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Focusing geophysical inversion images

Oleg Portniaguine™ and Michael S. Zhdanov*

ABSTRACT

A critical problem in inversion of geophysical data is
developing a stable inverse problem solution that can si-
multaneously resolve complicated geological structures.
The traditional way to obtain a stable solution is based on
maximum smoothness criteria. This approach, however,
provides smoothed unfocused images of real geoelectri-
cal structures. Recently, a new approach to reconstruc-
tion of images has been developed based on a total varia-
tional stabilizing functional. However, in geophysical ap-
plications it still produces distorted images. In this paper
we develop a new technique to solve this problem which
we call focusing inversion images. It is based on specially
selected stabilizing functionals, called minimum gradi-
ent support (MGS) functionals, which minimize the area
where strong model parameter variations and disconti-
nuity occur. We demonstrate that the MGS functional,
in combination with the penalization function, helps to
generate clearer and more focused images for geologi-
cal structures than conventional maximum smoothness
or total variation functionals. The method has been suc-
cessfully tested on synthetic models and applied to real
gravity data.

INTRODUCTION

One of the critical problems in inversion of geophysical data
is developing a stable inverse problem solution which at the
same time can resolve complicated geological structures. Tra-
ditional geophysical inversion methods are usually based on
Tikhonov regularization theory, and they provide a stable so-
lution of the inverse problem. This goal is reached, as a rule,
by introducing a maximum smoothness stabilizing functional.
The obtained solution provides a smooth image of real geo-
electrical structures that sometimes makes it look geologically
unrealistic.

A new approach to reconstructing noisy images, developed
in papers by Rudin et al. (1992) and by Vogel and Oman (1998),
is based on a total variational stabilizing functional. The func-
tional requires that the model parameter’s distribution be of
bounded variation. This requirement is much weaker than one
of maximum smoothness because it can be applied even to dis-
continuous functions. In this way, the total variation method
produces better quality images for blocky structures. How-
ever, it still decreases bounds of model parameter variation
and therefore somehow distorts the real image.

We study different ways of focusing geophysical images us-
ing specially selected stabilizing functionals. In particular, we
introduce a new stabilizing functional that minimizes the area
where strong model parameter variations and discontinuity oc-
cur. We call this new stabilizer a minimum gradient support
(MGS) functional. We demonstrate that this MGS functional,
in combination with the penalization function, helps to gener-
ate a stable solution of the inverse problem for complex geo-
logical structures and does not impose destructive restrictions
on the bounds of model parameter variations. Thus, it helps to
generate much more focused images than conventional meth-
ods. We call this approach focusing inversion images.

We also present a comparative analysis of inversion schemes
based on different stabilizing functionals. This analysis shows
that inversion codes based on the MGS stabilizing functional
and the penalization function could be considered a good al-
ternative to maximum smoothness or total variational-based
inverse algorithms,

TIKHONOV REGULARIZATION AND
STABILIZING FUNCTIONALS

Consider the inverse problem
d = Am, (1)

where A is the forward modeling operator; m = m(r), a scalar
function describing geological model parameter distribution in
some volume V inthe earth (m € M, where M isa Hilbert space
of models with L; norm); and d =d(r), a geophysical data set
(d € D, where D is a Hilbert space of data).
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Inverse problem (1) is usually ill posed, i.e., the solution can
be nonunique and unstable. The conventional way of solving
ill-posed inverse problems, according to regularization theory
(Tikhonov and Arsenin, 1977; Zhdanov, 1993), is based on min-
imization of the Tikhonov parametric functional:

P(m) = ¢(m) + as(m). )

where ¢(in) is a misfit functional determined as a norm of dif-
ference between observed and predicted (theoretical) field,

¢(m) = |Am —d| = (Am —d, Am —d)p. (3)

Functional s(in) is a stabilizing functional (stabilizer).

There are several common choices for a stabilizer. One is
based on the least-squares criteria or, in other words, on an L,
norm for functions describing geoelectrical model parameters:

SLz(m) - ”'71”2 = (m, m) = \/V msz = min. (4)

The conventional argument in support of this norm comes from

statistics and is based on the assumption that the least-squares

image is the best over the entire ensemble of all possible images.

Another stabilizer uses the minimum norm of the difference
between the selected model and some a priori model m,,,:

2 .
SLoapr(m) = lm — mupr“ = min. (5)

This criterion, as applied to the gradient of model parameters
Vim, brings us to a maximum smoothness stabilizing functional:

Smaxsm (M) = [ Vm||? = (Vm, Vm) = min. (6)

It has been successfully used in many inversion schemes devel-
oped for EM data interpretation (Berdichevsky and Zhdanov,
1984; Constable et al., 1987; Smith and Booker, 1991; Xiong
and Kirsh, 1992; Zhdanov and Fang, 1996). This stabilizer pro-
duces smooth geoelectrical models which in many practical
situations do not describe properly the real blocky geological
structures. It also can result in spurious oscillations when m is
discontinuous.

In a paper by Rudin et al. (1992), a total variation approach
to reconstruction of noisy, blurred images is introduced. It uses
a total variation stabilizing functional, which is essentially the
L norm of the gradient:

srv(m) = Vil = / |Vm|dv. (7)
Vv

This criterion requires that the model parameter’s distribution
insome volume V be of bounded variation (Giusti, 1984). How-
ever, this functional is not differentiable at zero. To avoid this
difficulty, Acar and Vogel (1994) introduce a modified total
variation stabilizing functional:

Sf;T\/(m) = \/v vV |Vm|2 + ,32 dv. (8)

The advantage of this functional is that it does not require that
the function m be continuous but that it be piecewise smooth
(Vogel and Oman, 1998). The total variation norm does not
penalize discontinuity in the model parameters, so we can re-
move oscillations yet preserve sharp conductivity contrasts. At
the same time it imposes a limit on the total variation of m
and on the combined arc length of the curves along which m
is discontinuous. That is why the functional produces a much

better result than maximum smoothness functionals in imaging
blocky structures.

Total variation functionals s7y(m) and sgry(m) tend to de-
crease bounds of model parameter variation [equations (7) and
(8)] and in this way still try to smooth the real image. However,
this smoothness is much weaker than in the case of traditional
stabilizers in equations (5) and (6).

We can diminish this smoothness effect by introducing a new
stabilizing functional that would minimize the area where sig-
nificant variations of the model parameters and/or disconti-
nuity occur. We call this new stabilizer a minimum gradient
support (MGS) functional. For the sake of simplicity we first
discuss a minimum support (MS) functional, which provides
the model with the minimum area of the anomalous parame-
ters distribution.

MS AND MGS STABILIZING FUNCTIONALS

The minimum support functional was considered first by Last
and Kubik (1983), where the authors suggest seeking the source
distribution with the minimum volume (compactness) to ex-
plain the anomaly. This approach is modified in Guillen and
Menichetti (1984) by introducing the functional minimizing
moments of inertia with respect to the center of gravity or to
a given axis. We consider an approach based on a minimum
gradient support stabilizer which leads to the construction of
models with sharp boundaries.

Consider the following integral of model parameter distri-

bution:
2
m
J = ——d ’. 9
p(m) /V”12+ﬂ2 v )

We introduce the support of m (denoted sptm) as the combined
closed subdomains of V where m #0. We call spt m a model
parameter support. Then expression (9) can be modified as

/32
Jp(m) = /Sptm [1 s ﬁz]dv

1

= sptm — B* ——dv. 10
p 'B sptm m2 + ﬂl ( )

From expression (10) we can see that
Jg(m) — sptm, if B — 0. (11)

Thus, integral Jg(mm) can be treated as a functional, proportional
(for asmall B) to the mode] parameter support. We can use this
integral to introduce a minimum support stabilizing functional
SgMS (Il’l) as

2
m — m,
sﬂMS(m) = Jﬂ(m - mupr) = / ( Ipr)
v (m

—dv.
- ’nupr)z + ﬂ2

(12)

To justify this choice, we should prove that sgys(m) can be
considered as a stabilizer according to regularization theory.
This fact is demonstrated in Appendix A.

This functional has an important property: It minimizes the
total area with the nonzero departure of the model parameters
from the given a priori model. Thus, dispersed and smoothed
distribution of the parameters with all values different from
the a priori model m,,, results in a big penalty function, while
well-focused distribution with a small departure from m,,, has
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a small penalty function.This approach was originally used by
Last and Kubik (1983) for compact gravity inversion.

We can use this property of a minimum support functional to
increase the resolution of blocky structures. To do so we modify
spus(m) and introduce a minimum gradient support functional
as
Vm - Vm

————dv. 13
Vm - Vm + 2 v (13

spmcs(m) = Jy[Vm] :/
v

The value sptVm denotes the combined closed subdomains
of V, where Vin # 0. We call sptVm a model parameter dis-
tribution gradient support (or, simply, gradient support). Then
expression (13) can be modified as

1
2 P
SgmGs(m) =sptVm — 8 ————dv. (14)
! P sptVm Vm - Vm + ,32
From the last expression we can see that
sgmgs{m) = sptVm, if S — 0. (15)

Thus, we can see that sgugs(m) can really be treated as a func-
tional proportional (for a small ) to the gradient support. A
possible way to clarify the physical interpretation for the math-
ematical form of equation (13) is to realize that the terms where
gradient is nearing zero (or much less than ) have zero con-
tribution, while terms where any gradient exists (larger than
B) have contributions equal to one, even if the gradient is very
large. Thus, solutions with sharp boundaries are promoted but
the penalty for large gradients (discontinuous solutions) is not
excessive.

Repeating the considerations described in Appendix A for
sgms(m), one can demonstrate that the minimum gradient sup-
port functional satisfies Tikhonov criteria for a stabilizer.

PARAMETRIC FUNCTIONAL MINIMIZATION SCHEME

Within the framework of the regularization theory, as dis-
cussed above, the inverse problem solution is reduced to the
minimization of the Tikhonov parametric functional P* [equa-
tion (2)], which can be written as

Pm) = (Am —d, Am —d)p +as(m).  (16)

Note that all stabilizing functionals introduced above can be
written as the squared L, norm of some function of the model
parameters:

s(m) = (f(m), f(m)). (17)
For example, the maximum smoothness stabilizer appears if
Smaxsm (m) = Vm. (18)

In the case of the total variation stabilizing functional sgry (m),
this function is equal to

fervim) = (1Vm|* + 5" (19)

In the case of the minimum support functional sgys(m), we
obtain
m

Sfoms(m) = CEY Ol (20)

Finally, for the minimum gradient support functional ssucs(m),
we find

Vm
= 21
fﬁMGS(m) (vm Vm + ,32)1/2 ( )
We can introduce a variable weighting function
we(m) = f(m) (22)

((m, m)+e2)/2’

where ¢ is a small number. Then the stabilizing functional in
general cases can be written as the weighted least-squares norm
of m:

s(m) = (f(m), f(m)) = (we(m)m, w,(m)m) = (m,m),,
= / u)f(m)m2 dv if ¢—0. (23)

The corresponding parametric functional can be written as
P¥(m) = (Am —d, Am —d)p + a(m, m),,. (24)

Therefore, the problem of the minimization of the paramet-
ric functional introduced by equation (16) can be treated in a
similar way as the minimization of the conventional Tikhonov
functional with the L, norm stabilizer 5., (m) [equation (5)].
The only difference is that now we introduce some a priori
variable weighting functions w, (m) for model parameters. This
method is similar to the variable metric method; however, in
our case the variable weighted metric is used to calculate the
stabilizing functional only.

The minimization problem for the parametric functional in-
troduced by equation (24) can be solved using the ideas of
traditional gradient type methods.

The computational procedure to minimize the parametric
functional (24) based on the reweighted conjugate gradient
method is presented in Appendix B.

PENALIZATION OF MATERIAL PROPERTY
AND FOCUSING INVERSION

In this section we discuss the possibility of using some ideas
of the composite materials theory for solving the geophysi-
cal inverse problem. Assume the geological model can be de-
scribed as a composite of two materials with known physical
properties (for example, density, magnetization, or electrical
conductivity). One material corresponds to the background ho-
mogeneous cross-section; the other one forms the anomalous
body. In this situation, the values of the material property in
the inversion image can be equal to the background value or to
the anomalous value. However, the geometrical distribution of
these values is unknown. We can force the inversion to produce
a model which not only fits the data but which is also described
by these known values, thus painting the geometry of the ob-
ject. In the composite materials literature, this method is known
as penalization. There is a simple and straightforward way of
combining penalization and the MGS method. Numerical tests
show that MGS generates a stable solution, but it tends to pro-
duce the smallest possible anomalous domain. It also makes
the image look unrealistically sharp. At the same time, the ma-
terial property values m(r) outside this local domain tend to be
equal to the background value m,,(r), which nicely reproduces
first composite material, i.e., the background. We can impose
the upper bound for the positive anomalous parameter values
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my,(r) (the second material) and, during the iterative process,
chop off all the values above this bound. This algorithm can be

described as
m(r) — mpe(r) = my, (r), if [m(r) — mp,(r)] > m?,(r),

(25)

m(r) — mpe(r) =0, if [m(r) — mpe(r)] < 0.

Thus, according to formula (25), the material property values
m(r) are always distributed within the interval

Mg (r) < m(r) < mpe(r) + mi,(r). (26)

A similar rule is applied in the case of negative anomalous
parameter values.

NUMERICAL COMPARISON

We compare results of regularized inversion performed with
the following stabilizers: maximum smoothness syaxm(m), the
total variation functional szy (m), the MS functional sgs(m),
and the MGS functional sgygs(m). We also consider a focus-
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ing inversion method that combines Tikhonov regularization
with the MGS functional and penalization of material prop-
erty. Minimization problems for all these cases were solved
using a reweighted conjugate gradient optimization technique,
discussed in Appendix B.

We present synthetic examples of different geophysical data
inversion. They include gravity field, stationary magnetic field,
and EM field data.

2-D gravity data inversion

Let us treat m as density distribution. In this case opera-
tor A is a linear forward gravity operator. Figure 1a presents
synthetic gravity data with 5% random noise (solid line) com-
puted for a rectangular material body presented in Figure 1b.
Note that we have data in only ten observation points. The
unknown densities in the grid shown in Figure 1b form a large
20 x 15 matrix of unknown parameters. Thus, the inverse prob-
lem is underdetermined, which can lead to multiple solutions.
We have run four inversions with the different stabilizers and
have obtained four different models, shown in Figure lc~f. The

d) TV
e (.8
10
20 0.6
£ 30
-.340 0.4
@
2 50
60 0.2
70
i 0
0 50 100
€) Minimum Support
e
1
0 10
20
£ 30
-3
£ 40
) 5
B850
60
70
Lo
0 50 100
f) Focusing
T !
10
20
£ 30
£ 40 0.5
D
050
80
70
— 0
0 50 100
Distance, m

FIG. 1. A 2-D gravity inversion for rectangular body. Grayscale shows normalized density.



878 Portniaguine and Zhdanov

theoretical data computed for these models fit the observed
data practically with the same accuracy of 5% (all four pre-
dicted data curves are shown by stars on Figure 1a).

Figure lc shows the result of inversion with a maximum
smoothness stabilizer. Figure 1d shows the result obtained with
atotal variation stabilizer, which is better than the first one, but
still the image is very dispersed. Figure 1e shows an inversion
result with an MGS stabilizer. The image is oversharpened.
Figure 1f presents the result of focusing inversion. For the fo-
cusing inversion we assume we know the upper bound value
of the anomalous density.

The next set of inversions has been done for the model of
two small bodies (Figure 2). Figure 2a depicts observed data
with 5% random noise (solid line) and theoretical predicted
fields for four inversion results (stars) shown in the other pan-
cls. Figure 2c shows the solution with the maximum smoothness
functional, Figure 2d presents the bounded total variation so-
lution, Figure 2e shows the solution with the minimum gradient
support functional, and Figure 2f demonstrates the focused im-
age. We again assume we know the upper bound value of the
anomalous density.
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Figure 3 shows the set of cquivalent solutions for steplike
density distribution: (a) actual data with 5% random noise
(solid line) and theoretical predicted data for four inversion
results (stars) shown in the other panels, (b) actual model, (c)
maximum smoothness solution, (d) the bounded total varia-
tionsolution, (e) the solution with a minimum gradient support
functional, and (f) the result of focusing inversion. The focusing
inversion produces the best image of the steplike structure.

2-D magnetic data inversion

Now we assume that m is magnetic succeptibility and oper-
ator A is the linear forward magnetic operator. We solve the
stationary magnetic inverse problem. Figure 4 shows (a) syn-
thetic observed magnetic data with 5% random noise and the-
oretical predicted data for inversion results (stars) shown in
Figure 4c, (b) the actual model, and (c) the bounded total
variation inversion result. We now have two anomalous bod-
ies with different susceptibilitics. We first assume we know the
anomalous property of both bodies. This knowledge is included
in the algorithm as a priori information about the distribution
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FIG. 2. A 2-D gravity inversion for two small bodies. Grayscale shows normalized density.
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of the constraints of anomalous susceptibility (Figure 5b). The
resulting image is presented in Figure Sa. It resolves well the
position and shape of both bodies. Figure 5d reflects the wrong
assumption about the bodies’ susceptibilities: one is two times
bigger and the other is two times smaller. Figure Sc shows the
focused image computed for this case. As one would expect,
the sizes of the bodies correspondingly increase and decrease
by two times. Figure 5f reflects the wrong a priori information
about susceptibility: the susceptibility of the first body is two
times smaller, and the susceptibility of the second body is two
times larger than the true values. Figure 5e shows the corre-
sponding focused image. This example suggests that even if we
do not know the property exactly, focusing inversion still can
be applied and can produce useful results.

3-D borehole induction data inversion

We have applied different stabilizing functionals discussed
above to solving the following EM inverse problem. Consider
the model of two conductive bodies located at a depth of 1000 m
(Figure 6). The bodies are prisms 20 x 20 m in the X and ¥ di-
rections and 10 m in the Z direction. The observation array
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is formed by a vertical magnetic dipole transmitter and three-
component magnetic field receivers located in the borehole
with a vertical separation of 6 m. Resistivity of the bodies is
1 ohm-m, while the background resistivity is 1000 ohm-m. The
theoretical frequency-domain EM field in this model was sim-
ulated for frequencies of 16, 32, 64, and 128 kHz using SYSEM
integral equation forward-modeling code (Xiong, 1992). The
transmitter-receiver installation was moving along the bore-
hole from 950 m to 1050 m with observations every 10 m (stars
in Figure 6).

We use three-component data measured at the single obser-
vation point in the borehole to obtain information about the
location of the conducting bodies in the horizontal plane. The
results of simulation are shown in Figure 7 (solid lines).

The first experiment demonstrates the result of inversion
with a total variation stabilizer:

Py (m) = ¢(m) + asgry (m)
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FIiG. 3. A 2-D gravity inversion for step-like structure. Grayscale shows normalized density.
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The inversion image is shown in Figure 8. We cannot see two
separate bodies in this figure. At the same time, the misfit
between the observed and predicted data for this image is only
1.5%.

The next numerical experiment demonstrates results of in-
version using a minimum gradient support stabilizer,

PI?IGS('") = <,0(m) + asgrudsup(m)
=(Am—d, Am —d)p

V,
(Vm, V) i, (28)
v (Vm, Vm) + B2

and penalization, described above. Figure 9 presents the re-
sults of inversion. Figure 7 shows the comparison between the
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FiG. 4. A 2-D magnetic field inversion. Grayscale shows
normalized magnetization of the cells.

observed (solid lines) and theoretical predicted data (stars)
computed for the model shown in Figure 9. In this image, two
bodies are obviously resolved. At the same time, the accuracy
of fitting here is almost the same (1.5%) as that for total vari-
ation inversion.

The obtained results clearly demonstrate the advantages of
the MGS plus penalization approach.

FOCUSING INVERSION ON PENASQUITO GRAVITY DATA

Gravity data for the Penasquito site, collected by Kennecott
Exploration, are used as a test for inversion. The map of
Bouguer anomalies for this site (terrain corrected for nearest
30 m) is shown in Figure 10a.

The subsurface geology of the area is characterized by the
presence of intrusions embedded into sedimentary formations.
Core tests show lowest density for breccia and quartz porphyry
samples (2.32-2.47 g/cm?). Density is 2.58-2.73 g/cm? for both
altered and unaltered background formations.

Thus, negative gravity anomalies are possibly associated with
breccia pipes. Most of the area is covered with alluvium; how-
ever, one breccia pipe is outcropping at the central part of the
map. Another breccia pipe was confirmed by drilling.

In the inversion procedure, contrast for breccia and back-
ground rock was taken as —0.3 g/cm?. However, there are many
areas with positive gravity anomalies up to 1 mGal, which man-
ifest formations with density higher than the background.

Focusing inversion allows us to obtain a well-focused, sharp
subsurface image, in contrast to widely known smooth in-
version methods. It also requires application of the penaliza-
tion technique, in which upper and lower limits of anomalous
density variations are used to produce the density model. In
this example we used values of —0.3 g/cm® as lower limits
which corresponded to the drilling core data about the brec-
cia pipe’s anomalous density. The positive constraints were
taken as +0.3 g/cm® to designate unknown high-density for-
mations.

The subsurface region under investigation was divided into
cubic cells of 100 x 100 m horizontal size. Cell size increases
with depth, starting with 50 m at the surface, then 50, 75, 100,
150, 200, 300, 400, and 500 m. There were 7800 data values and
20 000 model parameters. The density contrast within each cell
was assumed constant, but it changed from cell to cell. Starting
from the model with the zero anomalous density, the inversion
procedure iteratively converged to the model that best fit the
gravity data.

Three separate experiments were done. First, focusing inver-
sion was performed for the entire area. Second, minimum L,
norm (smooth) inversion was done for comparison, also for the
entire area. Third, the inversion was applied to a local data sct
above one of known breccia pipes using a 3-D grid with small,
uniform, cubic cells. The results of the third experiment were
compared with drilling information available in the site.

Results of inversion

The focusing inversion was performed on the real grav-
ity data from the Penasquito site. Only 10 minutes of com-
puter time on a SPARC-20 were required to invert a relatively
large 3-D model as demonstrated here. Figure 10b shows data
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predicted from the focusing inversion. The predicted data fit
the observed data well. Figure 11a shows the residual field,
which is the difference between observed and predicted grav-
ity data. We can treat the residual field as the random noise
which contaminates real data. Maximum errors are on the or-
der of 0.1 mGal, but they occur only above one of the breccia
pipes. Most of the errors are less than 0.02 mGal. A histogram of
residuals is shown in Figure 11b. The residuals form a Gaussian
distribution, which is not surprising, given the fact that least-
squares minimization of residuals was performed. Dispersion
(square root of sum of error squares divided by number of
samples) is 0.01 mGal for this plot. Most of the residual field is
of short length, which means it represents random observation
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errors and near-surface features too small and shallow for the
resolution of the method.

The resulting inversion model is presented further as slices
of anomalous density at different depths. Figure 12 presents
slices at 200 and 325 m depth, respectively.

The plot, corresponding to 200 m depth, is most informative
and clear (Figure 12a). It shows two known breccia pipes at O N
—0.5E and —1 N 0.3 E. The prospective pipe at =03 N —=2.2 E
starts shifting to the north, and the prospective pipe at —1.5 N
2.2 E is shifting toward the south.

There are also numerous positive-contrast density bodies.
One of these features (at 0 N —1.2 E) is present on the deeper
slice at 325 m depth (Figure 12b).
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FIG. 5. A 2-D magnetic ficld inversion with various constraints. Grayscale shows normalized magnetization of the cells. Figure Sa.c,
and ¢ shows magnetic ficld inverse problem solutions for the model presented in Figure 4, with the different assumptions about
the maximum anomalous susceptibility of cach body (constraints). Figure 5b, d, and f shows distributions of the constraints applied
in each case. Note that different constraints can be applied to different parts of the same model. For example, (b) shows that
normalized susceptibility of the left body should not exceed 0.5 units and normalized susceptibility of the right body should not
exceed 2. Figure Sa corresponds to a priori constraints shown in (b), (¢) corresponds to (d), and (¢) corresponds to (f).
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Minimum L; norm inversion results

For comparison, the results of the minimum L, norm inver-
sionare also presented. This inversion produces smooth, murky
images. However, it may also provide useful information.

Smooth inversion produces the data which fit the observa-
tion with almost the same accuracy as for focusing inversion.
However, the inverse anomalous density model is different
because it is a smooth model now. This result corresponds
to the fact that the solution of gravity inverse problem is
nonunique. By introducing a different stabilizing functional in
the Tikhonov regularization scheme, we select different solu-
tions from the class of possible inverse models.

The resulting smooth inversion model is presented further as
slices of anomalous density at different depths (Figures 13a,b).
The slices look somewhat similar to the corresponding sharp
pictures; however, the images here are more dispersed and
unclear. It is hard to evaluate the shape of anomalous bodies
from these picturcs, and some bodies cannot be distinguished
at all.

Validation of results with drilling data

There are no data so far to confirm or reject any hypothesis
about deep structures; however, there are drilling data avail-
able on the site to compare with at depth up to 100-200 m.

One known breccia pipe was selected for more careful inver-
sion in the small window to better understand geometry of this
particular pipe and to check the reliability of inversion results.

A window 1.5 x 1.5 km was cut from the data, and inver-
sion was performed for the data within this window. Cells were
taken as cubes with sides of 100 m for all depths, up to 1.5 km.
After focusing inversion, the cells with zero density were erased
and a 3-D image of the body was generated, as shown in Fig-
ure 14. Stars in Figure 14 show boreholes. The X axis is directed
to the cast, and the Y axis is directed to the north.

Comparing these pictures with the images of the same body
obtained from the entire map, we cannot sce any significant
difference, which demonstrates the robustness of the algorithm
to the cell’s size.

Figure 15 shows the view of the body from the top and the
contour of breccia pipe derived from drilling data. Inversion
correctly predicts which wells are inside and which wells are
outside of the breccia pipe.

CONCLUSIONS

The results of our work demonstrate that by choosing differ-
ent types of stabilizing functionals we can generate inversion
images resolving the anomalous bodies with different accu-
racy. The maximum smoothness functional obviously produces
a very diffuse image. The total variation functional generates
a more focused image but still cannot resolve anomalous bod-
ies well. Finally, the MGS functional in combination with pe-
nalization produces the more resolved and focused image of
anomalous structures.

Thus, the MGS functional in combination with penalization
helps to generate clearer and more focused images for geolog-
ical structures than conventional maximum smoothness and
total variation functionals.

Focusing inversion code was performed on the real gravity
data from the Penasquito site. The results of focusing inversion
have been compared with conventional inversion and checked
againstdrilling data. Comparison shows that focusing inversion
produces a different kind of information than the conventional
smooth method. The shape and size of the bodies are much
better resolved, especially at smaller depths, and are confirmed
by drilling data. As such, focusing inversion can be a useful tool
in interpreting the data.
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FiG. 14. A 3-D image of breccia pipe, viewed from the south-
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anomalous density.
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tions. Dashed line shows contour of breccia pipe inferred from
drilling data.

APPENDIX A
MINIMUM SUPPORT FUNCTIONAL AS A STABILIZER

According to regularization theory (Tikhonov and Arsenin,
1977), a nonnegative functional s(m) on some Hilbert space M
is called a stabilizing functional if for any real ¢ > 0 the subset
M, of clements m € M for which s(m) < ¢ is a compact.
Consider the subset M, elements of M satisfying the condition

spmus(m) <c, (A-1)
where s45(m) is @ minimum support stabilizing functional de-
termined by equation (14). From the other side, sgu s isa mono-
tonically increasing function of [m — mp, || :

spas(mi) < spgs(ma) if lmy —mp, || < llma — mapl.
(A-2)

To prove this, let us consider the first variation of the minimum
support functional:

(m — m‘,,,,)?'
Ssgms(m) = 5/ —_—
ﬂ'J.S( ) " ("1 _ 'nu,)r)z +ﬁ2

ﬂZ
v ((m — Mapr )2 + ﬂZ)Z

dv

3(m — m‘,,,,)2 dv

- / a25(m — mapr)?dv, (A-3)

where

ﬁ?_
2. =
= ((m - ma,ur)2 + ﬁ2)2' (A 4

Using the theorem of the average value, we obtain

8spms(m) = Ez'/ 8(m — mgp,)* dv (A-5)
v

_ 2 = 2
= azaf(m - mupr) dv = a26||m - m"’"'”
|

—2
=2a ”m - Mapr "8””1 - 'napr”» (A'6)
where @ is an average value of ® in volume V. Taking into
account that @ > 0 and |lm — mg,| > 0, we obtain equa-
tion (A-2) from equation (A-6).
Thus, from condition (A-1) we see that

”m - mupr” = q.me M(w (A'7)

where g > 0 is some constant, i.e., M. forms a sphere in the
space M with a center at the point m,,,, . Itis well known that the
sphere is a compact in a Hilbert space. Therefore, we can use
functional sgus(m) as a stabilizer in a Tikhonov regularization
process.
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APPENDIX B
CONJUGATE GRADIENT REWEIGHTED OPTIMIZATION

Consider a discrete inverse problem equivalent to the gen-
eral inverse problem (1) in the case of the discrete model
parameters and data. Suppose that N measurements are per-
formed in some geophysical experiment. Then we can consider
these values as the components of vector d of a length N, Sim-
ilarly, some model parameters can be represented as the com-
ponents of vector 1 of a length L.

In this case, equation (1) can be rewritten in matrix notation:

d = A(rh), (B-1)

where A is the matrix column of the operator A.
The parametric functional (24) for a general nonlinear in-
verse problem can be expressed using matrix notations:

PY() = (W, A () — W,d)* (W A () — W,d)
+ (W, )" W, i, (B-2)

where W, and W, are weighting matrices of data and model
parameters and the asterisk denotes a transposed complex con-
jugate matrix. W, = W, (1) is the matrix of the weighting func-
tion w,(m) introduced above in equation (22). Thus, using as
f(m) in equation (22) the corresponding expression (18), we
obtain a maximum smoothness stabilizer. Determining f(ri)
according to equation (19) yields a total variation stabilizer.
Substituting corresponding formula (20) or (21) instead f (xir)
produces minimum gradient support or minimum support
stabilizers.

We use the conjugate gradient method to minimize the para-
metric functional (B-2). It is based on the successive line search
in the conjugate gradient direction (rh,, ):

lf‘n+1 = liln + 6 = ﬁln - knz(lﬁn)' (B'3)

The idea of the line search is that we present P¢(th, — kI(1h,))
as a function of one variable & and, evaluating it three times
along direction 7(rh, ), approximately fit it by parabola and then
find its minimum and the value of k,,, corresponding to this min-

imum. The conjugate gradient directions I(1h,) are selected as
follows.
First, we use the gradient direction

I(rig) = 1(sing) = F* W3 (A (sing) — d) + «W2riny, (B-4)

m
o W2 N2 (1
where W2, = W2(rhy).
Next, the conjugate gradient direction is the linear combina-

tion of the gradient on this step and the direction /(i) on the
previous step:

I(iy) = i(xiy) + Byl (xhg). (B-5)
On the n + 1th step,
[(dn, 1) = (ai11) + Bua (), (B-6)

where

i(m,) = 2 Wi(A(1h,) — d) + «W? i, (B-7)
and W2, = W2(ih,,).

The coeiiﬁcients B,+1 are defined from the condition that the
directions I(rh, ) and [(th,) are conjugate:

I (i, )l (i 4 1)
Bry1 = ————— . (B-8)
I*(din,, )1 (xin, )

This algorithm always converges to the local minimum because
on every iteration we apply the parabolic line search. We call
this algorithm conjugate gradient reweighted optimization be-
cause the weighting matrix WEH is updated on every iteration.
One can find the formal proof of the convergence of this type
of optimization technique in Eckhart, (1980).

In the case of linear forward operator A, the parametric func-
tional has only one local minimum, so the minimization of P*
is unique (Tikhonov and Arsenin, 1977).

The advantage of the conjugate gradient reweighted opti-
mization algorithm is that we do not have to know the gradient
of f(xn) for every iteration—only its value for corresponding
model parameters, which is easy to calculate.



