  - 0 . 1 3 0  0 .220  0 .700 0 .400 0 .090 - 0 . 0 5 0  - 0 . 0 5 0  

12 Czech - 0 . 0 7 0  - 0 . 3 1 9  - 0 . 5 0 3  - 0 . 1 4 8  0.245 0.661 0.427 0 .092 - 0 . 0 3 1  - 0 . 0 4 2  

17 USA - 0 . 0 7 0  - 0 . 3 1 4  - 0 . 5 3 1  - 0 . 1 4 7  0 .244 0.691 0 .420 0 .089 - 0 . 0 4 2  - 0 . 0 4 2  

18 Germany - 0 . 0 5 7  - 0 . 3 1 3  - 0 . 4 8 3  - 0 . 1 3 5  0.233 0.645 0 .426 0.093 - 0 . 0 3 3  - 0 . 0 4 1  

19 Germany - 0 . 0 6 2  - 0 . 3 0 5  - 0 . 4 8 3  - 0 . 1 3 9  0 .234 0 .640  0.413 0.083 - 0 . 0 4 2  - 0 . 0 4 7  

22 Canada  - 0 .074  - 0 .327 - 0 .525 - 0 .146 0.241 0.691 0 .426 0 .088 - 0.041 - 0 .044 

25 Russia - 0 . 0 9 2  - 0 . 3 4 0  - 0 . 3 4 0  - 0 . 3 1 9  0 .123 0.503 0 .304  0 .076 - 0 . 0 2 2  - 0 . 0 2 4  

26 Russia - 0 . 1 4 7  - 0 . 2 8 0  - 0 . 2 8 0  - 0 . 2 3 3  0 .185 0.468 0 .372 0.073 - 0 . 0 2 5  - 0 . 0 2 5  

A v e r a g e ( 0 )  - 0 . 0 7 5  - 0 . 3 1 3  - 0 . 4 9 9  - 0 . 1 6 2  0.221 0.662 0 .407 0.087 - 0 . 0 3 9  - 0 . 0 4 0  

St. dev. (0)  0 .024 0 .016 0 .086 0.057 0.035 0 .080 0 .036 0.007 0 .008 0.008 

A v e r a g e ( l )  - 0 . 0 6 9  - 0 . 3 1 6  - 0 . 5 1 6  - 0 . 1 4 8  0 .230 0.677 0 .416 0 .089 - 0 . 0 4 0  - 0 . 0 4 2  

St. dev. (1)  0 .010 0 .013 0 .060  0 .029 0 .018 0 .060  0.017 0.005 0.007 0 .006 

lm H :  

2 Canada  - 0 . 1 0 9  - 0 . 1 6 2  - 0 . 0 7 1  - 0 . 1 3 8  0.261 - 0 . 0 4 2  0.087 0.161 0 .222 0 .144 

3 Canada  - 0 . 1 1 1  - 0 . 1 6 3  - 0 . 0 7 2  - 0 . 1 3 9  0 .156  0.043 0 .087 0.161 0 .222 0 .144 

6 Poland - 0 . 1 1 0  - 0 . 1 6 9  - 0 . 1 1 0  - 0 . 1 4 1  0 .158 0 .004 0 .092 0.158 0 .204 0 .140 

8 Uzbekis tan  - 0 . 1 1 0  - 0 . 1 7 3  - 0 . 0 9 6  - 0 . 1 5 4  0.177 - 0 . 0 t 7  0 .096 0.157 0 .212 0 .140 

8.4 Russia - -  - -  - 0 . 1 3 1  - -  - -  - 0 . 0 3 0  - -  - -  0 .205 - -  

8.5 Russia - -  - -  - 0 . 0 9 1  - -  - -  - 0 . 0 2 3  - -  - -  0 .213 - -  

10 Russia - 0 .100  - 0 . 1 7 0  - 0 .100  - 0 . 1 3 0  0 .150 - 0 . 0 0 8  0 .090 0 .150  0 .200 0 .130 

12 Czech - 0 . 1 1 1  - 0 . 1 6 6  - 0 . 1 2 1  - 0 . 1 3 7  0.152 0.023 0.089 0. I59 0.197 0.141 

1 7 U S A  - 0 .  I l l  - 0 . 1 6 8  - 0 . 1 0 9  - 0 . 1 3 7  0.151 0.001 0.092 0 .158 0.207 0 .140 

18 Germany - 0 . 1 0 3  - 0 . 1 6 2  - 0 . 1 2 9  - 0 . 1 3 9  0.165 0.041 0.088 0.157 0.199 0 .139 

19 Germany - 0 . 1 1 0  - 0 . 1 7 1  - 0 . 1 3 8  - 0 . 1 4 0  0.157 0 .044 0.097 0 .159 0.199 0.138 

22 Canada - 0 . 1 1 1  - 0 . 1 6 7  - 0 . 1 2 3  - 0 . 1 4 2  0 .156 0 .016 0 .092 0 .160 0 .208 0.145 

25 Russia - 0 . 1 0 7  - 0 . 1 3 9  - 0 . 1 3 9  - 0 . 1 3 2  0 .092 0.051 0 .107 0.167 0.167 0.123 

26 Russia - 0 . 1 4 3  - 0 . 1 4 3  - 0 . 1 4 3  - 0 . 1 2 5  0 .109 0.101 0 .107 0 .167 0.135 0.135 

A v e r a g e ( 0 )  - 0 . 1 1 1  - 0 . 1 6 3  - 0 . 1 t 2  - 0 . 1 3 8  0.157 0.015 0 .094 0 .160  0 .199 0.138 

St. dev. (0) 0.011 0.011 0 .024  0 .007 0 .040 0 .039 0.007 0.005 0.023 0 .006 

A v e r a g e ( l )  - 0 . 1 0 8  - 0 . 1 6 5  - 0 . 1 1 2  - 0 . 1 3 6  0.148 0 .008 0 .094 0 .160  0 .204  0 .140 

St. dev. (1) 0 .004  0 .008 0 .024  0.005 0 .025 0.031 0 .007 0 .004 0 .014  11.004 

Table  B.22.  Model  2D-3A (HP, T = 100.0, z = 0) 

Pa r t i c i pan t / x  = - 40.0  - 25.0  - 20.0  - 15.0 - 5.0 0 .0  5.0 15.0 20.0 25.0  

Re E r 
2 Canada  0 .997  1.002 1.134 0 .265 0 .250  0 .043 4 .029  3.991 4 .376  0 .705 

3 Canada  0 .997 1.001 1.134 0 .265 0 .250  0 .043 4 .017  3 .986 4 .370  0 .706  

6 Poland 0 .987 0 .995 1.132 0 .254  0 .239  - -  3 .990  3 .950 4 .260  0 .669 

8 Uzbekis tan  0 .999  1.010 1.150 0 .266  0 .239  0 .052  4 .020  4 .110  4 .300  0.715 

10 Russia 0 .960  0 .970  - -  0 .260  0 .240  - -  4 .020  3 .990 - -  0 .700  

12 Czech 0 .999  1.010 - -  0 .266  0.251 - -  4 .030  3 .980 - -  0 .708  

17 U S A  0 .997  1.005 - -  0 .267  0 .253 - -  3 .999 3.955 - -  0 .712  

18 Germany  0 .987  0 .997  - -  0 .262  0 .247 - -  3 .996 3.937 - -  0 .704  

22 Canada  0 .998  1.001 1.138 0 .267 0 .254  0 .043 3 .996 3 .950 4.321 (I.720 

25 Russia 0 .976  0 .990  1.070 0 .246  0 .235 0 .063 4 .266  4 .226  - -  0 .679 

26 Russia 0 .997 1.017 1.046 0 .264  0 .250  0 .074  4 .312  4 .194  - -  0 .629 

Average  (0) 0 .990  1.000 1.115 0 .262 0 .246 0.053 4.061 4 .024  4.325 0.695 

St. dev. (0) 0 .012 0 .012 0 .040  0 .007 0.007 0.013 0 .114 0.103 0 .049 0.027 

Average  ( 1 ) 0 .993 1.003 1.115 0 .264  0 .246 0.053 4 .036 4 .024  4.325 0.702 

St. dev. (1)  0 .008 0 .008 0 .040  0 .004  0.007 0.013 0 .082 0.103 0 .049 0 .016 
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T a b l e  B . 2 2  ( c o n t i n u e d )  

P a r t i c i p a n t / x  = - 4 0 . 0  - 25 .0  - 2 0 . 0  - 15 .0  - 5 .0  0 .0  5 .0  15.0  2 0 . 0  2 5 . 0  

1m E x 

2 C a n a d a  - 0 . 0 8 0  - 0 . 1 1 3  - 0 . 1 7 4  - 0 . 0 7 3  - 0 . 0 8 5  - 0 . 0 0 5  - 0 . 3 8 1  - 0 . 4 3 7  - 0 . 5 8 0  - 0 . 1 8 5  

3 C a n a d a  - 0 . 0 7 9  - 0 . 1 1 2  - 0 . 1 7 4  - 0 . 0 7 4  - 0 . 0 8 6  - 0 . 0 0 5  - 0 . 3 7 8  - 0 . 4 3 4  - 0 . 5 7 7  - 0 . 1 8 5  

6 Po l and  - 0 . 0 6 2  - 0 . 0 9 4  - 0 . 1 5 4  - 0 . 0 5 5  - 0 . 0 6 8  - -  - 0 . 3 5 3  - 0 . 4 0 1  - 0 . 5 3 4  - 0 , 1 7 1  

8 U z b e k i s t a n  - 0 . 0 7 6  - 0 . 1 0 9  - 0 . 1 7 9  - 0 . 0 7 1  - 0 . 0 9 4  - I ) . 1 t16  - 0 . 3 6 4  - 0 . 5 1 3  - 0 . 5 4 8  - 0 . 1 8 7  

10 R u s s i a  - 0 . 0 4 0  - 0 . 0 7 0  - -  - 0 . 0 5 0  - 0 . 0 6 0  - -  - 0 . 1 5 0  - 0 . 2 2 0  - -  0 . 1 6 0  

12 C z e c h  - 0 . 0 7 5  0 . 1 0 9  - -  - 0 . 0 6 2  - 0 . 0 7 5  - -  - 0 . 3 7 7  - 0 . 4 2 6  - -  0 . 1 8 3  

17 U S A  - 0 . 0 7 6  - 0 . 1 0 8  - -  - 0 . 0 6 9  - 0 .081  - -  - 0 . 3 7 1  - I ) . 4 1 8  - -  - 1 1 . 1 8 7  

18 G e r m a n y  - 0 . 0 7 6  - 0 , 1 1 1  - -  - 0 . 0 7 9  - 0 . 0 9 0  - -  - 0 . 3 3 5  - 0 . 3 7 9  - -  - 1 / . 1 8 1  

22  C a n a d a  - 0 . 0 7 6  - 0 . 1 0 9  0 .171  0 . 0 6 8  - 0 . 0 8 1  - 0 . 0 0 5  - 0 . 3 6 7  - 0 . 4 1 7  - 0 , 5 9 0  - 0 . 1 3 8  

25 R u s s i a  - 0 . 0 3 0  0 , 0 9 8  - 0 . 1 4 1  - 0 . 0 3 5  - 0 . 0 4 8  0 . 0 0 9  - 0 . 3 7 2  - 0 . 4 1 4  - -  0 . 1 3 8  

2 6  R u s s i a  - 0 . 0 8 4  0 , 1 2 7  - 0 . 1 4 5  - 0 . 0 7 5  - 0 . 0 8 4  - 0 . 0 3 8  - 0 . 3 7 8  - 0 . 4 5 1  11.149 

A v e r a g e ( 0 )  - 0 . 0 6 9  - 0 , 1 0 5  - 0 . 1 6 3  - 0 . 0 6 5  - 0 . 0 7 7  - 0 . 0 1 0  - 0 . 3 4 8  - 0 . 4 1 0  - 1 1 . 5 6 6  / ) .174 

St. dev.  (0)  0 . 0 1 8  0 , 0 1 4  0 . 0 1 6  0 . 0 1 3  0 . 0 1 4  0 . 0 1 6  0 . 0 6 7  I).071 0./124 / ) .017 

A v e r a g e ( l )  - 0 . 0 7 2  0 , 1 0 9  - 0 . 1 6 3  - 0 . 0 6 8  - 0 . 0 8 0  - 0 . 0 1 0  - 0 . 3 6 8  - 0 . 4 2 9  11.566 0 . 1 7 8  

St. dev.  (1)  0 . 0 1 3  0 , 0 0 9  0 . 0 1 6  0 . 0 0 9  0 . 0 1 0  0 . 0 1 6  0 . 0 1 4  0 . 0 3 6  0 . 0 2 4  0 . 0 1 3  

T a b l e  B . 2 3 .  M o d e l  2 D - 3 A  ( H P ,  T = 100 .0 ,  z = 0 )  

P a r t i c i p a n t / x  = - 2 0 . 0  - 20 .0  - 20~0 0 .0  0 .0  (I.0 2 0 . 0  20.1/ 2 0 . 0  2 5 , 0  

R e  E x 

2 C a n a d a  1 .134  - -  0 . 1 1 3  0 . 0 4 3  - -  4 . 3 4 2  4 . 3 7 6  I) .438 0 . 7 0 5  

3 C a n a d a  1 .134  0 . 1 1 3  0 . 0 4 3  - -  4 , 3 2 2  4 . 3 7 0  - -  0 . 4 3 7  0 . 7 0 6  

6 P o l a n d  1 .132  - -  - -  - -  4 . 2 9 0  - -  4 . 2 6 0  - -  - -  0 . 6 6 9  

8 U z b e k i s t a n  1 . 1 5 0  - -  0 . 1 1 5  0 . 0 5 2  - -  5 .20( l  4 . 3 0 0  - -  11.430 0 . 7 1 5  

10 R u s s i a  - -  0 . 6 2 0  - -  - -  2 . 1 7 0  - -  2 . 3 6 0  - -  0 . 7 0 0  

12 C z e c h  . . . . . . .  0 . 7 0 8  

17 U S A  ---  0 . 1 1 6  - -  - -  4 . 3 0 6  - -  - -  0 . 4 2 8  0 . 7 1 2  

18 G e r m a n y  - -  0 . 6 2 9  - -  - -  2 . 1 9 0  - -  - -  2 . 3 5 3  0 . 7 0 4  

22  C a n a d a  1 .138  - -  0 . 1 1 4  0 . 0 4 3  - -  4 . 3 2 4  4 .321  - -  0 . 4 3 2  0 . 7 2 0  

25 R u s s i a  1 .070  - -  - -  0 . 0 6 3  - -  - -  11.471 0 . 6 7 9  

2 6  R u s s i a  1 .046  - -  - -  0 . 0 7 4  - -  - -  0 . 4 8 3  11.629 

A v e r a g e  (0)  1 .115  0 . 6 2 5  0. 114 0 . 0 5 3  2 . 8 8 3  4 . 4 9 9  4 . 3 2 5  2 . 3 5 7  0 . 4 4 6  11,695 

St. dev.  (0)  0 .04/ )  0 . 0 0 6  0 .001  0 . 0 1 3  1.2 t 8 0 . 3 9 2  0 . 0 4 9  0 . 0 0 5  11.022 0 . 0 2 7  

A v e r a g e  ( 1 ) 1 .115 0 . 6 2 5  0 . 1 1 4  0 . 0 5 3  2 . 8 8 3  4 . 4 9 9  4 . 3 2 5  2 . 3 5 7  I) .446 1/.702 

St. dev.  ( 1 ) 0 . 0 4 0  0 . 0 0 6  0 .001  0 . 0 1 3  1 .218 0 . 3 9 2  0 . 0 4 9  0 . 0 0 5  1/.022 0 . 0 1 6  

l m  E x 

2 C a n a d a  - 0 . 1 7 4  - -  - 0 . 0 1 7  - 0 . 0 0 5  - -  - 0 . 4 6 1  - 0 . 5 8 0  - 0 . 0 5 8  11.185 

3 C a n a d a  - 0 . 1 7 4  - 0 . 0 1 7  - 0 . 0 0 5  - -  0 . 4 5 9  - 0 . 5 7 7  - -  - 0 . 0 5 8  - 1 1 . 1 8 5  

6 P o l a n d  - 0 . 1 5 4  - -  0 . 4 3 5  - -  - 0 . 5 3 4  - -  - -  - 0 . 1 7 1  

8 U z b e k i s t a n  - 0 . 1 7 9  - -  - 0 . 0 1 8  - 0 . 0 1 6  - -  - 1 .600  - 0 . 5 4 8  - -  - 0 . 0 5 5  - 0 . 1 8 7  

10 R u s s i a  - -  0 . 0 7 0  - -  - -  - 0 . 1 2 0  - -  - -  - 0 . 1 9 0  - 0 . 1 6 / )  

12 C z e c h  . . . . . . . . .  0 . 1 8 3  

17 U S A  - -  - -  - 0 . 0 1 8  - -  - -  0 . 4 7 4  - -  0 . 0 5 6  - 0 . 1 8 7  

18 G e r m a n y  - -  - 0 . 1 0 9  - -  - -  - 0 . 2 2 7  - -  - 0 . 2 8 1  - -  - 11 .181  

22  C a n a d a  - 0 . 1 7 1  - -  - 0 . 0 1 7  - 0 . 0 0 5  - -  - 0 . 4 7 2  - 0 . 5 9 0  - 0 . 0 5 9  0 . 1 8 8  

25  R u s s i a  - 0 .141  - -  - -  0 . 0 0 9  - -  - -  0 . 0 3 9  I).138 

26  R u s s i a  - 0 . 1 4 5  - 0 . 0 3 8  - -  - -  - 0 . 0 9 7  - 0 . 1 4 9  

A v e r a g e  (01 - 0 , 1 6 3  - 0 . 0 8 9  - 0 . 0 1 7  - 0 . 0 1 0  - 0 . 2 6 1  - 0 . 6 9 3  0 . 5 6 6  0 . 2 3 6  - 0 . 0 6 0  0 . 1 7 4  

St. dev.  (0)  0 . 0 1 6  0 . 0 2 8  0 . 0 0 l  0 . 0 1 6  0 , 1 6 0  0 . 5 0 7  0 . 0 2 4  0 . 0 6 4  1/.018 //.1/17 

A v e r a g e ( l )  - 0 . 1 6 3  - 0 . 0 8 9  - 0 . 0 1 7  - 0 , 0 1 0  - 0 . 2 6 1  - 0 . 6 9 3  - 0 . 5 6 6  - / ) . 2 3 6  - 0 . 0 5 4  - 1 / . 1 7 8  

St. dev.  (1)  0 . 0 1 6  0 . 0 2 8  0 .001  0 . 0 1 6  0 . 1 6 0  0 . 5 0 7  0 . 0 2 4  0 . 0 6 4  0 . 0 0 8  0.1/13 
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Table B.24. Model 2D-3A (T = 100.0, z = 0) 

Participant/x = - 40.0 - 25.0 - 15.0 - 5.0 5.0 15.0 25.0 

pa (EP) 
2 Canada 13.50 6.76 1.00 1.10 10.76 21.46 17.62 

3 Canada 13.50 6.78 1.00 1.11 10.80 21.50 17.60 
4 Finland 14.00 7.40 1.00 1.10 10.90 19.10 17.20 

6 Poland 13.90 6.80 1.10 1.20 10.60 21.60 18.00 
8 Uzbekistan 13.55 6.64 1.06 1.17 10.24 20.72 17.34 

11 Russia 13.60 6.72 1.01 1.11 10.60 21.50 17.50 
12 Czech 14.06 6.81 1.11 1.23 10.55 21.48 18.25 
15 Russia 13.74 7.05 0.97 1.05 11.49 22,73 17.55 
16 Russia 14.23 7.40 0.96 1.02 11.76 22.90 17.29 
17 USA 13,61 6.72 0.99 ! .09 10.67 21.68 17.54 
18 Germany 13.55 6.64 1.00 1.11 10.55 21.29 17.42 
22 Canada 13.59 6.90 0.99 1.08 10.79 21.63 17.50 
25 Russia 12.29 4.07 1.41 1.20 10.09 18.96 16.79 

26 Russia 11,20 4,18 1.14 1.50 9.10 16.10 17.90 
Average (0) 13.45 6.49 1.05 1.15 10.64 20.90 17.54 
St. dev. (0) 0.79 1.03 0.12 0.12 0.62 1.77 0.36 

Average (1) 13.62 6.89 1,02 1.12 10.75 21.27 17.54 
St, dev. (1) 0.47 0.26 0,06 0.06 0.45 1.14 0.23 

p~ (HP) 
2 Canada 15.50 15.70 1.17 1.08 253.00 249.00 8.21 
3 Canada 15.50 15.70 1.17 1.08 252.00 249.00 8.23 
4 Finland 15.50 15.80 1,10 1.10 251.20 257.90 7.50 
6 Poland 15.10 15.44 1,04 0.95 248.12 243.18 8,0l 
8 Uzbekistan 15.61 15.96 1,06 0.96 272.58 266.08 8.44 

11 Russia 15.50 15.80 1,16 1.07 253.00 248.00 8.35 
12 Czech 15.51 15,91 1,15 1.06 253.60 247.70 8.28 
15 Russia 15.59 15.89 1,16 1.07 252.70 247.60 8.48 
16 Russia 15.03 16.21 1,13 1.06 247.30 252.00 8.57 
17 USA 15.46 15.78 1.18 1.09 249.40 244.50 8.36 

18 Germany 15.16 15.55 1.16 1.07 248.60 241.75 8.17 
20 Russia 15.20 15.65 1.14 1.05 240.00 235.00 8.10 
22 Canada 15.47 15.67 1.17 1.10 248.90 243.91 8.55 
25 Russia 14,74 15.30 0.96 0.89 283.49 278.73 7.43 
26 Russia 15.50 16.20 1.16 1.07 290.00 275.00 6.47 
Average (0) 15.36 15.77 1.13 1.05 256.26 251.96 8.08 

St. dev. (0) 0.25 0.25 0.06 0.06 14.15 12.37 0.56 
Average (1) 15.40 15.77 1.14 1.06 253.85 250.04 8.19 
St. dev. (1) 0.19 0.25 0.04 0.05 11.03 10.28 0,35 
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Table B.25. Model 2D-3A (EP, T = 1000.0, z = 0) 

Par t i c ipan t /x  = - 40.0 - 25.11 - 20.0 - 15.0 - 5.0 0.0 5.0 15.0 20.0 25.11 

Re E v 
3 Canada  0,919 0.874 0.848 0.827 0.829 0.854 11.880 0.914 0.925 0.935 

6 Poland 0.921 0.875 0.849 0.827 0.830 0.855 0.881 0.916 0.927 0.936 
8 Uzbekis tan  0.919 0.873 0.848 0.826 0.828 0.853 0.879 0.913 0.925 11.934 
10 Russ ia  0.920 0.870 0.850 0.820 0.830 0.860 0.880 0.920 0.930 0.940 
11 Russia  11.920 0.873 0.848 0.826 0.829 0,853 0.880 0.915 11.926 1/.935 
12 Czech  0.923 /I.877 0.851 0.829 0.832 0.857 0.883 0.918 0.929 11.938 
13 Germany  0,914 0.871 1/.846 0.825 0.828 0.853 0.879 /).912 0.922 /).930 
15 Russ ia  0.937 0.89/I 0.865 0.844 0.846 0.871 0.897 //.932 0.942 0.951 

16 Russia  /).944 0.902 0.858 0.862 /).886 0.911 0.942 0.952 0.959 
17 USA 0.922 0.876 0.851 0.829 0.832 0.856 0.883 1/.917 1/.928 0.937 
18 Germany  0.921 0.875 0.850 0,828 0.831 0.855 (I.882 ().916 0.927 0.936 

19 Germany  0.915 0.866 0.839 0.816 0.819 0.845 0.873 0.910 0.922 0.932 
21 Canada 0,924 0.864 11.815 11.764 0.768 0.823 0.873 0.917 0.931 (}.941 
22 Canada 0.920 (I.874 0.848 0.825 0.828 0.853 0.880 0.915 0.926 0.936 
25 Russia  0.931 0.892 0.874 0.855 0.853 0.873 0.897 0.929 0.940 0.948 
26 Russia  0.920 0.891 0.881 0.869 0.872 0.886 0.902 0.925 0.933 0.939 
Average  (0) 0.923 1/.878 1/.851 0.829 0.832 0.858 0.885 0.919 0.93/) 0.939 
St. dev. (0) 0.008 0.010 11.015 0.023 0.022 0.0 l 5 0.011 0.008 0.008 0.008 
Average  ( I ) 0.922 0.876 1/.851 1/.834 0.837 0.861 0.883 0.918 0.929 0.938 
St. dev. (1) 0.006 0.008 0.009 0.015 1/.015 /I.1112 0.009 0.006 0.006 //.006 

Im E~, 
3 Canada  0.096 0.178 0.231 11.275 0.268 0.216 0.156 0.090 0.074 0.064 
6 Poland 0.093 0.177 0.229 0.273 0.266 0.214 0.154 0.088 0.072 1/.061 
8 Uzbekistan 0.091 0.175 0.228 0.272 0.265 0.213 0.153 0.087 0.071 /I.060 

I 0 Russ ia  0.090 0.170 0.230 0.280 0.270 1/.210 0.150 0.0811 0.070 0.050 
11 Russ ia  0.094 0.178 0.231 1/.274 0.267 0.215 0.156 0.089 0.073 0.062 
12 Czech 0.093 0.177 0.230 0.274 11.267 11.214 0.155 0.088 0.072 0.061 
13 Germany  0.092 0.170 0.226 0.27(} 0.263 0.211 0.151 0.085 0.070 0.059 

15 Russia  0.1/94 0.180 0.233 0.278 0.270 0.218 0.157 0.088 1/,071 0.060 
16 Russia  0.1178 0.165 0.265 0.258 0.205 (1.143 0.075 (I.059 0.1148 

17 U S A  0.094 0.177 11.230 0.273 0.266 1t.214 I).155 0.089 0.073 0.063 
18 Germany  0.096 0,180 0.233 0.277 0.270 0.218 0.158 0.091 0.074 0.1164 
19 Germany  0.095 0.179 0.232 0.276 0.269 0.216 0.156 0.089 0.072 0.062 
21 Canada  0.079 0.177 0.273 0.365 0.357 0.250 0.141 0.061 0.049 0.044 
22 Canada  0.094 0.177 0.230 0.276 0.269 0.216 0,155 0.089 0.073 0.062 
25 Russ ia  0.100 0.178 0.218 0.258 0.260 11.215 0.156 0.0911 0.073 0.063 
26 Russ ia  0.121 0.189 0.211 0.243 0.237 0.199 0.158 0.102 0.084 0.075 
Average  (0) 0.094 0.177 0.23 l 0.277 0.27/) 0.215 0.153 0.086 0.071 0.0611 
St. dev. (0) 0.009 //.005 0.013 0.025 0.025 0.010 0.005 1/.009 0.007 0.007 

Average  (1) 0.092 1/.177 0.228 0.271 0.264 0.213 0.155 0.088 0.072 0.060 
St. dev. ( 1 ) 0.006 0.003 0.01)6 0.009 11.008 0.005 0.002 0.1106 0./105 11./11/5 
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Table B.25 (continued) 

Par t ic ipant /x  = - 40.0 - 25.0 - 20.0 - 15.0 - 5.0 0.0 5.0 15.0 20.0 25.0 

Re H z 

3 Canada - 0 . 0 9 8  - 0 . 2 0 4  - 0 . 2 8 0  - 0 . 1 3 0  0.158 0.308 0.217 0.I13 0.079 0.067 

6 Poland - 0 . 0 9 6  - 0 . 2 0 3  - 0 . 2 7 3  - 0 . 1 3 0  0.159 0.300 0.217 0.112 0.079 0.066 

8 Uzbekistan - 0 . 0 9 3  - 0 . 2 0 1  - 0 . 2 7 7  - 0 . 1 2 9  0.157 0.304 0.212 0.111 0.079 0.067 

8.4 Russia - -  - -  - 0.269 - -  - -  0.295 - -  - -  0.079 - -  

8.5 Russia - -  - -  - 0.282 - -  - -  0.309 - -  - -  0.080 - -  

10 Russia - 0.100 - 0 . 2 1 0  - 0 . 3 0 0  - 0 . 1 3 0  0.170 0.330 0.230 0.130 0.080 0.070 

12 Czech - 0 . 0 9 7  - 0 . 2 0 4  - 0 . 2 6 5  - 0 . 1 3 0  0.159 0.292 0.218 0.113 0.081 0.067 

13 Germany - 0 . 0 8 6  - 0 . 1 8 6  - 0 . 2 5 1  - 0 . 1 1 2  0.151 0.272 0.209 0.112 0.075 0.057 

1 7 U S A  - 0 . 0 9 6  - 0 . 2 0 2  - 0 . 2 7 2  - 0 . 1 2 9  0.157 0.300 0.215 0.111 0.078 0.066 

18 Germany - 0 . 0 9 6  - 0 . 2 1 2  - 0 . 2 3 9  - 0 . 1 4 0  0.171 0.265 0.226 0.112 0.082 0.066 

19 Germany - 0.100 - 0 . 2 1 1  - 0 . 2 7 3  - 0 . 1 3 4  0.165 0.302 0.226 0.118 0.084 0.070 

21 Canada - 0 . 0 7 8  - 0 . 2 1 7  - 0 . 5 4 6  - 0 . 1 6 4  0.194 0.587 0.227 0.091 0.059 0.046 

22 Canada - 0 . 0 9 9  - 0 . 2 0 8  - 0 . 2 7 5  - 0 . 1 3 4  0 .16l  0.304 0.219 0.113 0.080 0.067 

25 Russia - 0 . 0 8 0  - 0 . 1 7 3  - 0 . 1 7 3  - 0 . 1 7 9  0.060 0.195 0.173 0.094 0.065 0.065 

26 Russia - 0 . 0 7 3  - 0 . 0 9 5  - 0 . 0 9 5  - 0 . 1 0 6  0.084 0.164 0.137 0.085 0.050 0.050 

Average (0 )  - 0 . 0 9 2  - 0 . 1 9 4  - 0 . 2 7 1  - 0 . 1 3 4  0.150 0.302 0.210 0.109 0.075 0.063 

St. dev. (0) 0.009 0.032 0.092 0.019 0.036 0.091 0.026 0.012 0.010 0.008 

A v e r a g e ( l )  - 0 . 0 9 3  - 0 . 2 0 3  - 0 . 2 5 2  - 0 . 1 3 1  0.157 0.281 0.216 0.109 0.077 0.065 

St. dev. (1) 0.008 0.012 0.054 0.014 0.026 0.046 0.015 0.012 0.007 0.006 

lm H z 
3 Canada 0.093 229 0.344 0.137 - 0 . 1 7 6  - 0 . 3 9 7  - 0 . 2 5 7  - 0 . 1 0 7  - 0 . 0 5 1  - 0 . 0 4 5  

6 Poland 0.090 0.225 0.325 0.135 - 0 . 1 7 5  - 0 . 3 7 8  - 0 . 2 5 5  - 0 . 1 0 6  - 0 . 0 5 4  - 0 . 0 4 4  

8 Uzbekistan 0.086 0.223 0.336 0.132 - 0 . 1 7 0  - 0 . 3 8 8  - 0 . 2 5 0  - 0 . 1 0 6  - 0 . 0 5 3  - 0 . 0 4 5  

8.4 Russia - -  - -  0.320 - -  - -  - 0.371 - -  - -  - 0.054 - -  

8.5 Russia - -  - -  0.337 - -  - -  - 0.390 - -  - -  - 0.052 - -  

10 Russia 0.090 0.230 0.350 0.130 - 0 . 1 7 0  - 0 . 4 0 0  - 0 . 2 6 0  - 0 . 1 2 0  - 0 . 0 5 0  - 0 . 0 5 0  

12 Czech 0.091 0.227 0.315 0.137 - 0 . 1 7 8  - 0 . 3 6 6  - 0 . 2 5 8  - 0 . 1 0 7  - 0 . 0 5 7  - 0 . 0 4 5  

13 Germany 0.085 0.211 0.301 0.120 - 0 . 1 6 7  - 0 . 3 3 9  - 0 . 2 5 1  - 0 . 1 1 2  - 0 . 0 5 6  - 0 . 0 4 3  

17 USA 0.090 0.224 0.326 0.136 - 0 . 1 7 6  - 0 . 3 7 9  - 0 . 2 5 4  - 0 . 1 0 5  - 0 . 0 5 3  - 0 . 0 4 5  

18 Germany 0.091 0.243 0.275 0.149 - 0 . 1 9 2  - 0 . 3 2 2  - 0 . 2 7 6  - 0 . 1 0 7  - 0 . 0 6 1  - 0 . 0 4 4  

19 Germany 0.089 0.224 0.309 0.134 - 0 . 1 7 5  - 0 . 3 6 2  - 0 . 2 5 5  - 0 . 1 0 6  - 0 . 0 5 5  - 0 . 0 4 4  

21 Canada 0.060 0.213 0.598 0.125 - 0 . 1 6 0  - 0 . 6 8 7  - 0 . 2 4 5  - 0 . 0 6 4  - 0 . 0 1 7  - 0.010 

22 Canada 0.093 0.231 0.325 0.139 - 0 . 1 7 8  - 0 . 3 7 9  - 0 . 2 5 7  - 0 . 1 0 6  - 0 . 0 5 4  - 0 . 0 4 5  

25 Russia 0.080 0.208 0.208 0.215 - 0 . 0 7 1  - 0 . 2 4 1  - 0 . 2 0 7  - 0 . 0 8 7  - 0 . 0 4 8  - 0 . 0 4 8  

26 Russia 0.083 0.120 0.120 0.144 - 0 . 1 1 2  - 0 . 2 3 2  - 0 . 1 8 5  - 0 . 0 9 9  - 0 . 0 4 8  - 0 . 0 4 8  

Average (0 )  0.086 0.216 0.319 0.141 - 0 . 1 6 2  - 0 . 3 7 5  0.247 - 0 . 1 0 2  - 0 . 0 5 1  - 0 . 0 4 3  

St. dev. (0) 0.009 0.030 0.098 0.023 0.033 0.101 0.024 0.014 0.010 0.010 

A v e r a g e ( l )  0.088 0.224 0.313 0.135 - 0 . 1 6 9  - 0 . 3 5 3  - 0 . 2 5 2  - 0 . 1 0 6  - 0 . 0 5 3  - 0 . 0 4 6  

St. dev. (1) 0.004 0.010 0.037 0.008 0.020 0.054 0.016 0.008 0.003 0.002 

Table B.26. Model 2D-3A (T = 1000.0, z = 0) 

Par t ic ipant /x  = - 40.0 - 25.0 - 15.0 - 5.0 5.0 15.0 25.0 

Pa (EP) 
3 Canada 6.82 5.63 3.09 3.14 5.97 6.93 7.14 

4 Finland 6.60 4.90 3.10 3.70 6.10 6.90 7.10 

6 Poland 6.80 5.60 3.20 3.20 5.90 6.90 7.20 

8 Uzbekistan 6.88 5.65 3.24 3.29 5.97 6.96 7.18 

11 Russia 6.81 5.58 3.09 3.13 5.92 6.92 7.13 

12 Czech 6.84 5.60 3.27 3.32 5.92 6.91 7.15 
13 Germany 6.51 5.37 3.00 3.04 5.69 6.62 6.81 

15 Russia 7.04 5.84 3.04 3.08 6.22 7.19 7.33 
16 Russia 6.98 5.84 2.96 2.99 6.22 7.12 7.24 

17 US A 6.88 5.62 3.07 3.12 5.97 6.99 7.20 
18 Germany 6.84 5.56 3.16 3.21 5.91 6.94 7.16 
21 Canada 3.50 3.20 1.30 1.30 3.30 3.60 3.60 

22 Canada 6.83 5.64 3.09 3.13 5.96 6.94 7.16 

25 Russia 6.87 5.44 3.18 3.36 6.30 6.91 7.13 
26 Russia 6.20 5.53 5.34 4.23 4.85 5.92 6.58 

Average (0) 6.56 5.40 3.14 3.15 5.75 6.65 6.87 

St. dev. (0) 0.87 0.65 0.77 0.60 0.75 0.89 0.92 

Average ( 1 ) 6.78 5.56 3.11 3.28 5.92 6.87 7.11 
St. dev. (1) 0.21 0.23 0.09 0.32 0.35 0.30 0.19 
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Table B.26 (continued) 

P a r t i c i p a n t / x =  - 4 0 . 0  - 2 5 . 0  - 15.0 5.0 5.0 15.0 25.0 

p,, (HP) 
3 Canada 5.83 5.49 0.30 0.25 87.10 84.40 2.46 

4 Finland 5.80 5.60 0.30 0.20 90.01/ 86.30 2.40 

6 Poland 5.75 5.48 0.28 0.22 85.49 82.81 2.41 

8 Uzbekistan 5.95 5.65 0.28 0.22 93.19 89.78 2.53 

11 Russia 5.85 5.56 0.30 0.25 86.60 83.70 2.48 

t 2 Czech 5.86 5.58 0.30 0.24 87.01 83.99 2.46 

13 Germany 6.82 6.55 0.32 0.26 107.8// 102.50 2.89 

15 Russia 5.95 5.65 0.30 0.25 88.06 85.27 2.56 

16 Russia 7.76 8.25 0.36 0.30 151.10 150.06 3.97 

17 US A 5.86 5.57 0.31/ 0.25 86.02 83.37 2.49 

18 Germany 5.79 5.51 0.29 0.24 88.11 84.47 2.47 

20 Russia 5.85 5.63 0.30 0.24 86.00 84.50 2.55 

21 Canada 2.90 2.60 0.0// 0.00 60.60 52.80 1.40 

22 Canada 5.85 5.52 0.30 0.25 85.68 82.92 2.55 

25 Russia 5.30 5.18 11.19 0.15 86.70 84.99 1.92 

26 Russia 5.07 4.66 0.27 0.24 116.00 112.111/ 1.87 

Average (0) 5.76 5.53 /I.27 0.22 92.84 89.62 2.46 

St. dev. (0) 0.97 1.09 /).08 0.07 19.30 211.01 0.53 

Average (1) 5.82 5.55 0.29 0.24 88.96 85.59 2.36 

St. dev. (1) 0.38 0.39 0.1/3 0.03 I 1.86 12.27 0.36 

Table B.27. Model 2D-3B (EP, T -  100.0, z = 0) 

P a r t i c i p a n t / x -  - 4 0 . 0  - 2 5 . 0  - 2 0 . 0  - 15.0 - 5 . 0  0.0 5.11 15.0 20.0 25.1l 

Re Ey 
3 Canada 0.921 0.689 0.551 0.436 0.506 1/.667 0.813 1.015 1.1183 1.137 

8 Uzbekistan /I.924 0.689 0.549 I).434 0.502 0.663 1/.8118 1.012 1.080 1.133 

17 USA //.917 0.686 0.549 0.435 0.504 0.663 1/.808 1.010 1.077 1.130 

18 Germany 11.9(13 /I.680 0.546 0.433 0.505 0.669 //.811 1.1/13 1.081 1.135 
22 Canada 1/.921 0.691 0.551/ 1/.432 0.499 /).663 0.810 1.014 1.081 1.135 

25 Russia 1/.891 (I.667 0.545 0.441 0.511 0.659 11.792 0.988 1.055 I. 108 

26 Russia 11.9113 0.662 0.544 0.435 0.505 0.663 0.780 0.999 1.066 I. 109 

Average (0) 0.911 11.681 0.548 0.435 0.505 0.664 0.803 1.007 1.075 1.127 

St. dev. (01 0./112 /).012 0.003 0.003 0.004 0.003 0.012 0.010 0.010 0.013 

Average (1) 0.911 0.681 0.548 0.434 0.5/15 0.664 0.803 1.//07 1.075 1.127 

St. dev. (1) 0.012 0.012 0.003 0.001 0.004 0.003 0.012 0.010 0.010 0.013 

lm Ey 
3 Canada 0.147 - 0 . 1 0 4  - 0 . 0 0 3  0.065 0.020 - 0 . 1 6 6  0.433 - 0 . 7 4 7  - 0 . 8 5 7  - 0 . 9 4 6  

8 Uzbekistan - 0 . 1 4 8  0.103 - 0 . 0 0 2  0.063 0.019 - 0 . 1 6 3  - 0 . 4 3 0  - 0 . 7 4 6  0.856 - 0 . 9 4 5  

17 USA - 0 . 1 4 6  - 0 . 1 0 4  - 0 . 0 0 3  0.058 0.013 - 0 . 1 6 8  - 0 . 4 2 9  - 0 . 7 4 0  0.847 1/.934 

18 Germany - 0 . 1 4 1  0.097 1/.007 0.071 0.027 - 0 . 1 5 5  - 0 . 4 2 6  - 0 . 7 4 8  0.860 0.952 

22 Canada - 0 . 1 4 8  - 0 . 1 0 8  0.006 0.059 0.017 - 0 . 1 6 7  - 0 . 4 3 6  - 0 . 7 5 0  0.859 - 0 . 9 4 9  

25 Russia - 0 . 1 3 2  - 0 . 0 8 0  0.011. 0.077 0.026 0.134 - 0 . 3 8 9  - 0 . 6 9 4  - 0 . 8 0 1  - 0 . 8 8 5  

26 Russia I).145 - 0 . 0 7 5  - 0 . 0 0 3  11.066 0.016 - 0 . 1 6 9  11.414 - 0 . 7 3 3  - 0 . 8 4 2  - 0 . 9 1 2  

Average (0) 1/.144 - 0 . 0 9 6  0.000 0.066 0.020 -0 .16 / I  (/.422 - 0 . 7 3 7  - 0 . 8 4 6  - 0 . 9 3 2  

St. dev. (0) 0.006 0.013 0.006 0.007 0.005 0.013 0.016 0.020 0.021 0.025 

Average (1) 11.146 0.096 0.000 0.066 0.020 - / ) .165  0.428 0.744 - 0 . 8 5 3  - 0 . 9 3 2  
St. dev. ( 1 ) //.003 11.013 l).006 0.007 0.005 0.005 0.008 0.006 0.007 0.025 

Re H~ 
3 Canada 11.996 1.059 1.407 1.727 1.816 1.406 I).964 11.837 1/.823 0.819 
8 Uzbekistan 0.993 1.054 1.414 1.743 1.838 1.41/9 11.961 0.832 0.819 0.816 

17 USA 0.989 1./)59 1.439 1.731 1.820 1.443 0.964 0.828 0.814 /t.811 

18 Germany 0.990 1.043 1.431 1.716 1.810 1.439 0.963 0.828 0.811 I).798 

22 Canada 0.995 1.054 1.415 1.720 1.816 1.442 0.963 0.835 0.820 0.816 
25 Russia 0.996 1.097 1.214 1.596 1.745 1.143 (1.954 0.878 0.820 0.820 

26 Russia 1.023 1.262 1.262 1.484 1.619 1.519 1.151 0.891 0.886 0.886 
Average (0) 1/.997 1.090 1.369 1.674 1.781 1.400 0.989 0.847 I).828 1/.824 

St. dev. (01 0.012 1/.078 0.091 0.097 0.077 0.119 0.072 0.026 0.026 0.028 
Average (1) 1/.993 1.061 1.369 1.674 1.807 1.443 0.962 0.847 0.818 0.813 

St. dev. (1) 0.003 0.019 0.091 0.097 0.032 0.041 0.004 0.026 0.004 0.008 
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Table  B.27 (cont inued)  

Pa r t i c i pan t / x  = - 40 .0  - 25.0  - 20.0  - 15.0 - 5.0 0 .0  5.0 15.0 20.0 25.0  

Im n x 
3 Canada  - 0 . 0 5 9  0.053 0 .072 0.167 - 0 . 0 1 5  - 0 . 1 0 4  0 .062 0.043 0.045 0 .052 

8 Uzbekis tan  - 0 .062 0.053 0 .083 0.181 - 0 .007 - 0 .087 0 .062 0.043 0.047 0 .052 

17 USA - 0 .057 0.057 0 .067 0 .180  - 0 .004  - 0 .122 0 .064 0.045 0.048 0 .054 

18 Germany - 0 .054  0.053 0 .046  0 .156 - 0 .026  - 0 .153 0 .062 0 .042 0 .046 0 .054 

22 Canada  - 0 .059 0.048 0 .067 0 .176 - 0 .004 - 0 .138 0 .060 0 .042  0 .046 0 .052 

25 Russia - 0 . 0 3 3  0 .069 0 .080  0 .129 0 .057 - 0 . 0 0 8  0 .056 0 .056  0.061 0.061 

26 Russia - 0 .017  0 .066  0 .066 0.095 0 .084 - 0 .076 0 .029  0 .055 0.053 0.053 

Average  (0) - 0 . 0 4 9  0 .057 0 .069 0.155 0 .012 - 0 . 0 9 8  0 .056  0 .047 0 .049 0 .054 

St. dev. (0)  0 .017 0 .008 0 .012 0 .032 0.041 0 .048 0 .012 0 .006  0 .006 0.003 

Average  (1) - 0 .049  0 .057 0 .069 0 .155 0 .012 - 0 .098 0.061 0 .047 0.047 0.053 

St. dev. (1)  0 .017 0 .008 0 .012 0 .032 0.041 0 .048 0.003 0 .006  0.003 0.001 

Re H: 
3 Canada  - 0 .067 - 0 .349 - 0 .624  - 0 .142 0 .412  1.023 0 .706 0 .404  0.325 0.262 

8 Uzbekis tan  - 0 .057 - 0 .337 - 0 .609  - 0 .118 0 .378 1.004 0.685 0 .397 0 .323 0 .259 

17 USA - 0 . 0 6 6  - 0 . 3 3 8  - 0 . 5 7 8  - 0 . 1 4 3  0 .410  0 .970 0 .688 0.393 0 .316 0 .256  

18 Germany - 0 . 0 8 6  - 0 . 3 6 8  - 0 . 5 5 0  - 0 . 1 5 4  0.381 0.907 0 .680 0 .383 0.301 0.231 

22 Canada - 0 . 0 7 2  - 0 . 3 5 4  - 0 . 5 7 4  - 0 . 1 4 3  0 .410  0 .979  0.701 0 .399 0 .322 0 .262 

25 Russia - 0 .066 - 0 .337 - 0 .448 - 0 .326 0.233 0.791 0.568 0 .352 0 .276 0 .276 

26 Russia - 0 .075 - 0 .363 - 0 .363 - 0 .244 0.333 0 .823 0.633 0 .377 0 .229 0 .229 

Average  (0)  - 0 .070  - 0 .349  - 0 .535 - 0.181 0.365 0 .928 0 .666 0 .386 0 .299 0 .254 

St. dev. (0) 0 .009 0 .013 0.095 0.075 0.065 0.091 0.049 0 .018 0.035 0.017 

Average  (1) - 0 .070 - 0 .349  - 0 .535 - 0.181 0.387 0 .928 0 .666 0 .386 0 .299 0 .254 

St. dev. (1)  0 .009 0 .013 0.095 0 .075 0.031 0.091 0.049 0 .018 0.035 0.017 

lm Hz 

3 Canada  - 0 . 1 1 4  - 0 . 1 5 6  - 0 . 0 3 5  - 0 . 1 2 5  0.151 - 0 . 2 6 9  - 0 . 0 8 9  - 0 . 0 3 9  - 0 . 0 4 6  - 0 . 0 3 0  

8 Uzbekis tan  - 0 . 1 1 4  - 0 . 1 6 8  - 0 . 0 6 2  - 0 . 1 4 3  0.188 - 0 . 2 3 4  - 0 . 0 7 5  - 0 . 0 3 6  - 0 . 0 4 4  - 0 . 0 2 9  

17 U S A  - 0 . 1 1 4  - 0 . 1 6 2  - 0 . 0 7 8  - 0 . 1 2 3  0.143 - 0 . 2 0 3  - 0 . 0 7 8  - 0 . 0 3 4  - 0 . 0 4 6  - 0 . 0 2 8  

18 Germany - 0 . 0 9 3  - 0 . 1 3 8  - 0 . 0 9 0  - 0 . 1 1 4  0.177 - 0 . 1 3 3  - 0 . 0 7 9  - 0 . 0 3 0  - 0 . 0 3 4  - 0 . 0 1 9  

22 Canada - 0 . 1 1 4  - 0 . 1 6 0  - 0 . 0 9 5  - 0 . 1 2 9  0 .150 - 0 . 1 8 6  - 0 . 0 8 2  - 0 . 0 3 7  - 0 . 0 4 2  - 0 . 0 3 0  

25 Russia - 0 . 1 0 1  - 0 . 1 4 3  - 0 . 0 9 4  - 0 . 1 1 6  0.108 - 0 . 1 4 7  - 0 . 0 5 7  - 0 . 0 3 6  - 0 . 0 2 9  - 0 . 0 2 9  

26 Russia - 0 . 1 1 5  - 0 . 1 3 6  - 0 . 1 3 6  - 0 . 1 3 1  0 .134 - 0 . 1 4 0  - 0 . 0 7 4  - 0 . 0 4 1  - 0 . 0 2 6  - 0 . 0 2 6  

A v e r a g e ( 0 )  - 0 . 1 0 9  - 0 . 1 5 2  - 0 . 0 8 4  - 0 . 1 2 6  0 .150  - 0 . 1 8 7  - 0 . 0 7 6  - 0 . 0 3 6  - 0 . 0 3 8  - 0 . 0 2 7  

St. dev. (0) 0 .009 0.013 0.031 0 .010 0 .027 0 .052 0 .010 0 .004  0 .008 0 .004 

A v e r a g e ( l )  - 0 . 1 0 9  - 0 . 1 5 2  - 0 . 0 8 4  - 0 . 1 2 6  0 .150  - 0 . 1 8 7  - 0 . 0 7 6  - 0 . 0 3 6  - 0 . 0 3 8  - 0 . 0 2 9  

St. dev. (1) 0 .009  0.013 0.031 0 .010 0 .027 0 .052 0 .010  0 .004 0 .008 0 .002 

Table  B.28.  Model  2D-3B (HP, T = 100.0, z = 0) 

Pa r t i c i pan t / x  = - 40.0  - 25.0 - 20.0  - 15.0 - 5.0 0.0 5.0 15.0 20.0  25.0  

Re E~ 

3 Canada  0 .980  0 .960  1.093 0 .266  0 .248 0 .030  2 .538 1.338 0 .436  3 .300  

8 Russia 0 .994  0 .966  1.111 0 .268  0 .250  0 .039  2.565 1.363 0 .438 3.297 

17 U S A  0 .980  0 .965 - -  0 .269  0.251 - -  2 .554 1.361 - -  3 .300  

18 Germany  0 .963 0.951 - -  0 .262  0 .244  - -  2.551 1.357 - -  3 .322 

22 Canada  0.981 0.961 1.098 0 .269  0 .253  0 .030  2.561 1.372 0 .426  3 .246 

25 Russia 0 .957 0 .932  1.045 0 .234  0 .213  0 .063 2 .537 1.343 - -  3 .518 

26 Russia  0 .995  0 .986  1.032 0 .266  0 .248  0 .059  2 .678  1.371 - -  3 .536 

Average  (0) 0 .979  0 .960 1.076 0 .262 0 .244  0 .044 2 .569 1.358 0.433 3.360 

St. dev. (0) 0 .014  0 .016 0 .035 0.013 0 .014  0 .016 0 .049 0.013 0 .006  0 .117 

Average  (1) 0 .979  0 .960 1.076 0.267 0 .249 0 .044 2.551 1.358 0.433 3 .360 

St. dev. (1)  0 .014  0 .016 0.035 0.003 0.003 0 .016  0 .012 0.013 0 .006 0 .117 
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T a b l e  B . 2 8  ( c o n t i n u e d )  
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P a r t i c i p a n t / x  = - 4 0 . 0  25.1/ - 2 0 . 0  - 15 .0  - 5 .0  0 .0  5 .0  15.0 2 0 , 0  2 5 . 0  

lm E~ 
3 C a n a d a  - 0 .131  - 0 . 1 8 1  - 0 . 2 4 7  - 0 . 0 8 3  - 0 . 0 9 6  - 0 . 0 0 9  - 0 . 8 0 0  11.603 - 0 . 2 3 6  - 1 .917 

8 U z b e k i s t a n  - 0 . 2 3 9  - I ) . 1 7 8  - 0 . 2 5 2  - 0 . 0 8 0  - 0 . 0 9 4  / ) .020 - 0 . 8 0 4  - 0 . 6 1 0  - 0 . 2 4 2  - 1 .905 

17 U S A  - 0 . 1 2 8  - 0 . 1 7 7  - -  - 0 . 0 7 8  - 0 . 0 9 2  0 , 8 0 8  - 0 . 6 1 2  - -  - 1 .929 

18 G e r m a n y  - 0 . 1 2 1  I) .176 - -  - 0 . 0 8 8  - 0 . 1 0 0  - 0 , 7 8 7  0 . 5 9 5  - -  - 1.771 

22  C a n a d a  - 0 . 1 2 8  - 0 . 1 7 8  - 1 1 . 2 4 6  - 0 . 0 7 7  - 0 . 0 9 1  - 0 . 0 0 9  - 0 . 8 0 4  - 0 . 6 1 8  - 0 . 2 3 1  - 1.885 

25 R u s s i a  -11.1153 - 0 . 1 0 4  0.1611 - 0 . 0 1 1  - 0 . 0 2 0  0 . 0 1 9  - 0 . 7 1 7  - 0 . 5 1 5  - 1 .913 

26  R u s s i a  0 . 1 1 7  - 0 . 1 7 9  - 0 . 2 0 9  - 0 . 0 8 1  - 0 . 0 9 3  - 0 . 0 4 3  0 . 8 1 5  - 1 / . 6 0 8  - -  - 2 . 0 3 1  

A v e r a g e  (0)  11.131 - 0 . 1 6 8  - 0 , 2 2 3  - 0 . 0 7 1  - 0 . 0 8 4  - 0 . 0 1 2  0 .791  - 0 . 5 9 4  1/.236 - 1 .907 

St. dev.  (0 )  0 . 0 5 5  11.028 0 . 0 3 9  0 . 0 2 7  0 . 0 2 8  11.022 0 . 0 3 4  0./136 0 . 0 0 6  /).1/76 

A v e r a g e ( l )  - 0 . 1 3 1  0 . 1 7 8  - 0 . 2 2 3  - 0 . 0 8 1  - 0 . 0 9 4  / I .012 - 0 . 8 0 3  0 . 6 0 8  - / I . 2 3 6  - 1 .907 

St. dev.  ( 1 ) 0 . 0 5 5  0 . 0 0 2  I).039 0 . 0 0 4  0 . 0 0 3  0 . 0 2 2  0 . 0 0 9  0 . 0 0 8  0 . 0 0 6  0 . 0 7 6  

T a b l e  B . 2 9 .  M o d e l  2 D - 3 B  ( H P ,  T = 100 .0 ,  z = 0 )  

P a r t i c i p a n t / x  = - 2 0 . 0  - 2 0 . 0  - 211.11 0 .0  0 .0  0 .0  21/.0 2 0 . 0  21/.// 2 5 . 0  

Re  E x 
3 C a n a d a  1.1/93 I (I.1119 0 . 0 3 0  2 . 9 8 2  (I .436 - -  4 . 3 5 8  3 . 3 0 0  

8 U z b e k i s t a n  1.1 I 1 - -  0 . 0 1 1  0 . 0 3 9  3 . 9 0 0  ( / .438 - -  4 . 38 / /  3 . 2 9 7  

17 U S A  - -  0 . 1 1 2  - -  - -  2 . 9 9 4  - -  4 . 2 9 2  3.301/ 

18 G e r m a n y  - -  0 . 6 0 5  - -  1 .526  - -  2 . 3 9 5  3 . 3 2 2  

22  C a n a d a  1 .098  - -  0.1 I1) 0 . 0 3 0  - -  3 . 0 2 3  0 . 4 2 6  4 . 2 6 3  3 . 2 4 6  

25 R u s s i a  1.1145 - -  0 . 0 6 3  - -  - -  4 . 5 6 3  3 . 5 1 8  

26  R u s s i a  I .I132 - -  0.1159 - -  - -  4 .121  3 . 5 3 6  

A v e r a g e  (0)  1 .076 0 . 6 0 5  0 . 0 8 6  0.1144 1 .526 3 . 2 2 5  0 . 4 3 3  2 . 3 9 5  4 . 3 3 0  3.3611 

St. dev.  (01 / I .035 0 . 0 0 0  1/.1150 0 . 0 1 6  0 . 0 0 0  0 . 4 5 0  11.006 0 . 0 0 0  0 . 1 4 6  0 . 1 1 7  

A v e r a g e  ( I ) 1.1176 0 . 6 0 5  0 . 0 8 6  0 . 0 4 4  1 .526  3 . 2 2 5  0 . 4 3 3  2 . 3 9 5  4.3311 3 . 3 6 0  

St. dev.  ( 1 ) 0 . 0 3 5  0.0110 0 . 0 5 0  0 . 0 1 6  0 . 0 0 0  1/.450 0 . 0 0 6  11,000 0 . 1 4 6  0. I 17 

1ii1 E ,  

3 C a n a d a  0 . 2 4 7  - -  0 . 0 2 5  - 0 . 0 0 9  - 0 . 9 2 2  I) .236 - -  2 . 3 6 5  - 1 .917 

8 U z b e k i s t a n  1/.252 - -  1/.025 - 0 . 0 2 0  - 2 . 0 0 0  / / . 242  - -  2 . 4 2 0  - 1 .905 

17 U S A  - -  - 0 . 0 2 6  - -  - 0 . 9 4 6  - -  - -  2 . 3 5 0  1 .929 

18 G e r m a n y  - -  - 0 . 1 4 8  - -  - -  1/.474 - -  - 1 .213 - -  - 1.771 

22  C a n a d a  - 0 . 2 4 6  - 0 . 0 2 5  - 0 . 0 0 9  - -  - 0 . 9 4 7  - 0 .231  - -  - 2 . 3 0 9  1.885 

25 R u s s i a  - 0 . 1 6 0  - -  - -  0 . 0 1 9  - -  - -  - 2 . 2 8 3  1.913 

26 R u s s i a  - 0 . 2 0 9  - -  - 0 . 0 4 3  - -  I 2 . 1 4 5  - 2 .03  I 

A v e r a g e  (0)  - 1 1 . 2 2 3  - 0 . 1 4 8  - 0 . 0 2 5  - 0 . 0 1 2  - 0 . 4 7 4  1 ,204 - 0 . 2 3 6  1.213 - 2 . 3 1 2  - 1 .907 

St. dev.  (01 0 . 0 3 9  0 . 0 0 0  0 .001  11.022 0 . 0 0 0  0 .531 0.0t16 0 . 0 0 0  0 , 0 9 5  / / . 076  

A v e r a g e  (1)  0 . 2 2 3  0 , 1 4 8  - 0 . 0 2 5  - 0 . 0 1 2  - 0 . 4 7 4  - 1 .204 - 0 . 2 3 6  - 1 .213 2 . 3 1 2  - 1 .907 

St. dev.  (1)  0 . 0 3 9  0 . 0 0 0  0 .001  0 . 0 2 2  0 . 0 0 0  I).531 0 . 0 0 6  0 . 0 0 0  0 . 0 9 5  1/.//76 

T a b l e  B . 3 0 .  M o d e l  2 D - 3 B  (T  = 100 .0 ,  z = 0)  

P a r t i c i p a n t / x =  - 4 0 . 0  2 5 . 0  - 15.0 - 5 . 0  5 .0  1 5 . 0 2 5 . 0  

p ,  ( E P )  

3 C a n a d a  1 3 . 5 0  6 . 6 7  1 .00 1.20 14. l 0  35.01) 5 0 . 2 0  

8 U z b e k i s t a n  13 .68  6 . 7 3  I).97 1.16 13 .97  3 5 . 2 2  5 0 . 3 0  

17 U S A  13 .59  6 . 6 2  11.98 I. 19 13 .87  35 .21  5 0 . 3 5  

l 8 G e r m a n y  13. I I 6 . 7 0  1 .00  1.21 13 .94  35 .61  5 3 . 0 9  

22  C a n a d a  13.55 6 . 8 0  0 . 9 8  1.17 14 .05  3 5 . 1 6  5 0 . 5 5  

25  R u s s i a  12.61 5 . 7 7  1.21 1.33 13 .17  29 .  I 1 4 5 . 9 6  

2 6  R u s s i a  12.411 4.31/ 1 .36 t .50  9 . 4 6  2 9 . 8 0  4 0 . 4 0  

A v e r a g e  (01 13.21 6 .23  I .(17 1.25 13 .22  3 3 . 5 9  4 8 . 6 9  

St. dev.  (0)  0.51 I).92 0 .15  0 .12  1.69 2 .83  4 . 2 2  

A v e r a g e  ( I ) 13.21 6 .55  1.07 1.21 13.85 3 3 . 5 9  4 8 . 6 9  

St. dev.  (1)  0.51 0 . 3 9  0 .15  0 . 0 6  11.34 2 .83  4 . 2 2  
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Table B.30 (continued) 

Par t ic ipant /x  = - 40.0 - 25.0 - 15.0 - 5.0 5.0 15.025.0 

po (HP) 

3 Canada 15.10 14.80 1.20 1.09 110.00 33.30 252.00 
8 Uzbekistan 15.10 14.87 1.21 1.10 111.65 34.44 224.15 

17 USA 15.10 14.87 1.21 1.10 110.90 34.40 225.80 
18 Germany 14.57 14.47 1.18 1.08 110.18 33.91 219.06 

20 Russia 14.63 14.68 1.18 1.06 106.50 33.20 215.00 
22 Canada 15.12 14.75 1.21 1.12 111.34 35.00 217.83 

25 Russia 14.21 13.59 0.85 0.71 107.48 31.99 247.87 

26 Russia 15.50 15.50 1.19 1.09 121.00 34.70 257.00 

Average (0) 14.92 14.69 1.15 1.04 111.13 33.87 232.34 

St. dev. (0) 0.41 0.53 0.12 0.14 0.39 0.99 17.04 

Average (1) 14.92 14.85 1.20 1.09 109.72 33.87 232.34 

St. dev. (1) 0.41 0.32 0.01 0.02 1.98 0.99 17.04 

Table B.31. Model 2D-3B (EP, T-= 1000.0, z = 0) 

Par t ic ipant /x  = - 40.0 - 25.0 - 20.0 - 15.0 - 5.0 0.0 5.0 15.0 20.0 25.0 

Re E v 
3 Canada 0.932 0.891 0.868 0.848 0.853 0.876 0.901 0.935 0.947 

8 Uzbekistan 0.931 0.890 0.867 0.847 0.852 0.875 0.900 0.933 0.945 

17 US A 0.934 0.892 0.869 0.850 0.854 0.878 0.903 0.936 0.948 

18 Germany 0.933 0.892 0.869 0.849 0.854 0.878 0.903 0.936 0.948 

21 Canada 0.933 0.876 0.831 0.782 0.788 0.842 0.889 0.933 0.947 

22 Canada 0.933 0.891 0.867 0.847 0.851 0.875 0.901 0.935 0.947 

25 Russia 0.945 0.910 0.894 0.878 0.878 0.897 0.919 0.949 0.960 

26 Russia 0.934 0.910 0.902 0.892 0.896 0.910 0.924 0.947 0.956 

Average (0) 0.934 0.894 0.871 0.849 0.853 0.879 0.905 0.938 0.950 

St. dev. (0) 0.004 0.011 0.021 0.032 0.03 l 0.020 0.011 0.006 0.005 

Average ( I ) 0.933 0.894 0.871 0.859 0.863 0.879 0.905 0.938 0.950 

St. dev. (1) 0.001 0.011 0.021 0.018 0.018 0.020 0.011 0.006 0.005 

lm E,. 
3 Canada 0.076 0.154 0.206 0.249 0.234 0.175 0.107 0.021 - 0 . 0 0 8  

8 Uzbekistan 0.071 0.152 0.204 0.246 0.231 0.172 0.104 0.018 - 0.011 

17 USA 0.075 0.155 0.206 0.248 0.233 0.174 0.107 0.021 - 0 . 0 0 8  

18 Germany 0.077 0.157 0.209 0.251 0.236 0.177 0.108 0.021 - 0.008 

21 Canada 0.065 0.161 0.257 0.349 0.333 0.220 0.101 0.000 - 0 . 0 3 1  

22 Canada 0.074 0.154 0.206 0.250 0.235 0.175 0.106 0.020 - 0 . 0 0 9  

25 Russia 0.076 0.150 0.188 0.227 0.222 0.170 0.103 0.018 - 0 . 0 1 2  

26 Russia 0.098 0.162 0.183 0.212 0.197 0.152 0.103 0.030 0.001 

Average (0 )  0.077 0.156 0.207 0.254 0.240 0.177 0.105 0.019 - 0 . 0 1 1  

St. dev. (0) 0.010 0.004 0.022 0.041 0.040 0.019 0.002 0.008 0.009 

Average (1) 0.073 0.156 0.200 0.240 0.227 0.171 0.105 0.021 - 0.008 

St. dev. (1) 0.004 0.004 0.010 0.015 0.014 0.009 0.002 0.004 0.004 

Re H_ 
3 Canada - 0.089 - 0.190 - 0 . 2 6 2  - 0 . 1 1 4  0.167 0.308 0.225 0.134 0.108 
8 Uzbekistan - 0 . 0 8 5  - 0 . 1 8 7  - 0 . 2 5 9  - 0 . 1 1 4  0.165 0.304 0.220 0.131 0.107 

17 USA - 0 . 0 8 8  - 0 . 1 8 8  - 0 . 2 5 5  - 0 . 1 1 4  0.166 0.301 0.223 0.132 0.106 

18 Germany - 0 . 0 8 1  - 0 . 1 9 8  - 0 . 2 2 3  - 0 . 1 2 6  0.179 0.268 0.232 0.132 0.106 

21 Canada - 0 . 0 7 4  - 0 . 2 0 8  - 0 . 5 3 1  - 0 . 1 5 4  0.202 0.579 0.233 0.113 0.087 

22 Canada - 0 . 0 9 0  - 0 . 1 9 4  - 0 . 2 5 7  - 0 . 1 1 9  0.170 0.305 0.227 0.134 0.109 

25 Russia - 0 . 0 7 2  - 0 . 1 5 9  - 0 . 1 5 9  - 0 . 1 6 3  0.070 0.199 0.182 0.115 0.087 

26 Russia - 0 . 0 6 4  - 0 . 0 8 4  - 0 . 0 8 4  - 0 . 0 8 9  0.094 0.170 0.146 0.103 0.065 

Average (0 )  - 0 . 0 8 0  - 0 . 1 7 6  - 0 . 2 5 4  - 0 . 1 2 4  0.152 0.304 0.211 0.124 0.097 
St. dev. (0) 0.009 0.040 0.129 0.024 0.045 0.123 0.031 0.012 0.016 

A v e r a g e ( l )  - 0 . 0 8 0  - 0 . 1 8 9  - 0 . 2 1 4  - 0 . 1 2 4  0.152 0.265 0.220 0.124 0.101 

St. dev. (1) 0.009 0.015 0.068 0.024 0.045 0.057 0.018 0.012 0.010 

0.956 

0.955 

0.957 

0.958 

0.958 
0.957 

0.969 

0.961 

0.959 

0.004 

0.957 

0.002 

- 0.032 

- 0.035 

- 0.031 

- 0.032 

- 0.056 

- 0 . 0 3 3  
- 0 . 0 3 4  

- 0 . 0 1 7  

- 0.034 

0.011 

- 0.031 

0.006 

0.089 

0.087 

O.087 

0.086 

0.068 
0.089 

0.087 

0.065 

0.082 
0.010 

0.082 
0.010 
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Table B.31 (continued) 

Par t i c ipan t /x  = - 40.0 - 25.0 - 20.0 - 15.0 - 5.0 0.0 5.0 15.0 20.0 25.0 

lm H :  
3 Canada  0.088 0.226 0.344 0.125 - 0 . 2 1 2  - 0 . 4 4 9  0.311 - 0 . 1 7 9  - ( / . 1 4 4  0.116 
8 Uzbekistan 0.082 0.220 0.335 0.121 - 0 . 2 0 5  - 0 . 4 4 0  0.303 - 0 . 1 7 6  - ( / . 143  - 0 . 1 1 4  

17 USA 0.086 0.221 0.325 0.124 - 0 . 2 1 1  0.429 - 0 . 3 0 7  - 0 . 1 7 5  0.141 - 0 . 1 1 3  
18 Germany  0.079 0.242 0.274 0.141 - 0 . 2 2 6  - 0 . 3 6 8  - 0 . 3 2 8  - 0 . 1 7 7  - 0 . 1 4 1  - 0 . 1 1 2  
21 Canada 0.058 0.213 0.610 0.122 - 0 . 1 8 3  - 0 . 7 3 7  - 0 . 2 8 3  0.129 - 0 . 0 9 8  -0.1)75 
22 Canada 0.088 0.228 0.324 0.128 0.213 - 0 . 4 3 1  - 0 . 3 1 1  - 0 . 1 7 7  - 0 . 1 4 3  0.116 

25 Russia 0.075 0.203 0.203 0.209 - 0 . 0 9 8  0.282 - 0 . 2 6 3  - 0 . 1 6 3  - 0 . 1 2 1  - 0 . 1 2 1  
26 Russia  0.079 0.116 0.116 0.129 - 0 . 1 4 5  - 0 . 2 7 8  - 0 . 2 3 5  (I.162 - 0 . 1 0 1  - 0 . 1 0 1  
A v e r a g e ( 0 )  0.079 0.209 0.316 0.137 - 0 . 1 8 7  - 0 . 4 2 7  - 0 . 2 9 3  - 0 . 1 6 7  - 0 . 1 2 9  //.108 
St. dev. (0) 0.010 0.039 0.143 0.030 0.044 0.143 0.031 0.017 0.020 0.(115 

A v e r a g e ( l )  0.082 0.222 0.274 0.127 - 0 . 1 9 9  - 0 . 3 8 2  - 0 . 2 9 3  - 0 . 1 7 3  - 0 . 1 2 9  - 0 . 1 1 3  
St. dev. (1) 0.005 0.012 0.085 0.007 0.027 0.075 0.031 0.007 /I.020 0.006 

Table B.32. Model  2D-3B ( T =  1000.0, z = 0) 

P a r t i c i p a n t / x =  - 4 0 . 0  - 2 5 . 0  - 15.0 - 5 . 0  5.0 15.0 25.0 

p~ (EP) 
3 Canada 6.86 5.68 3.13 3.18 6.04 7.07 7.57 
8 Uzbekistan 6.86 5.67 3.09 3.14 6.02 7.06 7.54 
17 USA 6.89 5.65 3.1 I 3.16 6.02 7.10 7.59 
18 Germany  7.03 5.64 3.21 3.26 6.00 7.12 7.63 
21 Canada  3.50 3.20 1.30 1.30 3.40 3.60 3.80 

22 Canada  6.87 5.69 3.12 3.17 6.03 7.08 7.59 
25 Russia  6.93 5.50 3.22 3.41 6.40 7.14 7.49 
26 Russia  6.28 5.63 5.42 4.30 4.94 6.03 6.89 
Average  (0) 6.40 5.33 3.20 3.12 5.61 6.53 7.01 

St. dev. (0) 1.19 0.86 1.11 0.83 0.99 1.24 1.32 
Average  (1) 6.82 5.64 2.88 3.37 5.92 6.94 7.47 
St. dev. (1) 0.24 0.06 0.70 0.42 0.45 0.40 0.26 

p~ (HP)  
3 Canada 4.96 4.35 0.27 0.22 28.30 7.49 43.70 
8 Uzbekis tan  5.02 4.44 0.27 0.21 28.67 7.83 44.00 
17 U S A  4.99 4.42 0.27 0.22 28.41 7.82 44.23 

18 Ge r m any  4.90 4.35 0.26 0.21 28.65 7.61 44.81 
20 Russia  5.19 4.51 0.26 0.21 28. l0  7.82 43.00 
21 Canada 2.30 1.90 0.00 0.00 22.70 8.00 17.10 
22 Canada  4.98 4.37 0.27 0.22 28.46 7.90 42.27 

25 Russ ia  4.48 4.10 0.16 0.12 27.53 6.94 45.36 
26 Russ ia  4.30 3.78 0.24 0.20 30.00 7.43 62.70 

Average  (0) 4.57 4.02 0.22 0.18 27.87 7.65 43.02 
St. dev. (0) 0.90 0.83 0.09 0.07 2.05 0.33 11.57 

Average  ( I ) 4.85 4.29 0.25 0.20 28.51 7.74 46.26 
St. dev. (1) 0.30 0.24 0.04 0.03 0.70 0.20 6.71 
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Table  B.33.  Model  2D-4  (T  = 1.0, z = 0) 

2 1 9  

Pa r t i c i pan t / x  = - 10.0 - 7.0 - 6 .0  - 5.0 2.0 3.5 5.0 

Pa (EP)  

3 Canada  

4 Finland 

6 Poland 

8 Uzbekis tan  

11 Russia 

12 Czech 

14 Russia 

14.1 Russia 

16 Russia 

18 Germany 

25 Russia 

26 Russia 

27 Russia 

Average  (0) 

St. dev. (0) 

Average  (1) 

St. dev. (1) 

p~ (HP)  

3 Canada  

4 Finland 

6 Poland 

8 Uzbekis tan  

11 Russia 

12 Czech 

14 Russia 

15 Russia 

16 Russia 

18 Germany  

25 Russia 

26 Russia 

27 Russia 

Average  (0)  

St. dev. (0) 

Average  (1) 

St. dev. (1) 

12 

12.70 12.00 8 .80  6 .84  6 .67 - -  6.25 

12.80 11.50 8 .30  6 .70  6 .30  5 .90  6 .00  

12.80 - -  8 .90  6 .90  6 .70  6 .30  6 .40  

12.67 12.12 8.72 6 .72  6 .66 6 .24 6 .16 

12.60 11.90 8.95 6 .92  6 .64 6 .24  6 .06 

12.77 11.75 8.47 6 .79  6.51 - -  6 .32 

12.65 - -  8 .74 - -  6 .64  - -  6.35 

12.30 10.80 7 .62  6 .40  5 .98 5.78 5 .74 

13.02 - -  8.23 - -  6 .30  - -  6 .26 

12.59 12.08 8.55 6 .56 6 .39 - -  5 .92 

12.67 11.07 9 .09  7 .09 6 .24  - -  6 .20  

20 9 .63 8.64 7 .83 6.21 - -  6 .12 

12.66 12.10 8.72 6.71 6 .65 6.21 6.15 

12.65 11.49 8.59 6 .86 6.45 6.11 6.15 

0.21 0 .80 0.38 0.37 0.23 0.22 0.18 

12.69 11.70 8.68 6.76 6.49 6.11 6.18 

0.17 0.48 0 .26 0 .19 0.19 0.22 0 .14 

11.40 11.50 9.03 6 .78 6 .80 - -  5.71 

11.50 11.50 9 .20  7 .20  7 .10  6 .50  6 .40  

10.71 10.88 8.35 6 .16 6.17 5.75 5 .29 

11.37 11.52 9.05 6.85 6.83 6 .46  5 .75 

11.30 11.40 9 .58 6 .82 6 .80  6 .48 5 .74  

11.55 11.56 9 .23 7 .04 6 .89 - -  5.85 

11.37 - -  9 .04  - -  6.77 - -  5 .80 

11.44 - -  9 .04  - -  6 .78 - -  5 .80  

11.55 - -  8.27 - -  7.05 - -  6 .48 

1 1 . 2 8  1 1 .3 3  9 . 1 1  7 . 1 2  7 . 0 6  - -  6 . 1 0  

11.02 10.54 8.75 6.21 6 .53 - -  5 .28 

I 1.80 10.10 8.87 7 .89  6 .72 - -  5 .84  

11.37 11.51 9 .06  6 .88 6.85 6 .48 5.82 

11.36 11.18 8.97 6 .89 6.80 6.33 5.84 

0 .26 0.51 0.35 0 .49 0.24 0.33 0.35 

11.41 11.30 8.97 6.78 6.85 6.33 5.84 

0 .19 0.35 0.35 0.37 0 .16 0.33 0.35 

Table  B.34.  Model  2D-4  (T  = 9.0, z = 0) 

Pa r t i c i pan t / x  = - l 0.0 - 7.0 - 6.0 - 5.0 2.0 3.5 5.0 

Pa (EP)  

3 Canada  24 .60  10.70 6 .66 4 .35 3 .28 - -  7 .98 

4 Finland 20 .80  10.30 6 .40  4 .30  3.30 4 .90  8 .30 

6 Poland 21 .80  - -  6 .70  4 .10  3.40 4 .90  8 .90 

8 Uzbekis tan  21.88 10.78 6 .64  4 .30  3.27 4 .67 7 .86 

11 Russia 22 .10  10.70 6.85 4 .42  3.27 4 .64  7 .72 

12 Czech 21 .36  10.47 6 .55 4 .30  3.52 - -  8 .84 

13 Germany  22.13 10.82 6 .73 4.41 3.44 5 .02 8 .38 

14 Russia 21 .45 - -  6 .57 - -  3.46 - -  8 .79 

14.1 Russia 21 .60  10.60 6 .32 4 .36  3.18 4 .59  7 .64 

18 Germany 21.18 11.77 7 .19  4 .59  3.29 - -  7.83 

25 Russia 18.62 9 .98 6.98 4 .95 3 .46 - -  7 .30  

26 Russia 10.20 7 .18 6 .52 6 .18 6 .16 - -  7 .59 

27 Russia 21 .86  10.78 6 .64 4 .30  3.27 4 .67 7 .86 

Average  (0)  20.74 10.37 6.67 4 .55 3.56 4 .77 8.08 

St. dev. (0) 3.41 1.15 0.23 0.55 0 .79 0.17 0 .52 

Average  ( 1 ) 21.62 10.69 6.63 4 .40  3.34 4 .77 8.08 

St. dev. (1)  1.33 0 .46 0.18 0 .22 0.11 0.17 0 .52 
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T a b l e  B . 3 4  ( c o n t i n u e d )  

P a r t i c i p a n t / x  - - 10.0  - 7 .0  - 6.11 - 5 .0  2 .0  3 .5 5 .0  

Pa ( H P )  

3 C a n a d a  3 8 . 3 0  3 6 . 2 0  1 7 . 4 0  4 . 2 0  3 . 5 5  - -  18 .30  

4 F i n l a n d  3 8 . 0 0  3 5 . 0 0  1 7 . 6 0  4 . 6 3  3 . 7 2  7 . 3 7  2 1 . 6 0  

6 P o l a n d  3 8 . 1 5  3 6 . 2 0  1 6 . 9 0  3 . 9 9  3 . 4 6  5 . 4 4  2 0 . 8 1  

8 U z b e k i s t a n  3 9 . 2 2  3 6 . 9 4  1 7 . 4 0  4 . 0 6  3 . 5 4  5 . 1 5  17 .69  

11 R u s s i a  3 8 . 3 0  3 5 . 5 0  1 9 . 8 0  4 . 2 8  3 . 5 2  4 . 8 6  1 6 . 9 0  

12 C z e c h  3 8 . 6 8  3 5 . 3 8  17.61 4 . 5 9  3 . 9 5  - -  2 1 . 8 8  

13 G e r m a n y  3 7 . 8 0  3 4 . 9 5  17.21 4 . 4 6  3 . 6 3  5 . 5 2  18 .37  

14 R u s s i a  3 8 . 4 1  - -  17 .23  - -  3 . 7 0  2 1 . 5 9  

15 R u s s i a  38 .01  - -  1 7 . 4 7  3 . 5 9  - -  2 1 . 9 5  

14.1 R u s s i a  3 7 . 1 0  3 4 . 8 0  1 6 . 5 0  4 . 0 3  3 . 5 2  6 . 3 7  2 0 . 7 0  

18 G e r m a n y  3 8 . 3 5  3 6 . 5 7  17.71 4 . 4 7  3 . 6 8  - -  2 1 . 3 9  

2 0  R u s s i a  3 8 . 4 0  3 5 . 5 0  18 .48  4 . 3 7  3 . 4 8  - -  17.01 

25  R u s s i a  3 8 . 4 9  2 9 . 3 6  14 .25  8 . 6 3  3 . 4 2  - -  15.01 

2 6  R u s s i a  3 0 . 9 0  2 1 . 1 0  1 7 . 9 0  13. t 0 8 . 3 7  - -  14.00 
2 7  R u s s i a  39 .41  3 7 . 1 0  17 .52  4 . 0 8  3 . 5 5  5 . 1 8  17.91 

A v e r a g e  (01 3 7 . 8 3  3 4 . 2 0  1 7 . 4 0  5 . 3 0  3.91 5 . 7 0  19.111 

St. dev .  (0)  1 .99 4 . 3 9  1.15 2 . 6 4  1 .24 0 . 8 8  2.61 

A v e r a g e  (1 )  3 8 . 3 3  3 5 . 2 9  1 7 . 4 6  4 . 6 5  3 . 5 9  5 . 7 0  19.01 

St. dev .  (1 )  0 . 5 7  2 . 0 2  0 . 4 7  1 .27 0 . 1 4  0 . 8 8  2 .61 

T a b l e  B . 3 5 .  M o d e l  2 D - 4  ( E P ,  T = 100 .0 ,  z - 0)  

P a r t i c i p a n t / x  = 10.0  - 7 .0  - 6 .0  - 5 .0  0.(/  2 .0  3 .5  5 .0  8 .0  16.0  

Re E 3 

3 C a n a d a  I ) .834 0 . 8 1 2  0 . 8 0 4  0 . 7 9 6  0 .78 ( /  ( / .787 - -  0 . 8 0 6  0 . 8 2 4  0 . 8 5 0  

6 P o l a n d  0 . 8 3 8  - -  0 . 8 0 8  0 . 8 0 0  0 . 7 8 5  ( / .792 0 .801  0 . 8 1 2  - -  - -  

8 U z b e k i s t a n  0 . 8 1 6  0 . 7 9 4  0 . 7 8 6  1/ .778 0 . 7 6 4  0 . 7 7 0  0 . 7 7 8  0 . 7 8 8  1/ .806 11.836 

1 (1 R u s s i a  0 . 9 5 0  - -  0 . 9 2 6  0 . 9 2 0  0 . 9 2 0  - -  0 . 9 3 0  0 . 9 4 0  0 . 9 6 0  

11 R u s s i a  0 . 8 4 1  0 . 8 1 9  11.810 0.81/3 0 . 7 8 8  0 . 7 9 4  0 . 8 0 3  0 . 8 1 3  0 . 8 3 1  

12 C z e c h  0 . 8 4 2  11.821 / / .813  0 . 8 0 5  0 . 7 9 1  0 . 7 9 8  - -  0 . 8 1 7  11.834 0 . 8 6 2  

13 G e r m a n y  0 . 8 7 0  0 . 8 5 1  0 . 8 4 3  0 . 8 3 6  0 . 8 2 5  0 . 8 3 2  0 . 8 4 0  0 . 8 5 0  11.866 0 . 8 9 0  

16 R u s s i a  0 . 8 9 3  - -  0 . 8 7 5  - -  0 . 8 5 7  0 . 8 6 4  - -  0 . 8 8 2  0 . 9 0 3  0 . 9 3 4  

18 G e r m a n y  0 . 8 3 9  1/ .817 0 . 8 0 9  0 . 8 0 1  0 . 7 8 7  0 . 7 9 4  - -  0 . 8 1 6  0 . 8 3 0  I).8611 

2 2  C a n a d a  0 . 8 3 4  1/ .812 0 . 8 0 4  0 . 7 9 5  0 . 7 8 0  0 . 7 8 6  - -  0 . 8 0 6  0 . 8 2 5  0 . 8 5 7  

25 R u s s i a  0 . 8 7 6  0 . 8 6 0  0 . 8 5 4  0 . 8 5 0  0 . 8 3 9  0 . 8 4 3  I ) .856 / ) .872  0 . 9 0 5  

2 6  R u s s i a  0 . 8 5 7  0 . 8 5 3  0 . 8 5 2  0 . 8 5 1  0 . 8 5 0  0 . 8 5 0  - -  0 . 8 5 1  1/ .853 / / . 862  

27  R u s s i a  0 . 8 1 5  0 . 7 9 3  0 . 7 8 5  0 . 7 7 7  0 . 7 6 2  I ) .768 0 . 7 7 7  0 . 7 8 7  0 . 8 0 5  0 . 8 3 7  

A v e r a g e  (0)  0 . 8 5 4  0 . 8 2 3  0 . 8 2 8  0 . 8 0 8  0 . 8 1 0  0 . 8 1 5  0 . 8 0 0  0 . 8 3 2  0 . 8 4 9  0 . 8 7 8  

St. dev .  (0)  0 . 0 3 7  0 . 0 2 4  0 . 0 4 0  0 . 0 2 6  0 . 0 4 6  0 . 0 4 4  0 . 0 2 6  / t .041 /I.0411 / ) .040 

A v e r a g e  (1)  0 . 8 4 6  0 . 8 2 3  0 . 8 2 0  0 . 8 0 8  0 .801  0 . 8 0 6  0 . 8 0 0  1/ .824 0 .841  0 . 8 6 9  

St. dev .  ( 1 ) 0 . 0 2 4  0 . 0 2 4  0 . 0 2 9  0 . 0 2 6  0 . 0 3 3  0 . 0 3 2  //.1t26 11.029 I ) .030 0 . 0 3  I 

lm  E,. 
3 C a n a d a  0 . 1 7 7  0 . 2 1 9  0 . 2 3 6  0 . 2 5 3  0 . 2 8 1  0 . 2 7 0  - -  0 . 2 3 5  0 . 2 0 0  0 . 1 5 1  

6 P o l a n d  0 . 1 7 5  - -  1/ .234 11.251 11.279 0 . 2 6 8  0 . 2 5 1  0 . 2 2 8  - -  

8 U z b e k i s t a n  0 . 1 7 3  0 . 2 1 3  0 . 2 3 0  0 . 2 4 5  0 . 2 7 3  0 . 2 6 3  0 . 2 4 7  0 . 2 2 8  0 . 1 9 4  0 . 1 4 6  

I 0 R u s s i a  0.091) - -  0 . 1 6 8  - -  0 . 2 1 0  0 . 2 0 0  - -  0 . 1 6 0  0 . 1 2 0  0 . 0 7 4  

11 R u s s i a  I) .173 0 . 2 1 5  0 . 2 3 3  0 . 2 4 9  0 . 2 7 7  0 . 2 6 5  0 . 2 4 9  0 . 2 2 9  I ) .195 

12 C z e c h  0 . 1 7 8  0 . 2 1 9  0 . 2 3 6  0 . 2 5 2  0 . 2 7 8  0 . 2 6 5  - -  0 . 2 2 9  0 . 1 9 7  0 . 1 5 0  

13 G e r m a n y  0 . 1 8 1  0 . 2 2 5  0 . 2 4 2  0 . 2 5 9  0 . 2 8 7  0 . 2 7 4  0 . 2 5 7  0 . 2 3 6  0 . 2 0 2  11.152 

16 R u s s i a  0 . 1 9 3  - -  1/ .227 0 . 2 7 1  0 . 2 5 6  - -  0 . 2 1 8  0 . 1 6 9  0 . 1 0 9  

18 G e r m a n y  0 . 1 7 7  0 . 2 2 4  0 . 2 3 6  0 . 2 5 0  0 . 2 8 0  0 . 2 6 9  0 . 2 3 4  I ) .200 0 . 1 5 0  

22  C a n a d a  0 . 1 7 7  0 . 2 1 9  0 . 2 3 7  0 . 2 5 4  0 . 2 8 3  0 . 2 7 2  - -  0 . 2 3 5  0 . 2 0 0  0 . 1 4 9  

2 5  R u s s i a  0 . 1 9 4  0 . 2 2 9  / ) .242  0 . 2 5 1  1/ .278 0 . 2 7 0  - -  0 . 2 4 5  0 . 2 1 3  0 . 1 5 2  

2 6  R u s s i a  0 . 1 9 2  0 . 2 0 0  0 . 2 0 2  0 . 2 0 4  0 . 2 0 5  0 . 2 0 4  - -  0 . 2 0 2  0 . 1 9 6  0 . 1 7 6  

2 7  R u s s i a  0 . 1 8 0  0 . 2 2 1  0 . 2 3 8  0 . 2 5 3  0 .281  0 . 2 7 0  0 . 2 5 5  / I .236 1/ .202 1/ .154 

A v e r a g e ( 0 )  0 . 1 7 4  0 . 2 1 8  0 . 2 2 8  0 . 2 4 7  0 . 2 6 8  0 . 2 5 7  0 . 2 5 2  0 . 2 2 4  0 .191  0 . 1 4 2  

St. dev .  (0 )  11.026 0 . 0 0 8  0 .021  0 . 0 1 5  0 . 0 2 7  0 . 0 2 5  0.1/04 1/.022 / ) .024 /I.I127 

A v e r a g e  (1 )  0 .181  0 . 2 2 0  0 . 2 3 3  0 . 2 5 2  0 . 2 7 9  0 . 2 6 7  0 . 2 5 2  0 .23 / /  0 . 1 9 7  0 . 1 4 9  

St. dev .  (1)  0 . 0 0 8  0 . 0 0 5  0 . 0 1 1  0 . 0 0 4  0 . 0 0 4  0 . 0 0 5  0 . 0 0 4  0 .011  0 .011  0 . 0 1 6  
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Table  B.35 (cont inued)  

P a r t i c i p a n t / x  = - 10,0 - 7.0 - 6,0 - 5.0 0 .0  2.0 3,5 5.0 8.0 16.0 

Re H x 

3 Canada  1.050 1,190 1.310 1.430 1.550 1.480 - -  1.220 1.070 1.000 

6 Poland 1.050 - -  1.310 1.440 1.560 1.480 1.360 1.190 - -  - -  

8 Uzbekis tan  1,050 1.190 1.310 1.440 1.550 1.480 1.370 1.220 1,070 1.010 

10 Russia 0 .990  - -  1.290 - -  1.530 1.440 - -  1.170 1,030 0 ,990  

11 Russia 1.040 1.190 1.300 1.420 1.540 1.460 1.350 1.210 1.070 - -  

12 Czech 1.050 1,200 1.320 1.440 1.540 1.460 - -  1.190 1.070 1,010 

13 Germany  1.070 1.220 1.350 1.480 1.600 1.510 1.390 1.240 l. 100 1.030 

18 Germany  1.040 1.210 1.300 1,390 1:520 1.440 - -  1.220 1.060 1.010 

22 Canada  1.042 1.184 1,309 1.436 1,550 1.476 - -  1.213 1.069 1,002 

25 Russia  1.140 1.230 1.350 1.350 1.370 1.370 - -  1.190 1.110 0.991 

26 Russia  1.110 1,110 1.110 1.120 1,120 1.120 - -  1,110 1,110 1.080 

27 Russia 1.050 1.200 1.320 1.450 1.560 1.490 1,380 1.230 1,080 1.010 

Average  (0) 1,057 1.192 1.298 1.400 1.499 1.434 1.370 1.200 1.076 1.013 

St. dev. (0)  0 .037 0 .032 0 ,062 0 .099  0 .132 0 .105 0 .016 0 ,035 0.023 0 .026 

Average  (1)  1,049 1.202 1.315 1.428 1.534 1.462 1.370 1.208 1.076 1.006 

St, dev. (1) 0 .028 0 .016  0 .019 0.035 0 .058 0.037 0 ,016 0.021 0.023 0 .012 

lm H~ 

3 Canada  0 .015  - 0 . 0 7 8  - 0 . 1 6 6  - 0 . 2 5 0  - 0 . 3 0 8  - 0 . 2 6 9  - -  - 0 . 1 0 5  - 0 . 0 0 9  0.021 

6 Poland 0 .015 - -  - 0 . 1 6 7  - 0 . 2 5 1  - 0 . 3 1 2  - 0 . 2 6 9  - 0 , 1 9 8  - 0 . 0 8 5  - -  - -  

8 Uzbekis tau  0.023 - 0 , 0 6 8  - 0 , 1 5 7  - 0 . 2 4 3  - 0 . 3 0 1  - 0 . 2 6 2  - 0 . 1 9 6  - 0 . 0 9 7  0 .002 0 .028 

10 Russia 0 .030 - -  - 0 . 2 5 0  - -  - 0 . 4 4 0  - 0 . 3 8 0  - -  - 0 . 1 5 0  - 0 . 0 2 0  0 .010 

11 Russia 0 .015 - 0 , 0 8 5  - 0 . 1 6 5  - 0 , 2 5 0  - 0 . 3 0 8  - 0 . 2 6 3  - 0 . 1 9 6  - 0 . 1 0 4  - 0 . 0 0 7  - -  

12 Czech 0 .009 - 0 , 0 8 2  - 0 . 1 6 8  - 0 . 2 5 0  - 0 . 3 0 6  - 0 . 2 5 6  - -  - 0 . 0 8 4  - 0 . 0 0 5  0.018 

13 Germany  0 .004  - 0 . 0 9 7  - 0 . 1 8 9  - 0 . 2 7 8  - 0 . 3 4 5  - 0 . 2 9 6  - 0 . 2 2 1  - 0 , 1 1 8  - 0 . 0 1 9  0,013 

18 Germany 0 .020  - 0 . 0 9 9  - 0 . 1 6 4  - 0 . 2 2 1  - 0 . 2 9 7  - 0 . 2 5 0  - -  - 0 . 1 1 6  - 0 . 0 0 4  0.018 

22 Canada 0 .017 - 0 . 0 7 5  - 0 . 1 6 5  - 0 . 2 5 0  - 0 . 3 0 6  - 0 . 2 6 8  - -  - 0 . 1 0 2  - 0 . 0 0 7  0 .022 

25 Russia - 0 . 0 6 7  - 0 . 1 3 2  - 0 . 2 1 8  - 0 . 2 1 8  - 0 . 2 3 3  - 0 . 2 3 3  - -  - 0 . 1 1 4  - 0 . 0 6 6  0 ,010  

26 Russia - 0 . 0 5 7  - 0 , 0 5 7  - 0 . 0 5 7  - 0 . 0 6 5  - 0 . 0 6 2  - 0 . 0 6 2  - -  - 0 . 0 5 4  - 0 . 0 5 4  - 0 , 0 3 1  

27 Russia 0 .022 - 0 . 0 6 8  - 0 . 1 5 6  - 0 . 2 4 1  - 0 . 2 9 7  - 0 . 2 5 7  - 0 . 1 9 4  - 0 . 0 9 6  0.001 0 .026 

A v e r a g e ( 0 )  0 .004  - 0 . 0 8 4  - 0 . 1 6 9  - 0 . 2 2 9  - 0 . 2 9 3  - 0 . 2 5 5  - 0 , 2 0 1  - 0 , 1 0 2  - 0 . 0 1 7  0 ,014 

St. dev. (0)  0 ,032 0.021 0.045 0 ,057 0.087 0.071 0.011 0.023 0,022 0.017 

A v e r a g e ( l )  0 .010 - 0 . 0 7 9  - 0 . 1 7 9  - 0 , 2 4 5  - 0 . 3 1 4  - 0 . 2 7 3  - 0 . 2 0 1  - 0 . 1 0 2  - 0 . 0 1 2  0 ,018 

St. dev. ( l )  0 .023 0 .014  0 .030  0.017 0 .049 0 .039 0.011 0 .012 0 .016 0 .007 

Re H~ 
3 Canada  - 0 . 3 0 8  - 0 . 4 1 5  - 0 . 4 2 0  - 0 . 3 6 8  0.067 0.225 - -  0 ,339 0.251 0 .127 

6 Poland - 0 .308 - -  - 0 .434 - 0 ,372 0.073 0.235 0.327 0 ,340 - -  - -  

8 Uzbekis tan  - 0 . 2 9 6  - 0 . 4 0 6  - 0 . 4 2 1  - 0 . 3 6 1  0 .067 0.221 0 .312 0 .337 0.241 0 .118 

10 Russia - 0 . 1 6 9  - -  - 0 . 3 8 0  - -  0 .070  0 .220 - -  0 .300  0 .190 0 ,040 

11 Russia - 0 . 3 0 6  - 0 . 4 1 3  - 0 . 4 2 3  - 0 . 3 6 7  0 .076  0,241 0.315 0.338 0 .246 - -  

12 Czech - 0 . 3 0 2  - 0 . 4 0 9  - 0 . 4 1 3  - 0 , 3 5 8  0 .086  0,242 - -  0 ,326 0 .234 0 .118 

13 Germany - 0 . 2 7 5  - 0 , 3 9 2  - 0 . 4 0 9  - 0 . 3 5 5  0 .088 0.241 0 .322 0 .329 0,225 0 .100 

18 Germany - 0 . 3 0 6  - 0 , 3 9 6  - 0 . 4 0 9  - 0 . 3 4 6  0 .080 0 .229 - -  0 .316 0 .262 0.123 

22 Canada  - 0 . 3 1 3  - 0 , 4 2 6  - 0 . 4 3 4  - 0 . 3 8 0  0 .070 0,233 - -  0 .349 0 ,255 0 .130 

25 Russia - 0 . 2 7 7  - 0 . 2 9 8  - 0 . 2 2 6  - 0 . 2 2 6  0.103 0.103 - -  0 .274  0 .247 0 ,134 

26 Russia - 0 . 0 6 3  - 0 . 0 6 3  - 0 . 0 6 3  - 0.011 0 .012 0 .012 - -  0.051 0.051 0.065 

27 Russia - 0 . 3 0 2  - 0 . 4 0 9  - 0 . 4 2 3  - 0 . 3 6 3  0 .066 0 .222 0 ,312 0 .340  0.248 0 .129 

A v e r a g e ( 0 )  - 0 . 2 6 9  - 0 . 3 6 3  - 0 . 3 7 1  - 0 . 3 1 9  0.072 0 .202 0 .318 0.303 0.223 0 .108 

St. dev. (0)  0 .076 0.111 0.112 0 .110  0.022 0.071 0.007 0 .082 0 .060 0.031 

A v e r a g e ( l )  - 0 . 2 8 7  - 0 , 3 9 6  - 0 . 3 9 9  - 0 . 3 5 0  0.077 0 .219 0.318 0 .326 0 ,240  0 .116 

St, dev. ( 1 ) 0.041 0 .038 0 .059 0 .044  0 .012 0 .039 0.007 0 .022 0 .020 0 .022 
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Table B.35 (cont inued)  

Pa r t i c i pan t / x  = - 10.0 - 7.0 - 6.0 - 5.0 0.0 2.0 3.5 5.0 8.0 16.0 

Im Hr. 

3 Canada 0 .187  0 .269  0 .274  0 .235 - 0 . 0 3 7  - 0 . 1 3 2  - -  - 0 . 2 1 1  - 0 . 1 4 6  - 0 . 0 5 8  

6 Poland 0 .187 - -  0 .286 0.238 - 0 . 0 4 1  - 0 . 1 4 0  - 0 . 2 0 2  - 0 . 2 1 2  - -  

8 Uzbekis tan 0 .178 0.263 0 .276 0 .230 - 0 . 0 3 6  0.129 - 0 . 1 9 0  - 0 . 2 1 0  - 0 . 1 4 0  - 0 . 0 5 3  

10 Russia 0 .160 - -  0 .360 - -  - 0 . 0 6 0  - 0 . 1 9 0  - -  0 .280 - 0 . 1 7 0  11,040 

11 Russia 0 .188 0.272 0 .280 0.237 - 0 . 0 4 5  - 0 . 1 4 1  - 0 . 1 9 6  - 0 , 2 1 2  - 0 . 1 4 3  - -  

12 Czech 0 .186 0 .266 0.271 0 . 2 3 l  - 0 . 0 5 1  - 0 , 1 4 8  - -  - 0 . 2 0 7  - 0 . 1 3 6  0.057 

13 Germany 0 .194  0,283 0.296 0 .254  - 0 . 0 4 5  - 0 . 1 5 2  - 0 . 2 1 6  - 0 . 2 3 2  - 0 . 1 5 5  - 0 . 0 6 3  

18 Germany 0 .188 0 .258 0.267 0.221 - 0 . 0 4 3  - 0 . 1 3 3  - -  - 0 . 1 9 4  0.157 - 0 . 0 5 7  

22 Canada 0 .189 0.275 0.281 0.241 - 0 . 0 3 8  - 0 . 1 3 6  - -  - 0 . 2 1 6  - 0 . 1 4 7  /).059 

25 Russia 0 .187 0 .206 0.161 0.161 - 0 . 0 5 9  - 0 . 0 5 9  - -  0 .173 - 0 . 1 5 5  I).077 

26 Russia 0 .042 0 .042 0.042 0 .006 - 0 . 0 1 2  - 0 . 0 1 2  - -  - 0 . 0 3 8  - 0 . 0 3 8  0.044 

27 Russia 0 .175 0 .256  0 ,268 0 .224  - 0 . 0 3 6  - 0 . 1 2 7  - 0 . 1 8 6  0 .206 - 0 . 1 3 9  0.056 

A v e r a g e ( 0 )  0 .172 0.239 0.255 0.207 - 0 . 0 4 2  - 0 . 1 2 5  - 0 . 1 9 8  - 0 .  I99 - 0 . 1 3 9  - 0 , 0 5 6  

St. dev. (0) 0 .042 0.072 0 .080  0,071 0.013 0 .046 0 .012 0.057 0.035 0 .010 

A v e r a g e ( l )  0 .184 0.261 0 .275 0 .227 - 0 . 0 4 5  - 0 . 1 3 5  0.198 - 0 . 2 1 4  0 .149 - 0 . 0 5 4  

St. dev. (1) 0 .009 0 .022 0 .046 0.025 0.009 0.031 0.012 0 .026 0.01/) 0 .007 

Table  B.36. Model  2D-4 (HP, T =  100.0, z = 0) 

P a r t i c i p a n t / x =  - 10.0 - 7 . 0  - 6 . 0  - 5 . 0  0.0 2.0 3.5 5.0 8.0 16.0 

Re E~ 
3 Canada 1.140 1.090 0.755 0 .319  0 .224  0 .269 - -  0.871 0 .910 11.912 

6 Poland 1.140 1.110 0 .738  0 .299  0 .218 0 .259  0 .400  0 .860  0.907 0 .909 

8 Uzbekis tan  1.150 1.120 0 .749  0 .302  0 .222 0 .262  0.387 0 .790  0 .920  0 .923 

10 Russia 1.100 - -  0 .700  - -  0 .210  0 .260  - -  0 .770  0 .820  0 .820  

12 Czech 1.150 1.090 0 .756  0 .326  0 .230  0 .300  - -  0 .882 0.913 0.915 

13 Germany 1.140 t . 1 0 0  0 .752  0 .320  0 .220  0 .267 0 .405 0 .810  0 .836  0.883 

18 Germany 1.130 0 .988 0.755 0 .504  0 .234  0.305 - -  0 .699 0.91/4 0 .907 

20 Russia 1.095 1.050 0 .680  0.295 0.211 0.245 - -  0 .763 0 .897 0.905 

22 Canada  1.139 1.098 0 .754  0 .307  0 .222 0 .263 - -  0.871 0.907 0 .909 

25 Russia 1.120 0 .907  0 .683 0 .460  0 .288 0.351 - -  0 .649 0 .894 I).908 

26 Russia 0 .910  0 .783 0 .738 0 .692  0 .619 0 .637 - -  0 .718 0 .780 0.899 

27 Russia 1.140 1.110 0 .746  0.301 0.221 0 .262  0 .385 0 .789 0 .917 0 .920  

Average (0) 1.113 1.//41 0 .734 0.375 0 .260  0.307 0 .394 0.789 0 .884 0.901 

St. dev. (0) 0 .066 0 . I 0 7  0 .029 0.127 0.115 0. 108 0 .010 0.075 0.046 I).//27 

Average  (1) 1.131 1.066 0 .734 0.343 0.227 0.277 0 .394 0 .789 0.893 0.908 

St. dev. (1) 0 .019 0 .068 0 .029 0.075 0.021 0.03// 0 .010 0.075 0./133 0.011 

lm E x 

3 Canada  0 .059 0 .055 0 .030  0 .006 - 0 .018 - 0 .009 - -  0.051 0.055 11.057 

6 Poland 0 .062  0 .059  0 .030  - 0 .005 - 0 .017 0 .009 0.009 0.053 0.058 0 .060 

8 Uzbekistan 0 .049 0.047 0.023 - 0 .009 - 0 .019 - 0 .012 0 ,004 0 .040 0.052 0.055 

10 Russia 0 .050  - -  0 .030 - -  - 0 .020  - 0 .008 - -  0 .040 0 .046 1/.046 

12 Czech 0 ,046 0.042 0.021 0.008 - 0 .019 - 0 .008 0 .042 0 .046 0.048 

13 Germany 0 .070 0 .066  0.037 - 0 . 0 0 3  - 0 . 0 1 7  - 0 . 0 0 8  0 ,010 0.051 0.058 0.058 

18 Germany 0.053 0 .038 0.027 0 .006 - 0 . 0 1 6  - 0 . 0 0 4  - -  0 .033 0.051 0.054 

20 Russia 0 .044 0 .043 0.019 - 0 . 0 0 7  - 0 . 0 1 6  - 0 . 0 0 9  - -  0 .047 0.061 0.069 

22 Canada 0.061 0 .057 0.031 - 0 . 0 0 6  - 0 . 0 1 8  - 0 .010 - -  0 .053 0.057 0.059 

25 Russia 0 .057 0.041 0 .022 0 .004 - 0 .007 0.001 - -  0 .032 0.056 0 .060 

26 Russia 0 .027 0.021 0 .019 0 .017 0.017 0.021 - -  0.0311 0.037 0 ,050 

27 Russia 0 .039 0.037 0.017 - 0 .010 - 0 . 0 2 0  - 0 . 0 1 3  0,002 0.035 0.045 0,050 

A v e r a g e ( 0 )  0.051 0 .046 0 .026 - 0 . 0 0 2  - 0 . 0 1 4  0 .006 0,006 0.042 0.052 0.056 

St. dev. (0)  0 .012 0.013 0 .006 0.008 0 .010 0 .009 0,004 0.009 0.007 0.01/6 

Average  (1) 0 .054 0 .046  0 .026 - 0 .004 - 0 .017 - 0 .008 0,006 0.042 0.053 0 .054 

St. dev. (1) 0 .009 0.013 0.006 0.005 0 .004 0 .004 0 ,004 0.009 0 .006 0.005 
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Table B.37. Model 2D-4 (T = 100.0, z = 0) 

Par t ic ipant /x  = - 10.0 - 7.0 - 6.0 - 5.0 2.0 3.5 5.0 

Pa (EP) 
3 Canada 37.90 28.40 22.90 18.80 17.50 - -  26.90 

4 Finland 34.20 27.30 20.80 17.10 17.00 20.80 27.40 

6 Poland 38.20 - -  23.00 18.90 17.70 21.20 28.50 

8 Uzbekistan 36.17 27.27 21.90 17.88 16.75 19.94 25.72 

11 Russia 38.40 28.70 23.60 19.20 17.70 21.10 27.00 

12 Czech 38.12 28.49 23.10 19.04 18.47 - -  28.61 

13 Germany 39.05 29.25 23.55 19.29 l 8.37 22.13 28.49 

15 Russia 37.72 - -  29.16 - -  15.55 - -  23.01 

16 Russia 37.01 - -  24.58 - -  19.17 - -  32.87 

18 Germany 39.12 28.26 23.60 20.61 18.78 - -  27.20 

22 Canada 38.19 28.68 22.98 18.70 17.53 - -  27.10 

25 Russia 35.38 29.53 23.93 23.85 23.18 - -  31.88 

26 Russia 35.50 35.30 35.20 34.60 34.80 - -  35.60 
27 Russia 35.80 26.95 21.64 17.67 16.54 19.67 25.37 

Average (0) 37.20 28.92 24.28 20.47 19.22 20.81 28.26 

St. dev. (0) 1.53 2.27 3.68 4.77 4.82 0.90 3.25 

Average (1) 37.20 28.28 23.44 19.19 18.02 20.81 27.70 

St. dev. (1) 1.53 0.86 1.99 1.81 1.84 0.90 2.57 

p~ (HP) 
3 Canada 74.50 68.20 32.50 5.80 4.12 - -  43.40 

4 Finland 80.30 73.10 34.80 6.50 4.80 13.70 47.40 

6 Poland 73.98 69.94 31.07 5.11 3.82 9.13 42.27 

8 Uzbekistan 75.54 71.03 31.98 5.19 3.93 8.53 35.67 

11 Russia 75.20 69.50 37.20 5.58 3.81 7.82 34.40 

12 Czech 75.02 68.37 32.60 6.07 5.13 - -  44.45 

13 Germany 74.88 68.84 32,33 5.84 4.06 9.34 37.52 

14 Russia 72.94 - -  31.05 - -  4.25 - -  43.98 

15 Russia 71.37 - -  31.17 - -  3.97 - -  44.68 

14.1 Russia 75.20 69.50 37.20 5.58 3.81 7.82 34.40 

16 Russia 69.56 - -  18.30 - -  4.60 - -  41.26 

18 Germany 73.45 52.24 32.52 18.11 5.32 - -  30.06 

20 Russia 76.10 70.20 35.00 6.04 3.82 - -  36.95 

22 Canada 74.12 68.86 32.47 5.36 3.93 - -  43.39 

25 Russia 71.06 46.99 26.64 12.04 7.02 - -  24.09 

26 Russia 47.20 35.00 31.00 27.30 23.10 - -  29.50 

27 Russia 74.65 70.23 31.73 5.15 3.91 8.47 35.56 

Average (0) 72.65 64.43 31.74 8.55 5.49 9.26 38.17 

St. dev. (0) 6.96 11.28 4.26 6.50 4.61 2.04 6.44 

Average ( 1 ) 74.24 66.69 32.58 7.11 4.39 8.52 39.06 

St. dev. (1) 2.42 7.76 2.57 3.77 0.85 0.64 5.50 

Table B.38. Model 2D-5 (T = 300.0, z = 0) 

Par t ic ipant /x  = - 50.0 0.0 30.0 65.0 100.0 150.0 220.0 

Pa (EP) 
3 Canada 147.00 71.20 37.10 6.22 57.10 38.70 317.00 

4 Finland 140.50 67.50 31.70 6.40 58.10 48.10 302.60 
6 Poland 155.70 77.30 39.50 6.30 58.10 38.00 320.50 

8 Uzbekistan 148.54 71.87 37.89 6.19 58.79 39.57 320.64 

11 Russia - -  71.10 37.60 6.22 57.10 40.70 324.00 

12 Czech 151.00 73.39 37.59 6.18 56.77 40.74 318.30 

17 US A 148.20 72.03 37.54 6.45 58.94 38.32 318.70 

18 Germany 152.70 71.20 36.87 6.65 55.40 38.01 309.95 

25 Russia 143.69 65.87 32.46 7.16 59.54 46.35 344.69 
Average (0) 148.42 71.27 36.47 6.42 57.76 40.94 319.60 
St. dev. (0) 4.86 3.26 2.60 0.32 1.29 3.74 11.41 

Average ( I ) 148.42 71.27 36.47 6.33 57.76 40.94 316.46 

St. dev. (1) 4.86 3.26 2.60 0.16 1.29 3.74 6.91 
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Table B.38 (continued) 

Par t ic ipanl /x  = - 50.0 0.0 30.0 65.0 100.0 150.0 220.0 

Pa (HP) 

3 Canada 173.00 41.80 28.80 110.00 570.00 4.83 456.00 

4 Finland 177.60 42.40 27.50 119.80 589.10 5.60 513.80 

6 Poland 172.78 41.69 28.96 109.55 571.91 3.67 469.40 

8 Uzbekistan 174.95 42.45 30.10 111.96 574.90 4.88 461.66 

11 Russia - -  41.20 28.60 11/8.00 556.00 5.84 564.00 

12 Czech 172.50 41.46 28.49 112.60 566.60 4.80 464.50 

17 USA 175.00 42.73 30.24 122.50 586.70 4.31 480.60 

18 Germany 159.78 35.85 18.81 121.48 565.63 4.17 370.15 

25 Russia 172.01 40.62 27.72 115.39 562.78 3.90 468.54 

Average(0)  172.20 41.13 27.69 114.59 571.51 4.67 472.07 

St. dev. (0) 5.34 2.09 3.46 5.46 10.78 0.73 51.35 

Average ( I ) 173.98 41.79 28.80 114.59 571.51 4.67 472.07 

St. dev. (1) 1.98 0.71 0.98 5.46 10.78 0.73 51.35 

Table B.39. Model 2D-5 (EP, T = 3600.0, z = 0) 

Par t ic ipant /x  = - 50.0 0.0 30.0 50.0 65.0 80.0 100.0 130.0 150.0 180.0 

Re E,. 
3 Canada 0.923 0.904 0.886 0.869 t).863 1/.872 1/.8911 0.909 0.918 0.932 

6 Poland 0.937 0.912 0.894 0.878 0.872 0.880 0.899 0.918 0.927 0.941 

8 Uzbekistan 0.925 0.906 0.888 0.872 0.866 0.910 0.893 0.911 0.920 0.934 

11 Russia 0.908 0.891 0.875 0.868 0.877 0.895 0.914 0.923 1/.937 

12 Czech 0.960 0.941 0.922 0.905 0.899 0.9(/7 0.926 0.944 0.952 0.965 

17 USA 0.932 0.913 1/.895 0.879 0.873 0.881 0.899 0.918 0.926 0.940 

18 Germany 0.935 0.915 11.897 0.880 0.874 0.882 0.901 0.920 0.928 0.942 

25 Russia 1.010 0.999 0.987 0.978 0.980 0.984 0.993 1.010 1.020 1.0311 

Average (0) 0.946 0.925 0.908 0.892 0.887 0.899 0.912 0.931 0.939 0.953 

St. dev. (0) 0.031 0.032 0.034 0.036 0.039 0.037 11.035 11.1/34 /).(/34 (l.ll33 

Average (1) 0.935 0.914 0.896 0.880 0.874 0.887 0.900 0.919 0.928 0.942 

St. dev. (1) 0.013 0.012 0.012 0.012 0.012 0.015 //.012 11.1112 0.011 1).1111 

Im E~ 
3 Canada 0.095 0.142 0.184 0.221 0.236 0.214 0.169 0.129 0.114 0.070 

6 Poland 0.084 0.131 0.173 0.211 0.226 0.205 0.158 0. I18 0.104 0.059 

8 Uzbekistan 0.088 0.135 0.177 0.114 0.229 0.186 0.162 /).121 0.106 0.063 

11 Russia - -  0.138 0.179 0.216 0.231 0.210 0.164 0.123 0.108 0.064 

12 Czech I).079 0.128 0.171 0.210 0.226 0.205 0.157 0.115 0.101 0.057 

17 USA 11.089 0.136 0.178 0.215 0.229 0.209 0.163 0.122 0.108 0.064 

18 Germany 0.096 0.145 0.187 0.225 0.238 0.220 0.174 0.134 0.120 0.076 

25 Russia 0.024 0.071 0.115 0.149 (I.144 0.131 0.100 0.055 I).038 - 0 . 0 0 7  

Average (0) 0.079 0.128 0.171 0.195 0.220 0.198 0.156 0.115 0.100 0.056 
St. dev. (0) 0.025 0.024 0.023 0.041 0.031 0.029 0.023 0.025 0.026 0.026 

Average (1) 0.089 0.136 0.178 0.195 0.231 0.207 0.164 0.123 0.109 0.065 

St. dev. (1) (I.006 0.1106 0.006 0.041 0.005 0.01 I 0.006 1/.006 0.006 //./)1/6 

Re H~ 
3 Canada 1.1/211 1.110 1.270 1.670 1.970 1.670 1.200 1.09// 1.210 1 ./100 

6 Poland 1.020 1.110 1.260 1.670 1.980 1.680 1.200 1.090 1.210 1.010 

8 Uzbekistan 1.030 1.120 1.270 1.680 1.990 1.680 1.200 1.090 1.210 1.010 
I 1 Russia 1.110 1.260 1.660 1.970 1.660 1.190 1.080 1.200 1.000 

12 Czech 1.050 1.140 1.300 1.710 2.020 1.710 1.230 1.1211 1.230 1.1/3/) 

17 USA 1.020 1.110 1.270 1.670 1.960 1.680 1.190 1.080 1.210 1.000 
18 Germany 0.995 1.110 1.260 1.660 1.920 1.660 I. 190 1.080 1.210 1.000 

25 Russia 1.110 1.250 1.370 1.780 1.740 1.650 1.440 1.210 1.270 1.100 

Average (0) 1.035 1.132 1.282 1.687 1.944 1.674 1.230 1.105 1.219 1.019 
St. dev. (0) 0.037 0.049 0.038 0.041 0.087 0.018 (/.086 0.044 0.022 0.034 

Average (1) 1.022 1.116 1.270 1.674 1.973 1.674 1.200 1.090 1.211 1.007 

St. dev. (1) 0.018 0.011 0.014 0.017 0.030 0.018 0.014 0.014 0.009 0.011 
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Table B.39 (continued) 

P a r t i c i p a n t / x =  - 5 0 . 0  0.0 30.0 50.0 65.0 80.0 100.0 130.0 150.0 180.0 

Im H ,  
3 Canada 0.011 - 0 . 0 6 4  - 0 . 1 6 6  - 0 . 4 2 3  - 0 . 6 2 8  - 0 . 4 3 1  - 0 . 0 9 8  - 0 . 0 4 2  - 0 . 1 9 7  0.022 
6 Poland 0 .0 t7  - 0 . 0 5 4  - 0 . 1 5 8  - 0 . 4 3 4  - 0 . 6 5 0  - 0 . 4 4 0  - 0 . 0 9 9  - 0 . 0 4 0  - 0 . 2 0 3  0.023 

8 Uzbekistan 0.015 - 0 . 0 6 2  - 0 . 1 6 0  - 0 . 4 2 5  - 0 . 6 4 2  - 0 . 4 3 4  - 0 . 0 9 3  - 0 . 0 3 4  - 0 . 1 9 3  0.027 
11 Russia - -  - 0 . 0 6 5  - 0 . 1 6 3  - 0 . 4 2 7  - 0 . 6 3 9  - 0 . 4 3 4  - 0 . 1 0 1  - 0 . 0 4 1  - 0 . 1 9 2  0.022 

12 Czech - 0 . 0 2 1  - 0 . 1 0 4  - 0 . 2 1 2  - 0 . 4 8 4  - 0 . 7 0 3  - 0 . 4 8 7  - 0 . 1 4 4  - 0 . 0 7 8  - 0 . 2 3 0  - 0.010 

17 USA 0.092 - 0 . 0 6 7  - 0 . 1 7 3  - 0 . 4 3 7  - 0 . 6 4 1  - 0 . 4 4 2  - 0 . 0 9 8  - 0 . 0 3 9  - 0 . 2 0 6  0.021 

18 Germany 0.028 - 0 . 0 6 0  - 0 . 1 6 1  - 0 . 4 2 1  - 0 . 5 9 7  - 0 . 4 2 5  - 0 . 0 9 3  - 0 . 0 3 7  - 0 . 1 9 4  0.026 

25 Russia - 0 . 1 0 2  - 0 . 2 3 0  - 0 . 3 3 9  - 0 . 6 8 3  - 0 . 6 4 3  - 0 . 5 6 8  - 0 . 3 8 7  - 0 . 2 1 0  - 0 . 3 0 7  - 0 . 0 8 8  

Average (0 )  0.006 - 0 . 0 8 8  0.192 - 0 . 4 6 7  - 0 . 6 4 3  - 0 . 4 5 8  - 0 . 1 3 9  - 0 . 0 6 5  - 0 . 2 1 5  0.005 

St. dev. (0) 0.058 0.059 0.062 0.090 0.029 0.049 0.102 0.060 0.039 0.040 

A v e r a g e ( l )  0.006 0.068 - 0 . 1 7 0  - 0 . 4 3 6  - 0 . 6 3 4  - 0 . 4 4 2  - 0 . 1 0 4  - 0 . 0 4 4  - 0 . 2 0 2  0.019 

St. dev. (1) 0.058 0.016 0.019 0.022 0.018 0.021 0.018 0.015 0.013 0.013 

Re H z 
3 Canada - 0 . 1 6 6  - 0 . 2 6 0  - 0 . 4 0 2  - 0 . 4 1 4  0.039 0.502 0.451 0.217 0.261 0.272 
6 Poland - 0. t 65 - 0.260 - 0.404 - 0.428 - 0.040 0.530 0.454 0.221 0.261 0.283 

8 Uzbekistan - 0.163 - 0.248 - 0.403 - 0.436 0.040 0.544 0.453 0.228 0.265 0.259 

11 Russia - -  - 0.235 - 0.369 - 0.405 0.042 0.590 0.456 0.249 0.321 0.334 

12 Czech - 0.169 - 0.270 - 0.419 - 0.428 0.036 0.511 0.457 0.214 0.250 0.270 

17 US A - 0 . 1 7 2  0.263 - 0 . 4 0 4  - 0 . 4 2 9  0.025 0.519 0.453 0.219 0.258 0.264 

18 Germany 0.172 - 0 . 2 7 3  - 0 . 4 0 2  - 0 . 4 4 8  0.025 0.516 0.452 0.206 0.234 0.273 

25 Russia - 0 . 1 2 5  - 0 . 2 6 7  - 0 . 3 4 0  0.199 0.159 0.202 0.381 0.214 0.257 0.239 

Average (0 )  - 0 . 1 6 2  - 0 . 2 6 0  - 0 . 3 9 3  - 0 . 3 9 8  0.041 0.489 0.445 0.221 0.263 0.274 

St. dev. (0) 0.017 0.013 0.026 0.082 0.055 0.119 0.026 0.013 0.025 0.027 

Average (1 )  - 0 . 1 6 8  - 0 . 2 6 0  - 0 . 4 0 0  - 0 . 4 2 7  0.024 0.530 0.454 0.217 0.255 0.266 

St. dev. ( I )  0.004 0.013 0.015 0.014 0.029 0.030 0.002 0.007 0.010 0.014 

lm H~ 

3 Canada 0.109 0.170 0.263 0.269 0.028 - 0 . 3 4 2  - 0 . 3 0 0  - 0 . 1 0 5  - 0 . 1 7 6  - 0 . 2 1 7  

6 Poland 0.112 0.174 0.271 0.287 - 0 . 0 3 0  - 0 . 3 7 1  - 0 . 3 0 7  - 0 . 1 1 1  - 0 . 1 7 9  - 0 . 2 2 2  

8 Uzbekistan 0.109 0.178 0.266 0.291 - 0 . 0 3 0  - 0 . 3 7 9  - 0 . 3 0 7  - 0 . 1 2 0  - 0 . 1 8 5  - 0 . 2 0 7  

11 Russia - -  0.207 0.305 0.293 - 0.024 0.091 - 0.295 - 0.010 - 0.030 0.075 

12 Czech 0.117 0.180 0.274 0.283 - 0 . 0 3 0  - 0 . 3 5 7  - 0 . 3 1 6  - 0 . 1 1 7  - 0 . 1 7 9  - 0 . 2 2 3  

1 7 U S A  0.118 0.174 0.268 0.286 - 0 . 0 2 8  - 0 . 3 6 3  - 0 . 3 0 6  - 0 . 1 1 1  - 0 . 1 7 8  - 0 . 2 1 2  

18 Germany 0.107 0.176 0.258 0.294 - 0 . 0 2 0  - 0 . 3 5 3  - 0 . 3 0 2  - 0 . 0 9 6  - 0 . 1 4 8  - 0 . 2 2 0  

25 Russia 0.124 0.242 0.301 0.175 - 0 . 1 2 5  - 0 . 1 6 1  - 0 . 3 1 6  - 0 . 1 3 8  - 0 . 2 2 6  - 0 . 2 3 3  

Average (0 )  0.114 0.188 0.276 0.272 - 0 . 0 3 9  - 0 . 3 0 2  - 0 . 3 0 6  0.101 - 0 . 1 6 3  0.201 

St. dev. (0) 0.006 0.025 0.018 0.040 0.035 0.111 0.007 0.039 0.058 0.052 

A v e r a g e ( l )  0.114 0.180 0.276 0.286 - 0 . 0 2 7  - 0 . 3 0 2  - 0 . 3 0 6  - 0 . 1 1 4  - 0 . 1 8 2  - 0 . 2 1 9  

St. dev. ( I ) 0.006 0.012 0.0 l 8 0.009 0.004 0.11 I 0.007 0.013 0.023 0.008 

Table B.40. Model 2D-5 (EP, T = 3600.0. z = 0) 

P a r t i c i p a n t / x =  - 5 0 . 0  0.0 30.0 50.0 65.0 80.0 100.0 130.0 150.0 180.0 

Re E x 
3 Canada 0.842 0.403 0.330 4.930 0.599 0.972 1.390 0.475 0.115 0.877 

6 Poland 0.849 0.407 0.335 4.960 0.597 0.959 1.410 0.485 0.104 0.875 

8 Uzbekistan 0.863 0.414 0.344 4.970 0.619 0.993 1.450 0.492 0.119 0.908 
11 Russia - -  0.400 0.328 4.810 0.592 0.991 1.370 0.470 0.129 0.838 

12 Czech 0.849 0.405 0.330 5.030 0.618 1.010 1.390 0.480 0.116 0.893 

17 USA 0.854 0.412 0.341 4.700 0.644 0.973 1.430 0.516 0.109 0.870 
18 Germany 0.809 0.373 0.265 3.380 0.631 0.978 1.380 0.487 0. ! 05 0.918 

25 Russia 0.814 0.379 0.294 5.370 0.991 1.170 1.230 0.447 0.097 0.828 

Average (0) 0.840 0.399 0.321 4.769 0.661 1.006 1.381 0.482 0.112 0.876 
St. dev. (0) 0.021 0.015 0.027 0.594 0.134 0.068 0.067 0.020 0.010 0.031 

Average (1) 0.840 0.399 0.329 4.967 0.614 0.982 1.403 0.482 0.112 0.876 

St. dev. (1) 0.021 0.015 0.016 0.210 0.019 0.017 0.029 0.020 0.010 0.031 
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M.S. Zhdanov et a l . /  Journal of Applied Geophysics 37 (1997) 133-271 

Part ic ipant /x  = - 50.0 0.0 30.0 50.0 65.0 80.0 100.0 130.0 150.0 180.0 

lm E~ 
3 Canada - 0.0311 - 0.018 - 0.016 - 0.230 11.048 - 0.066 1t.086 - 0 . 0 3 6  11.1/12 - 0 . 0 6 4  

6 Poland - 0 . 0 1 8  -11.012 0.011 - 0 . 1 6 1  11.040 - 0 . 0 5 6  /I.067 - 0 . 0 2 9  11./110 - 0 . 0 5 1  

8 Uzbekistan - 0 . 0 1 5  - 0 . 0 1 1  - 0 . 0 1 1  - 0 . 1 4 4  - 0 . 0 3 8  0.051 - 0 . 0 7 6  - 0 . 0 2 9  - 0 . 0 1 1  - 0 . 0 5 0  

1l Russia - -  - 0 . 0 1 6  0.014 - 0 . 2 0 2  - 0 . 0 4 5  0.062 - 0 . 0 7 9  -1/ .033 - 0 . 0 1 2  - 0 . 0 5 8  

12 Czech - 0 . 0 2 5  - 0 . 0 1 7  - 0 . 0 1 6  - 0 . 1 9 5  11.038 - 0 . 0 6 6  - 0 . 0 8 5  - 0 . 0 3 5  0.012 - 0 . 0 6 1  

17 USA - 0 . 0 2 5  - 0 . 0 1 5  - 0 . 0 1 4  - 0 . 1 8 6  (I.045 - 0 . 0 5 9  0.078 - 0 . 0 3 5  0.012 - 0,057 

18 Germany - 0 . 0 2 4  0.014 - 0 . 0 1 2  /).141 - 0 . 0 4 5  - 0 . 0 6 0  -0.1t78 - 0 . 0 3 4  0.012 - 0 . 0 6 1  

25 Russia - 0.032 - 0.018 - 0.015 0.300 - 0.062 - 11.078 - 0.089 - 0.036 - 1/.012 - 0.064 

Average (0 )  11.024 - 0 . 0 1 5  -11.014 - / ) .195  - 0 . 0 4 5  0.062 - 0 . 0 8 0  - 0 . 0 3 3  - 0 . 0 1 2  - I ) .058  

St. dev. (0) 0.006 0.003 0.002 0.052 0.008 0.008 0.007 0.003 0.001 0.005 

A v e r a g e ( l )  0,024 - 0 . 0 1 5  //.014 0.180 - 0 . 0 4 3  1/.062 -0.081/  - 0 . 0 3 3  -0.1112 - 0 . 0 5 8  

St. dev. ( l )  0.006 0.003 //.002 0.033 0.004 0.008 0.007 0.003 0,0011 11.005 

Table B.41. Model 2D-5 ( T =  3600.0, z = 01 

Par t ic ipant /x  = - 50.0 0.0 30.0 65.0 100.0 150.0 220.0 

Pa (EP) 
33 Canada 120.00 97.81) 72.40 27.10 82.50 82.80 135.011 

4 Finland 106.40 85.90 60.30 25.20 81.60 80.30 121.70 

6 Poland 121.30 100.10 74.20 26.90 83.00 82.80 135.50 

8 Uzbekistan 117.73 96.57 72.24 26.52 81.80 86.44 132.58 

11 Russia - -  98.80 74.10 27.20 83.30 84.90 137.00 

12 Czech 122.40 99.88 73.35 27.16 82.65 83.82 134.00 

17 USA 122.20 99.50 73.48 27.59 84.51 83.50 137.30 

18 Germany 128.89 101.05 75.06 29.28 85.23 84.75 t 40.12 

25 Russia I 18.29 90.21 71.41/ 41.33 64.68 86.99 137.13 

Average (0) 119.65 96.65 71.84 28.70 81.03 84.03 134.48 

St. dev. (01 6,36 5.16 4.47 4.85 6.24 2.03 5.26 
Average ( 1 ) 121.54 97.99 73.28 27.12 83.07 84.(/3 136.08 

St. dev. (1) 3.71 3.44 1.211 1.13 1.26 2.03 2.32 

p~ (HP) 
3 Canada 103.00 23.50 15.70 52.10 280.00 1.94 195.00 

4 Finland 116.2(I 26.40 16.60 63.40 318.60 2.50 241.21/ 

6 Poland 104.09 23.95 16.18 51.60 287.00 1.58 205.17 

8 Uzbekistan 107.60 24.82 17.09 55.48 293.96 2.04 205.34 

11 Russia - -  23.10 15.60 50.90 272.00 2.41 240.00 

12 Czech 104.30 23.68 15.76 55.31 282.10 1.95 202.60 

17 US A 105.41/ 24.52 16.87 60.10 295.10 1.73 210.40 

18 Germany 94,63 20.11 10.14 57.50 276.07 1.62 159.04 

25 Russia 95.93 20.75 12.50 142.32 219.88 1.38 194.00 

Average (0) 103.89 23.43 15.16 65.41 280.52 1.91 205.86 

St. dev. (0) 6,74 1.96 2.32 29.13 26.59 0.37 24.74 

Average (11 103.89 23.43 15.79 55.80 288.10 1.91 205.86 

St, dev. ( 1 ) 6.74 1.96 1.44 4.39 14.74 0.37 24.74 

A p p e n d i x  C 

Diagrams for the 2D results are presented in Figs. 6-25. 
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Table D.1. Model 3D-IA (EXN, T =  0.1, z = 0) 

Par t ic ipant /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re E x 
1 Russ ia -Czech  0.390 0.460 0.720 1.020 1.060 1.040 1.020 1.000 

1.1 Russ ia -Czech  0.440 0.500 0.730 1.000 1.050 1.030 1.020 1.000 

4 Russia 0.310 0.310 0.340 1.040 1.080 1.060 1.020 - -  

6 Russia 0.440 0.500 0.740 1.000 1.060 1.040 1.020 1.000 

7 U S A 0.350 0.425 0.761 1.025 1.062 1.037 1.017 1.001 

7.1 US A 0.360 0.410 0.740 1.040 1.080 1.040 1.020 1.000 

9 Germany 0.395 0.472 0.735 0.994 1.049 1.034 1.016 - -  

Average (0) 0.384 0.440 0.681 1.017 1.063 1.040 1.019 1.000 

St. dev. (0) 0.048 0.067 0.151 0.019 0.013 0.010 0.002 0.000 

Average (1) 0.384 0.440 0.738 1.017 1.063 1.037 1.019 1.000 
St. dev~ (1) 0.048 0.067 0.014 0.019 0.013 0.004 0.002 0.000 

lm E x 
1 Russ ia -Czech  - 0.120 - 0.110 - 0.060 0.040 0.060 0.050 0.030 0.000 

1.1 Russ ia-Czech  - 0 . 1 2 0  - 0 . 1 2 0  - 0 . 0 6 0  0.030 0.060 0.050 0.030 0.000 

4 Russia 0.110 - 0.110 - 0.110 0.030 0.050 0.040 0.020 - -  

6 Russia - 0 . 1 3 0  - 0 . 1 2 0  - 0 . 0 7 0  0.030 0.060 0.050 0.030 0.000 

7 USA - 0 . 1 8 7  - 0 . 1 5 5  - 0 . 0 2 5  0.059 0.071 0.052 0.033 0.005 

7.1 USA - 0 . 2 0 0  - 0 . 1 8 0  - 0 . 0 4 0  0.060 0.070 0.060 0.040 0.010 

9 Germany - 0 . 1 3 7  - 0 . 1 2 3  - 0 . 0 5 6  0.033 0.057 0.046 0.046 - -  

Average (0) - 0 . 1 4 3  - 0 . 1 3 1  - 0 . 0 6 0  0.040 0.061 0.050 0.033 0.003 

St. dev. (0) 0.035 0.026 0.027 0.014 0.007 0.006 0.008 0.004 

Re H~, 
1 Russ ia -Czech  1.090 1.080 1.070 1.060 1.050 1.030 1.020 1.000 

1.1 Russ ia -Czech  1.080 1.080 1.070 1.060 1.050 1.030 1.020 1.000 
6 Russia 1.080 1.080 1.070 1.060 1.050 1.030 1.020 1.000 

7 US A 1.076 1.074 1.067 1.059 1.050 1.033 1.021 1.004 

7.1 U S A  1.070 1.070 1.070 1.060 1.050 1.030 1.020 1.000 

9 Germany 1.071 1.070 1.066 1.058 1.049 1.032 1.020 - -  

Average (0) 1.078 1.076 1.069 1.059 1.050 1.031 1.020 1.001 

St. dev. (0) 0.007 0.005 0.002 0.001 0.000 0.001 0.000 0.002 

Im Hy 
I Russ ia -Czech  0.020 0.020 0.020 0.020 0.020 0.010 0.010 0.000 

I.I Russ ia -Czech  0.020 0.020 0.020 0.020 0.020 0.010 0.010 0.000 

6 Russia 0.020 0.020 0.020 0.020 0.020 0.010 0.010 0.000 

7 US A 0.024 0.022 0.019 0.017 0.015 0.013 0.010 0.004 

7.1 US A 0.020 0.020 0.020 0.020 0.020 0.010 0.010 0.010 

9 Germany 0.025 0.024 0.022 0.020 0.018 0.015 0.012 - -  

Average (0) 0.021 0.021 0.020 0.019 0.019 0.011 0.010 0.003 

St. dev. (0) 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.004 

Average (1) 0.021 0.021 0.020 0.020 0.019 0.011 0.010 0.003 
St. dev. (1) 0.002 0.002 0.001 0.000 0.002 0.002 0.000 0.004 
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Table D.2. Model 3D-1A (EYN, 7 '=  0.1, z = 0) 

Par t ic ipant /  x = 0.0 0.25 (1.5 0.75 1.0 1.5 2.0 4.0 

Re E~ 

1 Russ ia-Czech  0.360 0.380 0.460 0.580 0.690 0.830 0.910 

1.1 Russ ia-Czech  0.380 0.410 0.480 0.590 0.700 0.840 0.910 

3 Russia 0.360 0.370 0.410 0.540 0.650 I).760 11.890 

4 Russia 0.350 0.350 0.410 0.530 0.630 I).820 0.890 

5 Russia 0.320 0.340 0.390 0.510 0.640 0.790 0.900 

6 Russia 0.400 0.420 0.490 0.600 0.700 0.840 0.910 

7 US A 0.386 0.405 0.470 0.581 0.689 0.834 0.909 

7.1 US A 0.380 0.400 0.470 0.580 0.680 0.830 0.910 

9 Germany 0.373 0.397 0.465 I).573 0.684 0.831 0.917 
10 Russia 0.300 0.320 0.390 0.520 0.650 0.820 11.920 

Average (0) 0.361 0.379 0.443 0.560 0.671 11.819 0.907 
St. dev. (01 0.031 0.033 0.039 0.032 0.026 0.025 0.010 

Average ( 1 ) 0.361 0.379 0.443 0.560 0.671 1/.826 11.907 

St. dev. (1) 0.031 0.033 0.039 0.032 0.026 11.015 0.010 

Im E v 
I Russ ia-Czech  - 0.160 - 1).160 (1.170 0.160 0.140 0.100 0.070 

I.I Russ ia-Czech - 0 . 1 7 0  - 0 . 1 7 0  0.170 0.160 - 0 . 1 4 0  0.100 - 0 . 0 7 0  

3 Russia - 0 . 1 6 0  - 0 . 1 6 0  - 0 . 1 5 0  - 0.100 - 0 . 0 9 0  - 0 . 0 9 0  - I ) .070  
4 Russia - 0 . 1 0 0  - 0 . 1 1 0  - 0 . 1 2 0  - 0 . 1 4 0  -0.1411 - 0 . 1 2 0  0.090 

5 Russia - 0 . 1 1 0  - 0 . 1 1 0  - 0 . 1 2 0  - 0 . 1 4 0  0.150 0.130 0.110 

6 Russia - 0 . 1 7 0  - 0 . 1 7 0  - 0 . 1 8 0  0.170 - 0 . 1 5 0  0.100 0.070 

7 USA 0.186 0.191 0.191 - 0 . 1 7 7  - 0 . 1 5 0  - 0 . 1 0 2  - 0 . 0 7 0  

7.1 USA -0.1711 - / ) . 180  - 0 . 1 9 0  -0.181/  - 0 . 1 5 0  0.110 0.070 

9 Germany 0.174 0.174 - 0 . 1 7 9  - 0 . 1 7 2  - 0 . 1 4 9  0.104 0.072 

10 Russia - 0 . 1 2 0  - 0 . 1 2 0  - 0 . 1 2 0  - 0 . 1 1 0  0.090 0.050 0.031/ 

Average(0)  - 0 . 1 5 2  0.155 0.159 - 0 . 1 5 1  - 0 . 1 3 5  - 0 . 1 0 1  - 0 . 0 7 2  

St. dev. (0) 0.0311 0.030 0.029 0.028 0.024 0.021 0.020 

A v e r a g e ( l )  - 0 . 1 5 2  - 0 . 1 5 5  - 0 . 1 5 9  - 0 . 1 5 1  - 0 . 1 3 5  - 0 . 1 0 6  - 0 . 0 7 7  

St. dev. (11 0.03(I 0.030 0.029 0.028 0.024 1/.012 0.014 

Re H~ 

1 Russia Czech 1.300 1.280 1.160 1.0111 11.9511 11.930 0.950 

1.1 Russ ia-Czech  1.270 1.250 1.150 1.020 0.960 0.940 0.950 

3 Russia 1.270 1.270 1.200 1.040 0.970 11.890 0.920 

5 Russia 1.390 1.380 1.290 1.120 1.000 0.910 0.910 

6 Russia 1.270 1.250 1.150 1.020 0.960 0.940 0.950 

7 USA 1.281 1.272 1.166 1.016 0.950 0.933 0.947 

9 Germany 1.264 1.259 1.168 1.025 0.956 0.934 0.947 

10 Russia 1.330 1.330 1.200 1.0311 0.950 11.920 0.930 

Average (0) 1.297 1.286 1.186 1.035 1/.962 0.925 0.938 

St. dev. (0) 0.044 0.046 0.047 0.035 0.017 0.017 0.016 

Average (1) 1.284 1.273 1.171 1.023 0.957 0.930 0.938 
St. dev. ( I )  0.024 0.028 0.021 0.010 0.007 0.011 0.016 

Im /-/~ 
1 Russ ia -Czech  0.070 0.050 0.040 0.040 0.030 0.010 - 0.010 

1.1 Russ ia-Czech 0.080 0.060 0.040 0.041/ 0.030 0.000 - 0.010 

3 Russia 0.210 0.200 0.120 0.040 0.010 0.050 - 0 . 0 5 0  

5 Russia 0.030 0.030 0.030 0.020 0.020 0.020 0.020 
6 Russia 0.070 0.060 0.040 0.040 0.030 0.000 0.010 

7 USA 0,077 0.056 0.035 0.041 0.030 0.005 0.007 

9 Germany 0.089 0.071 0.042 0.035 1/.024 0.003 - 0.008 

10 Russia 0.040 0.000 0.040 0.000 0.000 0.000 0.000 
Average (0) 0.083 0.066 0.048 0.032 0.022 0.002 - I).009 

St. dev. (01 0.055 0.059 0.029 0.015 0.011 I).021 0.019 
Average (1) 0.065 0.047 0.038 0.037 0.022 0.005 - 0.004 

St. dev. ( I ) 0.022 0.024 0.004 0.008 0.01 I 0.007 0.011 

0.990 

0.9911 

1 . 0 0 0  

0.990 

0.989 

0.990 

0.991 

0.11/14 

0.990 

0.000 

- 0.020 

- 0.020 

0.020 
- 0 . 0 2 0  

- 0 . 0 1 9  

- 0 . 0 2 0  

- 0.020 

0.000 

- 0.020 
0.000 

0.990 

0.990 

0.971/ 

1 .000  

0.990 

1/.988 

0.010 

0.988 
0.010 

- 0.010 

- 0.010 

- 0.030 

0.020 
0.010 

0.010 

-- 11.(11/8 

0.016 

0.008 
0 . 0 1 6  
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Table D.2 (continued) 

Pa r t i c ipan t /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re H_ 

! R u s s i a - C z e c h  0.150 0.280 0.270 0.200 0.100 0.050 
1.1 R u s s i a - C z e c h  0.140 0.250 0.250 0.190 0.100 0.050 
3 Russ ia  0.150 0.180 0.200 0.200 0.110 0.050 
4 Russ ia  - -  0.090 0.180 0.150 0.090 0.040 

5 Russ ia  0.140 0.350 0.260 0.160 0.080 0.030 
6 Russ ia  0.130 0.250 0.240 0.190 0.100 0.050 
7 U S A  0.134 0.273 0.269 0.201 0.101 0.051 
7.1 USA 0.130 0.280 0.280 0.210 0.100 0.050 
9 Ge rmany  0.120 0.254 0.261 0.200 0.102 0.052 
10 Russ ia  0.130 0.280 0.310 0.250 0.170 0.080 

Average  (0) 0.136 0.249 0.252 0.195 0.105 0.050 
St. dev. (0) 0.010 0.070 0.038 0.027 0.024 0.012 
Average  (1) 0.136 0.266 0.252 0.189 0.098 0.047 
St. dev. (1) 0.010 0.044 0.038 0.020 0.008 0.007 

Im H~. 
1 R u s s i a - C z e c h  0.030 0.030 0.040 0.050 0.050 0.040 
1.1 R u s s i a - C z e c h  0.030 0.030 0.040 0.050 0.050 0.040 
3 Russ ia  0.080 0.150 0.150 0.100 0.080 0.070 
4 Russ ia  - -  0.090 0.180 0.150 0.090 0.040 
5 Russ ia  0.010 0.010 0.000 0.000 0.000 0.000 

6 Russ ia  0.030 0.030 0.040 0.050 0.050 0.040 
7 U S A  0.036 0.029 0.038 0.051 0.050 0.039 
7.1 U S A  0.040 0.020 0.030 0.050 0.050 0.040 
9 Ge rmany  0.043 0.049 0.051 0.057 0.052 0.041 

10 Russ ia  - 0.030 0.000 0.030 0.010 - 0.020 - 0.010 
Average  (0) 0.030 0.044 0.060 0.057 0.045 0.034 
St. dev. (0) 0.029 0.045 0.057 0.042 0.033 0.023 
Average  (1) 0.037 0.032 0.047 0.046 0.045 0.034 
St. dev. (1) 0.020 0.026 0.041 0.029 0.033 0.023 

0.000 
0.000 

0.010 

0.010 
0.000 
0.002 
0.000 

0.003 
0.005 
0.003 
0.005 

0.010 
0.010 
0.030 

0.000 

0.010 

0.010 
0.010 

0.011 
0.009 
0.008 
0.004 

Table D.3. Model 3 D - I A  (EXN,  T =  0.1, z = 0) 

Pa r t i c ipan t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

Re H v 
I R u s s i a - C z e c h  1.090 1.090 1.040 0.980 0.960 0.960 
1.1 R u s s i a - C z e c h  1.090 1.080 1.040 0.990 0.970 0.970 
6 Russ ia  1.090 1.080 1.040 0.990 0.970 0.970 

7 U S A  1.089 1.098 1.050 0.988 0.964 0.963 
7.1 U S A  1.090 1.100 1.050 0.990 0.970 0.960 
9 Ge rmany  1.090 1.095 1.050 0.982 0.964 0.963 
Average  (0) 1.090 1.090 1.045 0.987 0.966 0.964 
St. dev.  (0) 0.000 0.009 0.005 0.005 0.004 0.005 

Im H v 
1 R u s s i a - C z e c h  0.010 0.000 0.000 0.020 0.020 
1.1 R u s s i a - C z e c h  0.010 0.000 0.000 0.010 0.010 
6 Russ ia  0.010 0.000 0.000 0.010 0.010 
7 U S A  0.014 - 0 . 0 0 3  - 0 . 0 0 2  0.015 0.015 
7.1 USA 0.010 0.010 0.000 0.020 0.020 
9 Germany  0.018 0.004 0.001 0.013 0.013 
Average  (0) 0.012 0.002 0.000 0.015 0.015 
St. dev. (0) 0.003 0.005 0.001 0.005 0.005 

0.010 
0.000 
0.000 
0.006 

0.010 
0.004 

0.005 
0.005 
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Table D.3 (continued) 

Par t i c ipan t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

Re E t  

1 R u s s i a - C z e c h  0.400 0.440 0.530 /).680 0.800 0.91(/ 
1.1 R u s s i a - C z e c h  0.450 0.490 0.570 0.700 0.810 0.910 
4 Russia  0.320 0.350 0.450 0.570 0.720 - -  
6 Russ ia  0.450 0.490 0.570 0.700 0.810 0.910 

7 USA 0.362 0.387 0.490 0.652 0.783 0.905 
7. I USA 0.36/) 0.380 0.480 0.640 0.7811 0.900 

9 Germany  0.410 I).447 0.532 0.671 0.788 0.905 
Average  (0) 0.393 I).426 0.517 0.659 0.784 0.907 
St. dev. (0) 0.049 0.055 0.046 0.045 1/.031 0.004 
Average  ( 1 ) 0.393 0,426 0.517 0.659 0.795 0.907 
St. dev. ( I ) 0.049 0.055 0.046 0.045 0.013 0.004 

Im E~ 

1 R u s s i a - C z e c h  - 0 . 1 2 0  - 0 . 1 2 0  - 0 . 1 2 0  0.100 - 0 . 0 7 0  
1.1 Russia Czech 0.120 - 0 . 1 3 0  0.12/I - 0 . 1 0 0  0.080 

4 Russia - 0 . 1 1 0  - 0 . 1 1 0  - 0 . 1 3 0  I).140 - 0 . 1 4 0  
6 Russia - 0 . 1 3 0  0.130 - 0 . 1 3 0  0.100 - 0 . 0 8 0  
7 U S A  - 0 . 1 8 9  - 0 . 1 9 2  - 0 . 1 6 1  - 0 . 1 1 9  -1/ .081 
7.1 USA 0.200 - 0 . 2 0 0  0.180 - 0 . 1 4 0  I).090 

9 Germany  0.136 - 0 . 1 3 5  - 0 . 1 3 2  - 0 . 1 0 9  - 0 . 0 8 0  
A v e r a g e ( 0 )  - 0.144 0.145 - 0 . 1 3 9  0.115 - 0 . 0 8 9  
St. dev. (0) 0.036 0.036 0.023 0.018 0.023 
A v e r a g e ( l )  - 0 . 1 4 4  0.145 - 0 . 1 3 9  0.115 - 0 . 0 8 0  
St. dev. ( 1 ) 0.036 0.036 0.023 0.018 0.006 

- 0.040 
- 0.040 

- 0.040 
- 0.044 

- 0.050 
0.046 

- 0.043 
0.004 
0.043 
0.004 

Im H~ 
1 R u s s i a - C z e c h  0.020 0.010 0.010 0.000 0.010 0.020 
I . l  R u s s i a - C z e c h  0.020 0.010 0.000 0.000 0.010 0.020 
4 Russ ia  0.040 0.090 0.110 0. 100 0.060 
6 Russia  0./121/ 0.010 0.000 0.000 0.010 0.1/20 
7 USA 0.02/) 0.016 - 0 . 0 0 6  0.004 0.008 0.016 
7.1 USA 0.020 0.010 - 0 . 0 2 0  0.010 0.000 0.020 
9 Germany  11.019 0.020 0.003 0.003 0.012 I).018 
Average  (0) 0.023 0.024 0.005 0.014 0.021 0.025 
St. dev. (0) 0.008 0.029 0.009 0.042 0.035 0.016 
A v e r a g e ( I )  0.020 0.013 - 0 . 0 0 5  - 0 . 0 0 2  0.008 0.019 
St. dev. ( 1 ) 0.000 0.004 0.009 0.005 0.004 0.002 

Re H_ 

1 R u s s i a - C z e c h  0.060 0.1 I 0 0.150 0.140 0.100 0.050 
1.1 R u s s i a - C z e c h  0.050 0.100 0.140 0.120 0.090 0.050 

4 Russia  0.040 0.090 - -  0.1 l 0 0.100 0.060 
6 Russia  0.060 0. 100 0.140 0.120 0.090 0.050 
7 USA 0.042 0.093 0.152 0.140 0.102 0.050 
7.1 USA 0.040 0.090 0.150 0.140 0.100 0.050 

9 Genaaany 0.039 0.092 0.149 0.139 0.102 0.050 
Average  (01 0.047 0.096 0.147 0.130 0.098 0.051 
St. dev. (0) 0.009 0.007 0.005 0.013 0.005 0.004 
Average  ( 1 ) 0.047 0.096 0.147 0.130 0.098 /).050 
St. dev. ( I ) 1/.009 0.007 0.005 0.013 0.005 0.000 
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Table D.4. Model 3D-1A (EYN,  T = 0.1, z = 0) 

Pa r t i c ipan t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

Re E y  

1 R u s s i a - C z e c h  0.410 0.520 0.810 1.120 1.130 1.050 
1.1 R u s s i a - C z e c h  0.440 0.560 0.810 1.090 1.110 1.050 

3 Russ ia  0.370 0.390 0.440 1.060 1.050 1.010 
4 Russ ia  0.350 0.350 - -  1.140 1.130 1.070 
5 Russ ia  0.320 0.300 0.370 1.160 1.140 1.080 
6 Russ ia  0.450 0.560 0.820 1.100 1.110 1.050 
7 U S A  0.396 0.482 0.842 1.120 1.119 1.051 

7.1 U S A  0.390 0.460 0.810 1.130 1.130 1.060 
9 Ge r m any  0.414 0.533 0.824 1.085 1.105 1.047 
10 Russ ia  0.330 0.400 0.850 1.180 1.200 1.150 
Average  (0) 0.387 0.456 0.731 1.118 1.122 1.062 
St. dev. (0) 0.044 0.092 0.186 0.036 0.037 0.036 
A v e r a g e ( l )  0.387 0.456 0.731 1.118 1.114 1.052 
St. dev. (1) 0.044 0.092 0.186 0.036 0.027 0.019 

Im E v 

1 R u s s i a - C z e c h  - 0 . 1 4 0  - 0.100 - 0.010 0.130 0.130 0.080 
1.1 R u s s i a - C z e c h  - 0 . 1 4 0  - 0 . 1 1 0  - 0 . 0 2 0  0.120 0.130 0.080 
3 Russia  - 0 . 1 6 0  - 0.100 - 0 . 0 2 0  0.200 0.160 0.080 
4 Russia  - 0 . 1 1 0  - 0 . 1 1 0  - -  0.070 0.060 0.050 
5 Russia  - 0 . 1 1 0  - 0 . 1 1 0  - 0 . 0 8 0  0.050 0.050 0.040 
6 Russia  - 0 . 1 5 0  - 0 . 1 1 0  - 0 . 0 2 0  0.120 0.130 0.080 
7 USA - 0 . 1 7 9  - 0 . 1 2 2  0.050 0.157 0.140 0.079 

7.1 U S A  - 0 . 1 8 0  - 0 . 1 4 0  0.040 0.160 0.150 0.080 
9 Germany  - 0 . 1 5 2  - 0 . 1 1 2  - 0 . 0 0 3  0.119 0.126 0.077 
10 Russ ia  - 0.010 - 0.020 0.090 0.200 0.200 0.150 
Average  (0) - 0 . 1 3 3  - 0 . 1 0 3  0.003 0.133 0.128 0.080 
St. dev. (0) 0.049 0.031 0.050 0.049 0.044 0.029 
Average  (1) - 0 . 1 4 7  - 0 . 1 1 3  0.003 0.133 0.128 0.072 
St. dev. (1) 0.025 0.012 0.050 0.049 0.044 0.015 

Re H x 

1 R u s s i a - C z e c h  1.260 1.220 1.170 1.120 1.090 1.050 
1.1 R u s s i a - C z e c h  1.240 1.200 1.160 1.120 1.080 1.050 

3 Russ ia  1.260 1.250 1.210 1.120 1.080 1.060 
5 Russ ia  1.390 1.400 1.460 0.940 0.960 0.980 
6 Russ ia  1.240 1.200 1.150 1.110 1.080 1.040 
7 U S A  1.248 1.209 1.163 1.120 1.087 1.047 
9 Ge rm any  1.237 1.203 1.160 1.120 1.087 1.047 
10 Russ ia  1.300 1.250 1.200 1.150 1.110 1.070 

Average  (0) 1.272 1.241 1.209 1.100 1.072 1.043 
St. dev. (0) 0.052 0.067 0.104 0.066 0.046 0.027 
Average  (1) 1.255 1.219 1.173 1.123 1.088 1.052 
St. dev. (1) 0.022 0.022 0.023 0.013 0.011 0.010 

lm n x 

1 R u s s i a - C z e c h  0.060 0.050 0.050 0.040 0.040 0.030 
1.1 R u s s i a - C z e c h  0.070 0.060 0.050 0.040 0.040 0.030 

3 Russ ia  0.190 0.150 0.120 0.040 0.040 0.020 
5 Russ ia  0.030 0.030 0.040 0.020 0.020 0.020 
6 Russ ia  0.060 0.060 0.050 0.040 0.040 0.030 

7 U S A  0.069 0.060 0.050 0.042 0.037 0.027 
9 Ge r m any  0.078 0.067 0.055 0.046 0.040 0.029 

10 Russ ia  0.020 0.020 0.010 0.000 0.000 0.000 
Average  (0) 0.072 0.062 0.053 0.034 0.032 0.023 
St. dev. (0) 0.052 0.039 0.031 0.016 0.015 0.010 
Average  (1) 0.055 0.050 0.044 0.038 0.037 0.027 

St. dev. (1) 0.022 0.018 0.015 0.008 0.007 0.005 
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Table  D.5. Model  3 D - I A  (EXN,  T 10.0, z - 0)  

Pa r t i c ipan t /  x = 0.0 0.25 0,5 0.75 1,0 1.5 2.0 4.0 

Re E~ 
1 R u s s i a - C z e c h  0 .160  0 .270  0.7110 1.090 1.170 1.150 1.100 

1.1 R u s s i a - C z e c h  0.1811 0 .290  0.7111 1.080 I. 160 1.140 1.100 

1.2 Russia Czech 0.1 I 0 0.2311 0 .700  i. 1 (X) I. 170 I. 150 1. I 10 

2 R u s s i a - C z e c h  0. 100 0 .240  0 .740  1.0911 1.160 1.150 1.110 

6 Russia 0 .180  0 .290  0 .710  1.08/) 1.160 1.140 1.100 

7 USA 0 .109  0 .245 0 .752 1.110 1.176 1.145 1.101 

7.1 USA 0.118(I 0 .190  0.6811 1.080 1.17// I. 160 1.120 

9 Germany 0 .164  0 .268 0 .704  1,085 1.169 I. 146 1.103 

11 Russia 0.14(1 0 .270  0.7311 1.090 1.170 1.140 1.1110 

Average (01 0 .136 0.255 0 .714 1.089 1.167 1.147 1.105 

St. dev, (0)  0 .037 0.032 0,023 0 .010 0 .006 0.007 /I.1107 

Average ( 1 ) 0 .136 /).263 0 .714 1.087 I. 167 1.145 1.103 

St. dev. ( I ) 0.037 0.022 0.023 (/.11/17 0 .006 1/.1105 0.004 

lm E~ 

1 R u s s i a - C z e c h  - 0 .050 /).1/30 0 .000 0 .000  0 .000 0 .010 0 .010 

1.1 R u s s i a - C z e c h  - 0 . 0 5 0  0 .040 0 .000 0 ,010  0 .010 0 .010 0 .010 

1.2 R u s s i a - C z e c h  0 .000 0 .000 0 .000 0.1100 0 .000 0 .000 0 .000 

2 Russia Czech 0 .000 0 .000 0 .000 0 .000  0 .000 0 .000  0 .000 

6 Russia - 0 .050 0 .040 0 ,000 0 .010  0 .010 0 .010  0 .010 

7 USA - 0 .024 - 0.021 - 0.011 0 .002 0.003 I).006 0 .006 

7.1 USA - 0 . 0 3 0  0.021/ - 0 .010 0 .010 0 .000 0.010 0 .010 

9 Germany 0.053 - 0.041 0.003 0 .007 0 .007 0.008 0.007 

11 Russia 0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  

Average (0) 0.1/29 - 0.021 I).003 0,002 0.003 0 .006 0 .006 

St. dev. (0) 1/.024 0.018 0.005 0 .006 0 .004 0.005 0.005 

Average (1) - 0.1129 - 0.021 0.003 0.002 0.003 1/.006 0 .006 

St. dev. ( 1 ) /).024 0.018 I).005 0 .006 0.004 0.005 0.005 

Re H v 

1 R u s s i a - C z e c h  1.010 1.010 1.010 1.010 1.010 1.010 1.000 

1.1 R u s s i a - C z e c h  1.010 1.010 1.010 1.010 1.010 1.010 1.000 

6 Russia 1.010 1.010 1.010 1.010 1.010 1.010 1.000 

7 U S A  1.013 1.012 1.011 1.009 1.008 1.006 1.005 

7.1 USA 1.010 1.010 1.010 1.010 1.010 1.010 1.010 

9 Germany  1.012 1.012 1.010 1.009 1.008 1.006 1.005 

Average (0)  1.01 I 1.011 1.010 1.010 1.009 1.009 1.003 

St. dev. (0) 0.001 0.001 0 .000 0.001 0.0t/1 0 .002 0 .004 

lm H v 

1 R u s s i a - C z e c h  - 0 .010 0 .010 - 0 .010 - 0 .010 0.010 - 0 .010 0 .000 

1.1 R u s s i a - C z e c h  0 .010 - 0 .010 - 0 .010 - 0 .010 - 0 .010 - 0 .010 0 .000 

6 Russia - 0 .010 - 0 . 0 1 0  - 0 .010 - 0 .010 0 .010 0 .010 0 .000 

7 USA 0.013 - I ) . 0 1 2  - 0 .010  0 .009 - I ) . 0 0 8  -0 .1 )05  0 .004 

7.1 USA - 0 .010 - 0 . 0 1 1 /  - 0 .010 - 0 .010 - 0.(110 - 0 .010 0 .000 

9 Germany - 0 . 0 1 3  - 0 . 0 1 2  - 0 . 0 1 1  - 0 . 0 1 0  0.008 - 0 . 0 0 6  - 0 . 0 0 4  

Average  (0) - 0.011 0.011 - 0 .010 - 0 .010  0.009 0 .009 0 .000 

St. dev. (0) /).002 0,001 0 .000 0 .000  0.0111 0.002 0.003 

1.030 

1.030 

1.030 

1.0311 
1.026 

1.0311 

1 .I1311 
1.1/29 
0.002 

1.03/) 
0,0011 

0.000 

0 .000 

0 .000 

0 .000 

0.003 

0 .000 

0 .000  

0 .000 

0.001 

0.000 

0.000 

1.000 
1.000 
1.00(1 
1.11112 
1.001) 

1.000 
0.001 

0.000 
0.000 
0.000 
0.001 

0.000 

0.000 
0.000 
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Table  D.6. Model  3D-1A (EYN,  T = 10.0, z = 0) 

2 4 3  

P a r t i c i p a n t /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re Ey 
1 R u s s i a - C z e c h  0 .120  0 .130  0 ,210  0 .360  0 .510  0 .730  0 .840  

1.1 R u s s i a - C z e c h  0 .130  0 .140  0 .210  0 .360  0 .510  0 .730  0 .840  

1.2 R u s s i a - C z e c h  0 .060  0 .070  0 .150  0 .310  0 .480  0 ,710  0 .830  

2 R u s s i a - C z e c h  0 .050  0 .070  0 .150  0 .320  0 .480  0 .700  0 .830  

6 Russia  0 .130  0 .150  0 .220  0 .360  0 .510  0 .730  0 .840  

7 U S A  0 .069  0 .095 0 .183 0 .339  0 .503 0 ,726  0 .842  

7.1 U S A  0 .060  0 .080  0 .160  0 .300  0 .470  0 .700  0 .820  

9 Germany  0 .123  0 .137  0 .199  0 .337  0 .492  0 .715 0 .833 

10 Russia  0 .120  0 .150  0 .180  0 .360  0 .500  0 .750  0 .900  

11 Russia  0 .160  0 .180  0 .260  0 .400  0 .540  0 .740  0 .850  

Average  (0)  0 .102 0 .120  0 .192 0.345 0 .500  0.723 0.843 

St. dev. (0)  0 .039 0 .039 0.035 0 .030 0 .020  0.017 0 .022 

Average  (1) 0 .102 0 .120 0.192 0.345 0.495 0.723 0 .836 

St. dev. (1) 0 .039 0 .039 0 .035 0 .030  0.015 0.017 0 .009 

lm Ey 
1 R u s s i a - C z e c h  - 0.1/50 - 0 .050  - 0 .050  - 0 .040  - 0 .030 - 0 .020 - 0 .010 

1. I R u s s i a - C z e c h  - 0 .060  - 0 .060  - 0 .050  - 0 .040 - 0 .030 - 0 .020 - 0 .010 

1.2 R u s s i a - C z e c h  0 .000  0 .000  0 .000  0 .000 0 .000  0 .000 0 .000 

2 R u s s i a - C z e c h  0 .000 0 .000  0 .000 0 .000  0 .000  0 .000 0 .000 

6 Russia - 0 .060 - 0 .060 - 0 .050 - 0 .040  - 0 .030 - 0 .020 - 0 .010  

7 USA - 0 . 0 3 2  - 0 , 0 3 1  - 0 . 0 3 0  - 0 . 0 2 7  - 0 . 0 2 2  - 0 . 0 1 3  - 0 . 0 0 8  

7.1 U S A  - 0 .030  - 0 .030 - 0 .030  - 0 .030  - 0 .030 - 0 .020  - 0 .010 

9 Germany  - 0 . 0 6 2  - 0 . 0 6 1  - 0 . 0 5 2  - 0 . 0 3 9  - 0 . 0 2 9  - 0 . 0 1 7  - 0 . 0 1 0  

10 Russia - 0 .030  - 0 .030  - 0 .020  - 0 .010 0 ,000  0 .000  0 .000  

11 Russia 0 .000  0 .000  0 .000  0 .000 0 .000  0 .000 0 .000  

Average  (0) - 0 .032 0 .032 - 0 .028 - 0 .023 - 0 .017 - 0.011 - 0 .006 

St. dev. (0)  0 .026 0.025 0.022 0.018 0.015 0 .010 0.005 

Re H ,  

1 R u s s i a - C z e c h  1.040 1.030 1.020 1.010 1.000 1.000 1.000 

1.1 R u s s i a - C z e c h  1.030 1.030 1.020 1.010 1.000 1.000 1.000 

6 Russia 1.040 1.030 1.020 1.010 1.000 1.000 1.000 

7 U S A  1.041 1.037 1.024 1.011 1.003 0 .997  0 .996  

9 Germany 1.038 1.034 1.023 1.012 1.004 0 .998 0 .997  

Average  (0) 1.038 1.032 1.021 1.011 1.001 0.999 0 .999 

St. dev. (0) 0 .004 0 .003 0 .002 0.001 0.002 0.001 0.002 

lm H x 
l R u s s i a - C z e c h  - 0 .040 - 0 .040  - 0 .020 - 0 .010 0 .000 0 .000 0 .000 

I. l R u s s i a - C z e c h  - 0 .040 - 0 .040  - 0 .020 - 0 .010  0 .000 0 .000 0 .000 

6 Russia - 0 .040 - 0 .040 - 0 .020 - 0 .010  0 .000 0 .000 0 .000 

7 USA 0.046 - 0.041 - 0 .026 - 0.0119 0 .000 0.005 0.005 

9 Germany - 0 ,048 - 0 .042 - 0 .027 - 0 .010  - 0.001 0.005 0 .006 

Average  (0) - 0 .043 - 0.041 - 0 .023 - 0 .010  0 .000  0 .002 0.002 

St. dev. (0)  0 .004  0.001 0 .004  0 .000 0 ,000  0.003 0 ,003 

Re H .  

1 R u s s i a - C z e c h  0 .020  0 .030  0 .030  0 .020  0 .020  0 .010  

1.1 R u s s i a - C z e c h  0 .010  0 .030  0 .030  0 .020  0 .020  0 .010  

6 Russia 0 .010  0 .030  0 .030  0 .020  0 .020  0 .010  

7 USA 0 .018  0.031 0 .032  0 .027  0 .019  0 .013 

7.1 U S A  0 .020  0 .030  0 .030  0 .030  0 .020  0 .010  

9 Germany  0 .016  0 .027 0 .029 0 .026  0 .018 0 .013 

Average  (0) 0 .016 0 .030  0 .030  0 .024 0 .019 0.011 

St. dev. (01 0.005 0.001 0.001 0 .004 0.001 0 .002 

0 .970  

0 .970  

0 .970  

0 .970  

0 .969  

0 .970  

0 .970 

0 .000 

0 .970 

0 .000 

0 .000 

0 .000  

0 .000 

0 .000 

- 0 . 0 0 1  

0.000 

0 .000  

0 .000 

1.000 

1.0011 

1 . 0 0 0  

0.998 

1 . 0 0 0  

0.001 

0 .000  

0 .000 

0 .000 

0.003 

0.001 

0 .002 

0 .000  

0 .010  

0 .010  

0 .004  

0 .010  

0.007 

0.005 
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T a b l e  D . 6  ( c o n t i n u e d )  

P a r t i c i p a n t /  x = 0 .0  0 . 2 5  0 .5  0 . 7 5  1.0 1.5 2 .0  4 .0  

[m  H .  

1 R u s s i a - C z e c h  - 0 . 0 2 0  - 0 . 0 3 0  - 0 . 0 4 0  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 1 0  

1.1 R u s s i a - C z e c h  - 0 . 0 2 0  - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 3 0  0 . 0 2 0  - 0 . 0 1 0  

6 R u s s i a  - 0 . 0 2 0  - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 1 0  

7 U S A  - 0 . 0 2 1  - 0 . 0 3 6  - 0 . 0 3 6  - 0 . 0 3 0  - 0 . 0 1 9  - 0 . 0 1 3  

7.1 U S A  0 . 0 2 0  - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 1 0  

9 G e r m a n y  0 . 0 2 2  0 . 0 3 7  - 0 . 0 3 8  - 0 . 0 3 2  - 0 . 0 2 0  - 0 . 0 1 4  

A v e r a g e  ( 0 )  - 0 . 0 2 0  - 0 . 0 3 2  - 0 . 0 3 4  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 1 1  

St .  d e v .  ( 0 )  0 . 0 0 1  11.003 0 . 0 0 5  0 . 0 0 1  0 . 0 0 0  0 . 0 0 2  

A v e r a g e  (1 )  - 0 . 0 2 0  - 0 . 0 3 2  - 0 . 0 3 4  - 0 . 0 3 0  0 . 0 2 0  - 0 . 011  

St .  d e v .  ( 1 )  0 . 0 0 1  0 . 0 0 3  0 . 0 0 5  0 . 0 0 0  0 . 0 0 0  0 . 0 0 2  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

- 0 . 0 0 4  

0 . 0 0 0  

- 0 . 0 0 1  

0 . 0 0 2  

- 0 . 0 0 1  

0 . 0 0 2  

T a b l e  D . 7 .  M o d e l  3 D - 1 A  ( E X N ,  T ~ 10.0,  z = 0)  

P a r t i c i p a n t /  x = 0 .5  0 . 7 5  1.0 1 .25 1.5 2 .0  

R e  E ~  

1 R u s s i a - C z e c h  0 . 1 7 0  0 , 2 0 0  0 , 3 2 0  0 . 5 4 0  0 . 7 1 0  0 . 8 7 0  

1.1 R u s s i a - C z e c h  0 , 1 9 0  0 , 2 2 0  0 . 3 4 0  0 . 5 5 0  11.710 0 , 8 7 0  

1.2 R u s s i a - C z e c h  0 . 1 2 0  0 . 1 6 0  0 . 2 8 0  / I . 510  0 . 6 9 0  0 . 8 6 0  

2 R u s s i a - C z e c h  0 . 1 1 0  0 A 5 0  0 . 2 9 0  0 . 5 2 0  0 . 6 9 0  0 . 8 6 0  

6 R u s s i a  0 . 1 9 0  0 . 2 2 0  0 . 3 4 0  0 . 5 5 0  0 , 7 1 0  0 . 8 7 0  

7 U S A  0 .1 2 1  0 . 1 6 6  0 . 3 1 4  0 . 5 2 9  0 . 7 0 5  0 . 8 7 0  

7.1 U S A  0 . 0 9 0  0 . 1 3 0  0 . 2 8 0  0 , 4 8 0  0 . 6 7 0  0 . 8 5 0  

9 G e r m a n y  0 . 1 7 5  I) .205 0 . 3 1 4  0 . 5 2 1  0 . 6 9 3  0 . 8 6 l  

I 1 R u s s i a  11.170 0 . 2 2 0  11.360 0 . 5 6 0  0 . 7 2 0  0 . 8 7 0  

A v e r a g e  (0 )  0 . 1 4 8  0 . 1 8 6  0 . 3 1 5  0 . 5 2 9  0 . 7 0 0  0 . 8 6 5  

St ,  dev .  ( 0 )  0 . 0 3 8  0 . 0 3 5  0 . 0 2 8  0 , 0 2 5  0 . 0 1 5  0 . 0 0 7  

A v e r a g e  ( 1 )  0 . 1 4 8  0 . 1 8 6  0 . 3 1 5  0 . 5 2 9  0 . 7 0 0  0 . 8 6 6  

St ,  d e v .  ( 1 )  0 . 0 3 8  0 . 0 3 5  0 . 0 2 8  0 . 0 2 5  0 . 0 1 5  0 . 0 0 5  

Im E x 
1 R u s s i a - C z e c h  - 0 . 0 5 0  - 0 . 0 4 0  - 0 . 0 4 0  - 0 . 0 2 0  - 0 . 0 1 0  - 0 . 0 1 0  

1.1 R u s s i a - C z e c h  - 0 . 0 5 0  - 0 . 0 5 0  - 0 . 0 4 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 . 0 1 0  

1.2 R u s s i a - C z e c h  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  

2 R u s s i a - C z e c h  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  

6 R u s s i a  - 0 . 0 5 0  - 0 . 0 5 0  - 0 . 0 4 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 . 0 1 0  

7 U S A  - 0 . 0 2 4  - 0 . 0 2 2  - 0 . 0 1 8  - 0 . 0 1 5  - 0 . 0 1 1  - 0 . 0 0 5  

7.1 U S A  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 . 0 1 0  - 0 . 0 1 0  

9 G e r m a n y  - 0 . 0 5 3  - 0 . 0 5 0  - 0 . 0 4 0  - 0 . 0 2 4  - 0 . 0 1 5  0 . 0 0 7  

11 R u s s i a  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  

A v e r a g e  (0 )  - 0 . 0 2 9  - 0 . 0 2 6  - 0 . 0 2 2  - 0 . 0 1 3  - 0 . 0 1 0  - 0 . 0 0 6  

St .  d e v .  ( 0 )  0 . 0 2 4  0 . 0 2 2  0 . 0 1 9  0 . 0 1 0  0 . 0 0 8  0 . 0 0 5  

R e  H :  

1 R u s s i a - C z e c h  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  

1.1 R u s s i a - C z e c h  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  

6 R u s s i a  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  

7 U S A  0 . 0 0 8  0 . 0 1 2  0 . 0 1 5  0 . 0 1 4  0 . 0 1 2  0 . 0 0 8  

7.1 U S A  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  

9 G e r m a n y  0 . 0 0 7  0 . 0 1 1  0 . 0 1 4  0 . 0 1 3  0 . 0 1 1  0 . 0 0 8  

A v e r a g e  (0 )  0 . 0 0 9  0 . 0 1 0  0 . 0 1 2  0 .011  0 . 0 1 0  0 . 0 0 9  

St .  dev .  ( 0 )  0 . 0 0 1  0 . 0 0 1  0 . 0 0 2  0 . 0 0 2  0 . 0 0 1  0 . 0 0 1  

l m  H z 

1 R u s s i a - C z e c h  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 2 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  

1.1 R u s s i a - C z e c h  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  

6 R u s s i a  0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  

7 U S A  - 0 . 0 0 8  - 0 . 0 1 2  - 0 . 0 1 6  - 0 . 0 1 4  - 0 . 0 1 1  - 0 . 0 0 7  

7.1 U S A  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  - 0 . 0 1 0  

9 G e r m a n y  - 0 . 0 0 8  - 0 . 0 1 3  - 0 . 0 1 7  - 0 . 0 1 5  0 . 0 1 2  - 0 . 0 0 8  

A v e r a g e ( 0 )  - 0 . 0 0 9  - 0 . 0 1 1  - 0 . 0 1 4  - 0 . 0 1 1  - 0 . 0 1 1  - 0 . 0 0 9  

St .  d e v .  ( 0 )  0 .001  0 .0 01  0 . 0 0 4  0 . 0 0 2  0 .001  0 . 0 0 1  
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Table  D.7 (cont inued)  

P a r t i c i p a n t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

Re H v 

1 R u s s i a - C z e c h  1.010 1.010 1.010 1.000 1.000 1.000 

1. l R u s s i a - C z e c h  1.010 1.010 1.010 1.000 1.000 1.000 

6 Russia 1.010 1.010 1.010 1.000 1.000 1.000 

7 U S A  1.012 1.010 1.006 1.001 0 .999  0 .998  

7. l U S A  1.010 1.010 1.010 1.000 1.000 1.000 

9 Germany  1.011 1.010 1.006 1.002 1.000 0 .998  

Average  (0) 1.010 1.010 1.009 1.000 1.000 0 .999 

St. dev. (0)  0.001 0 .000  0 .002 0.001 0 .000  0.001 

Im Hy 

1 R u s s i a - C z e c h  - 0 .010  - 0 .010  - 0 .010  0 .000  0 .000 0 .000 

1.1 R u s s i a - C z e c h  - 0 .010  - 0 .010  - 0 .010  0 .000  0 .000 0 .000 

6 Russia - 0 .010  - 0 .010  - 0 .010  0 .000  0 .00 0 .000 

7 U S A  - 0.011 - 0 .010  - 0 . 0 0 5  0 .000  0 .002 0.002 

7.1 USA - 0 .010  - 0 .010  - 0 .010  0 .000  0 .000 0 .000 

9 Germany - 0 . 0 1 2  - 0 .010  - 0 . 0 0 6  - 0.001 0.002 0 .003 

A v e r a g e ( 0 )  - 0 . 0 1 1  - 0 . 0 1 0  - 0 . 0 0 9  0 .000  0.001 0.001 

St. dev. (0) 0.001 0 .000  0 .002 0 .000 0.001 0.001 

Table  D.8. Model  3 D - I A  ( E Y N ,  T = 10.0, z = 0) 

P a r t i c i p a n t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

Re H x 
1 R u s s i a - C z e c h  1.030 1.030 1.020 1.020 1.020 1.010 

1.1 R u s s i a - C z e c h  1.030 1.030 1.020 1.020 1.020 1.010 

6 Russia 1.030 1.030 1.020 1.020 1.020 1.010 

7 U S A  1.037 1.032 1.026 1.021 1.017 1.011 

9 Germany  1.034 1.030 1.025 1.020 1.017 1.012 

Average  (0)  1.032 1.030 1.022 1.020 1.019 1.011 

St. dev. (0)  0 .003 0.001 0 .003 0 .000  0 .002 0.001 

lm H x 

1 R u s s i a - C z e c h  - 0 . 0 4 0  - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 .010  

1.1 R u s s i a - C z e c h  - 0 .040 - 0 .030  - 0 .020 - 0 .020 - 0 .020 - 0 .010  

6 Russia - 0 . 0 4 0  - 0 . 0 3 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 . 0 2 0  - 0 .010  

7 USA - 0 . 0 4 1  - 0 . 0 3 5  - 0 . 0 2 8  - 0 . 0 2 1  - 0 . 0 1 7  - 0.011 

9 Germany - 0 . 0 4 2  - 0 . 0 3 6  - 0 . 0 3 0  - 0 . 0 2 3  - 0 . 0 1 8  - 0 . 0 1 2  

Average  (0) - 0.041 - 0 .032 - 0 .026 - 0.021 - 0 .019 - 0.011 

St. dev. (0) 0.001 0.003 0.005 0.001 0.001 0 . 0 0 l  

Re Ey 
1 R u s s i a - C z e c h  0 .170  0 .350  0 .920  1.410 1.420 1.270 

1.1 R u s s i a - C z e c h  0 .180  0 . 3 7 0  0 .940  1.390 1.400 1.260 

1.2 R u s s i a - C z e c h  0 .120  0 .320  0 .950  1.420 1.430 1.280 

2 R u s s i a - C z e c h  0 .090  0 . 3 3 0  1.030 1.400 1.390 1.270 

6 Russia 0 .180  0 .370  0 .940  1.390 1.400 1.260 

7 U S A  0.125 0 .350  1.041 1.440 1.422 1.264 

7.1 U S A  0 .080  0 .280  0 .970  1.420 1.430 1.290 

9 Germany  0 .169  0 .348  0 .934  1.392 1.412 1.270 

10 Russia 0 .160  0 .300  0 .900  1.450 1.450 1.220 

11 Russia 0 .220  0 .410  0 .990  1.370 1.370 1.240 

Average  (0) 0 .149 0 .343 0 .962 1.408 1.412 1.262 

St. dev. (0) 0 .044 0 .037 0 .046 0.025 0.023 0 .020  

Average  ( 1 ) 0 .149 0.343 0 .962 1.408 1.412 1.267 

St. dev. (1)  0 .044  0.037 0 .046  0.025 0 .023 0 .014  
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Table D.8 (continued) 

Par t ic ipant /  x = 11.5 0.75 1.0 1.25 1.5 2.0 

I m E 

1 Russ ia-Czech  - 0.050 - 0.(/30 0.020 0.1120 11.1/20 0.020 

I. 1 Russia Czech - 0.050 0.030 0.030 0.030 I).(/20 11.020 

1.2 Russia-Czech 0.000 0.000 0.000 0.000 0.000 0.000 

2 Russia-Czech 0.000 0.0011 0.000 0.000 0.000 0.000 

6 Russia - 0.050 - 0.030 0.1/30 0.030 0.020 0.020 

7 USA - 0.031 0.023 (/.0110 0.010 0.015 0.015 

7.1 USA - 0 . 0 3 0  0.030 0.000 0.010 0.010 0.020 

9 Germany - 0.056 0.034 0.023 11.030 0.024 0.019 

I(1 Russia -/).0211 - 0.010 0.010 0.030 11.1130 0.030 

1 I Russia 0.000 0.000 0.000 0.000 0.000 0.000 

Average (0) - 0.029 - 0 . 0 1 9  0.011 1/./116 0.014 0.014 

St. dev. (0) 0./123 0.014 11.013 I).013 0.011 0.011 

A v e r a g e ( l )  -1/.I129 - 0 . 0 1 9  0.011 0.016 0.014 I).014 

St. dev. (1) (/.023 0.014 0.013 0.013 0.011 11.011 

Table D.9. Model 3D-1A ( T -  0.1, z = 01 

Par t ic ipant /  x = 0.0 0.25 0.5 I).75 1.0 1.5 2.0 

Da r 

1 Russia-Czech 13.90 18.90 45.311 92.41/ 103.00 101.30 99.51t 

1. I Russ ia-Czech 17.70 23. I 0 47.60 89.40 101.40 100.90 99.4(/ 

4 Russia 5.90 5.811 7.611 134.00 134.00 114.01/ 98.00 

6 Russia 17.50 23.00 48.00 9(I. 1(I 101.80 10h20 99.50 

7 USA 13.60 17.74 50.86 94.(12 1/)2.81/ 101.20 99.43 

7.1 USA 14.82 17.58 47.84 96.65 105.8(/ 102.1(/ 99.56 

9 Germany 15.25 20.77 47.80 88.36 100.31/ 1/1//.70 99.30 

Average (0) 14.10 18.13 42.14 97.85 107.01 103.06 99.24 

St. dev. (0) 3.96 5.89 15.32 16.20 12.02 4.85 0.55 

Average ( I )  15.46 20.18 47.91/ 91.82 102.52 101.23 99.45 

St. dev. (1) 1.76 2.50 1.77 3.14 1.89 11.48 0.09 

t , 2  ~ 
I Russ ia-Czech  9.30 10.60 17.70 35.20 55.00 81.30 92.70 

1.1  Russia-Czech 10.81/ 12.31/ 19.60 36.50 55.50 81.40 92.80 

4 Russia 6.60 7.11(I 10.80 63.60 97.5(I 

5 Russia 5.8// 6.60 10.20 23.(X) 42.811 75.00 98.80 

6 Russia 11.50 13.10 20.50 37.20 56.20 81.90 93.10 

7 USA 11.12 12.36 18.93 35.68 55.00 81.15 92.71 

7.1 USA 1(/.711 11.75 18.31 35.15 54.75 81.30 92.97 

9 Germany 10.55 11.82 18.16 34. I I 53.65 81/.42 94.32 

10 Russia 5.90 6.60 12.00 27.00 48.00 8(/./10 97.00 

Average (0 )  9.14 10.24 16.24 32.98 53.83 82.22 94.30 

St. dev. (0) 2.37 2.71 4.04 5.12 5.74 6.10 2.33 

Average (1) 9.14 10.24 16.24 32.98 53.83 80.31 94.30 

St. dev. ( I )  2.37 2.71 4.04 5.12 5.74 2.23 2.33 

Table D.10. Model 3D-IA ( T -  0.1. z - 0) 

Par t ic ipant /  r = 0.5 0.75 1.0 1.25 h5 2.0 

pa ~ 3. 

1 Russia Czech 14.80 17.60 27.60 49.10 69.20 89.20 

1. I Russ ia-Czech 18.80 22.(X1 32.00 51.80 70.50 89.(X1 
4 Russia 5.91/ 6.30 14.00 35.00 61.70 94.20 

6 Russia 18.70 2 1.91/ 31.80 51.6/) 70.40 89.60 
7 USA 14.05 15.49 24.06 45.118 66.70 88.47 

7.1 USA 14.42 15.65 23.61 43.67 65.43 88.23 
9 Germany 15.71 18.21 27.26 47.93 67.51 88.53 

Average (0) 14.63 16.74 25.76 46.31 67.35 89.60 
St. dev. (0) 4.32 5.31 6.15 5.84 3.13 2.08 

Average (1) 16.08 16.74 25.76 46.31 67.35 88.84 

St. dev. ( l )  2.14 5.31 6.15 5.84 3.13 0.52 
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Table D.10 (continued) 

Pa r t i c ipan t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

/9~ vx 

1 R u s s i a - C z e c h  11.60 18.90 47.70 101.20 108.50 101.50 
1.1 R u s s i a - C z e c h  14.00 22.50 49.30 97.00 106.60 101.00 

4 Russ ia  6.40 6.10 - -  146.00 135.00 110.0(1 
5 Russ ia  5.70 5.30 6.70 153.00 140.00 120.00 
6 Russ ia  14.50 22.80 49.90 97.90 107.00 101.20 
7 U S A  12.07 16.88 52.56 101.80 107.50 101.30 
7.1 U S A  11.65 15.48 48,29 102.60 109.50 101.90 
9 Germany  12.63 20.41 50.37 94.82 104.50 100,50 
10 Russ ia  6.40 10.00 51.00 92.00 128.00 117.00 

Average  (0) 10.55 15.37 44.48 109,59 l t6.29 106.04 
St. dev. (0) 3.44 6.73 15,34 22.95 13.93 7.67 
A v e r a g e ( l )  10.55 15.37 49.87 109.59 116.29 106.04 
St. dev. (11 3.44 6.73 1.65 22.95 13.93 7.67 

Table D.11. Model  3 D - I A  ( T =  10.0, z = 0) 

Pa r t i c ipan t /  x = 0.0 0,25 0.5 0.75 1.0 1.5 2.0 

pa xv 

1 R u s s i a - C z e c h  2.80 7.20 48.00 117.70 135.40 129.70 

1.1 R u s s i a - C z e c h  3.30 8.20 49.90 115.00 135.40 129.00 
1.2 R u s s i a - C z e c h  1.30 5.40 48.90 120,00 138.00 132.30 
2 R u s s i a - C z e c h  1.10 5.70 52.70 118.00 136.00 132.00 

6 Russia  3.40 8.31 49.90 115.00 133.30 129.00 
7 U S A  1.21 5.92 55.26 120.90 136.00 129.50 
7.1 USA 0.68 3.69 45.80 115.30 135.20 132.30 
9 Ge rmany  2.89 7.17 48.59 115.60 134.50 129.80 
11 Russ ia  2.00 7.00 53.80 120.00 136.00 131.00 
Average  (0) 2.08 6.51 50.32 117.50 135.53 130.51 
St. dev. (0) 1.04 1.48 3.03 2.38 1.27 1.40 

pa v~ 

1 R u s s i a - C z e c h  1.60 2.00 4.30 12.50 25.80 52.70 
1.1 R u s s i a - C z e c h  1.80 2.20 4.70 12.90 26.10 52.90 
1 .2  R u s s i a - C z e c h  0.30 0.60 2.40 9.80 22.60 49.80 
2 R u s s i a - C z e c h  0.30 0.50 2.30 10.00 22.60 49.60 
6 Russ ia  1.92 2.30 4.70 12.90 26.10 52.90 

7 U S A  0.53 0.93 3.27 11.31 25.17 52.98 
7.1 USA 0.44 0.68 2.39 9.08 21.70 49.01 
9 Ge rmany  1.74 2,10 4.02 11.22 24.11 51.33 

10 Russ ia  1.40 2.20 3.20 13.00 25.00 56.00 
11 Russ ia  2.70 3.30 6.50 15,70 27.10 55.00 
Average  (0) 1.27 1.68 3,78 11.84 24.63 52.22 

St. dev. (0) 0.83 0.94 1.34 1.97 1.80 2.30 
Average  ( I ) 1.27 1.68 3.78 l 1.84 24.63 52.22 
St. dev. (1) 0.83 0.94 1.34 1.97 1.80 2.30 

120.30 
120.00 

1 2 2 . 5 0  
122.00 
120.00 
120.10 
123.00 
120.50 
121.00 
121.04 

1.16 

70.90 
71.00 

68.60 
68.40 
71.00 

71.34 

68.30 
69.81 
81.00 
72.00 

71.24 

3.68 
70.15 

1.41 

Table D,12, Model  3D-1A ( T =  10.0, z = 0) 

Pa r t i c ipan t /  x = 0.5 0.75 1.0 1.25 1.5 2.0 

pa xy 

I R u s s i a - C z e c h  3.10 4.30 10.40 28.70 49.80 75,40 

1.1 R u s s i a - C z e c h  3.70 4.90 11.30 29.70 50.50 75.60 
1.2 R u s s i a - C z e c h  1.50 2.40 8.00 26.00 47.40 73.70 
2 R u s s i a - C z e c h  1.40 2.30 8.40 27.00 48.00 74.00 
6 Russ ia  3.76 4.98 11.40 29.70 50.40 75.60 
7 U S A  1.47 2.73 9.78 27.89 49.87 75,91 
7.1 U S A  0.80 1.79 7.67 22.83 44.24 71.95 
9 Ge rmany  3.24 4.36 9.93 27.14 48.02 74.43 
11 Russ ia  2.80 4.90 12.80 31.60 51.50 75.70 
Average  (0) 2.42 3.63 9.96 27.84 48,86 74.70 
St. dev. (0) 1.13 1.30 1.72 2.54 2.20 1.31 
Average  (1) 2.42 3.63 9.96 27.84 48.86 75.04 
St. dev. (1) 1.13 1.30 1.72 2.54 2.20 0.86 
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Table D.12 (continued) 

Par t ic ipant /  x = 0,5 I).75 1.0 1.25 1.5 2.0 

1 Russ ia-Czech 2.90 l 1.80 81.50 190.20 194.40 156.60 

1.1 Russia Czech 3.30 13.10 83.80 184.80 191.00 156.10 

1.2 Russ ia-Czech  1.30 10.50 90.10 202.30 204.30 163.40 
2 Russ ia-Czech  1.00 11.10 101.00 196.00 197.00 163.00 

6 Russia 3.40 13.20 84.00 184.80 191.00 156.10 

7 US A 1.54 11.55 102.80 198.80 195.50 156.20 

7.1 USA 0.78 7.51 89.74 192.20 197.70 161.50 

9 Germany 2.96 11.48 83.85 186.20 192.80 157.50 

10 Russia 2.60 9.00 81.00 210.00 210.00 150.00 

11 Russia 4.60 16.80 98.60 188.00 188.00 154.00 

Average (0) 2.44 I 1.60 89.64 193.33 196.17 157.44 

St. dev. (0) 1.24 2.51 8.32 8.37 6.63 4.16 

Average (1) 2.44 11.03 89.64 193.33 194.63 157.44 

St. dev. (1) 1.24 1.83 8.32 8,37 4.78 4.16 

Table D.13. Model 3D-1B (EXN, T -  0.1, z = 0) 

Par t ic ipant /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re E r 

1 Russ ia-Czech  0.410 0.460 0.6711 0.930 0.99{/ 1.000 1.000 1.000 

6 Russia 0.400 0.460 0.690 0.940 1.000 1.000 1.000 1.000 

7 USA (1.315 0.389 0.708 0.965 1.010 1.007 1.002 1.001 
2D 0.290 0.360 0.690 0.920 0.970 0.990 11.990 1.000 

Average (0) 0.354 0.417 0.690 0.939 0.993 0.999 0.998 1.000 

St. dev. (0) 0.060 0.051 0.016 0.019 0.017 0.007 0.005 0.000 

lm E~ 

1 Russ ia-Czech  0.110 - 0 . 1 3 0  - 0 . 0 9 0  - 0.010 0.020 0.020 0.010 0.000 

6 Russia 0.130 - 0 . 1 3 0  - 0 . 0 9 0  0.020 0.010 0.020 0.010 0.000 

7 USA - 0 . 1 6 9  0.164 - 0 . 0 8 5  0.022 - 0.001 0.009 0.009 0.004 

2D - 0 . 1 6 0  0.140 - 0 . 0 6 0  - 0.010 0.000 0.010 0.000 0.000 

Average (0 )  - 0 . 1 4 2  - 0 . 1 4 1  - 0 . 0 8 1  0.015 0.007 0.015 0.007 0.001 

St. dev. (0) 0.027 0.016 0.014 0.006 0.010 0.006 0.005 0.002 

Re H~. 
1 Russ ia-Czech  1.010 1.010 1.010 1.010 1.010 1.000 1.000 1.000 

6 Russia 1.0111 1.010 1.010 1.010 1.010 1.000 1.000 1.000 

7 US A 0.999 0.998 0.996 0.997 0.998 1.1301 1.003 1.002 

lm Hy 
1 Russia Czech 0.010 0.010 0.010 0.010 0.010 0.000 0.000 0.000 

6 Russia 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000 

7 U S A  0.016 - 0 . 0 1 6  - 0 . 0 1 4  - 0 . 0 1 1  - 0 . 0 0 7  - 0 . 0 0 1  0.003 0.004 

Tab leD.  14. M o d e l 3 D - I B  (EYN, T 0.1, z = 0 )  

Par t ic ipant /  x - 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re Ey 
1 Russ ia-Czech  0.420 0.440 0.510 0.610 0.690 0.790 0.860 1.010 
6 Russia 0.430 0.450 0.510 0.600 0.690 0.810 0.890 0.990 

7 USA 0.405 0.426 0.491 0.583 0.668 0.793 0.873 /I.986 
2D 0.380 0.400 0.470 0.570 0.650 0.7911 0.870 0.990 

Average (0) 0.409 0.429 0.495 0.591 0.674 0.796 0.873 0.994 
St. dev. (01 0.022 0.022 0.019 0.018 0.019 0.010 0.012 0.011 

Average ( 1 ) 0.409 0.429 0.495 0.591 0.674 0.796 0.873 0.994 
St. dev. (1) 0.022 0.022 0.019 0.018 0.019 0.010 0.012 0.011 
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Table D.14 (continued) 

Par t ic ipant /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

lm E v 
1 Russ ia -Czech  - 0 . 1 6 0  - 0 . 1 6 0  - 0 . 1 7 0  - 0 . 1 9 0  - 0 . 2 0 0  - 0 . 1 8 0  - 0.160 

6 Russia - 0 . 1 7 0  - 0 . 1 7 0  - 0 . 1 8 0  - 0 . 2 0 0  - 0 . 2 0 0  - 0 . 1 9 0  - 0 . 1 7 0  

7 USA - 0 . 1 3 0  - 0 . 1 3 3  - 0 . 1 4 6  - 0 . 1 6 8  - 0 . 1 8 1  - 0 . 1 7 7  - 0 . 1 5 6  

2D - 0.100 - 0 . 1 0 0  - 0 . 1 2 0  - 0 . 1 5 0  - 0 . 1 6 0  - 0 . 1 7 0  - 0 . 1 5 0  

Average (0 )  - 0 . 1 4 0  - 0 . 1 4 1  - 0 . 1 5 4  - 0 . 1 7 7  - 0 . 1 8 5  - 0 . 1 7 9  - 0 . 1 5 9  

St. dev. (0) 0.032 0.031 0.027 0.022 0.019 0.008 0.008 

Re H x 
1 Russ ia -Czech  1.390 1.380 1.260 1.070 0.960 0.920 0.910 

6 Russia 1.390 1.390 1.260 1.070 0.960 0.910 0.910 

7 U S A  1.427 1.434 1.307 1.075 0.958 0.900 0.905 

2D 1.470 1.500 1.370 1.050 0.930 0.880 0.890 

Average (0) 1.419 1.426 1.299 1.066 0.952 0.903 0.904 

St. dev. (0) 0.038 0.055 0.052 0.01 l 0.015 0.017 0.009 

- 0.070 

- 0.070 

- 0.064 

- 0.060 

- 0.066 

0.005 

0.970 

0.970 

0.970 

0.970 

0.970 

0.000 

lm H x 
1 Russ ia -Czech  0.360 0.330 0.240 0.150 0.080 0.000 - 0.040 
6 Russia 0.360 0.340 0.260 0.160 0.090 0.000 - 0.040 

7 USA 0.349 0.318 0.230 0.147 0.082 0.004 - 0 . 0 3 2  

2D 0.400 0.380 0.270 0.180 0.110 0.020 - 0 . 0 2 0  

Average (0) 0.367 0.342 0.250 0.159 0.091 0.006 - 0 . 0 3 3  

St. dev. (0) 0.022 0.027 0.018 0.015 0.014 0.010 0.009 

- 0.040 

- 0 . 0 5 0  
- 0.045 

- 0.040 

- 0.044 

0.005 

R e  H z 
1 Russ ia -Czech  0.150 0.320 0.330 0.260 0.130 0.060 

6 Russia 0.140 0.320 0.330 0.250 0.130 0.060 

7 USA 0.150 0.358 0.372 0.284 0.145 0.069 

2D 0.140 0.380 0.390 0.290 0.140 0.060 

Average (0) 0.145 0.345 0.355 0.271 0.136 0.062 

St. dev. (0) 0.006 0.030 0.030 0.019 0.008 0.005 

- 0 . 0 1 0  

- 0 . 0 1 0  

- 0.007 

- 0 . 0 1 0  

- 0.009 

0.001 

lm H: 
1 Russ ia -Czech  0.130 0.210 0.230 0.220 0.180 0.140 

6 Russia 0.120 0.210 0.240 0.230 0.190 0.140 

7 US A 0.123 0.200 0.221 0.215 0.175 0.134 

2D 0.120 0.190 0.220 0.220 0.180 0.140 

Average (0) 0.123 0.202 0.228 0.221 0.181 0.138 

St. dev. (0) 0.005 0.010 0.009 0.006 0.006 0.003 

0.040 

0.040 

0.035 
0.040 

0.039 

0.003 
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Table  D.15.  Model 3 D - I B  (EXN,  T =  0.1, z = 0) 

Pa r t i c ipan t /  x = 2.5 3.75 5.0 6.25 7.5 10.0 

Re E x 

Russia Czech /).410 0 .430  0 .590  0 .930  0 .980  

Russia 1).41X) 0 .420  0 .560  0 .930  0.98t) 

USA 0 .262  0 .304  0 .577 0 .936 0 .984 

l ln E r 

R u s s i a - C z e c h  0 .110 - 0 . 1 3 0  - 0 . 1 3 1 /  1/./140 0.020 

Russia - 0 . 1 3 0  - 0 . 1 3 0  - 0 . 1 3 0  0 .040 0.020 

USA - 0 . 2 4 2  - 0 . 2 2 3  1/.152 /).043 - / / . 0 1 9  

Re H v 

R u s s i a - C z e c h  1.010 1.040 1 .0 t0  0 .960  0 .980  

Russia 1.010 1.030 1.020 0 .970  0 .980  

USA 1.011 1.041 1.008 0.965 0.985 

Im H v 

R u s s i a - C z e c h  0 .010  0 .020  1/.000 0 .000  0.01 l) 

Russia 0 .010  0. 010  0 .000  0 .000  - 0 .010 

USA 0.023 0.023 - 0.013 0.007 0.009 

Re H.  
R u s s i a - C z e c h  

6 Russia 

7 U S A  

Im H_ 

R u s s i a - C z e c h  

6 Russia 

7 USA 

1.000 

1.0011 

0.998 

0.000 

- 0 . 0 1 0  

- 11.005 

1.000 

1.01)11 

I).997 

/).001) 

0.001) 

- 0 .004 

0 .000  0.1)21/ 0 .150  0 .030  (I.010 0 .000 

0.001/ 0 .010  0 .130  0 .030  I).010 0 .000  

- 0 .002 0.033 0 .144 0 .030 0.01/5 0.000 

0 .000  0 .020  0 .000  0 .020  0 .010  0 .000  

0 .010  0 .020  0 .000  0 .020  //.01/) 0 .000  

- 0 .004  0 .070 0.001 0.018 0 .010 0.0/12 

Table  D.16.  Model  3 D - I B  (EYN,  T =  0.1, z = 0) 

Pa r t i c ipan t /  x = 2.5 3.75 5.0 6.25 7.5 11).0 

Re E v 
1 R u s s i a - C z e c h  0 .420  0 .400  0 .760  1.030 1 .(X)O 1.000 

6 Russia /I.430 0 .420  0 .830  1.020 1 .(X)0 1.1)1)0 

7 USA 0.399 0 .419  0 .838  1.034 1.1102 1.001 

hrl E~ 

1 R u s s i a - C z e c h  - 0 . 1 6 0  - 0 . 1 4 0  -0 .051 )  0 .090 0 .030 

6 Russia - 0 .190 - 0 .240 0 .040 0 .090 0 .030 

7 USA - 0 . 1 6 5  - 0 . 0 9 0  0./154 0.097 0.026 

0 .000 

/1.011) 

I).005 

Re H x 
1 R u s s i a - C z e c h  1.390 1.350 1.170 1./141/ 1.010 i .000  

6 Russia 1.380 1.340 I. 161) 1.1/311 1.010 [ .001l 

7 USA 1.423 1.368 1.169 1.036 1.1/09 1.001 

lm  H~ 

1 R u s s i a - C z e c h  0 .320  0 .250  0.1 l 0  0 .050  0 .020  

6 Russia 0 .330  0 .250  0 .120  0 .050  1/.I121/ 

7 USA 0 .302  0 .218 0 .102  11.044 I).020 

11.010 

/).010 

0 .006 
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Table  D.17.  Model  3 D - I B  (EXN,  T =  10.0, z = 0) 

P a r t i c i p a n t /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re E~ 

1 Russia Czech 0 .150  0 .240  0 .650  0 .990  1.080 1.100 1.090 

1.2 R u s s i a - C z e c h  0 .090  0 .210  0 .640  0 .980  1.070 1.100 1.090 

2 Russia Czech 0 .090  0 .210  0 .650  0 .980  1.070 1.100 1.090 

6 Russia 0 .160  0 . 2 6 0  0 .640  0 .980  1.070 1.100 1.090 

7 U S A  0 .108  0 .220  0 .663 1.004 1.085 1.101 1.080 

2D 0 .120  0 .220  0 .670  0 .990  1.070 1.090 1.080 

Average  (0) 0 .120  0.227 0 .652 0 .987 1.074 1.098 1.087 

St. dev. (0) 0 .030  0 .020 0 .012 0 .010  0 .007 0 .004 0.005 

Average  (1) 0 .120  0 .227 0 .652 0 .987 1.074 1.100 1.087 

St. dev. (1) 0 .030  0 .020  0 .012 0 .010 0 .007 0 .000  0.005 

1.040 

1.050 

1.050 

1.040 

1.043 

1.040 

1.044 

0.005 

1.044 

0.005 

lm  E x 
1 R u s s i a - C z e c h  - 0 . 0 5 0  - 0 . 0 4 0  - 0 .010  0 .000 0 .000 0 .010  0 .010 

1.2 R u s s i a - C z e c h  0 .000 0 .000  0 .000  0 .000 0 .000 0 .000  0 .000 

2 Russia Czech 0 .000 0 .000  0 .000  0 .000 0 .000 0 .000  0 .000 

6 Russia - 0 .050 - 0 .040  0 .000  0 .000 0 .000 0 .010  0 .010 

7 USA - 0 . 0 2 6  - 0 . 0 2 2  - 0 . 0 1 3  0.007 - 0.001 0 .006 0.007 

2D - 0 . 0 3 0  - 0 . 0 3 0  - 0 . 0 1 0  0 .000 0 .010 0 .010  0 .010 

Average  (0)  - 0 .026 - 0 .022 - 0 .005 - 0.001 0 .002 0 .006  0 .006 

St. dev. (0) 0 .022 0 .018 0 .006  0.003 0 .004 0.005 0.005 

Average  ( 1 ) - 0 .026 - 0 .022 - 0 .005 0 .000 0 .000 0 .006  0 .006 

St. dev. ( I )  0 .022 0 .018 0 .006 0 .000  0 .000 0.005 0.005 

0 .010 

0 .000  

0 .000 

0 .010 

0.006 

0 .010 

0.006 

0.005 

0 .006 

0.005 

Re H v 

1 R u s s i a - C z e c h  1,000 1.000 1.000 1,000 1,000 1.000 1,000 

6 Russia 1.010 1.010 1,010 1.010 1,010 1.010 1.010 

7 USA 1.005 1,005 1.005 1.005 1.004 1.004 1.004 

1 . 0 0 0  

1.010 

1.003 

lnl  H v 
1 R u s s i a - C z e c h  0 .000  0 . 0 0 0  0 .000  0 .000  0 .000  0 .000  0 .000  

6 Russia  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  

7 USA 0 .003  0 .003  0 .003 0 .003  0 .003 0 .003 0 .003 

0 .000  

0 .000  

0 .002  

Table  D.18.  Model  3 D - I B  (EYN,  T =  10.0, z = 0) 

P a r t i c i p a n t /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

Re E v 

1 R u s s i a - C z e c h  0 .200  0 , 2 0 0  0 .220  0 .260  0 .310  0 .410  0 ,500  

1.2 R u s s i a - C z e c h  0 ,130  0 . 1 3 0  0 .150  0 .200  0 .250  0 .360  0 .450  

2 Russia Czech 0 ,110  0 .110  0 .160  0 .240  0 .310  0 .390  0 ,460  

6 Russia 0 .260  0 .260  0 .270  0 .290  0 ,330  0 .410  0 .500  

7 USA 0 .190  0 .207  0.241 0 ,280  0 .334  0 ,435 0 .522  

2D 0 .420  0 .420  0 .440  0 .450  0 .470  0 .510  0 .540  

Average  (0)  0 .218 0.221 0 ,247 0.287 0 .334 0 .419 0.495 

St. dev. (0) 0 .112 0 .112 0 .105 0 .086 0.073 0.051 0,035 

Im E~ 

1 R u s s i a - C z e c h  - 0 .070  - 0 .070 - 0 .070  - 0 .070 - 0 .070  - 0 .060  - 0 .050  

1.2 R u s s i a - C z e c h  0 ,000 0 .000 0 ,000  0 .000 0 .000 0 .000  0 .000 

2 R u s s i a - C z e c h  0 .000 0 .000 0 ,000  0 .000 0 .000 0 .000 0 ,000 

6 Russia - 0 .050  - 0 .050 - 0 .050  - 0 .050 - 0 .050  - 0 .040  - 0 ,060  

7 USA - 0 .049 - 0 .048 - 0 .047 - 0 .048 - 0 .046 - 0 .039 - 0 .033 

2D 0 ,230 0 .220 0 ,210  0 .200 0 .180 0 .150  0 .130  

Average  (0)  0 .010 0 .009 0 ,007 0.005 0 .002 0 .002 - 0 .002 

St. dev. (0) 0.111 0 .107 0 ,103 0 .100 0 .092 0 .076 0 .069 

Re H~ 

1 Russia Czech 1.300 1.280 1.220 1.160 1.110 1.050 1.020 

6 Russia 1.370 1.350 1.270 1.180 1.120 1.050 1.010 

7 U S A  1.357 1.332 1.259 1.173 1.111 1.042 1.008 

2D 3 .210  3 .090  2 .690  2 .240  1.930 1.550 1.340 

Average  (0) 1.809 1.763 1.610 1.438 1.318 1.173 1.095 

St. dev. (0) 0 .934  0 .885 0 .720  0 .535 0.408 0.251 0 .164  

0 .750  

0 .730  

0 .730  

0 .750  

0.761 

0 .630  

0.725 

0 .048 

- 0 .020 

0 .000  

0 .000  

- 0 .030 

- 0 . 0 1 1  

0 .060  

0 .000  

0 .032 

0 .980  

0 .980  

0 .976  

1.040 

0 .994 

0.031 



2 5 2  M.S. Zhdanov et a l . /  Journal o f  Applied Geophysics 37 (1997) 133-271 

Table  D.18 (continued) 

P a r t i c i p a n t /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 4.0 

lm n x 
1 R u s s i a - C z e c h  

6 Russia 

7 USA 

2D 

Average  (0) 

St. dev. (0) 

Re H .  

1 R u s s i a - C z e c h  

6 Russia 

7 USA 

2D 

Average  (01 

St. dev. (0) 

lm H .  

1 R u s s i a - C z e c h  

6 Russia 

7 USA 

2D 

Average  (0) 

St. dev. (0) 

- 0 . 2 3 0  - 0 . 2 1 0  - 0 . 1 6 0  - 0 . 1 1 0  - 0 . 0 7 0  - 0 . 0 2 0  0 ,000 0,020 

- 0 . 3 1 0  - 0 . 2 8 0  - 0 . 2 1 0  - 0 . 1 3 0  - 0 . 0 7 0  - 0 . 0 2 0  0 .010 0.030 

- 0 .289 - 0 .267 - 0.201 - 0 .123 - 0 .070 - 0 .016 0.007 0.023 

0 .320 0 .300 0 .290 0 .280 0 .250 0 .200 0 .160 0.090 

- 0 . 1 2 7  - 0 . 1 1 4  - 0 . 0 7 0  - 0 . 0 2 1  0 .010 0 .036 0.044 0.041 

0 .300  0.278 0.241 0.201 0 .160 0.109 0.077 0.033 

0 .090  0 .160  0 .180  0 .190  0 .180  0 .150  0 .080  

0 .110  0 .200  0 .220  0 .220  0 ,180  0 .150  0.0811 

0 ,110  0 .192  0 .216  0 ,210  0 .177 0 .146  0.071 

0 .520  0 .900  1.050 1.050 0 .950  0 .830  0 .500  

0.208 0.363 0 .416 0.418 0.372 0 .319 0.183 

0.209 0 .358 0.423 0.422 0 .386  0.341 0.212 

- 0 . 0 7 0  - 0 . 1 3 0  - 0 . 1 5 0  - 0 . 1 4 0  - 0 . 1 3 0  - 0 . 1 0 0  - 0 . 0 5 0  

- 0 .100 - 0 . 1 8 0  - 0 . 1 9 0  - 0 . 1 8 0  - 0 . 1 4 0  - 0 . 1 1 0  - 0 . 0 5 0  

- 0 . 0 9 5  - 0 . 1 6 7  - 0.183 - 0 . 1 7 1  - 0 . 1 3 6  - 0 . 1 0 8  - 0 . 0 4 7  

0 .040 0 .060  0 .090  O. 110 O. 130 O. 140 0 .110 

- 0 . 0 5 6  - 0 . 1 0 4  - 0 . 1 0 8  - 0 . 0 9 5  - 0 . 0 6 9  - 0 . 0 4 4  - 0 . 0 0 9  

0.065 0 .112 0.133 0 .138 0.133 0.123 0 .080 

Table  D.19.  Model  3 D - I B  (EXN,  T =  10.0, z = 0) 

P a r t i c i p a n t /  x = 2.5 3.75 5.0 6.25 7.5 10.0 

Re E x 
1 R u s s i a - C z e c h  0 ,150  

1.2 R u s s i a - C z e c h  0 .100  

2 R u s s i a - C z e c h  0 .090  

6 Russia 0 .160  

7 USA 0.085 

Average  (0) 0 .117 

St. dev. (0) 0 .035 

Im E x 

1 R u s s i a - C z e c h  - 0 .050 

1.2 R u s s i a - C z e c h  0 .000  

2 R u s s i a - C z e c h  0 .000  

6 Russia - 0 .050 

7 USA - 0 .009 

Average  (0) - 0 .022 

St. dev. (01 0 .026 

Re H~, 

1 R u s s i a - C z e c h  1.010 

6 Russia 1.010 

7 U S A  1.006 

hn  H~ 

1 R u s s i a - C z e c h  0 .000  

6 Russia 0 .000 

7 USA - 0.005 

Re Hz 
1 R u s s i a - C z e c h  0 .000  

6 Russia 0 .000  

7 USA 0.005 

hn H z 
1 R u s s i a - C z e c h  0 .000  

6 Russia 0 .000 

7 USA 0.004 

0 .150  0 .320  0 .890  0 .970  0 .990  

0 .100  0 .290  0 .890  I).960 0 .990  

0 .090  0 .350  0 .890  0 .970  0 .990  

0 .170  0 .330  0 .900  0 .970  0 .990  

0.105 0 .336 0 .899  0 .968 0.991 

0.123 0 .325 0 .894 0 .968 0.990 

0.035 0 .022 0.005 0.004 0.000 

0 .050 - 0 .040  - 0 .010 0.000 0.000 

0 .000 0 .000  0 .000 0 .000 0.000 

0 .000 0 .000  0 .000 0 .000  0.000 

0 .050 - 0 .040  - 0 .010 0 .000  0.000 

0 .014 - 0 . 0 1 9  - 0 . 0 0 4  - - 0 . 0 0 6  0.000 

0.023 - 0 .020 - 0 .005 - 0.001 0.000 

0.025 0 ,020  0.005 0.003 0.000 

1 .010  1 .000  1 .000  1 .000  1 .000  
1.030 1.020 0 .970  0 .980  1.000 

1.007 1.002 0 .996  0 .997 0 .999 

0 .010 0 .000 0 .000 0 .000 0.000 

0 .010 0 .000  0 .000 0 .000 0.(/00 

0 .006 - 0.001 0 .004 0.003 0.(101 

0 .010  0 .020  0 .010  0 .000  0 .000  

0 .010  0 .020  0 .010  0 .010  0 .000  

0 .009  0 .019 0 .008 0 .005 0 .002 

0 .010  -- 0 .020 0 .010 0 .000 0.000 

0 .010 - 0 . 0 2 0  - 0 .010 0 .000 0.000 

0.009 - - 0 . 0 1 9  - 0 . 0 0 7  0 .004 - 0,001 
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Table D.20. Model 3D-1B (EYN, T =  10.0, z = 0) 

253 

Par t ic ipant /  x = 2.5 3.75 5.0 6.75 7.5 10.0 

Re Ey 
1 Russ ia -Czech  0.190 0.190 1.560 1.900 1.420 1.130 

1.2 Russ ia -Czech  0.130 0.130 1.690 2.010 1.480 1.160 

2 Russ ia -Czech  0.100 0.050 1.890 1.970 1.480 1.160 

6 Russia 0.180 0.200 1.680 1.890 1.410 1.140 

7 U S A  0.066 0.210 1.686 1.885 1.403 1.129 

Average (0) 0.133 0.156 1.701 1.931 1.439 1.144 

St. dev. (0) 0.053 0.067 0.119 0.056 0.038 0.015 

Im E~. 

1 Russ ia -Czech  - 0.070 - 0.060 0.200 0.180 0.100 0.040 

1.2 Russ ia -Czech  0.000 0.000 0.000 0.000 0.000 0.000 

2 Russ ia -Czech  0.000 0.000 0.000 0.000 0.000 0.000 
6 Russia - 0.060 - 0.050 0.200 0.170 0.090 0.040 

7 USA - 0 . 0 3 5  - 0 . 0 7 1  0.171 0.155 0.087 0.036 
Average (0) - 0.033 - 0.036 0.114 0.101 0.055 0.023 

St. dev. (0) 0.033 0.034 0.105 0.093 0.051 0.021 

Re H x 
1 Russ ia -Czech  1.260 1.210 1.120 1.060 1.040 1.020 

6 Russia 1.320 1.250 1.140 1.070 1.040 1.020 

7 U S A  1.304 1.235 1.130 1.064 1.039 1.020 

Im H x 
1 Russ ia -Czech  - 0 . 1 9 0  - 0 . 1 5 0  - 0 . 0 8 0  - 0 . 0 3 0  - 0 . 0 2 0  - 0.010 

6 Russia - 0 . 2 7 0  - 0 . 2 0 0  - 0.100 - 0 . 0 5 0  - 0 . 0 3 0  - 0.010 

7 USA - 0 . 2 4 5  - 0 . 1 8 7  - 0 . 0 9 7  - 0 . 0 4 3  - 0 . 0 2 4  - 0.011 

Table D.21. Model 3D-IB ( T =  0.1, z = 0) 

Par t ic ipant /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 

on xy 

1 Russ ia -Czech  18.00 22.90 45.40 84.80 96.60 98.10 98.10 

6 Russia 17.50 23.00 47.40 87.60 98.90 99.60 98.90 

7 U S A  12.79 17.91 51.25 93.86 102.30 101.10 99.80 

2D Russia 10.80 15.00 47.90 84.30 94.30 97.90 98.60 

Average (0) 14.77 19.70 47.99 87.64 98.02 99.17 98.85 

St. dev. (0) 3.54 3.93 2.43 4.39 3.41 1.49 0.71 

p~x 
1 Russ ia -Czech  10.00 11.10 17.70 34 50 54.50 80.40 90.30 

6 Russia 10.36 11.30 17.80 34.60 54.80 83.90 97.60 

7 US A 8.37 9.22 14.90 31.29 51.84 81.64 95.87 

2D Russia 6.80 7.20 12.30 30.20 52.10 83.00 96.80 

Average (0) 8.88 9.70 15.68 32.65 53.31 82.24 95.14 

St. dev. (0) 1.64 1.91 2.62 2.24 1.56 1.54 3.30 

Average (1) 8.88 9.70 15.68 32.65 53.31 82.24 95.14 

St. dev. (1) 1.64 1.91 2.62 2.24 1.56 1.54 3.30 

Table D.22. Model  3D-1B (T = 0.1, z = 0) 

Par t ic ipant /  x = 2.5 3.75 5.0 6.25 7.5 10.0 

~a xy 

1 Russ ia -Czech  17.90 18.20 35.30 93.50 99.50 100.00 

6 Russia 17.10 17.90 31.90 93.80 99.70 100.20 

7 US A 12.44 13.11 28.62 94.29 99.84 100.20 

py~ 
1 Russ ia -Czech  9.90 9.90 42.20 99.10 98.50 99.90 

6 Russia 10.80 12.70 50.70 98.90 98.70 99.90 

7 US A 8.81 9.59 51.14 100.30 98.60 99.91 
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Table D.23. Model 3D-IB ( T =  10.0, z = 0) 

Par t ic ipant /  x = 0.0 0.25 0.5 0.75 1.0 1.5 2.0 

pa~V 

I Russ ia-Czech 2.40 6.10 41.70 96.50 

1.2 Russ ia-Czech  0.82 4.20 41.10 96.40 

2 Russ ia-Czech 0.80 4.40 41.70 95.70 

6 Russia 2.88 6.77 40.90 95.311 

7 USA 1.22 4.83 43.52 99.95 

2D Russia 1.63 5.00 45.20 98.90 

Average (0) 1.63 5.22 42.35 97.12 

St. dev. (01 0.86 1.01 1.67 1.87 

1 Russ ia-Czech 2.50 2.70 3.50 5.30 

1.2 Russ ia -Czech  1.60 1.70 2.30 3.90 

2 Russ ia-Czech  1.20 1.30 2.60 5.80 

6 Russia 3.50 3.80 4.50 6.00 

7 USA 2.00 2.45 3.70 5.81/ 

2D Russia 2.20 2.40 3.20 4.80 

Average (0) 2,17 2.39 3.30 5.27 

St. dev. (0) 0.80 0.87 0.79 0.80 

14.90 119.30 117.70 

15.20 121.20 119.60 

15.00 [20.00 119.00 

14.30 119.50 117.50 

16.61) 120.2/I 117.911 

15.20 119.60 117.40 

15.20 119.97 118.18 

0.76 0.69 //.90 

8.10 15.30 24.111 

6.30 12.70 20.60 

9.211 14.8(I 21.6(1 

8.70 15.90 24.511 

9.19 17.56 26.96 

6.70 I 1.50 16.90 

8.03 14.63 22.44 

1.26 2.20 3.53 

Table D.24. Model 3D-IB (T = 10.0, z = 0) 

Par t ic ipant /  x = 2.5 3.75 5.0 6.25 7.5 10.0 

Oa ~y 

1 Russ ia -Czech  2.50 2.60 10.60 80.00 93.90 98.511 

1.2 Russ ia-Czech  1/.90 1.00 8.10 78.0(/ 93.01/ 98.211 

2 Russ ia-Czech  0.80 0.90 12.20 79.90 93.20 98.211 

6 Russia 2.78 3.1/6 11/.95 81/.7(I 93.91/ 98.50 

7 USA 0.73 1.10 11.26 81.42 94.11 98.59 

Average (0) 1.54 1.73 10.62 80.00 93.62 98.40 

St. dev. (0) 1.01 1.1)2 1.53 1.28 I).49 0.18 

1 Russia Czech 2.60 2.70 198.00 329.00 188.00 123.711 

1.2 Russ ia-Czech  1.60 1.70 285.00 406.00 218.00 134.50 

2 Russ ia-Czech  1.00 1.70 356.00 388.00 217.00 133.00 

6 Russia 1.911 2.61/ 218.50 315.30 185.70 123.81/ 

7 USA 0.32 3.15 223.311 315.20 182.80 122.60 

Average (0) 1.48 2.37 256.16 350.70 198.3/I 127.52 

St. dev. (0) 0.87 0.65 64.58 43.11 17.63 5.73 

A p p e n d i x  E 

Diagrams for the 2D results are presented in Figs. 26-35. 
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A p p e n d i x  F .  M o d e l l i n g  r e s u l t s  f o r  m o d e l  3 D - 2  

The following modelling results submitted later than the others by Dr. Z. Xiong were computed with an integral equation 
code (Xiong, 1992; Xiong and Tripp, 1993a,b, 1995). The algorithm uses the method of  system iteration and spatial 
symmetry reductions and thus allows a large number of  cells to be used in the computation. The method of system iteration 
reduces the computation time for solving the matrix equation. With the aid of  the spatial symmetry reductions, elements of 
the scattering impedence matrix can be re-computed in each iteration so that huge memory requirements are avoided. 

Model 3D-2, with l ~, = 20 km, was computed using 16800 prismatic cells of  dimensions 1000 X 2666.667 × 357.143 m ~, 
or 20 × 15 x 28 cells for each of  the two blocks. The model with I~,.- 100 km was computed using 18000 prismatic cells of 
dimensions 2000 X 2666.667 X 500 m 3, or 10 × 15 × 20 cells for the conductive block with /~ = 20 km and 111 x 75 × 20 
cells for the resistive block with/I,. = I00 kin. 

T a b l e  F. la .  M o d e l  3 D - 2 ,  /l~ = 20  k in .  T =  100 s. E~,p y =  0 

( k i n )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  2 0 ( + )  - 1 5  10 - I 0( ) 

E ,  Re  1 .000  1 .013  1 .068  1.191 0 .151  0 . 2 4 6  0 . 2 5 9  0 . 2 2 7  (}.063 

l m  0 . 0 0 2  0 . 0 1 5  0 . 0 3 4  - 0 . 0 1 2  (}.{} 18 - 0 . 0 4 7  0 . 0 4 5  - 0 . 0 5 7  0{}27 

f t~ Re 1.001 1 .010  1.1/22 1 .022  1 .02I  1 .007  {).978 0 . 9 2 8  (}.872 

l m  0 .001  0.0(} 1 0 .0 0 1  0 . 0 0 2  0 . 0 0 3  {}.0{17 0 .01  I 0.{}21 0 . 0 4 5  

T a b l e  R i b .  M o d e l  3 D - 2 ,  / l =  20  kin,  T =  100 s, E,,,, ) = (} 

t ( k i n )  0 ( +  ) 5 10 15 2 0 ( -  ) 2 0 . 5  25  4 0  70  

. .  I . 2 . 2 9 9  2 . 6 5 5  0 . 3 4 4  0 . 5 9 9  0 . 8 8 2  0 . 9 8 6  E~ Re  2 . 7 7 4  2 . 3 9 2  ~} 9 "} 

h n  - 0 . 2 3 5  (1.171 - {/ .262 - 0 . 2 8 9  -- 0 . 4 1 7  0 . 0 7 8  - 0 . 1 2 4  0 . 0 8 2  0.(}24 

H ,  Re  0 . 8 7 2  0 . 8 4 6  0 . 8 3 7  0 . 8 3 7  0 . 8 4 8  0 . 8 4 9  0 . 8 7 2  0 . 9 4 4  0 . 9 8 9  

h n  0 . 0 4 5  (}.057 {I.061 0 . 0 6 0  0 . 0 5 3  0 . 0 5 2  0 . 0 3 7  0.(}{16 0 . 0 0 2  

T a b l e  F .2a .  M o d e l  3 D  2,  /I, = 20  kin.  T = 100 s, E , , , ,  y =  30  k m  

x ( k m )  - 70  4 0  -- 25  2 0 . 5  - 2 0 { +  ) - 15 10 - 5 0( ) 

E ,  R e  1 .000  0 . 9 9 2  0 . 9 4 0  0 . 8 9 4  0 . 8 8 8  0 . 8 4 6  0 . 8 6 6  (}.971 I. 1 ~5 

l m  - 0 .001  0 . 0 0 8  - 0 . 0 3 3  - (}.050 0 . 0 5 3  ( / .067 {/.061 {}.{}3(} 0.01 {} 

E~ Re  - 0.{101 0 . 0 1 3  - { } . 0 3 7  - { } . 0 2 2  - 0 . 0 1 8  0 . 0 5 6  0 . 1 6 8  {}.264 0 . 2 6 7  

I m  - 0 . 0 0 2  0.0(}9 - 0 . 0 0 9  0.{}04 0 . 0 0 6  0 . 0 4 0  0 . 0 8 4  {1. 114 (}. 107 

H ,  Re  0.0{}1 0 . 0 0 8  0 . 0 1 2  (}.001 - 0 . 0 0 2  0 . 0 3 6  0 . 0 8 2  -{1.1 I8 {}.118 

h n  0 . 0 0 1  - 0 . 0 0 1  0.{108 - {/.(107 - 0 . 0 0 7  0 . 0 0 2  0 . 0 1 7  0 . 0 3 2  0 . 0 3 4  

H,. Re 0 . 9 9 9  0 . 9 9 4  0 . 9 7 0  0 . 9 5 3  0 .951  0 . 9 3 8  0 . 9 4 8  1/.986 1.041 

h n  0 . 0 0 0  0 . 0 0 0  0 0 0 7  0 . 0 1 3  0 . 0 1 4  0.(}2{} 0 . 0 1 7  0.{}01 {1.024 

T a b l e  F . 2 b .  M o d e l  3 D - 2 ,  / I, = 2 0  k in ,  7 " =  100 s, E~,,, v = 3 0  km 

r ( k m )  0 ( + )  5 10 15 2(1( ) 20 .5  25  4 0  7{} 

E ,  Re  1 .135  1 .246  1 .2 7 4  1 .2 5 6  1 .199  1.191 l . l l 8  1.1/116 0 . 9 9 6  

h n  0 . 0 1 0  0 . 0 3 0  0 . 0 3 0  1t .023 0 . 0 1 4  0 . 0 1 3  0.003 - 0 . 0 1 7  - (} {/lq 

E~ Re  ( / .267 0 . 1 6 5  0 . 0 5 2  - 0 . 0 4 4  - 0 . 1 1 9  - 0 . 1 2 4  0 . 1 4 4  0 . 0 7 3  - 0 . 0 1 0  

h n  0 . 1 0 7  0 . 0 7 0  0 .0 3 1  0 .0 0 1  0 . 0 2 3  - 0 . 0 2 4  - 0 . 0 3 7  0 . 0 3 6  0 .01  I 

H ,  Re  0.1 I 8 - 0 . 0 8 0  0 . 0 3 4  0 . 0 0 8  0.0411 0 . 0 4 2  0 . 0 5 5  0 . 0 4 0  0.01 (} 

h n  ( / . 034  0 . 0 2 2  0 . 0 0 5  - 0 . 0 1 0  - 0 . 021  - 0 . 0 2 2  0 . 0 2 4  0 . 0 0 9  (}.0() I 

H~ Re  1.041 1 .0 8 0  1.(193 1 .089  1 .073  1.{170 1 .049  1 .006  {}.997 

Im  - 0 . 0 2 4  0 . 0 4 5  - 0 . 0 5 3  - 0 . 0 5 1  0 . 0 4 2  0 .041  - {}.(}28 0.(}(}6 {}.{101 

T a b l e  F .3a .  M o d e l  3 D - 2 .  I,. I = 2{} k m ,  T =  100  s, E , , , ,  y = 0 

( k i n )  70  - 4 0  25  - 2 0 . 5  - 2 0 ( +  ) 15 10 - 5 0 ( - -  ) 

E ,  Re  0 . 9 8 6  0 . 8 8 0  0 . 6 2 9  0 . 4 9 5  0 . 4 6 8  0 . 3 8 9  {1.355 0 .391  0 . 5 1 0  

h n  - 0 . 0 2 3  0 . 0 9 0  - 0 . 1 3 4  - 0 . 0 9 7  - 0 .041  0 .021  0 .031  0 . 0 0 8  - 0 . 1 2 0  

H ,  Re  0 . 9 8 2  {1.921 0 . 9 1 3  1 .105  1 .190  1 .424  1 .417  1 .418  1 .127  

I m  0.01 I - 0 . 0 0 4  0 . 0 5 0  11.027 0 . 0 1 9  0 . 0 2 3  0 . 0 6 6  0 . 0 3 8  0 . 0 5 6  

H_ Re - 0 . 0 0 4  11.072 0 . 3 1 6  - 0 . 5 2 8  - ( / .560  0 . 1 7 5  0 . 0 3 0  0 . 2 5 4  0 .65  I 

l m  - 0.01 I 1/.043 - 0 . 0 3 1  0 . 0 6 2  0 . 0 8 7  0 . 0 7 7  11.01/8 (}.061 0 . 2 3 3  
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T a b l e  F . 3 b .  M o d e l  3 D - 2 ,  l~. I = 2 0  k m ,  T = 100  s, E~.,,  y = 0 

x ( k m )  0 ( +  ) 5 10 15 2 0 ( -  ) 2 0 . 5  25  4 0  7 0  

E v R e  0 . 5 1 0  0 . 7 2 6  0 . 9 2 5  0 . 9 9 6  1 . 0 3 6  1 . 0 5 0  1 .056  1 .033  1 .006  

I m  - 0 . 1 2 0  - 0 . 1 9 0  - 0 . 2 1 0  - 0 . 1 9 6  - 0 . 1 4 2  - 0 . 1 3 9  - 0 . 0 9 4  - 0 . 0 2 8  0 . 0 0 4  

H ~  R e  1 .127  0 . 8 0 1  0 . 7 5 2  0 . 7 6 0  0 .851  0 . 8 7 3  0 . 9 5 0  0 . 9 9 8  1 .002  

I m  - 0 . 0 5 6  0 . 1 1 0  0 . 1 1 2  0 . 0 9 7  0 . 0 2 9  0 . 0 1 1  - 0 . 0 3 2  - 0 . 0 2 6  - 0 . 0 0 7  

H .  R e  0 . 6 5 1  0 . 3 6 5  0 . 1 8 3  0 . 0 3 9  - 0 . 1 0 1  - 0 . 0 9 8  - 0 . 0 7 I  - 0 . 0 2 5  - 0 . 0 0 4  

I m  - 0 . 2 3 3  - 0 . 0 6 5  0 . 0 0 8  0 . 0 6 6  0 . 1 3 9  0 . 1 3 1  0 . 0 7 8  0 . 0 1 7  0 . 0 0 1  

T a b l e  F . 4 a .  M o d e l  3 D - 2 ,  ly  t = 2 0  k m ,  T = 100  s, E~n "¢ = 3 0  k m  

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0(  ) 

E x Re  - 0 . 0 0 2  - 0 . 0 3 6  - 0 . 0 9 1  - 0 . 0 7 9  - 0 . 0 7 5  - 0 . 0 2 0  0 . 0 5 3  0 . 1 4 6  0 . 2 3 3  

l m  - 0 . 0 1 5  - 0 . 0 6 8  - 0 . 1 0 6  - 0 . 0 8 7  - 0 . 0 8 4  - 0 . 0 3 4  0 . 0 2 5  0 . 0 8 6  0 . 1 3 6  

E~. R e  0 . 9 9 2  0 . 9 7 5  1 .0 3 4  1 . 0 8 6  1 .092  1 .137  1 . 1 5 4  1 .139  1 .050  

l m  - 0 . 0 1 0  0 .0 0 1  0 . 1 0 1  0 . 1 5 0  0 . 1 5 6  0 .191  0 . 1 9 8  0 . 1 7 6  0 . 1 1 5  

H~ R e  0 . 9 9 l  0 . 9 8 9  1 .0 3 9  1 .0 70  1 .073  1 .098  1 .105  1 .090  1 .044  

l m  - 0 . 0 0 6  0 . 0 0 3  0 . 0 1 9  0 . 0 2 1  0 . 0 2 1  0 . 0 2 1  0 . 0 1 9  0 . 0 1 7  0 . 0 2 0  

H v R e  0 . 0 0 8  0 . 0 3 9  0 . 0 6 3  0 . 0 5 2  0 . 0 5 0  0 . 0 1 7  - 0 . 0 2 6  - 0 . 0 7 3  0 . 1 0 9  

l m  0 . 0 0 6  0 . 0 1 5  0 . 0 1 1  0 . 0 0 8  0 . 0 0 8  0 . 0 0 7  0 . 0 0 7  0 . 0 1 0  0 . 0 1 4  

H z R e  - 0 . 0 0 2  - 0 . 0 2 1  - 0 . 0 3 2  - 0 . 0 2 3  - 0 . 0 2 2  0 . 0 0 1  0 .031  0 . 0 6 3  0 . 0 8 7  

l m  - 0 . 0 0 7  - 0 . 0 1 8  - 0 . 0 1 4  - 0 . 0 0 9  - 0 . 0 0 8  - 0 . 0 0 1  0 . 0 0 5  0 . 0 0 9  0 . 0 1 2  

T a b l e  F . 4 b .  M o d e l  3 D - 2 ,  Ivl = 2 0  k m ,  T = 100 s, E~.,,, y = 3 0  k m  

x ( k m )  0(  + ) 5 10 15 2 0 (  - ) 2 0 . 5  25  4 0  70  

E ~ R e  0 . 2 3 3  0 . 2 2 7  0 . 1 3 6  0 . 0 2 9  - 0 . 0 4 2  - 0 . 0 4 6  0 . 0 5 7  0 . 0 2 6  

I m  0 . 1 3 6  0 . 1 4 4  0 . 1 1 6  0 . 0 8 0  0 . 0 4 9  0 . 0 4 6  0 . 0 2 7  0 . 0 0 4  

Ey Re  1 .050  0 .9 1 1  0 . 8 2 7  0 . 8 2 3  0 . 8 7 7  0 . 8 8 4  0 . 9 3 8  0 . 9 9 8  

I m  O. 115  0 . 0 3 4  - 0 . 0 2 5  - 0 . 0 5 2  - 0 . 0 5 7  - 0 . 0 5 7  - 0 . 0 5 0  0 . 0 2 2  

H e Re  1 .044  0 . 9 8 3  0 . 9 4 1  0 . 9 2 9  0 . 9 4 0  0 . 9 4 2  0 . 9 5 9  0 . 9 9 0  

I m  0 . 0 2 0  0 . 0 2 6  0 . 0 2 8  0 . 0 2 0  0 . 0 0 7  0 . 0 0 5  - 0 . 0 0 5  0 . 0 1 2  

H~. Re  0 . 1 0 9  - 0 . 1 1 1  - 0 . 0 8 1  - 0 . 0 4 2  - 0 . 0 1 2  - 0 . 0 1 0  0 . 0 0 2  0 . 0 0 6  

I m  0 . 0 1 4  0 . 0 0 9  - 0 . 0 0 4  - 0 . 0 1 8  - 0 . 0 2 6  - 0 . 0 2 6  - 0 . 0 2 5  0 .011  

H_ Re  0 . 0 8 7  0 . 0 8 7  0 . 0 6 3  0 . 0 3 2  0 . 0 0 7  0 . 0 0 6  - 0 . 0 0 5  0 . 0 0 9  

I m  0 . 0 1 2  0 . 0 1 6  0 . 0 2 3  0 . 0 2 9  0 . 0 2 9  0 . 0 2 9  0 . 0 2 5  0 . 0 0 9  

-- 0 . 0 0 4  

-- 0 . 001  

1 .002  

-- 0 . 0 0 4  

1.000 
- - 0 . 0 0 5  

0 .001  

- 0 . 0 0 2  

- 0 . 0 0 3  

0 . 0 0 1  

T a b l e  F .5a .  M o d e l  3 D - 2 ,  I~. t = 2 0  k i n ,  T =  100  s, y = 0 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

pa ~ '  1 5 . 6 0 2  14 .263  7 . 6 4 6  3 . 2 2 2  2 . 4 1 0  1 .158  0 . 9 7 4  1 .177  3 . 3 0 0  

pa ~ '  1 5 . 4 4 6  15 .547  16 .891  2 0 . 9 9 1  0 . 3 4 1  0 . 9 5 8  1 . 1 2 0  0 . 9 8 4  0 . 0 9 4  

T a b l e  F . 5 b .  M o d e l  3 D - 2 ,  lv~ = 2 0  k m ,  T =  100  s, y = 0 

x ( k m )  0 ( + )  5 10 15 2 0 ( - )  2 0 . 5  25  4 0  7 0  

pa "~ 3 . 3 0 0  1 3 . 3 0 7  2 4 . 0 6 6  2 7 . 1 0 2  2 3 . 3 3 2  2 2 . 7 3 2  19 .253  1 6 . 5 6 8  1 5 . 9 5 2  

pa ~' 1 5 7 . 0 4  123 .51  1 0 7 . 0 0  1 1 7 . 7 8  1 5 4 . 7 9  2 . 6 6 3  7 . 5 8 9  1 3 . 6 1 2  1 5 . 3 7 8  

T a b l e  F . 6 a .  M o d e l  3 D - 2 ,  ly I = 2 0  k m ,  T = 1 0 0  s, y = 3 0  k m  

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

p~'~ 1 5 . 4 9 5  15 .041 1 5 .3 9 1  1 6 . 2 0 6  1 6 . 3 0 3  17 .031  1 7 . 2 5 3  1 6 . 8 9 4  1 5 . 2 5 3  

p~i ~ 1 5 . 4 6 5  15 .391 1 4 . 5 1 5  1 3 . 6 1 5  1 3 . 5 0 3  1 2 . 6 5 4  12 .891  1 4 . 6 6 3  1 7 . 7 6 8  

T a b l e  F . 6 b .  M o d e l  3 D - 2 ,  lvl = 2 0  k m ,  T = 100  s, y = 3 0  k m  

x ( k m )  0 ( + )  5 10 15 2 0 ( - )  2 0 . 5  25  4 0  7 0  

p~.x 1 5 . 2 5 3  1 3 . 0 0 0  1 1 . 9 1 0  1 2 . 2 0 6  1 3 . 4 8 5  1 3 . 6 3 2  1 4 . 7 5 4  1 5 . 6 7 2  1 5 . 5 2 6  

pa ~v 1 7 . 7 6 8  2 0 . 1 5 8  2 0 . 8 6 6  2 0 . 5 3 2  1 9 . 2 1 7  1 9 . 0 3 9  1 7 . 4 4 6  1 5 . 4 1 7  1 5 . 4 3 9  
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T a b l e  F .7a .  M o d e l  3 D - 2 ,  / ,q = 2 0  k m ,  T =  1000  s, E~,,, ) = 0 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 15 - 10 - 5  0 ( - )  

E, Re  1.001 1 .023 1 .084  1 .183  0 . 1 4 2  0 . 2 0 9  0 . 2 1 5  0 .181  0 . 0 4 8  

h n  0 . 0 0 0  0 . 0 0 2  0 . 0 0 2  - 0 . 0 0 9  - 0 . 0 0 5  - 0 . 0 1 5  - 0 . ( 1 1 7  - 0 . 0 1 7  -- 0 . 0 0 7  

H,. Re  1 .00 0  1.001 1 .0 0 2  1 .002  1 .002  1.001 0 . 9 9 8  0 . 9 9 4  0 .99( /  

l m  0 . 0 0 0  - 0 . 0 0 3  - 0 . 0 0 5  - 0 . 0 0 6  - 0 . 0 0 5  - 0 . 0 0 3  0 . 0 0 5  0 . 0 1 7  0 . 0 3  I 

T a b l e  F . 7 b .  M o d e l  3 D - 2 ,  l~j = 2 0  k in ,  T =  1 0 0 0  s, E , , , ,  y =  0 

x ( k m )  0(  + ) 5 10 15 20 (  - ) 2 0 . 5  25 40  711 

E ,  R e  2 . 6 1 5  2 . 3 3 7  2 . 0 9 0  2 .16(I  2 . 3 7 8  0 . 3 0 8  0 . 5 4 9  0 . 8 3 0  (I.951 

l rn  - 0 . 0 4 0  - 0 . 0 0 8  - 0 . 0 1 8  - 0 . 0 2 5  - 0 . 0 5 9  0 .011  0 . 0 1 9  0 . 0 1 4  0 . 0 0 6  

H,. Re  0 . 9 9 0  0 . 9 8 8  0 . 9 8 7  0 . 9 8 7  0 . 9 8 8  0 . 9 8 8  0 . 9 9 0  0 . 9 9 5  (1.999 

l m  0 .03 1  0 . 0 3 7  0 . 0 3 9  0 . 0 3 9  0 . 0 3 7  0 . 0 3 6  0 .031  0 . 0 1 4  0 . 0 0 3  

T a b l e  F .8a .  M o d e l  3 D - 2 ,  /~1 = 2 0  k i n ,  T =  1000  s, E,,~, y = 3 0  k m  

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  15 10 5 0( ) 

E~ R e  0 . 9 9 7  0 . 9 8 4  0 . 9 1 8  0 . 8 6 3  0 . 8 5 6  0 . 8 0 7  0 . 8 2 8  I) .943 l . 1 1 7  

Im  - 0 .001  - 0 . 0 0 2  - 0 . 0 0 6  - 0 . 0 0 9  - 0 . 0 1 0  - 0 . 0 1 2  0 .011  0 . 0 0 7  0 . 0 0 0  

E~ Re  0 . 0 0 3  - 0 . 0 1 8  0 . 0 3 7  0 . 0 1 6  0 .011  0 . 0 7 9  0 . 2 0 8  0 . 3 1 4  0 . 3 1 3  

Inn 0 . 0 0 0  - 0 . 0 0 1  - 0 .001  0 .001  0 .001  0 . 0 0 6  0 . 0 1 3  0 . 0 1 7  0 . 0 1 6  

H~ Re  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  - 0 .001  0 .001  - 0 . 0 0 3  - 0 . 0 0 7  - ( I .009 0 . 0 0 9  

I m  0 . 0 0 0  0 . 0 0 2  0 . 0 0 2  0 . 0 0 0  0 .001  0 . 0 0 9  0 . 0 2 0  0 . 0 2 8  0 . 0 2 8  

H,.  Re  1 .000  0 . 9 9 9  0 . 9 9 8  0 . 9 9 6  0 . 9 9 6  0 . 9 9 5  0 . 9 9 6  0 . 9 9 9  1 .003 

I m  0 . 0 0 0  0 . 0 0 2  0 . 0 0 7  0 .011  0 . 0 1 2  0 . 0 1 5  0 . 0 1 3  (I.(104 - 0 . 0 1 0  

T a b l e  F .8b .  M o d e l  3 D - 2 ,  /~l = 2 0  k m ,  T =  1000  s, E~,,, v = 3 0  k m  

x ( k m )  0 ( + )  5 10 15 20 (  ) 20 .5  25  4 0  71) 

E~ Re  I . 1 1 7  1 .233  1 .257  1 .236  1 .177  1 .169  1 .095  0 . 9 8 3  0 . 9 7 9  

h n  0 . 0 0 0  0 . 0 0 3  0 . 0 0 3  0 . 0 0 2  0 . 0 0 0  0 . 0 0 0  - 0 . 0 0 2  0 . 0 0 5  0 . 0 0 4  

E~ Re  0 . 3 1 3  0 . 1 9 8  0 .071  0 . 0 3 5  0 . 1 1 7  - 0 . 1 2 3  - 0 . 1 4 8  - 0 . 0 8 7  0 . 0 2 0  

l m  0 . 0 1 6  0 .0 1 1  0 . 0 0 5  0 .001  0 . 0 0 3  - 0 . 0 0 3  - 0 . 0 0 5  - 0 . 0 0 5  - 0 . 0 0 2  

H~ Re .  - 0 . 0 0 9  - 0 . 0 0 6  - 0 . 0 0 3  0 . 0 0 0  0 . 0 0 3  0 . 0 0 3  0 . 0 0 4  0 . 0 0 3  0 .001  

l m  0 . 0 2 8  0 . 0 1 9  0 . 0 0 8  - 0 . 0 0 2  - 0 . 0 0 9  - 0 . 0 1 0  0 . 0 1 3  0 . 0 0 9  0 . 0 0 3  

H~ Re  1 .003  1 .005  1 .006  1 .006  1 .(105 1 .005  1 .003  [ . 000  0 . 9 9 9  

l m  0 . 0 1 0  0 . 0 1 9  0 . 0 2 2  0 .021  0 . 0 1 7  0 . 0 1 6  0 .011  0 .001  0 .001  

T a b l e  F .9a .  M o d e l  3 D - 2 ,  l , i  = 2 0  k in ,  T =  1000  s, E , , , ,  y =  0 

x ( k m )  - - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 15 - 10 . - 5  0 ( - }  

E~ Re  0 . 9 6 7  0 . 8 3 0  0 . 5 5 2  ( I .424 0 . 4 3 7  0 . 4 2 0  0 .411  0 A I  1 0 . 4 4 2  

l m  0 . 0 0 3  0 . 0 1 2  0 . 0 2 4  0 . 0 2 3  0 . 0 1 0  0 . 0 0 2  0 . 0 0 7  0 . 0 0 0  ( / .020  

H~ Re  0 . 9 9 7  0 . 9 9 2  0 . 9 9 5  1 .014  1.021 1 .050  1 .054  1 .046  1 .014  

l m  0 . 0 0 7  0 .0 2 1  0 . 0 2 0  - 0 . 0 3 2  - 0 . 0 5 4  - 11.127 - (). 132 - 0 .121  0 . 0 3 8  

H_ Re  - 0 . 0 0 3  - 0 . 0 1 3  - 0 . 0 3 8  0 . 0 5 6  0 . 0 5 8  0 . 0 2 7  0 . 0 0 3  0 . 0 3 3  0 .061  

l m  0 . 0 0 5  0 . 0 2 7  0 . 0 9 4  0 . 1 5 2  0 .161  0 .061  - 0 . 0 0 8  - 0 . 0 7 8  - 0 . 1 8 0  

T a b l e  F . 9 b .  M o d e l  3 D - 2 .  Ivl = 2 0  k m ,  T =  1000  s, E,,,, 3' = 0 

x ( k m )  0 ( + )  5 10 15 20 (  ) 20 .5  25  4 0  7 0  

E v Re  0 . 4 4 2  0 . 6 7 9  0 . 8 9 5  0 . 9 6 9  1 .012  1 .018  1 .020  1 .007  

I m  0 . 0 2 0  0 . 0 2 2  0 . 0 1 8  0 . 0 1 4  - 0 . 0 0 8  0 . 0 1 0  0 . 0 0 7  0 . 0 0 2  

H ,  Re  1 .01 4  0 . 9 8 6  0 .9 8 1  0 .981  0 . 9 8 7  0 . 9 8 9  0 . 9 9 5  0 . 9 9 8  

l m  0 . 0 3 8  0 . 0 4 9  0 . 0 6 2  0 .061  0 . 0 3 7  0 .031  0 . 0 1 2  0 . 0 0 3  

H_ Re  0 .061  0 . 0 3 8  0 . 0 2 2  0 . 0 0 9  - 0 . 0 0 2  0 . 0 0 2  - 0 .001  0 .001  

l m  0 . 1 8 0  0 . 1 0 2  0 . 0 5 4  0 . 0 1 6  0 .021  0 . 0 2 0  0 .01  I 0 . 0 0 2  

0 . 9 9 9  

0 . 0 0 0  

0 . 9 9 9  

0 . 0 0  l 

0 . 001  

0 . 0 0 0  
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T a b l e  F . 1 0 a .  M o d e l  3 D - 2 ,  l~l = 2 0  k in ,  T =  1000  s, E ~ , ,  y = 3 0  k m  

x ( k i n )  - 7 0  - 4 0  25  - 2 0 . 5  - 2 0 ( + )  - 15 - l 0  - 5  0 ( - )  

E~ Re - 0 . 0 2 8  - 0 . 1 2 2  - 0 . 2 0 7  - 0 .  I 7 5  - 0 . 1 6 7  - 0 . 0 6 2  0 . 0 7 0  0 . 2 2 0  0 . 3 5 4  

Im - 0 . 0 0 6  - 0 . 0 1 9  - 0 . 0 2 7  - 0 . 0 2 3  - 0 . 0 2 2  - 0 . 0 0 9  0 . 0 0 5  0 . 0 2 0  0 . 0 3 3  

E~ Re 0 . 9 9 0  1 .017  1 .188  1 . 2 9 0  1.301 1.381 1 .404  1 .365  1 .220  

l m  0 . 0 0 1  0 . 0 1 0  0 . 0 3 6  0 . 0 4 8  0 . 0 4 9  0 . 0 5 8  0 . 0 6 0  0 . 0 5 4  0 . 0 4 0  

H~ Re  0 . 9 9 8  1 . 0 0 0  1 .007  1.011 1.011 1 . 0 1 4  1 .015  1 .013  1 .008  

l m  0 . 0 0 4  0 . 0 0 2  - 0 . 0 1 5  - 0 . 0 2 4  - 0 . 0 2 5  - 0 . 0 3 2  - 0 . 0 3 4  - 0 . 0 3 0  0 . 0 1 7  

H~ Re 0.1102 0 . 0 0 6  0 . 0 0 8  0 . 0 0 7  0 . 0 0 6  / / .003  - 0 . 0 0 2  - 0 . 0 0 7  - 0 .01 I 

l m  - 0 . 0 0 4  - 0 . 0 1 3  - 0 . 0 2 0  - 0 . 0 1 6  - 0 . 0 1 5  - 0 . 0 0 6  0 . 0 0 7  0 . 0 2 0  0 . 0 3 0  

H Re 0 . 0 0 2  - 0 . 0 0 5  - 0 . 0 0 5  - 0 . 0 0 4  - 0 . 0 0 3  0 . 0 0 0  0 . 0 0 4  0 . 0 0 8  0 . 0 1 1  

h n  0 . 0 0 3  0 . 0 1 0  0 . 0 1 2  0 . 0 0 8  0 . 0 0 8  0 . 0 0 0  - 0 . 0 0 9  - 0 . 0 1 9  - 0 . 0 2 6  

T a b l e  F. 10b. M o d e l  3 D - 2 ,  1~. I = 2 0  k in ,  T =  1000  s, E~n, 3 ' =  3 0  k m  

x ( k m )  0 ( +  ) 5 10 15 2 0 (  - ) 2 0 . 5  25  4 0  7 0  

E ,  Re 0 . 3 5 4  0 . 3 5 8  0 . 2 4 8  0 . 1 1 7  0 . 0 2 4  0 . 0 1 9  - 0 . 0 0 8  - 0 . 0 0 5  0 .001  

Im 0 . 0 3 3  0 . 0 3 5  0 . 0 2 8  0 . 0 2 0  0 . 0 1 3  0 . 0 1 3  0 . 0 0 9  0 . 0 0 4  0 . 0 0 1  

E,. Re 1 .220  1 .009  0 . 8 7 0  0 . 8 3 3  0 . 8 7 0  0 . 8 7 5  0 . 9 2 4  0 . 9 8 4  0 . 9 9 7  

l m  0 . 0 4 0  0 . 0 2 0  0 . 0 0 6  - 0 .001  - 0 . 0 0 3  - 0 . 0 0 3  - 0 . 0 0 3  - 0 .001  0 . 0 0 0  

H ,  Re  1 .008  1 .002  0 . 9 9 7  0 . 9 9 5  0 . 9 9 5  0 . 9 9 5  0 . 9 9 6  0 . 9 9 8  0 . 9 9 9  

l m  - 0 . 0 1 7  0 . 0 0 0  0 . 0 1 2  0 . 0 1 6  0 . 0 1 4  0 . 0 1 4  0 . 0 1 0  0 . 0 0 4  0.1)01 

H~. Re - 0 . 0 1 1  - 0 . 0 1 2  - 0 . 0 0 9  - 0 . 0 0 6  - 0 . 0 0 3  - 0 . 0 0 3  - 0 . 0 0 2  - 0 .001  0 . 0 0 0  

In] 0 . 0 3 0  0 . 0 3 1  0 . 0 2 3  0 . 0 1 3  0 . 0 0 6  0 . 0 0 5  0 . 0 0 2  0 . 0 0 0  0 . 0 0 0  

H .  Re  0 . 0 1 1  0 .011  0 . 0 1 0  0 . 0 0 7  0 . 0 0 5  0 . 0 0 4  0 . 0 0 3  0 .001  0 .001  

h n  - 0 . 0 2 6  - 0 . 0 2 7  - 0 . 0 2 1  - 0 . 0 1 3  0 . 0 0 7  - 0 . 0 0 7  - 0 . 0 0 4  0 .001  0 . 0 0 0  

T a b l e  F . I  l a .  M o d e l  3 D - 2 ,  /,,j = 20  k in ,  T =  1 0 0 0  s, 3' = 0 

x ( k m )  - 7 0  - 4 0  25 - 2 0 . 5  - 2 0 ( + )  - 15 - 1 0  - 5  0 1 - )  

p~'~ 7 . 2 5 7  5 . 3 8 8  2 . 3 7 7  t . 3 4 6  1.411 1 .218  1 .155  1 .180  1 .468  

pa '~ 7 . 7 2 8  8 . 0 4 7  9 . 0 2 2  1 0 . 7 4 4  0 . 1 5 4  11.337 0 . 3 6 0  0 . 2 5 8  0 . 0 1 8  

T a b l e  F . I  l b .  M o d e l  3 D - 2 ,  l , i  = 2 0  k m ,  T =  1000  s, y = 0 

x ( k m )  0 ( + )  5 10 15 2 0 ( - )  2 0 . 5  25  4 0  7 0  

p,~" ' 1 .468  3 . 6 4 5  6 . 3 9 8  7 . 5 0 0  8 .091  8 . 1 6 4  8 . 1 1 3  7 . 8 5 4  7 . 7 0 2  

Pa"  53 .761  4 3 . 0 7 6  3 4 . 5 0 5  3 6 . 8 3 8  4 4 . 6 3 8  0 . 7 4 8  2 . 3 7 5  5 . 3 7 0  7 . 1 1 0  

T a b l e  F. 12a.  M o d e l  3 D - 2 ,  l,.] = 20  k in ,  T =  1000  s v = 30  k m  

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

p2'" 7 . 5 7 3  7 . 9 7 6  1 0 . 7 1 4  12 .566  1 2 . 7 7 0  14 .308  14.741 13 .944  1 1 . 2 0 6  

p 2 '  7 . 6 6 9  7 . 4 6 4  6 . 5 2 0  5 . 7 8 3  5 . 6 9 7  5 . 0 7 5  5 . 3 1 9  6 . 8 1 7  9 . 4 8 5  

T a b l e  F . 1 2 b .  M o d e l  3 D - 2 ,  /~l = 2 0  k in ,  T =  1000  s, y = 30  k m  

x ( k m )  0 1 + )  5 10 15 2 0 ( - )  2 0 . 5  25  4 0  7 0  

pa ~ 1 1 . 2 0 6  7 . 7 7 7  5 .851  5 .401  5 . 8 9 5  5 .971  6 .631  7 . 4 8 7  7 . 6 7 5  

p~' 9 . 4 8 5  11 .518  12 .008  1 1 . 6 4 0  1 0 . 5 7 4  1 0 . 4 3 6  9 . 1 9 0  7 . 4 4 2  7 . 3 9 0  

T a b l e  F. 13a.  M o d e l  3 D - 2 ,  l~l = 100 kin ,  T =  100 s, Ex,,,  y = 0 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 10 - 1 0 ( - )  

E ,  Re 1 .003  11.998 1.041 1 .195 0 . 1 6 5  0 . 2 4 9  0 . 2 6 3  0 . 2 2 7  0 . 0 9 8  

l m  - 0 . 0 3 0  - - / I . 0 5 9  0 . 0 7 1  -- 0 . 1 3 9  - 0 . 0 3 4  - 0 . 0 5 6  -- 0 .061  0 . 0 7 0  - 0 . 0 4 4  

H~. Re 0 . 9 9 4  1 .003  1.021 1 .027  1 .027  1 .030  1 .027  1 .017  1 .004  

Im - 0 . 0 0 2  - 0 . 0 0 5  - 0 . 0 1 1  - 0 . 0 1 1  - 0 . 0 1 0  - 0 . 0 0 7  0 . 0 0 7  - 0 . 0 1 0  - 0 . 0 1 4  
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T a b l e  F. 13b. M o d e l  3 D - 2 ,  /~l = 100 kin .  T =  100 s, E,,,. y =  0 

(k m)  0( + ) 5 10 15 20 (  - ) 20 .5  25  411 70  

E ,  Re 4 . 0 3 8  3 . 5 6 0  3 . 2 8 3  3 . 4 1 8  3 . 7 6 5  0 . 4 7 9  0 . 7 1 5  0 . 8 9 3  0 . 9 8 2  

h n  0 . 4 6 0  - 0 . 4 7 1 /  - 0 . 5 6 4  - 0 . 5 8 9  0 . 6 6 0  - 0 . 1 2 3  0 . 1 6 2  - 0 . 1 4 2  - 0 . 0 7 2  

H~. Re 1 .004  0 . 9 9 6  0 . 9 9 0  11.985 0 . 9 8 3  0 .981  0 . 9 8 0  0 . 9 8 0  0 . 9 8 6  

h n  0 . 0 1 4  - 0 . 0 1 5  - 0 . 0 1 4  - 0 . 0 1 1  0 .01 l )  - 0 . 0 0 8  0 . 0 0 7  - 0 . 0 0 6  0 . 0 0 4  

T a b l e  F. 14a. M o d e l  3 D - 2 ,  I,q = 100 k in ,  T =  100 s, E,,,. y =  30 km 

( k i n )  7 0  - 4 0  25 2 0 . 5  - 2 0 (  + ) 15 - 10 5 ( - ) 

E ,  Re 1 .000  0 . 9 6 3  0 .871  0 . 8 0 4  0 . 7 9 6  0 . 7 1 4  0 . 6 5 7  0 . 6 0 4  I. 188 

l m  - 0 . 0 3 3  0 . 0 8 4  - 0 . 1 3 3  - 0 . 1 5 4  0 . 1 5 7  - 0 . 1 7 9  0 . 1 8 8  - 0 . 1 7 3  0 . 4 1 0  

E,. Re 0 . 0 0 0  - 0.1120 0 . 0 6 3  0 . 0 6 4  0 . 0 6 2  0 . 0 1 5  0 . 0 6 0  0 . 1 2 9  0 . 1 8 2  

hn  0 . 0 0 0  0 . 0 0 7  - 0 . 0 1 2  0 . 0 0 6  0 . 0 0 5  0 . 0 1 4  0 . 0 3 9  0 . 0 5 8  0 . 0 5 0  

H~ Re I) .002 0 . 0 0 9  0 . 0 2 3  0 . 0 2 0  0 . 0 1 9  - 0 . 0 0 2  0 . 0 3 3  - 0 . 0 5 6  0 . 0 4 9  

h n  0 .001  0 . 0 0 5  - 0 . 0 1 6  0 . 0 1 7  0 . 0 1 7  0 . 0 1 0  0 . 0 0 2  0 . 0 1 5  0 . 0 1 6  

H~ Re 0 .991  0 . 9 8 0  0 .951  0 . 9 3 3  0 . 9 3 0  0 .911  0 . 9 0 6  0 . 9 1 9  0 . 9 4 2  

h n  0 . 0 0 3  - 0 . 0 0 3  0 . 0 0 7  0 . 0 1 6  0 . 0 1 7  0 . 0 2 8  0 .031  0 . 0 2 5  0 . 0 1 2  

T a b l e  F .14b .  M o d e l  3D 2.  1,1 = 100 kin ,  7"=  100 s. E , , , ,  .x = 30  k m  

r ( k i n )  0 ( + )  5 10 15 2 0 (  ) 20 .5  25  4 0  7(1 

E ,  Re 3.6116 3 . 2 8 9  3 . 1 3 0  3 . 2 9 7  3 . 6 5 3  0 .461  0 . 7 0 0  0 . 8 8 7  0 . 9 8 2  

]m 0 . 5 8 4  0 .551  - 0 . 5 8 7  0 .591  0 . 6 4 8  0 . 1 2 4  0 . 1 6 2  0 . 1 4 3  0 .071  

E~ Re 0 . 1 8 2  0. 109 0 . 0 5 2  0 . 0 2 3  - 0 . 0 0 2  0 . 0 0 7  - 0 . 0 0 8  I ) .009 - 0 . 0 0 5  

h n  0 . 0 5 0  0 . 0 2 5  0 . 0 0 4  - 0 . 0 0 2  0 . 0 0 4  0 . 0 0 4  0 . 0 0 6  0 . 0 0 9  - 0 . 0 0 7  

H ,  Re 0 . 0 4 9  0 . 0 2 7  - 0 . 0 1 7  I ) .009 0 . 0 0 3  - 0 . 0 0 2  0 . 0 0 2  0 . 0 0 8  0 . 0 0 7  

Im 0.016 0.011 0.007 0.004 0.002 0.002 0.001 0.001 0.001 

H~ Re 0.942 0.955 0.960 0.963 0.964 0.964 0.966 0.973 0.985 

l m  0.012 0.004 0.000 - 0.002 - 0.002 0.001 - 0.002 0.004 - 0.004 

T a b l e  F .15a .  M o d e l  3 D - 2 ,  / , t  = 100 kil t ,  T =  100 s, E , , , ,  y =  0 

x ( k m )  70  4 0  - 2 5  - 2 0 . 5  2 0 ( + )  - 1 5  10 - 5  0( ) 

E~ Re 11.993 0 . 8 8 7  0 . 6 2 5  0 . 4 8 7  0 . 4 4 6  11.376 1/.348 0 . 3 7 9  0 . 4 7 0  

h n  0 . 0 2 2  0 . 0 9 5  - 0 . 1 5 1  0 . 1 1 9  0 . 0 4 0  1t .016 0 . 0 1 8  - 0 . 0 1 0  0 . 1 2 8  

H~ Re 0 . 9 8 8  0 . 9 2 6  0 . 9 0 5  1 .084  1 .164  1 .386  1 .366  1 .340  1 .060  

h n  - 0 . 0 0 9  - 0 . 0 0 3  0 . 0 4 5  0 . 0 1 3  - 0 . 0 3 4  - 0 . 0 1 3  0 . 0 2 7  - 0 . 0 6 7  0 . 0 5 3  

H Re - 0 . 0 0 3  0 . 0 6 6  0 . 3 0 3  I).511 - 0 . 5 4 0  0 . 1 7 5  0 . 0 2 9  0 . 2 3 4  /).5711 

hn  0.007 - 0.032 11.009 0.090 0.114 - 0.063 0.000 0.029 0.259 

T a b l e  F. 15b. M o d e l  3 D - 2 ,  /~l = 100 k in ,  T ~  100 s, E , , , ,  y =  0 

x ( k m )  0 ( + )  5 10 15 2 0 (  ) 20 .5  25  40  7(1 

E~ Re 0 . 4 7 0  0 . 6 7 4  11.858 0 . 9 4 4  1 .014  1 .040  1 .050  1 .044  1.1/17 

h n  - - 0 . 1 2 8  0 . 2 1 0  0 . 2 2 9  - 0 . 2 1 4  - 0 .171  0 .171  - 0 . 1 2 0  0 . 0 3 8  0 .001  

H~ Re 1 .060  0 . 7 7 4  0 . 7 3 5  0.7511 0 . 8 4 4  0 . 8 6 6  0 . 9 4 5  1 .006  1 .012 

l m  - 0 . 0 5 3  0 . 1 1 5  0 . 1 2 0  0 . 1 0 4  0 . 0 3 4  0 . 0 1 5  0 . 0 3 0  - 0 . 0 2 6  0 . 0 0 5  

H_ Re 0 . 5 7 0  0 . 3 0 2  0 . 1 3 4  0 .001  0 . 1 3 0  - 0 . 1 2 7  0 . 0 9 7  - 0 . 0 4 2  0 . 0 0 8  

h n  - 0 . 2 5 9  0 . 0 8 6  0 . 0 0 9  0 . 0 5 3  0 . 1 2 8  0 . 1 2 0  0 . 0 6 6  0 . 0 0 6  0 . 0 0 5  

T a b l e F .  16a. M o d e l 3 D  2 , / , q  = 1 0 0 k i n ,  T =  1 0 0 s .  E , y =  3 0 k i n  

x (k in )  - 7 1 )  4 0  25 - 2 0 . 5  2 0 ( + )  15 - 10 5 0( ) 

E~ Re - 0 . 0 0 3  (I .052 0 . 1 2 9  - 0 . 1 2 6  - 0 . 1 2 3  0 . 0 8 2  - 0 . 0 3 6  0 . 0 0 6  0 . 1 7 4  

h n  - 0 . 0 1 8  0 . 0 8 0  - 0 . 1 2 6  0.1 I 1 0 . 1 0 8  - 0 . 0 6 7  0 . 0 2 5  0 . 0 0 8  0 . 0 1 9  

E ,  Re 1 .000  1 .004  1 .097 1 .167  1 .175  1 .240  1 .284  1.321 1 .249 

lm  - 0 . 0 0 7  0 . 0 0 8  0 .091  11.130 0 . 1 3 3  0 . 1 4 8  I) .125 0 . 0 6 8  - 0 . 0 3 0  

H~ Rc 0 . 9 9 9  1 .007  1 .066  1 .098  1.101 1 .124  1 .123 1 .088  1/.947 

h n  1/.004 0 . 0 0 0  0 .001  0 .0 l )4  0 . 0 0 5  - 0 . 0 1 5  0 . 0 2 8  - 0 . 0 3 5  0.1/2 I 

H~ Re 0 . 0 0 9  0 . 0 4 9  0 . 0 8 5  0 . 0 8 0  0 . 0 7 8  0 . 0 5 3  0 . 0 2 2  0 . 0 0 9  0 . 0 3 2  

Im  0.006 0.1) 14 0.006 0.003 0.002 0.000 - 0.001 0.001 I).005 

H_ Re 0.000 0.008 0.003 0.025 0.028 0.071 0.128 11.202 0.298 

l m  - 0.003 0.009 0.004 0.002 0.0112 0.004 0.016 0.047 - 0. 119 
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Table  F.16b. Model  3D-2,  lvj = 100 km, T =  100 s, E. , , ,  y = 30 km 

x (km)  0 ( +  ) 5 10 15 2 0 ( -  ) 20.5 25 40 70 

E ~ Re 0 .454  0 .372 0.263 0.227 0.215 0.022 0.023 0 .009 0.00 l 

I rn 0 .210  0 .159  0 .090  0 .069  0 .063  0.015 0 .012  0 .007 0.001 

Ey Re 1.249 1.209 1.131 1.105 1.086 1.096 1.090 1.058 1.019 

Im - 0 . 0 3 0  - 0 . 1 5 0  - 0 . 2 1 7  - 0 . 2 1 5  - 0 . 1 7 9  - 0 . 1 7 1  - 0 . 1 1 7  - 0 . 0 3 3  0.001 

H ~ Re 0 .947 0 .806  0.773 0.781 0 .870 0.893 0 .968 1.017 1.014 

lm 0.021 0 .092  0 .103 0 .093 0 .024  0 .005 - 0 .038 - 0 .028 - 0 .004 

Hy Re - 0 . 0 3 2  - 0 . 0 3 8  - 0 . 0 3 6  0.031 - 0 . 0 2 7  - 0 . 0 2 6  - 0 . 0 2 2  - 0 . 0 1 0  - 0.001 

lm  0 .005 0 .006  0 .006  0 .004  0 .003 0 .003 0.001 - 0.001 - 0.001 

H_ Re 0.298 0 .168 0 .057 - 0 . 0 4 9  - 0 . 1 6 8  - 0 . 1 6 3  - 0 . 1 2 1  - 0 . 0 4 9  - 0 . 0 0 9  

lm  - 0 . 1 1 9  0 .047 0 .007 0.062 0 .136 0.127 0 .068 0 .004 - 0 . 0 0 6  

Table  F.17a.  Model  3D-2,  ly] = 100 km, T = 100 s, y = 0 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

pa ~'~ 15.622 14.346 7.787 3.310 2 .290 1.141 1.007 1.236 3.282 

pa ~' 15.773 15.351 16.146 21 .210 0 .418 0 .946  1.065 0 .840 0 .176 

Table  F. 17b. Model  3D-2,  Ivl = 100 km, T =  100 s, y =  0 

x (kin)  0 ( +  ) 5 10 15 2 0 ( - )  20.5 25 40 70 

p~'~ 3.282 12.561 21.945 25 .263 22 .933 22.893 19.313 16.660 15.614 

p ~ '  252 .69  200.95  175.03 191.52 234.01 3.924 8.649 13.172 15.420 

Table  F. 18a. Model  3D-2,  l~q = 100 km, T= 100 s v = 30 km 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

p ~  15.512 15.343 16.376 17 .56 l  17.706 19.042 20 .399 22 .826 26 .800 

p ~ '  15.764 15.045 13.183 11.842 11.674 10.071 8.791 7.203 27 .190 

Tab le  F.18b. Model  3 D -  2, l~, 1 = 100 kin, T =  100 s, y = 30 km 

x (km)  0 ( + )  5 10 15 2 0 ( - )  20.5 25 40 70 

p:~'" 26 .800  34 .667 33.665 31 .669 24 .754 23 .889 19.776 16.714 15.597 

p ~  229 .44  187.37 169.59 186.86 228.68  3.796 8.566 13.167 15.418 

Table  F.19a.  Model  3D-2,  Iv] = 100 km, T =  1000 s, E~n, y = 0 

x (kin)  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 15 - 10 - 5  0 ( - )  

E ~ Re 0.941 0 .906  0.93 l 1.058 0.138 0.191 0.195 0 .164 1/.066 

Im - 0 . 0 1 4  - 0 . 0 2 0  - 0 . 0 2 5  - 0 . 0 3 6  0 .009 - 0 . 0 1 9  - 0 . 0 2 1  0 .020 - 0 .010 

H ~ Re 0 .999 0 .999  1.000 1.001 1.001 1.001 1.001 1.000 0.999 

lm 0 .002  0.001 - 0 .003 - 0 .005 - 0 .005 - 0 .006 0 .006 - 0 .003 0.001 

Table  F.19b. Model  3D-2,  lvl = 100 kin, T =  1000 s, Ex, ~, y = 0 

x (kin)  0 ( +  ) 5 10 15 2 0 ( -  ) 20.5 25 40 70 

E ~ Re 3.417 3.049 2.765 2 .849 3.059 0 .372 0.601 0 .762 0 .882 

Im 0 .124 - 0 . 0 9 5  - 0 . 1 0 0  - 0 . 1 1 0  - 0 . 1 4 4  0.025 - 0 . 0 2 9  - 0 . 0 3 0  0 .022 

H,. Re 0 .999 0 .998 0.997 0.997 0 .997 0.997 0.997 0.997 0 .998 

lm 0.001 0 .003  0 .004  0 .005 0 .006  0.0116 0 .006  0 .006  0 .005 

Table  F.20a.  Model  3D-2,  lv~ = 100 kin, T = 1000 s, E~,,, y = 30 km 

x (km)  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 15 - l0  - 5  0 ( - )  

E ,  Re 0 .936  0 .860  0 .750 0.681 0 .672 0.591 0.539 0.501 0.783 

lm - 0 .014  - 0 .023 0 .028 - 0 .030  - 0 .030 - 0 .032 - 0 .032 - 0 .028 - 0 .095 

E,. Re 0 .002  - 0 .018 - 0 .057 - 0 .055 - 0 .052 - 0 .003 0 .074 0.141 0 .180 

lm  0 .000  0 .000  0 .000  0 .000  0 .000  0 .002  0 .004  0.005 1/.003 

H x Re 0 .000 0 .000  0.001 0.001 0.001 - 0.001 - 0 .002 - 0 .004 - 0 .003 

Im 0.001 - 0 .002 - 0 .005 - 0 .004 - 0 .004 0.001 0.007 0 .012 0.011 

H v Re 0 .998 0 .997 0.995 0 .996 0 .996 0.993 0.993 0 .994 /).995 

lm 0 .003 0 .006  0 .012  0 .017 0 .017 0.021 0 .022  0 .019  0 .014  
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Table  F.2Ob. M o d e l  3D-2 ,  / , i  = 100 kin, T = 1000 s, E,,,, . v=  30 km 

.r ( k m )  0(  + ) 5 10 15 20 (  - ) 2 0 . 5  25  4 0  70  

E,  Re 3 . 0 0 3  2 . 7 7 9  2 . 6 2 4  2 . 7 5 2  2 . 9 8 7  0 . 3 5 8  0 . 5 9 0  0 . 7 5 7  0 . 8 8 3  

h n  - 0 . 1 2 1  - 0 . 0 9 9  0 . 1 0 0  0 . 1 0 8  - 0 . 1 3 8  - 0 . 0 2 5  0 . 0 2 9  - 0 . 0 3 0  - 0 . 0 2 1  

E~ Re  0 . 1 8 0  0 . 1 0 7  0 . 0 4 7  0 . 0 2 0  (1.000 - 0 . 0 0 4  0 . 0 0 7  - 0 . 0 1 4  - 0 . 0 1 2  

I m  0 . 0 0 3  0 . 0 0 2  0 . 0 0 0  0 . 0 0 0  0 .001  l ) . 000  0 . 0 0 0  - 0 .001  -- (/ .0(/l  

H ,  Re.  - 0 . 0 0 3  0 . 0 0 2  - 0 . 0 0 1  - 0 . 001  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 .001  0 .001  

h n  0 . 0 1 1  0 . 0 0 6  0 . 0 0 4  0 . 0 0 2  0 .001  0 .001  0 . 0 0 0  - 0 .0 l )2  0 . 0 0 2  

H~ Re 0 . 9 9 5  0 . 9 9 5  0 . 9 9 6  0 . 9 9 6  0 . 9 9 6  0 . 9 9 6  0 . 9 9 6  0 . 9 9 6  0 . 9 9 8  

l m  0 . 0 1 4  (}.012 0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 1 0  0 . 0 0 9  0 . 0 0 8  0.0()5 

Table  F.21a. M o d e l  3 D - 2 ,  l~l = 100 kin. T =  1000 s, E , , ,  y =  0 

x ( k i n )  - 70  4 0  25  - 2 0 .5  2 0 ( +  ) 15 - l 0  5 0( ) 

E ,  Re 0 . 9 6 7  0 . 8 1 9  0 . 5 2 5  0 . 3 8 8  0 . 4 0 2  0 . 3 8 6  0 . 3 7 2  0 . 3 6 9  0 . 3 9 8  

l m  0 . 0 0 5  - 0 . 0 1 7  0 . 0 2 9  - 0 . 0 2 8  - 0 . 0 1 4  0 . 0 0 3  0 .001  - 0 . 0 0 7  0 . 0 2 3  

H ,  Re  0 . 9 9 8  0 . 9 9 3  0 . 9 9 4  1 .009  1 .015  1 .038  1 .040  1 .032  1 .005 

l m  0 . 0 0 5  0 . 0 1 9  0 . 0 2 3  - 0.(122 0 . 0 4 2  0 . 1 0 5  - 0 . 1 0 5  - 0 . 0 9 2  0 . 0 1 8  

H_ Re  - 0 . 0 0 2  0 . 0 1 0  0 .031  0 . 0 4 7  l ) .049  - 0 . 0 2 3  0 . 0 0 2  ( l .025 0 . 0 4 6  

l m  0 . 0 0 3  0 . 0 2 2  0 . 0 8 3  0 . 1 3 7  0 . 1 4 5  0 . 0 5 6  - 0 . 0 0 5  ( l . 064  0 . 1 5 0  

Table  F.21b.  M o d e l  3D-2 ,  I,i = 100 kin, T =  1000 s. E, , , ,  y =  0 

x ( k m )  0 ( + )  5 10 15 20(  ) 20 .5  25  4 0  70  

E~ Re 0 . 3 9 8  0 . 6 0 3  0 .791  0 . 8 7 5  0 . 9 4 5  0 . 9 5 6  0 . 9 6 8  (I .989 i./)01 

h n  (I .023 0.1131 - 0 . 0 2 9  0 . 0 2 7  - 0 . 021  - 0 . 0 2 3  0 . 0 1 8  0 . 0 1 0  0 . l )03  

H ,  Re  1 .005 0 . 9 8 4  0 . 9 8 0  0 . 9 8 0  0 . 9 8 7  0 . 9 8 8  0 . 9 9 4  0 . 9 9 8  1 .000  

I m  0 .0  ] 8 0 . 0 5 6  0 . 0 6 6  0 . 0 6 2  0 . 0 3 8  0 . 0 3 2  0 . 0 1 3  0 . 0 0 l  0 . l )02  

H~ Re  0 . 0 4 6  0 . 0 2 7  0 . 0 1 4  0 . 0 0 3  0 . 0 0 7  0 . 0 0 7  - 0 . 0 0 5  - 0 . 0 0 3  0 .001  

l m  - 0 . 1 5 0  - 0 . 0 7 9  0 . 0 3 7  - 0 . 0 0 3  0 .031  0 . 0 3 0  0 .021  0 . 0 0 9  0 . l )03  

Table  F.22a. M o d e l  3D 2, / , i  = 100 kin, T =  1000 s, E, , , ,  v = 30 km 

.v ( k i n )  70  - 4 0  25  2 0 . 5  - 20 (  + ) 15 10 - 5 0( - ) 

E,  Re - 0 . 0 3 1  0 . 1 3 8  - 0 . 2 4 3  - 0 . 2 2 4  0 . 2 1 8  - 0 . 1 3 9  - 0 . 0 5 5  0 . 0 1 5  0 . 0 0 6  

h n  0 . 0 0 6  0 . 0 1 9  -- 0 . 0 2 6  0 . 0 2 3  0 . 0 2 2  - 0 . 0 1 4  0 . 0 0 5  0.0(12 0 . 0 5 5  

E~ Re 0 . 9 9 2  1 .020  1 .187  1 .287  1 .300  1 .374  1 .402  f . 4 0 6  1.291 

h n  0 . 0 0 2  0 . 0 0 4  0 .021  0 . 0 2 9  0 . 0 3 0  0 . 0 3 4  0 .031  0 . 0 2 3  0 . 0 0 9  

H~ Re  0 . 9 9 9  1.0l)1 1 .007 1.01() 1.011 1.l)12 1 .012  1 .009  0 . 9 9 7  

l m  0 . 0 0 I  0 . 0 0 2  0 . 0 1 9  - 0.()27 - 0 . 0 2 8  0 . 0 3 4  0 . 0 3 4  - 0 . 0 2 6  0.l) l/) 

H ,  Re  0 . 0 0 2  0 . 0 0 6  0 . 0 0 9  0 . 0 0 8  0 . 0 0 8  0 . 0 0 6  0 . 0 0 2  0 .001  - 0 . 0 0 3  

l m  - 0 . 0 0 4  - 0 . 0 1 5  0 . 0 2 4  0 . 0 2 2  - 0 . 021  0 . 0 1 4  0 . 0 0 b  0 . 0 0 2  0 . 0 0 9  

H_ Re  - 0 .001  - 0 . 0 0 2  0 . 0 0 0  0 . 0 0 2  0 . 0 0 2  0 . 0 0 7  0 . 0 1 2  0 . 0 1 8  0 . 0 2 6  

l m  0 .00 1  0 .0 l )4  0 .0 0 1  - 0 . 0 0 5  - 0 . 0 0 6  0./) 17 0 . 0 3 2  0 .051  - 0 . 0 7 9  

T a b l e F . 2 2 b .  M o d e l 3 D - 2 ,  / , i  = 1 0 0 k m .  T =  1 0 0 0 s ,  E , v =  3 0 k i n  

x ( k m )  0 ( +  ) 5 10 15 2 0 ( -  ) 20.5  25 40 70 

E ,  Re  0 . 5 7 2  0 . 4 8 4  0 . 3 1 7  0 . 2 6 0  0 . 2 4 9  0 . 0 5 0  0 . 0 3 2  0 . 0 1 6  

l l n  0 . 0 2 6  0 . 0 3 1  0 . 0 1 8  0 . 0 1 4  0 . 0 1 8  0 . 0 1 0  0 . 0 0 3  0 . 0 0 2  

E~ Re  1.291 1. 195 1 .072  I .()32 1 .007  1.011 ] . 009  1.0l)6 

l m  0 . 0 0 9  0 . 0 0 8  0 .0 2 1  - 0 . 0 2 3  0 . 0 2 2  0 . 0 2 2  0 . 0 1 7  - 0 . 0 0 9  

H~ Re 0 . 9 9 7  0 . 9 8 5  0 . 9 8 2  0 . 9 8 3  0 . 9 8 9  0 . 9 9 0  0 . 9 9 6  0 . 9 9 9  

I m  0 . 0 1 0  0 . 0 4 7  0 . 0 5 6  0 . 0 5 4  0 . 0 3 2  0 . 0 2 5  0 . 0 0 7  0 . 0 0 2  

H~ R e  0 . 0 0 3  - 0 . 0 0 3  0 . 0 0 3  0 . 0 0 3  - 0 . 0 0 3  - 0 . 0 0 3  0 . 0 0 2  0 .001  

h n  0 . 0 0 9  0 . 0 1 0  0 . 0 0 9  0 . 0 0 8  0 . 0 0 7  0 . 0 0 7  0 . 0 0 6  0 . 0 0 3  

H R e  0 . 0 2 6  0 . 0 1 6  0 . 0 0 7  - 0 .001  - 0 . 0 1 0  0 . 0 1 0  0 . 0 0 8  -- 0 . 0 0 4  

Im  0 . 0 7 9  - 0 . 0 4 5  0 . 0 1 7  0.01 (] 0 . 0 4  ] 0 . 0 3 9  0 . 0 2 7  0 .011  

0 . 0 0 2  

0 .00 l )  

1 .004  

0.(103 

1 .00 l  

( l .003 

0 . 0 0 0  

0 .001  

0 .001  

0 . 0 0 3  
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Table F.23a. Model 3D-2, /~.] = 100 km, T = 1000 s, y = 0 

267 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

pa ~'~ 7.235 5.246 2.157 1.147 1.209 1.056 0.977 0.979 1.219 

oa'' 6.839 6.339 6.691 8.626 0.147 0.283 0.296 0.209 0.034 

Table F.23b. Model 3D-2, l~l = 100 km, T =  1000 s, y = 0 

x (km) 0 ( +  ) 5 10 15 2 0 ( -  ) 20.5 25 40 70 

t)a "~ 1.219 2.894 5.004 6.129 7.066 7.206 7.318 7.567 7.715 

pa ~ ~ 90.354 72.044 59.319 62.987 72.700 1.075 2.808 4.512 6.022 

Table F.24a. Model 3D-2, lv~ = 100 km, T = 1000 s, y = 30 km 

x ( k m )  - 7 0  - 4 0  - 2 5  - 2 0 . 5  - 2 0 ( + )  - 1 5  - 1 0  - 5  0 ( - )  

p~"~ 7.593 7.998 10.696 12.500 12.698 14.196 14.794 14.970 12.934 

p~ ~ 6.779 5.732 4.377 3.616 3.526 2.740 2.283 1.964 4.850 

Table F.24b. Model 3D-2, l ~  = 100 km, T = 1000 s, 3' = 30 km 

x (km) 0 ( +  ) 5 10 15 2 0 ( -  ) 20.5 25 40 70 

pa ' '  12.934 I 1.306 9.153 8.482 7.997 8.034 7.910 7.809 7.765 

Pa'" 70.196 60.086 53.590 58.919 69.493 1.003 2.710 4.460 6.047 
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