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Parameter Estimation for 3-D Geoelectromagnetic
Inverse Problems

Oleg Portniaguine
Michael S. Zhdanov

Summary. Parameter estimation in geoelectromagnetics aims to obtain the most im-
portant parameters of a well-defined conductivity model of the Earth. These parameters
are features of typical geological structures, such as depth and size of conductive or
resistive targets, angle of dike inclination and its length, and conductivity of anomalous
bodies. We develop this approach through regularized nonlinear optimization. We use
finite ditferences of forward computations and Broyden's updating formula to compute
sensitivities (Frechet or partial derivatives) tfor each parameter. To estimate the optimal
step length, we apply line search, with a simple and fast parabolic correction. Our in-
version also includes Tikhonov’s regularization procedure. We use our method to study
measurements of the magnetic fields from a conductive body excited by a loop source at
the surface. Keeping the depth of the body constant, we estimate the horizontal coordi-
nates of the body from three components of the magnetic field measured in a borehole.
These measurements accurately determine the direction to the conductive target.

1 Introduction

In the past decade, many advances have occurred in multidimensional inversion of
dc resistivity data (Shima, 1992; Oldenburg and Li, 1993; Sasaki, 1994; Zhang et
al., 1994), and both transient and harmonic electromagnetic (EM) data (Eaton, 1989;
Madden and Mackie, 1989; Smith and Booker, 1991; Xiong and Kirsch, 1992; Lee
and Xie, 1993; Pellerin et al., 1993; Tripp and Hohmann, 1993; Nekut, 1994; Torres-
Verdin and Habashy, 1994; and Zhdanov and Fang, 1995). Most of the advances came in
inversion for models with many cells of constant conductivity, in which an optimization
algorithm finds a distribution of conductivity whose response matches the original data.
These methods all face the difficulties of large-scale inversion: Computer power and
memory capacity grow exponentially with the number of cells, and the stability of the
inverse problem gets worse (Tikhonov and Arsenin, 1977).

When interpreting EM data, however, one often can construct several possible geo-
electrical models on the basis of prior geological and geophysical information. All of
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these models could contain the same geological structure, but with different specific
parameters—say, depth and size of conductive or resistive targets, angle of dike incli-
nation and its length, and conductivity of the anomalous bodies. The goal of inversion
then becomes the estimation of a few important parameters of the model. Inversion
for only a few parameters is, of course, more efficient than a general inversion. The
first EM inversions (in the 1970s) were parametric; however, they were limited to one-
dimensional (1D) layer thicknesses and conductivities. We take up this approach, but
with all of the advantages of modern 3-D forward modeling.

2 Inversion scheme

2.1 Minimization problem

A general approach to ill-posed inverse problems is based on minimization of the
Tikhonov parametric functional (Tikhonov and Arsenin, 1977),

PY(m) = ¢(m) + as(m) = min. (1
where ¢ is a misfit functional,
$(m) = [r(m)|", r(m) = A(m) — d’: 2)

d” is the vector of N observed EM data; m is the vector of M model parameters; A(m)
is the vector of theoretical (predicted) EM data; r(m) is the residual vector; and s(m)
is the stabilizing functional

s(m) = ”m - mu|)r“2~ (%)

Minimizing Eq. (1) replaces the original ill-posed inverse problem with the family of
well-posed problems, which tend to the original problem as the regularization parameter
a goes to zero (Tikhonov and Arsenin, 1977). Eventually. we want to find the model
that best fits the observed data. The stabilizing functional (3) is designed to keep the
inverse model relatively close to some prior reference model m,,,. The minimization
problem (1) is solved for different values of the regularization parameter «. We can
select the quasi-optimal value of o by using prior information about the accuracy of
the original data.

2.2 Optimization method

Our inversion code has options for using conjugate gradient, steepest descent, and
Newtonian methods. We usually use only a few free parameters, so that the Hessian
matrix has a small size. This allows us to use Newton’s method which has a superior
conversion rate.

The method iteratively updates the model at the ith iteration according to formulas

m;,. =m, +ém;, 4)
dm; = kém, (5
sm; = ~[H(m,) + «l]7' £ (m,). (6)

£(m,) = F'(m;) r(m;) + o(m; — my,,). (M

H(m,) = F*(m;) F(m,), (8)
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where m is the Newtonian step, dm; is the corrected Newtonian step, & is the correction
factor, £*(my) is the regularized direction of the steepest ascent, F(m;) is the Frechet
derivative matrix of size N x M, H(m;) is the Hessian matrix of size N x M, and I is
the unit matrix. An asterisk denotes the conjugate transposed matrix.

The length of the Newtonian step m. is determined by assuming that the parameteric
functional is a perfect quadratic which is only true for a linear inverse problem. To
improve convergence for nonlinear functionals, the step length should be chosen by a
search for a minimum along the direction of the Newtonian step (Fletcher, 1981):

P*“(m; + kém;) = min!. 9)

We apply the simplest one-step search that assumes parabolic behavior of the residuals
r(m;) at point m;:

r(m, + kdm.) = ck” + g(m;)k + r(m;).

The case k£ =1 corresponds to the classical Newtonian step without correction. We
compute the residual r(m; 4+ dm}) at the destination point of the Newtonian step; then,
knowing the gradient along the step direction g(m,)=F(m;)dm. and the residual
r(m,) at the current point, we can estimate the vector ¢ which consists of the second
derivative of the residuals:

¢ =r(m; +m) — g(m;) — r(m;). (10)

Equation (9) thus can be replaced by the fourth-order polynomial with respect to k.
if we know the residual r(m; + dm)) at the destination point ot the Newtonian step:

lek? + g(mok + rm)|* + | m; — my, + kém | = min!, (1)

The norm of any vector B is || B||* = B*B. We can rewrite Eq. (11) in the form of the
scalar fourth-order polynomial minimization problem with respect to parameter k as

Po+ pik 4+ pak + pik? + pik* = min!, (12)
where polynomial coefficients are defined as
po = [e(my)||* + e fm; — my %,
pi = 2Re[g(m,)"r(m,) + a(m; — m,,)"m],
sm;

1

* £ 2Re[c'r(m;)],

pr = llgm)|” + «
p3 = 2Re[c"g(m;)]. pir=cc

We solve Eq. (12) numerically using the secant root-finding method and select the
smallest positive root as an optimal step length, because we have to be conservative
and stay close to the previous iteration.

2.3 Frechet derivatives

The elements F**) of the Frechet (partial) derivative matrix, which are required in
formulas (7) and (8) to compute the Newtonian step, can be estimated with finite
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differences:
3d® _ A®[m 4+ m'©] — A®(m)
am© dm'o ’

where d® is the kth element of the vector of data and §m' is a small perturbation
of the /th element of the vector of parameters. [n numerical calculations we select a
perturbation equal to 1% of corresponding parameter value. To fill out the whole matrix,
we have to apply formula (13) for each parameter.

To save computational time, the Frechet matrix on the next step, F;.,, can be esti-
mated from the Frechet matrix on the previous step, F;, using the approximate Broyden
updating formula (Fletcher, 1981; Gill et al., 1981). To derive the Broyden formula,
we express the Frechet derivative F; ., at the point m, 4, as a difference between the
forward solution A(m, ) at the subsequent iteration m; . ; = m; + ém; and the forward
solution for the current iteration A(m;):

(13)

Fipidm; = A(m;. ) — A(m,). (14)

However, knowing the current Frechet derivative F;. we also can express its variation
AF; as

AF; =¥, - F;. (15)

Let F**" stand for the kth row of the Frechet derivative matrix. Then, combining Egs. (14)

and (15) gives the underdetermined system of N equations with respect to N x M
elements of the matrix AF;:

AFMsm; = BY.  k=1.2....N. (16)
where

BY = A%(m,.y) — A¥m;) — F*'sm,. (17)

i 1

This system of equations has a unique solution under the additional condition that the
vectors AF!"” have the minimum norm,

}) AFZMH = min. (18)

According to the Riesz representation theorem (Parker, 1994), the solution of
Egs. (16) under condition (18) can be written as

AFY = fPsm!,  k=1,2.3,....N, (19)
where f*' are unknown constants determined from the equation
fH8m! sm; = B, (20)

and dm/ is a row vector of the parameter perturbation (transpose-of-column vector
dm;). Solving Eq. (20) and substituting the result into Eq. (19) gives

AF(.[(.) _ Bf“(Sm,T

= : ; 21
Sm! sm; (21

Using formula (15) for the Frechet derivative F,; and expression (17) gives the first-
order Broyden updating formula

sm!
F.=F +[A(m ) — A(m;) — F;dm; | ——— (22)

(Sm,.TcSm[ '
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At the starting point of the iteration process, we apply formula (13) to estimate the
Frechet matrix, take a Newtonian step using formula (6), solve the forward problem
at this point, and estimate a correction factor k, solving Eq. (11). Then, we take the
corrected step, using formula (5). At the arrival point, we estimate a new Frechet
derivative, using Eq. (22), and take a new Newtonian step. If the correction fails to make
progress (the parametric functional increases), the Frechet derivative is reevaluated
using expression (13).

When the correction factor k is close to zero, we assume that we have reached
the minimum of the problem, and we adjust the regularization parameter using the
€Xpression @pew = ®oid/2, and continue with the new value of . Global iterations stop
after the misfit functional drops below the given accuracy level. An application of this
method for the simple nonlinear inverse problem is shown in Fig. 1. The nonlinear
problem to be solved is described by the following system of equations;

x3+y2=5, xz—yz—l, —2x+2_y2:6.
We define the misfit funtional ¢(x, y) as
$(x,y) = (> +y* =5 + (6% — y + 1)’ + (-2x + 2y* — 6)".

The inversion path is shown by the dashed line in Fig. 1. The solid line shows isolines
of the misfit functional. It has a minimum at the solution point (x = 1, y = 2). Iteration
starts from the point x = 0.4, y = I, which is marked by the asterisk in Fig. 1. At this
point the Frechet matrix is estimated using a finite-difference method. The iteration step

05 L SL 1 . e ]
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Figure 1. Example of optimization for nonlinear problem with two parameters.
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brings us to the point shown by the cross. Note that the step length is overestimated.
A parabolic correction reduces the step to the local minimum, shown by the circle.
At this point the Frechet derivative is estimated using the Broyden formula, and the
next step is performed in a new direction. Iterations converge rapidly to the global
minimum.

The main advantages and disadvantages of the numerical computation of the sensi-
tivities are well known. The disadvantage is that, for a problem with N,, parameters,
we have to solve the forward problem N,, + 1 times, whereas algorithms based on the
quasi-analytic solution for Frechet derivatives require computing efforts equivalent to
two forward modeling runs for each estimation.

One advantage of our approach is the possibility of choosing nontrivial inversion
parameters, e.g., depth and coordinates of the anomalous body and its resistivity, size
of the conductive or resistive target, and angle of inclination. In the next section, we
demonstrate the effectiveness of our inversion scheme on a synthetic model.

3 Directional sensitivities of three-component magnetic data

EM observations in a single borehole that can provide direction to the target are poten-
tially interesting both for mining and oil and gas applications. In mining exploration,
it is important to give accurate direction to off-hole conductors. In oil and gas applica-
tions, a system with directional sensitivity can be used for navigation of the bit during
horizontal drilling. Today, there are numerous borehole tools built for the downhole
measurement of three components of a magnetic field (Crone Geophysics & Exploration
Ltd., 1995. Three component borehole survey: Flying Doctor Prospect, Broken Hill,
Australia). Studying a model of a 3-D conductor, we demonstrate that three-component
measurements have good directional sensitivity.

Consider the model of a conductive body located at a depth of 150 m, 80 m away
from a borehole in the x-direction (Fig. 2). The transmitter is a circular loop 200 m
in diameter with the center at the coordinate origin. Eleven receivers are located in
the borehole and are spaced equally within the depth range from 100 to 200 m. The
body is a cube with a side of 60 m. Conductivity of the body is 1 ohm-m, whereas
background conductivity is 1000 ohm-m. The theoretical time-domain magnetic field
in this model was simulated within the time range from 1 s to 1000 s using TEM3-DL
finite-difference code (Wang and Hohmann, 1993).

The data are three components of the magnetic field measured along the single
observation line (borehole). It is obvious that the depth of the body can be determined
by the location of the maximum of the secondary field in the vertical profile. However,
our goal is more complicated. We would like to determine the distance and the direction
from the borehole to the conducting body.

Thus, we can fix the depth of the body and introduce the polar coordinates of the body
center: the distance R from borehole to the body and the angle 8 between the x-axis and
the direction to the body center (Fig. 2). The actual polar coordinates of the conductive
body are R = 80 m and 6 =0. The synthetic data for this model (dH?/dt for all
receivers, with 5% random noise added) are shown in Fig. 3.

The inverse problem is reduced in this case to determining (R, 6) for given EM data.
We introduce the misfit functionals ¢,, ¢,, ¢., defined as the norm of the difference
between the corresponding x, v, or z components of the predicted dH /3¢ and actual
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Figure 2. Survey design and model used for directional sensitivity
investigation.
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Figure 3. Time derivative of the magnetic field (x-component) from the
actual model (5% random noise added).
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Normalized misfit

Figure 4. Misfit functional for z-component versus horizontal coordinates
of the body.

oH"/dr magnetic field:
¢ = |0H ot —dH /0|’ ¢, = |aH, /8t — dH /1|,
¢. = |9H. /o — dH ot |,
and the misfit functional ¢y is defined for all three components,

ps = b, + ¢)‘ I ¢:-

where we use the L, norm over the time interval of the magnetic-field observation,

The plots of misfit functionals ¢., ¢,, ¢., and ¢y as functions of the horizontal
coordinates of the body are presented in Figs. 4, 5, 6, and 7, respectively. We expect that
the misfit functionals have minima at the location of the body. However, the modeling
results show that the z-component is sensitive only to the distance to the body R, but
is not sensitive to the direction 6. The map of the misfit functional for this component
has a circular structure with the circular minimum corresponding to an 80-m radius
(Fig. 4). At the same time, the ¢, misfit functional corresponding to the y-component
of the magnetic field has a minimum everywhere along the x-axis, but it gives no
information about the distance to the body (Fig. 5). The map of the ¢, misfit functional
is rather complicated; however, it has a weak and flat minimum in the vicinity of the
body location (Fig. 6). Only the combination of three components produces a clear
minimum on the map of ¢ at the true location of the body (Fig. 7).
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Figure 5. Misfit functional for y-component versus horizontal coordinates
of the body.
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Figure 6. Misfit functional for x-component versus horizontal coordinates
of the body.
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Figure 7. Misfit functional for three components versus horizontal coordi-
nates of the body. Solid line shows inversion path.

Now we can apply the minimization technique developed in the preceding sections
to locate the position of the conductive body by the EM field observed in the vertical
borehole. In this model test, we have chosen the starting body location at R = 50 m,
# =90, Tt is shown in Fig. 7 by a cross. We started the optimization process with the
regularized Newtonian method as described above and. after a few iterations, finally
arrived at the minimum at the actual location of the body (marked by the star). Solid
lines show the inversion path. On some iterations the method produces overshooting
which was corrected by the line search. This can be seen on the plot in places where
the next iteration starts at the middle of the line, describing the preceding step, rather
than from the head of the line. This example shows that directional information can be
extracted from noisy three-component observations.

4 Conclusions

Parametric inversion permits easy utilization of existing forward modeling codes.
Newton’s method, combined with Broyden’s updating formula and a parabolic line
search, leads to an efficient algorithm with a fast convergence rate. Tikhonov regular-
ization helps to stabilize the inversion.

We demonstrate our parameteric inversion scheme with simulations of three-compo-
nent transient EM data collected in a borehole. The study shows that three-component
observations in a vertical well have good directional sensitivity, even with only one
source position.
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