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Summary. The quasi-linear (QL) approximation replaces the (unknown) total field in 
the integral equation of electromagnetic (EM) scattering with a linear transformation 
of the primary field. This transformation involves the product of the primary field with 
a reflectivity tensor, which is assumed to vary slowly inside inhomogeneous regions 
and therefore can be determined numerically on a coarse grid by a simple optimization. 
The QL approximation predicts EM responses accurately over a wide range of fre­
quencies for conductivity contrasts of more than 100 to I between the scatterer and the 
background medium. It also provides a fast-forward model for 3-D EM inversion. The 
inversion equation is linear with respect to a modified material property tensor, which 
is the product of the reflectivity tensor and the anomalous conductivity. We call the 
(regularized) solution of this equation a quasi-Born inversion. The material property 
tensor (obtained by inversion of the data) then is used to estimate the reflectivity tensor 
inside the inhomogeneous region and, in tum , the anomalous conductivity. Solution of 
the nonlinear inverse problem thus proceeds through a set of linear equations. In prac ­
tice, we accomplish this inversion through gradient minimization of a cost function that 
measures the error in the equations and includes a regularization term. We use synthetic 
experiments with plane-wave and controlled sources to demonstrate the accuracy and 
speed of the method. 

1 Introduction 

There has been great progress recently in 3-D electromagnetic (EM) modeling and 
inversion with both integral-equation (Eaton, 1989; Xiong, 1992; Xiong and Kirsch, 
1992 ; Tripp and Hohmann, 1993; Xiong and Tripp , 1993; Xie and Lee, 1995) and 
finite-difference methods (Madden and Mackie, 1989; Newman and Alumbaugh, 1995). 
These "exact" methods, however, usually require too large a computational effort to 
allow their routine use. We have been developing a practical 3-D inversion based on 
a fast new method of forward modeling called the quasi-linear (QL) approximation 
(Zhdanov and Fang, 1996a). In the QL approximation, the anomalous field inside the 
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3-D quasi-linear EM modeling and inversion 

the Born approximation for the scattering (Born, 1933): 

ER(rj ) = Iii G"(rj I r) ~a (r)E" (r)d v . (3) 

Th is approximation , however, is not very accurate for EM scattering by the large con­
ductivity contrasts (or large bodies) that are typ ical of geophysical problems. Haba shy 
et al. (1993) and Torres-Verdin and Habashy (1994) developed the extended Born ap­
proximation, which replace s the internal field in the integral (2) not by the normal field, 
but by its projection onto a scattering tensor f(r ): 

E(r) = f(r)E"(r). (4) 

An expre ssion for the scattering tensor is deri ved by rewrit ing Eq. (2) as an integral 
equation for the total field, 

E(rj ) = E" (rj ) + Iii G" (rj I r) ~a (r)E( r ) d v , (5) 

and then approximating E(r) in the integral by its value at the point r j . 

E(r j ) ~ E"(r j ) + E(rj ) Iii G"(r ; I r )M i (r )dv. (6) 

or 
l 

E(rj ) ~ [I-Iii G"(rj I r)~a (r) d vrE"(rj ). (7) 

The expre ssion in bracket s is the scattering tensor ; it does not depend on the illu­
minating sources and is an explicit nonlinear functional of the anomalous condu ctiv­
ity. In forward modeling with the extended Born app roximation , the scattering tensor 
can be calculated directly; in inversion , the scattering tensor is calculated for an (as­
sumed) initial model , and then updated iteratively after solving an inverse problem 
for the anomalous conductivity. Torre s-Verdin and Habashy (1994) also showed that , 
for some models, the iterative procedure could be collapsed into a simple two-step 
inversion. 

2.2 Ql. approximation 

In Zhdanov and Fang (1996a) , we developed ideas that can be co nsidered an exten sion 
of Torres-Verd in and Haba shy 's (1994) method. Expression (2) can be rewritten in 
operator form : 

Ea = C[E"], (8) 

where CjE"] is an integral operator on the anomal ous field E": 

C[E"] = A[E"] + A[E"], (9) 

and A is a linear sca ttering operator: 

A[E] = Iii G"(r j I r ) ~a (r)E(r) d v . ( 10) 
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3-D quasi-linear EM modeling and inversion 

Zhdanov and Fang (1996a) analyze different methods of determining an optimal ~. 

They show that one can use the following condition to determine ~: 

1I~(rj)EI/(rj) -	 iiL GI/(r} I r)6a(r)[(1 + ~)EI/(r)]dVII == rp(~) == min! (19 ) 

In numerical calculations we usually asume that ~(r) is a slowly varying (tensor) 
function inside the anomalous domain D (the simplest form is a constant). Equation 
(19) then can be treated as an overdetermined problem and solved numerically by 
a least-squares method (Zhdanov and Fang, 1996a). After the ~ is found, the QL 
approximation to the field is calculated using 

FG 
;::::	 (20)ifi GF 

(r, I r)6a(rm + ~(r)]En(r) dv . 

where FG stands for the anomalous electric (E G) or magnetic (HG) field observed out ­
side the scatterer (e.g., at surface of the Earth), and GF is the appropriate (electric or 
magnetic) Green 's function. 

2.3 Comparison 

In their roles relating unknown anomalous or total fields to the incident field, the 
electrical reflectivity tensor ~ of the QL approximation and the scattering tensor f of 
the extended Born approximation are them selves related by the simple formula: 

~= f-J,	 (21 ) 

The two approximations differ significantly, however, in computing these tensors. The 
scattering tensor f is defined explicitly by expression (7). The accuracy of the extended 
Born approximation depends on how well the integral in Eq. (5) is approximated by 
taking the constant value for the field E(rj). Because the Green's dyadic is strongly 
peaked for values r ;:::: r i- the approximation should be good if the field itself is not 
varying rapidly at r j . Habashy et al. (1993) called this the "localized approximation." 

The QL approximation determines the electrical reflectivity tensor by solving a 
minimization problem (Eq . 19) on a coarse grid. The accuracy of QL approximation 
depends only on the accuracy of this discretization of ~ and, in principle, can be made 
arbitrarily good, though care may be needed with a fine discretization, because Eq. (19) 
can become underdetermined. 

3 Numerical examples of the Ql approximation 

This section compares the fields obtained by solving the integral equation (2) numeri­
cally , by computing the Born approximation (3), and by computing the QL approxima­
tion (15). Figure I shows the 3-D geoelectrical model , which consists of a homogeneous 
half-space of resistivity 100 ohrn-m and a conductive rectangular inclusion with resis­
tivity I ohrn-rn. The EM field in the model is excited by a horizontal rectangular loop, 

."	 which is lOx 10m, carries a current of I A, and is 50 m to the left of the model , We 
have used the full integral-equation (IE) code, SYSEM (Xiong, 1992), and QL code , 
SYSEMQL (Zhdanov and Fang, I996a) for computing the frequency-domain response 
of the complex conductivity structure along profile s parallel to the x-axis. 

I 



Figure 2. Nu merica l comparison of full IE solutio n and QL approximation co mp uted for Mo de l I 
(F ig. I ) at the frequ ency range from 0 .1 Hz to 10kHz. Calc ulations were performed for the recei vers 
located along profiles parall el to the y -axis on the surface. Plots show the differences betwee n IE 
solution and QL approxi mation for .r-c omponent of the seco ndary electri c field norma lized by the 
value of co rres po nding co mpo nent of the field at the point y = 40 (norm alized erro r) . 
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Figures 2 and 3 compare the different solutions for real and imagin ary part s of the 
anomalou s electrical field E'; for different frequencies. The point x =aalong each pro­
file corresponds to the location of the conductive rectangular inclu sion center. Figure 2 
shows the differences between IE solution and QL approx imation, normalized by the 
value of the corresponding component of the field at the point y = 40. Th e accuracy of 
the QL approximation for the electric-field components is within 5% for frequencies 
from 0.1 Hz to 10 kHz. Figure 3 pre sents the differences between the IE solution and 
Born approximation. normal ized by the value of the corre sponding component of the 
field at the point y =40 . The QL approximation produces a reasonable result , whereas 
the conventional Born approximation is far o ff the mark . 

The next set of comparisons uses the same geometric model, but va ries the bod y 's 
conductivity. We selected four different resi stivities of the inclu sion : I ohrn-rn, 0.1 
ohm-rn, 0.01 ohm -m, and 0.00 I ohrn-rn . Figure 4 shows the differences between the IE 
solution and the QL approximation, at a frequen cy 0.1 Hz, normalized by the value of 
the corresponding component of the field at the point y = 40 . One of the horizontal axe s 
on Fig . 4 is the resi stivity contrast C = o.] Ph , where Ph = 100 ohrn-rn is the resistivity 
of the background, and Pi is the resistivity of the conductive inclu sion. The errors of QL 
approximation are generally small and grow onl y for very-high -conducti vity contrasts, 
equal to 1/ C = 105 • reaching about 10% in extremum point for the electric field. For 
lower-conductivity contrasts , the relative errors are below 5%. 
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Once rp and ~ are known , the anomalous conductivity t::.. ii foll ows from Eq. (22). Thi s 
inversion scheme reduces the original nonl inear inverse problem to three linear steps: 

• inversion of the qu asi-Born equation (23) for rp; 
• computation of the integral (24) to obtain ~ ; and 
• (local) inver sion of Eq. (22) to obtain the conductivity t::..iJ . 

(24) 
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Figure 4. Numerica l comparison of full IE solution and QL approxi mation computed for Model l 
(Fig. I) at the resistivity rat io of inclusive body to the background range from 0.0000 I to 0.0 I (or 
-5to -2 in log scale). Calculatio ns were performed forthe receivers located along profiles parallel 
to the j-axis on the surface. Plot s show the differe nce s between IE solution and QL approximation 
for x -component of the secondary electric field at the frequency 0.1 Hz normalized by the value 

.of correspo nding co mponent of the field at the point y = 40 (normalized error). 

We call thi s pro cedure a QL inversion. As we explain further belo w, these three steps 
do not solve the full nonlinear inverse prob lem for t::.. ii (mainly becau se the inversion 
in the first step is intrinsicall y nonun ique ), but they do provide the basis for an effec­
tive iterati ve solution. Th is iterative scheme resembl es the source-type IE method of 
Habashy et al. ( 1994) and the mod ified gradi ent method of Kleinman and van den Berg 
(1993). 

which is linear with respect to rp(r ) (the original Eq. 20 is nonlin ear with re spec t to t::..ii 

becau se the reflectivity tensor depends implicity on t::.. ii ) . It has the same structure as 
the Born approximation for the anomalous field , with the modified material property 
ten sor J!1(r) replacing the anomalous conductivity t::.. ii (r) . We ca ll Eq. (23) a quasi-Born 

approximation, and its solution (for m) , a quasi-Born inversio n. 

The reflectivity tensor ~ can be computed from 1!1 , becau se 
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Equation (26) is overdetermined and can be inverteddirectly (in least-squares sense) by
 

Ak = [E II*(r j ) ' E II(r j )] - IE''* (ri ) ' L ff'[ G E(rJ I r )m ,EII(r)dv , 
f = I. N lv, . 

r j E o.. 

(31) 

or, in matrix form, 

,,\ = ( ~II* ~II)-I ~II* GE m , (32) 

where ,,\ is now a column vector of the reflectivities; W is a block diagonal matrix 
whose diagonal blocks are the (3 x I complex) vectors EII(r j ); and the asterisk indi­
cates conjugate transpose. 

With multifrequency data, both m and ,,\ will depend on frequency. We assume, 
however, that ti.ii = So - icoS:e, where So and ti.e do not depend on frequency. In 
the absence of any constraints, the least-squares solution of Eq. (29) for the real and 
imaginary parts of ti.r:r is 

Re(tHY ) ~ Re! [ ~(! + ;\)"(! + ;\)r~(! + ;\)"m\. (33 ) 

and 

Im(tHY) = Wlm! [ ~ w(j + <\. )"(! +;\)r ~(! + ;\)"m)_ (34) 

4.2 Regularized QL inversion 

QL inversion requires the solution of Eq. (28) for m, computation of )' k by Eq. (3 1), 
and solution of Eq. (29) for ti.ii j • To obtain a stable, regularized solution, we introduce 
the functional 

p U(m ) = ¢ (m ) + as(m ) , (35) 

where the misfit functional is specified as 

¢ (m) = II GF m- F I12 + 11 m - C! + ~)ti.r:r11 2 

= (G F m - F)*(G F m - F ) + [m - (! + ~ )ti.r:r]*[m - (! + ~)L\r:r] . (36 ) 

The misfit functional tracks the solution of both equations (28) and (29). The stabilizer is 

SCm) = 11 m - m pll2 = (m - ml')*(m - m p ) . (37) 

The prior model m, is some reference model, selected on the basis of all available 
geological and geophysical information about the area under investigation. The scalar 
multiplier a is a regularization parameter. 

The misfit functional provides the solution that best fits theobserved data F, whereas 
the stabilizing functional ties the solution to the prior model mI" The regularization 
parameter a controls the trade-off between these two goals. Principles for determining 
the regularization parameter a are discussed by Tikhonov and Arsenin ( 1977) and Zh­
danov and Keller (1994). We use a simple numerical method to determine the parameter 
a . Consider the progression of numbers 

a k =aol : k=O,I ,2. .. . ,n ; q >O. (38) 
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3D MT Inversion Results 
3D Resistivity Image 
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Figure 10 . The volume image of the inverted model com­
puted from EM data (with 5% noise added) collected along 15 
profiles on the surface of the Earth for four frequencies (10. I. 
0.5. and 0.2 Hz) for the model shown in Fig. 5. 
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Figure 13. Plot s of vertical anomalous magnetic field H;' .(real and imaginary pans) calcu ­
lated at the frequency 50 kHz along the borehole. 

5.2 Cross-borehole vertical magnetic dipole excitation model 

Let us consider a model simulating an orebody (Bertrand and McGaughey, 1994). We 
present the ore body as a cube with side 20 m and resistivity 1 ohm-m embedded in a 
homogeneous media with resistivity 100 ohm-m. This model simulates typical massive­
sulfide deposits. The ore body is located exactly in the middle of the two boreholes at 
a depth of 40 m. The distance between the boreholes is lOa m (Fig. l2a) . Cross­

borehole EM surveys can be conducted by the frequency-domain vertical magnetic 
dipole system. The transmitter (vertical magnetic dipole) is located at a depth of 50 m 
in the first borehole, and 21 receivers , observing the vertical magnetic field, are in 
the second borehole, from a depth of 0 to 100 m. The plots of the vertical anomalous 

magnetic field H~J (real and imaginary parts ) calculated for the frequency 50 kHz along 
the borehole are presented in Fig. 13. 

The unknown region is subdivided into 27 substructures:The size of the substructures 
is selected to be equal to the size of the actual conducting body (Fig. 12b). The vertical 
slices of the geoelectrical model obtained as the result of the inversion for borehole data 
are presented at Fig . 14. Comparison of these results with the original model (Fig . 12a) 
shows that QL inversion produces a reasonable model of the target. 

6 Conclusion 

We have developed a fast algorithm for 3-D EM inversion based on the QL approxima­
tion of forward modeling. The method work s for models with various sources of exci­
tation, including plane waves for magnetotellurics, horizontal bipoles, vertical bipoles , 
horizontal rectangular loops, vertical magnetic dipoles, and the loop-loop system for 
surface (and airborne) electrornagnetics. 
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The reflectivity AN is determined from mN using Eq. (3 1): 

~n AN= GEmN. (AS) 

Note that the anomalouscoriductivity has to satisfy the condition (compo nentwise) 

Re (~O' N _d?: -an ; Im(~O' N_ I ) ~ toe; (A 6) 

because the electrical conductivity and dielectric permittivityhave to be positive.There­
fore, the conductivity ~O'N- l can be found by using Eqs. (33) and (A 6) with the 
following conditions (componentwise): 

Re(~6 N- I) = Re[ ~)(1 + AN- I)*(1 + AN_I)]r 
1 

[ ~(1 + AN- l) *m N_1] 

= (I N- I fora N_I ?:-an (A7) 

and 

Re(~6 N- I) = -~an. for 3N-1 ~ - an' (A8) 

Similarly. 

Im(~6N - d = ~ w I m {[ ~ W(I +AN-I)* O + AN - I)r 
l 

x [~O + AN-d*mN - 1] } =bN - I • 

for bN - I < W C/I 

Im(~6N- d = ~ WC/I' for bN - I ?: WC" . 

The initial iteration should be done using the formula 

m~ = m~ + <Smo = m~ - kg[G F*(G Fm p - F)] . (A9) 

where 

m, = (] + J}. p )~O' p 

The second iteration is 

m~ = m~ + 6ml = m~ - kf eU(mj) . (A 10) 

where 

k

e" (ml) = GF*(GF m, - F) + [m , - (] + J}. d~O' pl + a (m, - mp). (A 11 ) 

The coefficient k~ can be determined from the condition 

PU(m~ +I) = PQ[m~ - k~ eU(mN) ] = f(k~ ) = min! 

Solution of this minimization problem gives the following best estimation for the length 
of the step: 

Q = eQ* (m~ ) eu (m~) 
(A I2)

N eQ ' (m~ ) (G F*G F + a!)eQ(m~) ' 

Using Eqs. (A 2), (A 3), and (A 12), we can obtain m iteratively. 
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