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Summary. Param eter estimation in geoelectromagnetics aims to obtain the most im ­
portant param eters of a well-defi ned conductivity model of the Earth. These param eter s 

are features of typi cal geo log ica l struc tures, such as depth and size of con duct ive or 

resistive targets, angle of dik e incl inat ion and its length, and con duct ivity of anoma lous 
bodies. We dev elop thi s approach through regul arized nonlinear optimization. We use 

finite differenc es of forward co mp utations and Broydens updatin g formula to compute 
sensitivities (Frechet or partial der ivatives ) for each parameter. To estimate the op tim al 

step length , we appl y line sea rch, with a simple and fast parab olic correction . Our in­
version also includes Tikhonov's regul ariz at ion proced ure. We use our meth od to study 

mea surement s of the magnet ic fields fro m a co nductive bod y exc ited by a loop source at 

the surface. Keeping the depth of the bod y co nstant. we estima te the hor izont al coordi­
nates of the body from three comp one nts of the magnetic field measured in a borehole. 
Th ese measurem ent s acc ura tely determine the directi on to the conductive target. 

1 Introduction 

In the past decade, man y ad vances have occ urred in multidimension al inversion of 

dc resistivity data (Shima, 1992; Oldenburg and L i. 1993 ; Sasaki, 1994; Zh ang et 
al., 1994) , and both tran sient and harm oni c electromag netic (E M) data (Eato n, 1989; 

Madden and Mack ie, 19R9; Smith and Booke r, 1991 ; Xiong and Kirsch, 1992: Lee 
and Xie, 1993 ; Pellerin er al ., 1993; Tripp and Hohmann, 1993; Nekut, 1994 ; Torres ­
Verdin and Hab ashy , 1994; and Zhdanov and Fang, 1995) . Mo st of the advances came in 

inversion for models with many ce lls of constant conductivity, in whi ch an opt imizat ion 

algorithm finds a distribution of co nductivity whose response matches the original data . 
These methods all face the difficulties of large- sca le inversion: Computer power and 

mem ory ca pac ity grow ex ponentially with the number of cells, and the stability of the 
inverse problem gets wo rse (Tikho nov and Arse nin, 1977 ). 

When interpretin g EM data, however, one often ca n construct seve ral possible geo ­

e lectrical model s on the basis of prior geo logica l and geophysical informatio n. All o f 
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these models co uld co ntain the same geologi cal structure, but with di fferent spec ific 
parameters- say, depth and size of conduct ive or resis tive targets, ang le of dike incli­
nation and its length , and conductivity of the anomalous bodies . The goa l of inversion 
then becomes the es timation of a few important param eters of the model. Inversion 
for only a few parameters is, of cour se , more efficient than a genera l inversion. The 
first EM inversions (in the 1970s) were paramet ric ; however, they were lim ited to one­
dimensiona l ( ID) layer thicknesses and con ductivities. We take up this approac h, but 
with all of the adva ntages of modern 3-D forwa rd model ing. 

2 Inversion scheme 

2.1 Minimization problem 

A ge nera l approach to ill-pose d inverse problems is based on minimization of the 
Tikhonov parametric func tio na l (Tikhonov and Arsenin, 1977), 

rem) = ¢(m) + as( m) = min. ( I ) 

where ¢ is a misfit functional, 

¢( m) = lI r(m )II ~ , r em) = A( m) - d"; (2) 

d" is the vec tor of N observed EM da ta; m is the vector of M model parameters; Atm) 
is the vector of theo retical (predicted) EM da ta; r em) is the residu al vector; and sCm) 

is the stabilizing functiona l 

sCm) = 11 m- map, l( (3) 

Minimi zing Eq. ( I) replaces the orig ina l ill-posed inverse probl em with the family of 
we ll-pose d problem s, which tend to the orig inal problem as the reg ularization param eter 
a goes to zero (Tik honov and Arsenin, 1977). Eve ntua lly. we want to find the model 
that bes t fits the obse rved data . The stabi lizing func tiona l (3) is designed to kee p the 
inverse model relatively close to so me prior reference mode l map,. The min imization 
prob lem ( I) is solved for different values of the regul arization para mete r a . We ca n 
select the qu asi-optimal value of a by usin g prior inform at ion abo ut the acc uracy of 
the orig ina l data. 

2.2 Optimization method 

Our inve rs ion code has optio ns for using conj uga te gradient, steepest descent, and 
New tonian methods. We usually use only a few free parameters, so that the Hessian 
matrix has a sma ll size . This allows us to use New ton's method which has a superior 
conversio n rate. 

The method iteratively updates the model at the i th iteration according to formul as 

mi+1 = mi + omi. (4) 

om;= kom;, (5) 

om;= - [IJ(mil + aIr ' f "'(m ;), (6) 

fU(m,) = r(mj) r trn .) + a(m ; - m ap,) , (7) 

t!(rn ;) = r(m ;) f (rn j) , (8) 
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where 8m; is the Newtonian step, om; is the corrected Newtonian step, k is the correction 
factor, f " (m. ) is the regularized direction of the steepest ascent, fCm;) is the Frechet 
derivative matrix of size N x M, Ij(mi) is the Hessian matrix of size N x M, and! is 
the unit matrix. An asterisk denotes the conjugate transposed matrix. 

The length of the Newtonian step 8m; is determined by assuming that the parameteric 
functional is a perfect quadratic which is only true for a linear inverse problem . To 
improve convergence for nonlinear functionals, the step length should be chosen by a 
search for a minimum along the direction of the Newtonian step (Fletcher, 1981): 

P" ( k8 ' ) - . ,m; + m; - mm .. (9) 

We apply the simplest one-step search that assumes parabolic behavior of the residuals 
run.) at point rn.: 

r(m; + kom;) = ek' + g(m;)k + r(rn.). 

The ease k = I corresponds to the classical Newtonian step without correction, We 
compute the residual rem; + 8m;) at the destination point of the Newtonian step: then, 
knowing the gradient along the step direction glm i) =Fun,)8m; and the residual 
rtm.) at the current point , we can estimate the vector c which consists of the second 
derivative of the residuals: 

c = r(m; + 8m;) - gem;) - r tm .). (l0) 

Equation (9) thus can be replaced by the fourth-ord er polynomial with respect to k. , 
if we know the residual r( rn, + 8m;) at the destination point of the Newtonian step: 

IIck2 + g(m ;)k + r em;) 11 2 + a 11m; - mapr + k8m; r= min l. (II ) 

The norm of any vector B is IIBI12 = WB. We can rewrite Eq. (II ) in the form of the 
scalar fourth-order polynomial minimization problem with respect to parameter k as 

Po + p-]: + P2k:' + P3k3 + V.e = mini , ( 12) 

where polynom ial coefficients are defined as 

Po = Ilr (mi)112 + a ll m; - mapr ll:', 

PI = 2 Re[g (m;)*r(m;) + a (m; - mapr)' 8m;] , 

P2 = Ilg(m; )11:' + a 118m; r + 2 Rejc tr(m, )], 

p, = 2 Re[c*g(m; )1, P. = c*c. 

We solve Eq. ( 12) numerically using the secant root-finding method and select the 
smallest positive root as an optimal step length , because we have to be conservat ive 
and stay close to the previous iteration. 

2.3 Frechet derivatives 

The elements F (k l) of the Frechct (partial) derivative matrix, which are required in 
formulas (7) and (8) to comput e the Newtonian step, can be estimated with finite 
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differences: 

3d(k) A lk )[m + omIt )] - Alkl(m) 
F lkf) = -- ~ , ( 13)

dm(f) om(f) 

where d (k) is the kth element of the vector of data and omIt ) is a small perturbation 

of the lth element of the vector of parameters. In numerical calculations we select a 
perturbation equal to I% of corresponding parameter value. To 1111 out the whol e matrix, 
we have to apply formula (13) for each parameter. 

To save computational time , the Frechet matrix on the next step, f i+l, can be esti­
mated from the Frechet matrix on the previous step, fj, using the approximate Broyden 
updating formula (Fletcher, 1981; Gill et al., 1981). To derive the Broyden formula, 

we express the Frechet derivative f i+1 at the point mi+1 as a difference between the 
forward solution A(mi+l) at the subsequent iteration mi+1 = m, + omj and the forward 
soluti on for the current iteration A(ID;): 

f i+l om j ::::::: A (m j-rl) - A(mi)' (14 ) 

However, knowing the current Frechet derivative f i. we also can express its variation 

t>f, as 

t>fi ;:; f i+l - Vi. (15 ) 

Let F (k l stand for the kth row of the Frechet derivative matrix. Then, combining Eqs. ( 14) 
and (15 ) g ives the underdetermined system of N equations with respect to N x M 
elements of the matrix t>f;: 

AF1k-) O , _ S lk ) 
L\ _ i om, - i • k=1.2 .... N . ( 16) 

where 

S i k) = A 1kl(m ;+ I ) - A 1kJ(1I1 i ) - F? )omj . (17) 

Thi s system of equations ha s a unique so lution under the additi onal condition that the 
vectors t>F;kl have the minimum norm, 

IIt>Fjk)II = min . (18) 

According to the Riesz representation theorem (Parker, (994), the so lution of 
Eqs. (16 ) under condition (18) can be written as 

lk -) (k) Tt>F i = J,. om; , k=I,2. 3, .. . ,N, (19) 

where lk )are unknown constants determined from the equation 

j .(k)omT 8m" = S lk ) (20)1 I l • 

and om; is a row vector of the parameter perturbation (transpose-or-column vector 
omi)' So lving Eq . (20) and substituting the result into Eq. ( 19) give s 

S(k l o T , u rn ,
t>Flk- -I = ! , ' . (21) 

! om; 8m; 

Using formula ( 15) for the Frechet deri vative Vi+1 and expression ( 17) gives the first­
order Broyden updating formul a 

' F - om;F = ~i+ rA(mj+ I) - A(mi) - fi8mi ] . T' (22)_ '+I 
(~ mi 8m; 
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At the starting point of the iteration proces s, we apply formula (13) to estimate the 
Frechet matrix, take a Newtonian step using formula (6), solve the forward problem 
at this point, and estimate a correction factor k, solving Eq. (11) . Then, we take the 
corrected step, using formula (5) . At the arrival point, we estimate a new Frech et 
derivative, using Eq, (22), and take a new Newtonian step. If the correction fails to make 
progre ss (the parametric functional increases), the Frechet derivative is reevaluated 
using expression (13). 

When the correction factor k is close to zero , we assume that we have reached 
the minimum of the problem, and we adjust the regularization parameter using the 
expression anew = Ciold /2, and continue with the new value of a. Global iterations stop 
after the misfit functional drops below the given accuracy level. An application of this 
method for the simple nonlinear inverse problem is shown in Fig. 1. The nonlinear 
problem to be solved is described by the following system of equations: 

2 
X

3 + i = 5, x - Y = -1 , - 2x + 2/ = 6. 

We define the misfit funtional ¢ (x, y) as 

3200 1 0 0
¢ (X ,y)= (x +y -5t+ (x"- y +I )-+(-2x+2y--6)-. 

The inversion path is shown by the dashed line in Fig . I. The solid line shows isolines 
of the misfit functional. It has a minimum at the solution point (x = 1, y = 2). Iteration 
starts from the point x = 0.4, y = I, which is marked by the asterisk in Fig. I . At this 
point the Frechet matrix is estimated using a finite-difference method. The iteration step 
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brings us to the point shown by the cross. Note that the step length is overe stimated. 
A parabolic correction reduces the step to the local minimum, shown by the circle. 
At this point the Frechet derivative is estimated using the Broyden formula, and the 
next step is performed in a new direction. Iterations converge rapidly to the global 
minimum. 

The main advantages and disadvantages of the numerical computation of the sensi­

I, 

tivities are well known. The disadvantage is that, for a problem with Nm parameters,
 
we have to solve the forward problem Nm + I times, whereas algorithms based on the
 

If 

quasi-analytic solution for Frechet derivatives require computing efforts equivalent to 
two forward modeling runs for each estimation.I

". One advantage of our approach is the possibility of choosing nontrivial inversion 

~ . parameters, e.g., depth and coordinates of the anomalous body and its resistivity, size 
of the conductive or resistive target, and angle of inclination. In the next section, we 

...., 
demonstrate the effectiveness of our inversion scheme on a synthetic model. 

.? 

3 Directional sensitivities of three-component magnetic data 

EM observations in a single borehole that can provide direction to the target are poten­
tially intere sting both for mining and oil and gas applications. In mining exploration, 
it is important to give accurate direction to off-hole conductors. In oil and gas applica­
tions , a system with directional sensitivity can be used for navigation of the bit during 
horizontal drilling. Today, there are numerous borehole tools built for the downhole 
measurement of three components of a magnetic field (Crone Geophysics & Exploration

t 

:~	 Ltd., 1995. Three component borehole survey: Flying Doctor Prospect, Broken Hill, 
Australia). Studying a model of a 3-D conductor, we demonstrate that three-component 
measurements have good directional sensitivity.

J Consider the model of a conductive body located at a depth of 150 rn, 80 m away
".' from a borehole in the x-direction (Fig. 2). The transmitter is a circular loop 200 m 
>,r 

~ in diameter with the center at the coordinate origin. Eleven receivers are located in 
.-:.... 

the borehole and are spaced equally within the depth range from 100 to 200 m. The" 
body is a cube with a side of 60 m. Conductivity of the body is I ohm-rn , whereas 

f 
!l '	 background conductivity is 1000 ohm-m. The theoretical time-domain magnetic field 
~~ 

:'. in this model was simulated within the time range from I flS to 1000 us using TEM3-DL 
finite-difference code (Wang and Hohmann, 1993). 

The data are three components of the magnetic field measured along the single 
.. observation line (borehole). It is obvious that the depth of the body can be determined~

by the location of the maximum of the secondary field in the vertical profile . However, 
( ,­ our goal is more complicated. We would like to determine the distance and the direction 
p.
i : from the borehole to the conducting body.

,1­
j:,.' Thus, we can fix the depth ofthe body and introduce the polar coordinates of the body 

> center: the distance R from borehole to the body and the angle (J between the x-axis and ... .., 
the direction to the body center (Fig. 2). The actual polar coordinates of the conductive 

c' body are R = 80 m and (J = O. The synthetic data for this model (IJ H?/IJt for all 
0' 

'-~ '. receivers, with 5% random noise added) are shown in Fig . 3. 
The inverse problem is reduced in this case to determining (R, fJ) for given EM data. 

We introduce the misfit functional s <Pr, <Py , <P:, defined as the norm of the difference 

. . between the corresponding x, y, or z components of the predicted aR/at and actual 
~ ~ 

";,: 
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Figure 2 . Survey design and model used for direct ional sens itivity 
investigation. 
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Figure 3 . T ime derivati ve of the magnetic field (x -co mponent) from the 
actual model (5% random noise added ). 

228 

"l 



229 Parameter estimation for inverse problems 

- 100 

-so 

4 0 

- -20 
;....
 

§
 
v 

;; 
--:;;" 

20 c5 

-10 

60 

-100 -80 ..fIJ 40 -20 0 20 -10 60 80 100 
Distance on X ( Ill ') 

~ .. _ ----~~ 

0.0000 O.oJ"5 0.0630 0.083 1 0.I IS5 l JXXXJ 
Norm alized misfit 

Figure 4. Misfit functional for z-component versus horizontal coord inates 
of the body. 

()H1l /iJrmag netic field: 

<P , = IlaH,/iJ t - a H~/ ar l lz. <P, = IlaHv/at - a H~.) / arf 

<P: = Il a H~ / at - oH2/arf 
and the misfit func tiona l <P r. is defined for all three components, 

<Pr. = <P, + <p.' + <p~ . 

where we use the Lz norm over the time interval of the magnetic-field observation . 

The plots of misfi t functionals <P: . <Py. <P" and <Pr. as functions of the horizont al 
coordinates of the bod y are presented in Figs. 4. 5. 6. and 7, res pectively. We expec t tha t 
the misfit functionals have minim a at the location of the body. However. the modeling 
results show that the z-cornponent is se nsitive only to the di stance to the body R. but 
is not sensitive to the direction e.The map of the misfit functional for this com ponent 
has a circ ular structure with the circul ar minimum correspo ndi ng to an 80- 01 radius 
(Fig . 4) . At the same time , the <Pv misfit functional corresponding to the y-corn ponent 
of the mag netic field has a minimum everywhere along the x -axis, but it gives no 
information about the distance to the body (Fig. 5). The map of the <P, misfi t funct ional 
is rather complicated ; however, it has a weak and flat minimum in the vicinity of the 
body location (Fig. 6). Onl y the combination of three components produ ces a clear 
minim um on the map of <P r. at the true locat ion of the body (Fig. 7) . 



-100 -80 -60 --10 -20 0 20 40 60 80 100 
Distance on X (m ) 

1.(X)()(J 

1.0000 

0 .1173 

0.1525 

Portniaguine and Zhdanov 

t===E 
0.0 120 

0.0597 

L 
o.ocoo 

0.0000 

- 100 1 
I 

-80 -' 

i 
-60 -1 

I 

--10 ~ 
I 
I 

- -10 I 
;.. I 

I 

" 
0 -1 

J I 
~ I 
6 20 -1 

40 1 
(,() .1 

I 
I so 1 
I 

100 "I 
"---­

·100 -80 -Ci) -40 -20 0 20 40 60 SO 100 
Distance on X (rn) 

so 

--10 

r 

100 

-60 

80 

_ -20 
;.. 
:: 
C 0 
~ 

~ 
::S 

0.0 255 0.0497 
Normaliz ed misf it 

Fi gure 5. Mi sfit functional for y-component versus horizon tal coordinate s 
of the body. 

0.0816 0.1006 
Normalized misfit 

Figure 6. Misfit functional for x- component versus horizo ntal coo rdi nates 
of the bod y. 

230 

'r 

L
1 



231 Parameter estimation for inverse problems 

so 

-GO 

60 

-80 

100 

- 100 

'" -20 
;­

'" c 0
" v 

~ 20:5 

-100 -80 ..6J --10 -20 0 20 -lO 60 SO 100 
Dis tance on X ( Ill) 

' _ l._~ _ • •:-=-_ _ __L_-,-,~Jj!lii.II• • • • • • 
0.0000 0.0583 0 .07·+] 0.0813 0.0857 0 .0876 0 .09 11 0. 15 11 0 .3104 I.rxJOO 

Normalized misf it 

Figure 7. Mi sfi t functiona l fo r thr ee co mponent s versus hori zonta l coordi­

nates o f the body. So lid line shows inversion pat h. 

Now we can apply the minimization technique developed in the preceding sections 
to locate the position of the conductive hody by the EM field observed in the vertical 
borehole. In this model test, we have chosen the starting body location at R = SO m, 
e = 90 ;. It is shown in Fig. 7 by a cross. We started the optimization process with the 
regularized Newtonian method as described above and, after a few iterations, fi nally 
arrived at the minimum at the actual location of the body (marked by the star). Solid 
lines show the inversion path. On some iterations the method produces overshooting 
which was corrected by the line search. This can he seen on the plot in places where 
the next iteration starts at the middle of the line, descrihing the preceding step, rather 
than from the head of the Iine. This example shows that directional information can be 
extracted from noisy three-component observations. 

4 Conclu sions 

Parametric inversion permits easy utilization of existing forward modeling codes. 
Newton's method, combined with Broydcn's updating formula and a parabolic line 
search, leads to an efficient algorithm with a fast convergence rate. Tikhonov regular­
ization helps to stabilize the inversion. 

We demonstrate our pararneteric inversion scheme with simulations of three-compo­
nent transient EM data co llected in a borehole. The study shows that three-component 
observations in a vertica l well have good directional sensitivity, even with only one 
source position. 
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