
GEOPlIYSICS, VOl .. 64, NO.3 (MAY-JUNE 1999); P. 874-887,15 1'IGS. 

Focusing geophysical inversion images 

Oleg Portniaguine* and Michael S. Zhdanov* 

ABSlRACT 

A critical problem in inversion of geophysical data is 
developing a stable inverse problem solution that can si
multaneously resolve complicated geological structures. 
The traditional way to obtain a stable solution is based on 
maximum smoothness criteria. This approach, however, 
provides smoothed unfocused images of real geoelectri
cal structures. Recently, a new approach to reconstruc
tion of images has been developed based on a total varia
tional stabilizing functional. However, in geophysical ap
plications it still produces distorted images. In this paper 
we develop a new technique to solve this problem which 
we call focusing inversion images. It is based on specially 
selected stabilizing functionals, called minimum gradi
ent support (MGS) functionals, which minimize the area 
where strong model parameter variations and disconti
nuity occur. We demonstrate that the MGS functional, 
in combination with the penalization function, helps to 
generate clearer and more focused images for geologi
cal structures than conventional maximum smoothness 
or total variation functionals. The method has been suc
cessfully tested on synthetic models and applied to real 
gravity data. 

INTRODUCTION 

One of the critical problems in inversion of geophysical data 
is developing a stable inverse problem solution which at the 
same time can resolve complicated geological structures. Tra
ditional geophysical inversion methods are usually based on 
Tikhonov regularization theory, and they provide a stable so
lution of the inverse problem. This goal is reached, as a rule, 
by introducing a maximum smoothness stabilizing functional. 
The obtained solution provides a smooth image of real geo
electrical structures that sometimes makes it look geologically 
unrealistic. 

A new approach to reconstructing noisy images, developed 
in papers by Rudin et al. (1992) and by Vogel and Oman (1998), 
is based on a total variational stabilizing functional. The func
tional requires that the model parameter's distribution be of 
bounded variation. This requirement is much weaker than one 
of maximum smoothness because it can be applied even to dis
continuous functions. In this way, the total variation method 
produces better quality images for blocky structures. How
ever, it still decreases bounds of model parameter variation 
and therefore somehow distorts the real image. 

We study different ways of focusing geophysical images us
ing specially selected stabilizing functionals. In particular, we 
introduce a new stabilizing functional that minimizes the area 
where strong model parameter variations and discontinuity oc
cur. We call this new stabilizer a minimum gradient support 
(MGS) functional. We demonstrate that this MGS functional, 
in combination with the penalization function, helps to gener
ate a stable solution of the inverse problem for complex geo
logical structures and does not impose destructive restrictions 
on the bounds of model parameter variations. Thus, it helps to 
generate much more focused images than conventional meth
ods. We call this approach focusing inversion images. 

We also present a comparative analysis of inversion schemes 
based on different stabilizing functionals. This analysis shows 
that inversion codes based on the MGS stabilizing functional 
and the penalization function could be considered a good al
ternative to maximum smoothness or total variational-based 
inverse algorithms. 

TIKHONOV REGULARIZATION AND
 
STABILIZING FUNCTIONALS
 

Consider the inverse problem 

d= Am, (1) 

where A is the forward modeling operator; m = m(r), a scalar 
function describing geological model parameter distribution in 
some volume V in the earth (m EM, where M is a Hilbert space 
of models with Lz norm); and d = d(r), a geophysical data set 
(d E D, where D is a Hilbert space of data). 

Published on Geophysics Online, February 17, 1999. Manuscript received by the Editor April 13, 1998; revised manuscript received November 5,
 
1998. Published on line.
 
*Dept. of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112-1183. E-mail: oportnia@mines.utah.edu; mzhdanov@mines.
 
utah.edu.
 
© 1999 Society of Exploration Geophysicists. All rights reserved.
 

874 



875 Focusing Inversion Images 

Inverse problem (1) is usually ill posed, i.e., the solution can 
be nonuniquc and unstable. The conventional way of solving 
ill-posed inverse problems, according to regularization theory 
(Tikhonov and Arsenin, 1977; Zhdanov, 1993), is based on min
imization of the Tikhonov parametric functional: 

pC/em) = ¢(m) + as(m), (2) 

where cjJ(m) is a misfit functional determined as a norm of dif
ference between observed and predicted (theoretical) field, 

¢(m) = IIAm - dllb = (Am - d, Am - d)D. (3) 

Functional .\(m) is a stabilizing functional (stabilizer). 
There are several common choices for a stabilizer. One is 

based on the least-squares criteria or, in other words, on an L z 
norm for functions describing geoelectrical model parameters: 

2 
SL2(m) = Ilmi~ = (m, m) = Iv m do = min. (4) 

The conventional argument in support of this norm comes from 
statistics and is based on the assumption that the least-squares 
image is the best over the entire ensemble of all possible images. 

Another stabilizer uses the minimum norm of the difference 
between the selected model and some a priori model map,: 

SL2 apr (m ) = 11m - m apr f = min. (5) 

This criterion, as applied to the gradient of model parameters 
V'm, brings us to a maximum smoothness stabilizing functional: 

smax\'m(m) = IIVml1 2 = (Vm, Vm) = min. (6) 

It has been successfully used in many inversion schemes devel
oped for EM data interpretation (Berdichevsky and Zhdanov, 
1984; Constable et al., 1987; Smith and Booker, 1991; Xiong 
and Kirsh, 1992; Zhdanov and Fang, 1996). This stabilizer pro
duces smooth geoelectrical models which in many practical 
situations do not describe properly the real blocky geological 
structures. It also can result in spurious oscillations when m is 
discontinuous. 

In a paper by Rudin et al. (1992), a total variation approach 
to reconstruction of noisy, blurred images is introduced. It uses 
a total variation stabilizing functional, which is essentially the 
L [ norm of the gradient: 

sTV(m) = IIVmIIL\ = Iv /V'ml du. (7) 

This criterion requires that the model parameter's distribution 
in some volume V be of bounded variation (Giusti, 1984). How
ever, this functional is not differentiable at zero. To avoid this 
difficulty, Acar and Vogel (1994) introduce a modified total 
variation stabilizing functional: 

sfiTv(m) = Iv /IVmI 2 + f32 du. (8) 

The advantage of this functional is that it does not require that 
the function m be continuous but that it be piecewise smooth 
(Vogel and Oman, 1998). The total variation norm does not 
penalize discontinuity in the model parameters, so we can re
move oscillations yet preserve sharp conductivity contrasts. At 
the same time it imposes a limit on the total variation of m 
and on the combined arc length of the curves along which m 
is discontinuous. That is why the functional produces a much 

better result than maximum smoothness functionals in imaging 
blocky structures. 

Total variation functionals sTV(m) and sfJTV(m) tend to de
crease bounds of model parameter variation [equations (7) and 
(8)] and in this way still try to smooth the real image. However, 
this smoothness is much weaker than in the case of traditional 
stabilizers in equations (5) and (6). 

We can diminish this smoothness effect by introducing a new 
stabilizing functional that would minimize the area where sig
nificant variations of the model parameters and/or disconti
nuity occur. We call this new stabilizer a minimum gradient 
support (MGS) functional. For the sake of simplicity we first 
discuss a minimum support (MS) functional, which provides 
the model with the minimum area of the anomalous parame
ters distribution. 

MS AND MGS STABILIZING FUNCTIONALS 

The minimum support functional was considered first by Last 
and Kubik (1983), where the authors suggest seeking the source 
distribution with the minimum volume (compactness) to ex
plain the anomaly. This approach is modified in Guillen and 
Menichetti (1984) by introducing the functional minimizing 
moments of inertia with respect to the center of gravity or to 
a given axis. We consider an approach based on a minimum 
gradient support stabilizer which leads to the construction of 
models with sharp boundaries. 

Consider the following integral of model parameter distri
bution: 

f m2 du. (9)lfi(m) = v m2 + f3~ 

We introduce the support of m (denoted spt m) as the combined 
closed subdomains of V where m f- O. We call spt m a model 
parameter support. Then expression (9) can be modified as 

f32 

lfi(m) 2 2]dU= 1 [1 
sptm m + f3

21
= spt m - f3 2 1 ~ du. (10) 
sptm m + f3 

From expression (10) we can see that 

lfJ(m) -+ sptm, if f3 -+ O. (11) 

Thus, integral ifJ(m) can be treated as a functional, proportional 
(for a small f3) to the model parameter support. We can use this 
integral to introduce a minimum support stabilizing functional 
sfJMS(m) as 

(m - mapr ? 
sfJMs(m) = lfJ(m - mapr ) = ( )2 2 du. 

v m - mapr + f3f 
(12) 

To justify this choice, we should prove that sflMs(m) can be 
considered as a stabilizer according to regularization theory. 
This fact is demonstrated in Appendix A. 

This functional has an important property: It minimizes the 
total area with the nonzero departure of the model parameters 
from the given a priori model. Thus, dispersed and smoothed 
distribution of the parameters with all values different from 
the a priori model map, results in a big penalty function, while 
well-focused distribution with a small departure from map, has 
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a small penalty function.This approach was originally used by 
Last and Kubik (1983) for compact gravity inversion. 

We can use this property of a minimum support functional to 
increase the resolution of blocky structures. To do so we modify 
sfJMS(m) and introduce a minimum gradient support functional 
as 

( Vm· Vm d 
(13)sj!MGs(m) = lj![Vm] = lv Vm. Vm + f32 u. 

The value sptV'm denotes the combined closed subdomains 
of V, where V'm #- O. We call sptV'm a model parameter dis
tribution gradient support (or, simply, gradient support). Then 
expression (13) can be modified as

21
sj1MGs(m) = sptVm - f3 1 ,,'") d», (14) 
sptVm Vm . Vm + 

From the last expression we can see that 

Sj!MGS(m) ---+ sptVm, if f3 ---+ o. (15) 

Thus, we can see that sfJMGS(m) can really be treated as a func
tional proportional (for a small fi) to the gradient support. A 
possible way to clarify the physical interpretation for the math
ematical form of equation (13) is to realize that the terms where 
gradient is nearing zero (or much less than fJ) have zero con
tribution, while terms where any gradient exists (larger than 
fJ) have contributions equal to one, even if the gradient is very 
large. Thus, solutions with sharp boundaries are promoted but 
the penalty for large gradients (discontinuous solutions) is not 
excessive. 

Repeating the considerations described in Appendix A for 
SfJMS(lrl). one can demonstrate that the minimum gradient sup
port functional satisfies Tikhonov criteria for a stabilizer. 

PARAMElRIC FUNCTIONAL MINIMIZATION SCHEME 

Within the framework of the regularization theory, as dis
cussed above. the inverse problem solution is reduced to the 
minimization of the Tikhonov parametric functional P" [equa
tion (2)], which can be written as 

pet (m) = (Am - d, Am - d)D + as(m). (16) 

Note that all stabilizing functionals introduced above can be 
written as the squared L z norm of some function of the model 
parameters: 

sCm) = (f(m), f(m». (17) 

For example, the maximum smoothness stabilizer appears if 

!maxsl1I(m) = Vm. (18) 

In the case of the total variation stabilizing functional sfJTV(m), 

this function is equal to 

fj!Tv(m) = (IVmI 2 + (32)1/4. (19) 

In the case of the minimum support functional Sf3MS(m), we 
obtain 

m 
(20)hMs(m) = (m2 + (32)1/2' 

Finally, for the minimum gradient support functional sf3MGS(m), 
we find 

Vm 
hMGs(m) = (Vm. Vm + (32)1/2' (21) 

We can introduce a variable weighting function 

f(m)
we(m) = II \. '")\1 n' (22) 

where F: is a small number. Then the stabilizing functional in 
general cases can be written as the weighted least-squares norm 
ofm: 

sCm) = (f(m), f(m» ~ (we(m)m. we(m)m) = im, m)IJ1e 

= Iv w;(m)m 2 du if e ---+ O. (23) 

The corresponding parametric functional can be written as 

pet(m) = (Am - d. Am - d)D + atm, m)we' (24) 

Therefore, the problem of the minimization of the paramet
ric functional introduced by equation (16) can be treated in a 
similar way as the minimization of the conventional Tikhonov 
functional with the L z norm stabilizer SLz(/pr(m) [equation (5)]. 
The only difference is that now we introduce some a priori 
variable weighting functions wr(m) for model parameters. This 
method is similar to the variable metric method; however, in 
our case the variable weighted metric is used to calculate the 
stabilizing functional only. 

The minimization problem for the parametric functional in
troduced by equation (24) can be solved using the ideas of 
traditional gradient type methods. 

The computational procedure to minimize the parametric 
functional (24) based on the reweighted conjugate gradient 
method is presented in Appendix B. 

PENALIZATION OF MAlERIAL PROPERlY
 
AND FOCUSING INVERSION
 

In this section we discuss the possibility of using some ideas 
of the composite materials theory for solving the geophysi
cal inverse problem. Assume the geological model can be de
scribed as a composite of two materials with known physical 
properties (for example, density, magnetization, or electrical 
conductivity). One material corresponds to the background ho
mogeneous cross-section; the other one forms the anomalous 
body. In this situation, the values of the material property in 
the inversion image can be equal to the background value or to 
the anomalous value. However, the geometrical distribution of 
these values is unknown. We can force the inversion to produce 
a model which not only fits the data but which is also described 
by these known values, thus painting the geometry of the ob
ject.ln the composite materials literature, this method is known 
as penalization. There is a simple and straightforward way of 
combining penalization and the MGS method. Numerical tests 
show that MGS generates a stable solution, but it tends to pro
duce the smallest possible anomalous domain. It also makes 
the image look unrealistically sharp. At the same time, the ma
terial property values mer) outside this local domain tend to be 
equal to the background value mbg(r),which nicely reproduces 
first composite material, i.e., the background. We can impose 
the upper bound for the positive anomalous parameter values 
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1Il;;,,(r ) (the second mat eri a l) and, du ring the iter ativ e proc ess, 
c ho p off a ll the values above this bou nd . 'Ill is algori thm ca n be 
desc ribed as 

mer) - m l>~ ( r) = 1I1 ::h(r ). if [mer) - mhg(r)] ::: m~h ( r). 

(25)
m(r) -m h~ (r) = 0, if [mer) -lIIhg(r)] :::: O. 

Thus, acco rd ing to formula (25). the mat er ial prope rty val ues 
m(r) are alway s d ist ributed wit hin th e int erval 

mh~ (r ) :::: mer) :::: I/I l>g(r) + 1/1::1> (1'). (26) 

A simi lar ru le is appl ied in the case of negative a no ma lous 
param et er val ues. 

NUME RICAL COM PARISON 

We co mp are results of regularized inve rsio n pe rfo rmed with 
th e follow ing sta bilizers: maxi mum smoothness sma.,-"n(m) , th e 
to ta l varia tion funct ion al srv(m). the MS fun ctiona l s ~ .lfs( m) , 

a nd th e MG S funct iona l s~ If Gs(m ) . We also co nside r a foc us-
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ing inversion method th at co mbines Tikh on ov regul ari zati on 
with th e MGS functio na l a nd pe na lizati on of mat erial prop
erty. Minim izati o n problems for all th ese cases we re so lved 
using a reweighted conju gat e grad ien t optimiza tion techn iqu e, 
d iscussed in Append ix B. 

We present synt he tic examples of differ ent geophys ica l dat a 
inversion. Th ey include gravi ty field , s tat ion ary magne tic field , 
a nd E M field dat a . 

2-U gravity data inversion 

Let us trea t m as den sit y dist ribution . In th is case ope ra 
tor A is a linear forward grav ity o pe ra to r. Figure 1a presents 
synthe tic grav ity dat a with 5% random no ise (so lid line ) com
puted for a rectangu lar mat e rial body pr esen ted in Figure 1b. 
Not e tha t we hav e data in onl y ten o bse rva tio n points. Th e 
unknown densities in th e gr id sho wn in Figure 1b form a la rge 
20 x 15 mat rix of unknown param et ers. Thus. the inver se p rob 
lem is und erdetermined, which ca n lead to mult iple so lutio ns. 
We have run fo ur inversio ns with th e different sta bilize rs a nd 
have ob tained four different mod els, sho wn in Figure l c- L The 
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FIG. I. A 2-D grav ity inver sion fo r rec tan gul ar bod y. Gr ayscale shows normalized den sity. 
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theor etical data computed for these mode ls fit the obs erved 
dat a pra ctically with the same accura cy of 5% (a ll four pre
d icted da ta curves arc sho wn by sta rs on Figu re 1a). 

Figure lc shows the res ult of inversion with a maximu m 
smoo thness sta bil izer. Figure ld sho ws the resul t obta ined with 
a tota l vari ati on stabilize r, which is be tte r than the first one , bu t 
still the image is ver y dispersed . Figure I e sho ws an inversion 
res ult with an MGS stabilizer. Th e image is ovcrsha rpc ncd, 
Figure I f presen ts the res ult of foc using inversion . For the fo
cusing inve rsion we ass ume we know the upper bo und value 
of th e ano malo us de nsity. 

Th e next se t of inversi ons has be en done for the mod el of 
two sma ll bodies (Figure 2) . Figure 2a depicts observed dat a 
with 5% rand om noise (so lid line) and theor et ical predi cted 
field s for four inversio n res ults (s ta rs) sho wn in th e other pan
e ls, Figure 2c shows the so lution with the maximum smoothness 
functi on a l, Figure 2d prese nts the bounded total varia tio n so
lution , Figure 2e shows th e so lution with the minimum gradi en t 
suppo rt functio nal, and Figure 2f dem onst rates the focu sed im
age . We aga in ass ume we know the upp er bo und va lue of the 
a no ma lous den sity, 
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Figure 3 shows the set of equivalent soluti ons for st epl ike 
density distribution : (a) actua l data with 5% rand om noise 
(solid line) and theore tical predicted dat a for four inversion 
res ults (sta rs) shown in the o ther pan els, (b) actua l model, (c) 
maximum smoo thness so lution, (d) the bounded total va ria
tion solution, (e) the so lutio n with a minimum gradient suppor t 
functi onal, and (f) the result of focusing inversion. Th e focusing 
inversion produces the best image of the ste plike struct ure. 

2-D magnetic data Inversion 

No w we assume tha t m is magnet ic succeptibility and ope r
ator A is the linear forwa rd magnet ic ope ra to r. We so lve the 
sta tiona ry magnetic inverse probl em . Figu re 4 sho ws (a) syn
the tic observed magnetic dat a with 5% ra ndo m noise and the
oreti cal predicted dat a for inversion result s (sta rs) sho wn in 
Figure 4c, (b) the actual model , and (c) the bound ed tota l 
variat ion inversion resul t. We now have two ano malous bod 
ies with differ ent susceptibilities. We first assu me we know the 
ano ma lous prop erty of both bod ies.Thi s knowledge is include d 
in th e a lgor ithm as a priori informati on abo ut the distribution 
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of the co nstrain ts of anoma lous susce ptibility ( Figur e 5b). The 
resulting image is prese nte d in Figure 5a . It reso lves well the 
posit ion and sha pe of bot h bodi es. Figure 5d reflects th e wrong 
assumptio n about the bodi es' susce ptibilities: one is two times 
bigger and the othe r is two times smalle r. Figur e 5e shows the 
focused image co mputed for th is case . As on e would exp ec t, 
the sizes of th e bodi es cor respo nd ingly increase and decrease 
by two times. Figure 51' re flects the wro ng a prior i infor mati on 
abo ut susceptibility: the susceptibility of the fi rst body is two 
times smaller, and the suscepti bility of the second bod y is two 
tim es larger t han the true va lues. Figure 5e sho ws the corre
sponding focused image. This example suggests that eve n if we 
do not know th e property exactly, focusing inversion still can 
be applied and ca n pro duc e usefu l resu lts. 

3·0 borehole induction data inversion 

We have applied dif ferent sta bilizing functio na ls discussed 
above to so lving the following EM invers e pro blem. Consider 
the model of two co nd uct ive bodies located a t a depth 01' 1000 m 
(Figure 6) . Th e bodies arc pr isms 20 x 20 m in the X and Y di
rections and 10 111 in the Z directio n. T he observation array 
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is form ed by a vertical magne tic dip ole transmi tt er and th ree
com pon ent magn et ic field receive rs located in the bo re hole 
with a ve rt ical se pa rat ion of 6 m. Resistivity of th e bod ies is 
1 ohm -rn, while the back gro und resistivi ty is 1000 o hm-m. The 
theor e tical frequency-doma in EM field in this model was sim
ulat ed for freq uencies of 16, 32, 64, and 128 kHz using SYSEM 
integra l equa tion for ward-mo de ling code (Xiong, 1992). Th e 
transmitter-receiver insta llatio n was mo ving alon g the bore
hole fro m 950 m to 1050 m with observat ions every 10 m (sta rs 
in Figure 6). 

We use three-com pon en t dat a measured at the single obser
vat ion po int in the boreho le to ob tain infor ma tion abo ut the 
location of the con du cting bo dies in the horizon tal plan e. The 
res ults of sim ulation ar e shown in Figure 7 (sol id lines). 

Th e first experime nt demonstr a tes the res ult of inver sion 
with a tot al var iation stabilize r: 

P¥v (m) = cp(m) + rxs/i TV(m)
 

= (Am - d , Am - d)f)
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FIG.). A 2-D grav ity inve rsion for st ep -like structure. Grayscale shows nor malized density. 
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The inversion image is shown in Figure 8. We cannot see two 
sep ar at e bod ies in this figure. At the same time, the misfit 
between the observed and predicted dat a fo r this image is onl y 
1.5% . 

The next num er ical experiment demonstr at es results of in
version using a minimum gradient suppo rt stabi lizer, 

P,~f (; S (m ) = rp (m) + aSMradsup (m) 

=(Am - d , Am - d )» 

1 ('V'm, 'V'm )
+a d u, (28) 

v ('V'm, 'V'm ) + fJ2 

and penalizat ion , desc ribed above . Figu re 9 present s the re
sults of inversion. Figure 7 shows the compari son between th e 

a) Data 

50 100 150 200 

b) True model 

I 

2 
10 

20 1.5 

E 30 

~40 
Q) 

0 50 

0 .5 60 

70 
o 

o 50 100 150 200 
Distance, m 

c) TV 

10
 

20 11! i
 

E 30 

0.2 'R 40 
Q) I i 
050 

0 .1 
60 Htttttt+tIttttt 
70 mtttttttttml:tt o 

o 50 100 150 
Distance . m 

200 

FIG. 4. A 2-D magnetic field inversion. Gra yscale shows 
norm alized magnet izat ion of the ce lls. 

obse rved (so lid lines ) and theoret ical pred icted data (stars) 
computed for the model shown in Figure 9. In this image, two 
bodies a re obviously resolved . At the same time , the acc uracy 
of fitti ng here is almost the same (1.5 %) as that for tot al vari
ation inversion . 

The obta ine d results clearl y dem onstrat e the ad vantages of 
the MGS plus penal ization approac h. 

FOCUSING INVERSION ON PENASQUITO GRAVIlY DATA 

Gr avity data for the Penasquito site, co llected by Kennecott 
Explora tion, are used as a test for inversion . Th e map of 
Bouguer ano malies for this site (te rrai n corre cted for near est 
30 m) is shown in Figure lOa. 

The subsurface geology of the area is cha racte rized by the 
prese nce of intrusions embedded into sedime nta ry formations. 
Co re tests sho w lowest density for breccia and quart z porphyry 
samples (2.32-2.47 g/crrr'). Density is 2.58-2.73 g/crrr' for both 
alte red and unalt ered background for mations. 

Thus, negative gravity anomalies are possibly associated with 
breccia pipes. Most of the area is covered with a lluvium; ho w
ever, one breccia pipe is out cropping at the centra l part of th e 
map. An oth er breccia pipe was con firmed by drillin g. 

In the inve rsion procedure, cont rast for breccia and back
gro und rock was taken as -0.3 g/cm' . However, there are man y 
areas with positive gravity anomalies up to 1 mGal , which man
ifest format ions with density higher th an the backgro und. 

Focusing inversion allows us to obtai n a well-focused , sharp 
sub surface image, in contrast to widely known smoo th in
version meth od s. It also requires app lication of th e penaliza
tion technique, in which upp er and lower limits of anoma lous 
density variati ons are used to produce the density model. In 
this example we used values of - 0.3 g/crn' as lower limits 
which cor responded to the drill ing core data abo ut the bre c
cia pipe's anomalous density. The posi tive constra ints were 
tak en as + 0.3 g/cnr' to designate unknown high-dens ity for
mati ons. 

Th e subsurface region under investigati on was divided into 
cubic cells of 100 x 100 m horizontal size. Cell size increases 
with depth , sta rt ing with 50 m at th e surface, th en 50. 75, 100, 
150,200,300, 400, and 500 rn. There wer e 7800 data values a nd 
20000 model paramet ers. Th e density contrast within eac h cell 
was assum ed constant, but it cha nged from ce ll to ce ll. Star ting 
from the model with the zero anomalous density, the inver sion 
procedure ite ratively conve rged to the model that bes t fit the 
grav ity dat a. 

Three separate experiments were done. First, focusing inver
sion was performed for the entire area. Second, minim um Lz 
norm (smooth ) inversion was done for comparison , also for the 
entire ar ea. Third , the inversion was app lied to a local data se t 
above one of known breccia pip es using a 3-D grid with sma ll, 
uniform, cubi c ce lls. The res ults of the third experiment were 
compared with drillin g infor ma tion available in th e site . 

Re sults of inversion 

The focusin g inversion was perf ormed on the re al grav
ity dat a from the Pen asquito site. On ly 10 minutes of com
puter time on a SPA RC-20 were required to invert a relati vely 
large 3-D model as demonstrated her e. Figure l Obshows data 
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predicted from the focusin g inversion . Th e predieted dat a fit 
the obse rved data wel l. Figure l 1a sho ws the residu al field , 
which is the d iffere nce bet ween observed a nd pred icted gra v
ity dat a. We ca n trea t th e res idual field as the random noise 
which contamina tes real dat a. Maximum erro rs a rc on the o r
der o f 0.1 mGal, but they occur only ab ove one of the brecci a 
pipes. Most of the errors a re less than O.02mGal. A histogram of 
resid ua ls is sho wn in Figure I Ib. The residu als fo rm a Gaussian 
d istribution . which is not surprising, given the fact tha t least
squa res minim iza tion of residuals was per fo rmed. Dispersion 
(sq uare roo t of sum of e rro r sq ua res d ivided by num ber of 
samples) is 0.0 I rnt i al fo r thi s pial. Most of the residual fie ld is 
o f shor t len gth . which mean s it represents rand om obser vation 
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errors and near-su rface featu res too small and sha llow for the 
resolution of the meth od. 

The res ulting inversion model is prese nted furthe r as slices 
of ano malous densi ty a t differ ent dep ths. Figure 12 presents 
slices a t 200 and 325 m de pth, respective ly. 

The plot, co rrespo nding to 200 m depth, is most informative 
and clea r (Figure 12a ). It sho ws two known breccia pip es a t 0 N 
- 0.5 E and -1 N O.3 E. Th e prospective pipe at - 0.3 N - 2.2 E 
starts shifting 10 th e nor th, and the prosp ective pipe a t - 1.5 N 
2.2 E is shifting toward the sou th. 

Ther e a re a lso num erou s positive-con trast density bodies. 
On e of these features (a t 0 N -1.2 E ) is present on the dee per 
slice a t 325 m depth (Figure 12b ). 
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FIG. 5. A 2-D magnetic fie ld inversion with various constraints. Grayscale shows norm alized magn et izati on of the ce lls. Figu re Sa,c, 
and c sho ws magne tic field inverse problem solutions for the mod el presented in Figure 4, with the different assumptions about 
the ma ximum ano ma lous suscep tibi lity of each body (co nstra ints) . Figure 5b, d , and f shows distri buti ons o f the co nstrai nts applied 
in each case. Note that differ ent constr aints can be applied to differ ent parts of th e sa me model. For example, (b) shows that 
normalized susceptibility of the left bod y sho uld not exceed 0.5 unit s and normalized susceptibility of the right body sho uld 110t 
exceed 2. Figure 5a corresponds to a prior i co nstraints sho wn in (b). (c) corresponds to (d) , and (e ) corresponds to (f). 
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FIG. 6. Tru e model fo r :1- D bo rehole EM inv er sion . Grayscale 
shows an om alou s co nd uctivity in siem ens/m et er. 

Minimum L 2 norm inversion results 

Fo r com par ison , the results o f th e minimum L2 norm inver
sio n arc a lso pres e nted. This inversion pr oduces smooth, mu rky 
images. How ever, it may also provide useful infor ma tion. 

Smooth in ve rsion pro du ces th e data whi ch fit the observa
tion with a lmos t the same acc uracy as for focus ing inversion . 
H ow ever, th e in ver se a no ma lo us den sity model is di fferent 
becau se it is a smoo th mod el now. This result cor res po nds 
to the fact tha t th e so lutio n of gra vity inverse problem is 
nonun iqu e. By introd ucing a d ifferen t st abilizing functio na l in 
th e Tikhonov regul arizat ion sche me, we se lect differ ent so lu
tions from th e class o f possible inverse mod els. 

Th e resul tin g smooth inver sion model is pr esented fur ther as 
s lices o f an om al ou s de nsity at different depths (Figures 1:la,b) . 
T he slices look so mewhat similar to the co rrespo nd ing s har p 
pictures; howeve r, the images her e are mor e disp er sed and 
un clea r. It is hard to eva lua te the sha pe of ano ma lo us bod ies 
from th ese pictures, a nd so me bod ies cann ot be distinguished 
a t a ll. 

Validation of results with drilling data 

Th e re are no data so far to co nfirm or reject any hyp othesis 
about deep structures ; how ev er , th er e are drill ing data ava il
ab le o n th e site to co mpa re with at depth up to 100-200 m. 

O ne kn own br ecci a p ipe was se lec ted for more ca reful inver
sio n in th e sma ll wind ow to be tte r und er st and geome try o f thi s 
particu lar pipe and to che ck th e reli ab ility of inversion results. 

A wind ow 1.5 x 1.5 km was cut fro m the dat a, a nd in ver
sio n was pe rformed for th e dat a within th is windo w. Ce lls were 
ta ke n as c ubes with sides of 100 m for all depths, up to 1.5 km. 
A fter focu sin g inversion , the cells with zero de nsi ty were e rased 
a nd a :1-0 image of th e bod y was ge nera ted, as shown in Fig
ure 14. Sta rs in Figure 14 sho w boreh oles.T he X axis is directed 
to the cast , and the Y axis is directed to th e no rth. 

Co mpa ring these pictures with th e images of th e sa me bod y 
obta ine d fro m the entire map, we cannot sec any significa nt 
d iffe rence, wh ich demonstrates th e ro b ustness of th e algo rithm 
to th e ce ll's size. 

Figure 15 shows th e view of th e bod y from th e top a nd the 
conto ur of br eccia pipe derived from drilling dat a. In ver sion 
correctly pr edicts wh ich wells arc insid e a nd whi ch wells arc 
outs ide of the br eccia pipe, 

CONCLUSIONS 

The results of o ur work dem on strat e that by choosin g differ 
ent typ es of st abilizin g fun ction als we can generate inv er sio n 
images res olving th e a no ma lo us bodies with differ ent acc u
rac y.The max imum smoothness fun ctional obvious ly produces 
a very diffuse image, Th e to ta l vari ati on funct ion al ge nera tes 
a more focused image but still ca nno t resolve an omal ou s bod
ies well. Finally, th e MG S fun cti on al in co mbina tio n with pe
nalization produces the mor e resolved a nd focused image of 
ano ma lous structu res . 

Thus, the MGS functio nal in co mbina tio n with pen ali zati o n 
helps to ge nerate clearer and mor e foc use d images for geolog
ica l st ructu res than co nve nt io na l maximum smo othness and 
tot al varia tio n function als. 

Focusin g inversi on cod e was performed on the real gravity 
dat a from th e Pen asquito si te . Th e results of focusing inv ers ion 
hav e been compared with con vention al in version and ch ecked 
aga inst drill ing data . Co mpariso n shows th at fo cusing inversion 
pr oduces a different kind of info rmati on th an the conventi on al 
smooth method . Th e shap e a nd size of th e bod ies ar e mu ch 
better resolved, especially at sma ller dep ths, an d ar e co nfirme d 
by drilling data. As such , focusin g inver sion ca n be a useful tool 
in interpreting the dat a. 
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AP PEN DIX A
 

MINIMUM SUPPORT FUNCTIOl'1AL AS A STABILIZER
 

Acc ordin g to reg ulariza tio n theor y (Tikho no v an d A rsenin , 
1977), a nonnegat ive function al s(m) on so me Hi lbert space M 
is called a sta bilizing functiona l if for any real c > 0 the subset 
M,. of clements m E M for which sCm) ::: c is a co mpact. 
Co nside r the subset Me eleme nts of M satisfying the condi tion 

SJl Ms(m) ::::: c, (A-I) 

wher e ' /HlS(IIl) is a minimum sup port stabilizing functiona l de 
termined by eq ua tion (14). From the othe rsidc,s PMsis a mon o 
ton ically incr easi ng funct ion of 11 m - 1Il" 1" 11 2 : 

Sfl Gs(l11l) < sj1Gs(m2) if 11m! - m"pr ll < 11m2 - m"'lrll . 
(A-2) 

To prove this, le t us co nsider the first varia tio n of th e minim um 
sup po rt fun ctional: 

1 (Ill - m"pr)2 
8sj1 ,\/s(lIl ) = 8 2 2 d v 

v (Ill - lIl"pr) + fi 

-1 fJ 2 
- Ii «IIl _IIl"pr)2 +fi?\?8(m - m"pr fdv 

= 1a28(m - III ) 2 d v (A -3)v u~ ' 

where 

a2 = 
« m 

fJ 2 
- m"pr)2 + f3 2)2' 

(A-4) 

Usi ng the theor em of the average val ue, we ob tai n 

8spMs( m) = cP!v 8(m - m"pr)2d v (A -5) 

28=0 !v (m - nl"pr)2d v = 02811111-II1"prI1 2 

= 202 11 m - 1I1"prIl8 I1 m - lIlaprll, (A-6) 

where 02 is an aver age valu e of a2 in volume V. Taking into 
acco unt that 02 > 0 and 11m - m"p, II > 0, we obta in equa 
tion (A-2 ) from equa tion (A -6). 

Thus, from condition (A- I) we see th at 

11 m - m"prll ::::: q. m E M ,. (A -7) 

where q > 0 is so me co nsta nt, i.e., Me forms a sphe re in the 
spac e M with a cente r a t the point m"l'" It is well known that the 
sp here is a co mpac t in a Hilbert space. Therefor e, wc can use 
funct ion al spMS(m) as a st abil izer in a Tikhon ov regula rizati on 
proccss. 
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APPENDIXB
 

CONJUGATE GRADIENT REWEIGHTED OPTIMIZATION
 

Consider a discrete inverse problem equivalent to the gen
eral inverse problem (1) in the case of the discrete model 
parameters and data. Suppose that N measurements are per
formed in some geophysical experiment. Then we can consider 
these values as the components of vector dof a length N. Sim
ilarly, some model parameters can be represented as the com
ponents of vector rn of a length L. 

In this case, equation (1) can be rewritten in matrix notation: 

d = A(m), (B-1) 

where A is the matrix column of the operator A. 
The parametric functional (24) for a general nonlinear in

verse problem can be expressed using matrix notations: 

pa(m) = (WdA(m) - Wdd)*(WdA(m) - Wdd) 

+a(Wem)*Wem, (B-2) 

where w, and W~ are weighting matrices of data and model 
parameters and the asterisk denotes a transposed complex con
jugate matrix. W~ = W~(rn) is the matrix of the weighting func
tion we(m) introduced above in equation (22). Thus, using as 
fern) in equation (22) the corresponding expression (18), we 
obtain a maximum smoothness stabilizer. Determining fern) 
according to eq uation (19) yields a total variation stabilizer. 
Substituting corresponding formula (20) or (21) instead fern) 
produces minimum gradient support or minimum support 
stabilizers. 

We use the conjugate gradient method to minimize the para
metric functional (B-2). It is based on the successive line search 
in the conjugate gradient direction l(rn ) : ll 

mll+1 = mn + 8m = mil - knl(mn). (B-3) 

The idea of the line search is that we present P" (mil - kl(rnll ) ) 

as a function of one variable k and, evaluating it three times 
along direction 7(llllI) , approximately fit it by parabola and then 
find its minimum and the value of k ll , corresponding to this min

imum. The conjugate gradient directions l(rnll ) are selected as 
follows. 

First, we use the gradient direction 
- A A A'J A A A2 

L(ma) = I(ma) = F~jW;JCA(ma) - d) + aWeama, (B-4) 

where W;o = W;(mo). 
Next, the conjugate gradient direction is the linear combina

tion of the gradient on this step and the direction l(rnu) on the 
previous step: 

l (ml) = i(ml) + .BIl(mo). (B-5) 

On the n + 1th step, 

l(mn+d = i(mn+l) + .Bn+ll(mn), (B-6) 

where 
A A A2 A A A2 

I(mn) = F~jWd(A(mn) - d) + aWenmn (B-7) 

and W;II = W;(rn/l)' 
The coefficients fJlI+1 are defined from the condition that the 

directions l(rnll+d and l(m/l) are conjugate: 

i*(mn+1 )i(mn+l) 
(B-8).Bn+l = i*(mn)i(mn) . 

This algorithm always converges to the local minimum because 
on every iteration we apply the parabolic line search. We call 
this algorithm conjugate gradient reweigh ted optimization be
cause the weighting matrix W;/l is updated on every iteration. 
One can find the formal proof of the convergence of this type 
of optimization technique in Eckhart, (1980). 

In the case of linear forward operator A, the parametric func
tional has only one local minimum, so the minimization of P" 
is unique (Tikhonov and Arsenin, 1977). 

The advantage of the conjugate gradient reweighted opti
mization algorithm is that we do not have to know the gradient 
of fern) for every iteration-only its value for corresponding 
model parameters, which is easy to calculate. 


