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Abstract. In this paper we address one of the most challenging problems of electromagnetic 
(EM) geophysical methods: three-dimensional (3D) inversion of EM data over inhomogeneous 
geological formations. The difficulties in the solution of this problem are two-fold. On the one 
hand. 3D EM forward modelling is an extremely complicated and time-consuming mathematical 
problem itself. On the other hand, the inversion is an unstable and ambiguous problem. To 
overcome these difficulties we suggest using, for forward modelling, the new quasi-analytical 
(QA) approximation developed recently by Zhdanov et al (Zhdanov M S, Dmitriev V I, Fang Sand 
Hursan G 1999 Geophvsics at press). It is based on ideas similar to those developed by Habashy 
et al (Habashy T M, Groom R Wand Spies B R 1993 J. Geophvs. Res. 98 1759-75) for a localized 
nonlinear approximation, and by Zhdanov and Fang (Zhdanov M S and Fang S 1996a Geophysics 
61646-65) for a quasi-linear approximation. We assume that the anomalous electrical field within 
an inhomogeneous domain is linearly proportional to the background (normal) field through a scalar 
electrical reflectivity coefficient. which is a function of the background geoelectrical cross-section 
and the background EM field only. This approach leads to construction of the QA expressions 
for an anomalous EM field and for the Frechet derivative operator of a forward problem. which 
simplifies dramatically the forward modelling and inversion. To obtain a stable solution of a 3D 
inverse problem we apply the regularization method based on using a focusing stabilizing functional 
introduced by Portniaguine and Zhdanov (Portniaguine 0 and Zhdanov M S 1999 Geophvsics 64 
874-87). This stabilizer helps generate a sharp and focused image of anomalous conductivity 
distribution. The inversion is based on the re-weighted regularized conjugate gradient method. 

1. Introduction 

Electromagnetic (EM) geophysical methods are widely used in the study of the internal 
structure of the earth in mineral, oil and gas prospecting, tectonic studies, and environmental 
assessment and monitoring. They provide unique information about the geological structures, 
petrophysical properties, lithologic characteristics, and thermodynamic and phase status of the 
rocks in the Earth's interior. The future perspective in EM geophysical methods lies in the 
development of multi-transmitter and multi-receiver methods with an array observation system 
analogous to a seismic data acquisition system. Therefore, the main efforts in the development 
of an interpretation technique has to be concentrated on creating three-dimensional (3D) 
methods of analysis of the array EM data. At the same time, the development of effective 
interpretation schemes for 3D inhomogeneous geological structures is still one of the most 
challenging problems in geophysics. 

During the last decade, considerable advances have been made in forward modelling, 
especially in 3D cases (Madden and Mackie 1989, Wannamaker 1991, Xiong 1992, Newman 
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and Alumbaugh 1997, Avdeev et a11998, Druskin et aI1999). Also, we can observe remarkable 
progress in the development of a multi-dimensional interpretation technique. Several papers 
have been published during the last few years on 3D inversion of EM data (Eaton 1989, Madden 
and Mackie 1989, Smith and Booker 1991, Lee and Xie 1993, Oristaglio et al 1993, Pellerin 
et al 1993, Nekut 1994, Torres-Verdin and Habashy 1994, Zhdanov and Keller 1994, Xie and 
Lee 1995, Newman and Alumbaugh 1997, Zhdanov and Fang 1996b, 1999 and Alumbaugh 
and Newman 1997). Note that this reference list includes the papers which focus on inversion 
in the Earth and are most relevant to our paper only. 

The methods for solving multi-dimensional EM inverse problems are usually based on 
the optimization of the model parameters by applying different inversion schemes. The key 
problems in the optimization technique is the calculation of the Frechet derivative (sensitivity 
matrix), which usually requires a lot of computational time. 

Thus, speaking about the future perspective on developments in EM research, we should 
emphasize that the main goa] will be multi-dimensional modelling and inversion, oriented to 
the use of the array EM data. In this connection one of the key problems is the speed of multi­
dimensional modelling codes. A powerful tool for EM numerical modelling and inversion 
is the integral equation method (Hohmann 1975, Weidelt 1975, Dmitriev and Pozdnyakova 
1992). This method is based on the reduction of the EM problem to a system of integral 
equations with respect to the excess current i' within the inhomogeneity. The main difficulty 
of this technique is related to the large size of the matrix of the linear system of equations, 
which could require a great deal of computer memory and time for calculations. 

Another way to overcome this problem is to use the Born-type approximations for fast 
forward modelling (Born 1933, Habashy et al 1993, Torres-Verdin and Habashy 1994). These 
approximate, but accurate enough, forward solutions provide a linear forward modelling 
operator which can be used for the rapid inversion of the multi-dimensional data (Berdichevsky 
and Zhdanov 1984, Habashy et al 1986, Oristaglio 1989). Habashy et al (1993) developed 
a generalized Born approximation (so-called localized nonlinear (LN) approximation), which 
improved significantly the accuracy of the approximate solutions, and applied it to inversion 
(Torres-Verdin and Habashy 1994). In our recent publications, (Zhdanov and Fang 1996a, b, 
1997, 1999), we modified this approach to 3D EM modelling and inversion, introducing 
a quasi-linear (QL) approximation. Within the framework of this method, the anomalous 
electrical field inside an inhomogeneous domain is linearly proportional to the background 
(normal) field through an electrical reflectivity tensor ~, which is a function of the background 
geoelectrical cross-section and the background EM field only. The electrical reflectivity 
tensor ~ can be determined by an approximate analytical solution of the corresponding 
integral equation (Zhdanov et al 1999). This approach leads to a construction of the quasi­
analytical (QA) expressions for an anomalous EM field and the Frechet derivative operator of 
a forward problem, which simplifies dramatically the forward EM modelling and inversion for 
inhomogeneous geoelectrical structures. 

Another critical problem in inversion of EM data is developing a stable inverse problem 
solution which can produce, at the same time, a sharp and focused image of the target. The 
traditional inversion methods are usually based on the Tikhonov regularization theory, which 
provides a stable solution of the inverse problem. This goal is reached, as a rule, by introducing 
a maximum smoothness stabilizing functional. The obtained solution provides a smooth image, 
which in many practical situations does not describe the examined object properly. 

Recently, a new approach to reconstruction of noisy images has been developed in a 
number of papers (Rudin et al 1992, Vogel and Oman 1998). It is based on a total variational 
stabilizing functional which requires that the model parameter distribution be of bounded 
variation. This requirement is much weaker than one of maximum smoothness because it can 
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be applied even to discontinuous functions. In this way the total variation method produces 
better quality images for blocky structures. However, it still decreases the boundaries of the 
model parameter variation and therefore distorts the real image. 

We consider different ways of focusing EM images using specially selected stabilizing 
functionals. In particular. we use a new stabilizing functional which minimizes the area where 
strong model parameter variations and discontinuity occur. This functional was originally 
introduced for the solution of a gravity inverse problem (Portniaguine and Zhdanov 1999). 
We call this new functional a focusing stabilizer. We demonstrate how the focusing stabilizer 
helps to generate a stable solution of the EM inverse problem for complex objects and helps 
to generate much more 'focused' EM images than conventional methods. 

Thus, the main goal of this paper is to demonstrate that a relatively simple QA expression 
for EM response over arbitrary 3D inhomogeneous structures, derived by Zhdanov et al (1999), 
in combination with the focusing stabilizer, can be used for developing a new generation of 
fast 3D EM inversion techniques. 

2. QA solutions for a 3D EM field 

For completeness. we begin our paper with the formulation of the basic principles of QL and 
QA approximations. Consider a 3D geoelectrical model with a background (normal) complex 
conductivity o-/J and local inhomogeneity D with the arbitrary spatial variations of complex 
conductivity 0- = CJh + ~O-. We assume that u. = lJ-o = 4JT X 10-7 H m -I, where flo is 
the free-space magnetic permeability. The model is excited by an EM field generated by an 
arbitrary source. This field is time harmonic as e- icvl . Complex conductivity includes the 
effect of displacement currents: 0- = (J - i(vs, where (J and E are electrical conductivity and 
dielectric permittivity, respectively. The EM fields in this model can be presented as a sum of 
background (normal) and anomalous fields: 

H IJE = E h + Ell. H = + H", (I) 

where the background field is a field generated by the given sources in the model with 
the background distribution of conductivity o-b, and the anomalous field is produced by the 
anomalous conductivity distribution ~O-. 

It is well known that the anomalous field can be presented as an integral over the excess 
currents in inhomogeneous domain D (Hohmann 1975, Weidelt 1975): 

ElI(rj) = ( Ch;(rj I r)jll(r) dv = GE(/I), (2)Jf) 
Hll(rj) = Iv c,,« I r)j{/(r)dv = Gf/(jll), (3) 

where CE (rj I r) and Cf/ (rj I r) are the electric and magnetic Green tensors defined for 
an unbounded conductive medium with the background conductivity o-b; G E and G Hare 
corresponding Green linear operators, and the excess current j{/ is determined by the equation 

i" = ~o- E =~o-(Eb + Ell). (4) 

Using Green operators, one can calculate the EM field at any point rj, if the electric field 
is known within the inhomogeneity. 

E(rj) = GfJ~o-E) +Eh(rj), (5) 

H(rj) = Gf/(~CJE) + Hh(Tj). (6) 

Expression (5) becomes the integral equation with respect to electric field E(r), if rj E D. 
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The QL approximation is based on the assumption that the anomalous field E(/ inside 
the inhomogeneous domain is linearly proportional to the background field E IJ through some 
tensor ~ (Zhdanov and Fang 1996a): 

E(/(r) ~ ~Cr)Eh(r). (7) 

Note that, in the framework of the QL approach, the electrical reflectivity tensor can be selected 
to be a scalar one (Zhdanov and Fang 1996a): 

A = XI. (8) 

where i is a unit tensor. This assumption, of course, reduces the areas of practical applications 
of the QA approximations because, in this case, the anomalous (scattered) field is polarized in a 

direction parallel to the background field within the inhomogeneity. However, in a general case 
the anomalous field can be polarized in a different direction from the background field, which 
could generate additional errors in the scalar QA approximation. Therefore, this particular 
choice may be a cause of difficulties in the case of elongated bodies (e.g. needle-like) or 
of flat bodies (e.g. plate-like), while strong conductivity contrast could also be a source of 
errors, as well as fast variations of the background field in the body volume. Nevertheless, 
numerical modelling demonstrates that the corresponding errors are within a few percentages 

if observations are conducted in the far zone of the transmitter, or in the case of plane-wave 
excitation (Zhdanov et al 1999). 

Substituting formulae (7) and (8) into (5), we obtain the QL approximation E QL(r) for 

the anomalous field: 

h).EQL(rj) = Gd~o-(l +A.(r))E (9) 

The last formula can be used to derive a QL equation with respect to the electrical reflectivity 
coefficient X: 

h
A(r, )E (rj) = G Id~o-A(r )Eh] + E B(rj), (10) 

where E B (rj) is the Born approximation 

EB(rj) = GF:(~o-Eh) = ( GE(rj I r)~o-(r)Eh(r)dv, (11)Jf) 
and Gd~o-A(r)Eh] linearly depends on A(r): 

G rJ~ 0- A(r )E h] = { G t: (r j I r) L'l(J ( r )X(r )E IJ 
( r) dv . ( 12) Jf) 

Following Habashy et a! (1993) and Torres-Verdin and Habashy (1994), we can take into 

account that the Green tensor Gr. v: I r) exhibits either singularity or a peak at the point where 
rj = r. Therefore, one can expect that the dominant contribution to the integral G ElL'lo- AEh] 

in equation (10) is from some vicinity of the point rj = r. Assuming also that A(rj) is a 
slowly varying function within domain D, one can write 

A(rj)Eh(rj) ~ A(rj)Gd~o-Eh]+EB(rj) = A(rj)EB(rj) + EB(rj}. (13 ) 

Taking into account that we are looking for a scalar reflectivity tensor, it is useful to 
introduce a scalar equation on the basis of the vector equation (13). We can obtain a scalar 
equation by calculating the dot product of both sides of equation (13) and the background 
electric field: 

A(rj )E I) ( rj) . E h*(T'j) = A(rj )E B ( r, ) . E h*(Ti ) + E B ( rj) . E h*(rj ) . ( 14) 

where ,*' means complex conjugate vector. 
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Dividing equation (14) by the square of the background field and assuming that 

Eb(rj) . Eb*(rj) i= 0, (15) 

we obtain 

A(rj) = (16) 

where 

K(r j) = 
E H ( rj) . E b*(rj ) 
Eb (r .) . Eb* (r .) . 

.J .J 

(17) 

Substituting (16) into (9), we finally determine 

(J b 
EQA(rj)=E(rj)-E (rj) 

[ A ~o- (r) b 
= iD GE(rj Ir)l_g(r)E (r)dv. ( 18) 

A similar formula can be obtained for the magnetic field: 

(J b /, A ~o- (r) b
H QA(r /.) = H (r j) - H (r j) = G H (r j I r) E (r) dv . (19) 

. . . D . I - g(r) 

Formulae (18) and (19) give QA solutions for 3D EM fields. Note that the only difference 
between the new QA approximation and the Born approximation (I I) is in the presence of 
the scalar function [I - g(r)r This is why the computational expenses to generate the QA '. 
approximation and the Born approximation are practically the same. On the other hand, it 
is demonstrated in Zhdanov et al (1999) that the accuracy of the QA approximation is much 
higher than the accuracy of the Born approximation. 

To illustrate this fact we present the results of numerical experiments for the model shown 
in figure I. It consists of a conductive rectangular prism embedded in a homogeneous half­
space excited by a horizontal rectangular loop. The frequency is 1000 Hz and the conductivity 
ratio between the conductive prism and the homogeneous background is ]O. The receivers 
are located above the body along the y-axis. Figure 2 shows the real and imaginary parts 
of the horizontal electric and vertical magnetic components of the scattered field computed 
by solving the full integral equation (SYSEM code by Xiong (1992» and the approximate 
solutions. The deviations of the QA approximation from the true solution are invisible, while 
the Born approximation fails. 

Another advantage of using expressions (18) and (19) for forward modelling is the ability 
to generate a simple formula for the Frechet derivative operator which can be used in inversion 
algorithms. For example, by introducing a perturbation of the anomalous conductivity 8~o- (r) 

we can calculate the corresponding perturbation of the electric field 8E(rj) on the basis of 
equation (18): 

AA 8~0-(r) b /, ~0-(r)8g(r) b 
8E(rj) = Gdrj I r) E (r) dv + GE(rj I r) E (r) dv, (20)'1 

/,. [) I-g(r) [)' (I-g(r» 

where 

A8E B(r)· Eh*(r) /, I _ I Eb(r'). Eb*(r) .' 
8g(r) = = Gt·(r I r )8~cr(r ) d» . (2] )

Eb(r) . Eb*(r) D . Eb(r) . Eb*(r) 

Substituting equation (21) into the second integral in (20) and changing the notations for the 
integration variables, r ~ r ' and r' -+ r , we obtain 

A A~0-(r)8g(r) /,
G t: ( r /' I r) 2 E b(r) d v = 8~ 0- (r )K (r /' I r) E h(r) dv . (22) 

/,D . (I - g(r» D . 
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Frequency: 1000 Hz 
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Figure 1. Three-dimensional geoelectrical model of rectangular conductive prism embedded in a 
homogeneous hal f-space excited by a horizontal rectangular loop. 

where ~a(r') Eb*(r ') I 

A I A ( I I ) E b ( ') dv . (23)ic«, I r) = }; Gt(rj I r )GE r r r (I _ g(r'))2 Eh(r')' Eh*(r
1) ') 

Therefore, 

oE(rj) = [ o~a(r)FECrj r) dv, (24)iD I 

where the vector function Fe (rj I r) is the kernel of the integral Frechet derivative operator 

F£Crj I r) = [__I-ct(rj I r) + K(rj I r)] Eb(r). (25)
I - g(r) 

In particular, considering the infinitely small domain ofthe conductivity perturbation, we arrive 
at the following formula for the Frechet derivative of the electric field: 

_(}_E_{r_J_) _ Fe (r' I r)
 
a~a(r) - L J •
 

The last formula provides an analytical expression for computing the Frechet derivative 
matrix. Note that, in this case, the amount of calculation for the forward modelling solution 
and for the Frechet derivative is equivalent to computing the Born approximation. 

3. Inversion based on the QA method 

An EM inverse problem, in a general case, can be described by an operator equation 

d = G(m), (26) 
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Figure 2. Behaviour of the anomalous horizontal electric and vertical magnetic tield components 
computed for the model in the previous figure by solving the full integral equation, Born 
approximation and the QA approximations. 

where G is a forward modelling operator, m stands for a set of the model parameters describing 
the anomalous conductivity distribution, ~o-, and d is an EM data set. Using a discrete formula, 
derived in appendix A, we can rewrite equation (26) in the form 

d = G(m) = A[diag(l- Cm.)r1m, (27) 

where I is a column vector formed by units and A stands for electric or magnetic matrices, 
respectively: 

~ A I ~ A I
A E= GEe) or A E = GEe), (28) 

matrix C depends on the matrix of the background electric field e"; introduced in appendix A 
(formula (57», 

hC = (e h eh* ) - 1eh*GD e , (29) 

and diag(l - C'm) is a diagonal matrix determined by the model parameters m (anomalous 
conductivity distribution, ~a). 

The re~larkable fact is that the full matrices A and C in the discrete form of the QA 
approximation are independent of the anomalous conductivity. Therefore, formula (27) is 
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very efficient in iterative inversion because these matrices have to be precomputed only once 
for the entire inverse process. Note that the Green functions are computed using the Fast 
Hankel Transform (Xiong 1992). The only term depending on the model parameters m. is the 
diagonal matrix diag(I - Cm), which is easy to compute for a given C. These results make 
QA approximation a very powerful tool in inversion. 

Inverse problem (26) is usually ill-posed, i.e. the solution can be non-unique and unstable. 
The conventional way of solving ill-posed inverse problems, according to regularization theory 
(Tikhonov and Arsenin ]977, Zhdanov 1993), is based on minimization of the Tikhonov 
parametric functional: 

P" (m) = <p(m) + O's(m), (30) 

where <p(m) is a misfit functional between the theoretical values G(m) and the observed data 
d, s(m) is a stabilizing functional and 0' is a regularization parameter. The optimal value of 0' 

is determined from the misfit condition 

<p(m) = Oel, (31) 

where Oel is the noise level of the data. 
The minimization problem (30) can be solved using any gradient type technique, say, by the 

conjugate gradient (CG) method. The critical point of an inversion algorithm is the calculation 
of the Frechet derivative (sensitivity) operator F at every iteration of the CG method. The QA 
solutions described above provide a very effective and elegant way to compute directly the 
Frechet derivative (sensitivity matrix), outlined in appendix A: 

Sd = F(rn)om. 

where 

F(m) = A{B(m) + diag(m)B2(m)C} (32) 

B(m) = [diag(I ­ Cm)r 1 (33) 

and diag(m) denotes a diagonal matrix formed by the elements of the vector m. 
Note again that numerical computations based on formula (32) are very fast and efficient 

because the full matrices A and C are precomputed for the background model and are fixed; 
we update only the diagonal matrix B(m) on each iteration of the inverse process. 

4. Principles of imaging geological structures with sharp geoelectrical boundaries 

According to the basic principles of the regularization method, we have to find the model m a , 

a quasi-solution of the inverse problem (26), that minimizes the parametric functional (30) 

P" (m) = min. (34) 

Usually, the misfit functional is specified as 

¢(m) = IIWd(G(m) - d)11 2 = (G(m) - d)*Wj(G(m) - d), (35) 

where Wd is some weighting matrix of data and symbol '*' means transposed complex 
conjugated matrix. 

There are several common choices for stabilizers in the parametric functional (30). One 
is based on the least squares criterion. Another stabilizer uses a minimum norm of difference 
between the selected model and some a priori model. For example, the stabilizer may be 
selected to be equal to 

~ 2 ~ ~ 

sCm) = IIWI/l(m - m apr) II = (m - mapr)*lV;~(m - m apr). (36) 
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where Wm is some weighting matrix of model parameters and rnapr is some a priori reference 
model, selected on the basis of all available geological and geophysical information about 
the area under investigation. The solution of the minimization problem (34) with the misfit 
and stabilizing functionals, determined by equations (35) and (36), can be obtained by the 
regularized conjugate gradient (RCG) method (see appendix B). 

The stabilizer (36) applied to the gradient of the model parameters brings us to a maximum 
smoothness stabilizing functional. It has been successfully used in many inversion schemes 
developed for EM data interpretation (Berdichevsky and Zhdanov 1984, Constable et al 1987, 
Smith and Booker 1991, Zhdanov and Fang 1996b). This stabilizer produces smooth models, 
which in many practical situations does not describe properly the real blocky geological 

structures. 
In Portniaguine and Zhdanov (1999), another stabilizing functional was considered which 

minimized the area of the anomalous conductivity distribution. This functional was called a 
minimum support (MS) functional. 

The MS functional can be described as follows. Consider the following integral of the 
model parameter distribution: 

2 

J/3(m) = 1-2--') 
m

dv. (37) 
v m +£­

We introduce the support of m (denoted sptm) as the combined closed subdomains of V where 
m #- O. We call sptm a model parameter support. Then expression (37) can be modified: 

1 
Jf;(m) = {, [1 -~] dv = sptm - £2 ( -2- dv. (38)- '1 

}sPlm m + 8 }SPlm m + 8"­

From the last expression we can see that 

Jf;(m) -+ sptm. if 8 -+ O. (39) 

Thus, integral J, (m) can be treated as a functional, proportional (for a small 8 ) to the model 
parameter support. We can use this integral to introduce a MS stabilizing functional SMS (m) 

as follows: 

1 (m ­ mapr)2 
SMS(m) = Lim - mapr) = 2 - dv. (40) 

v (m - m apr) + 8 

It is proved in Portniaguine and Zhdanov (1999) that the MS functional satisfies the 
Tikhonov criterion for a stabilizer. For discrete model parameters rn, functional SMS can be 
written using matrix notations 

2])-1 (rnsMS(rn) = (rn - rnapr)*(diag[(rn - rnapr) 2 + 8 - rnapr). (41 ) 

We can introduce a variable diagonal weighting matrix We (rn) according to the formula 

~ " 2 2 1/2We(rn) = dlag[(rn - rnapr) + 8] . (42) 

Then the stabilizing functional can be written as the weighted least square norm of the model 

parameters 

SMS(rn) = (rn - rnapr)*We-2(rn - rnapr)' (43) 

Note that it is still important to use in the inversion scheme the permanent weights of model 
parameters Wm introduced in the original stabilizer (36). The fact is that the sensitivity of 
the data to the different model parameters is different because the contribution of the different 
parameters in the observation is also different. For example, the effect of the shallow parts of 
the geoelectrical cross-section is much more significant than the effect of the deep structures. 



1306 M Zhdanov and G Hunan 

The weighting matrix TV;11 can be constructed in such a way that the sensitivity of the data 
to the weighted model parameters will become more or less equal. We have demonstrated in 
Mehanee and Zhdanov (1998) that the matrix TV;n with this property can be determined as the 
square root of the integrated Frechet derivative (sensitivity) matrix: 

TV;/1 Js, (44) 

where S is the diagonal matrix formed by the integrated sensitivities of the field data d to the 
parameter mi ; determined as the ratio 

Ilodll PMS, = - = L(Fid-. (45) 
omk i 

In the last formula Fi k are the elements of the Frechet derivative matrix P(mo) for the initial 
model. 

In a similar way, we can define the data-weighting matrix as 

W,1 = diag(4j~(Fi[)2). (46) 

These weights make normalized data less dependent on the frequency and distance from 
the anomalous domain, which improves the resolution of the inverse method. 

The parametric functional we seek to minimize can be written using matrix notations: 

P" (m) = (G(m) - d)*W](G(m) - d) + a(m - mapr)*We-2W;~ (m - m apr ) = min. 

(47) 

Note that in this case we implement the MS functional by introducing the variable weighting 
matrix We. Therefore, the problem of the minimization of the parametric functional introduced 
by equation (47) can be treated in a similar way to the minimization of the conventional 
Tikhonov functional with the least square stabilizer (36). The only difference is that now we 
introduce some variable weighting matrix, We' for model parameters. This method is similar 
to the variable metric method. However, in our case, the variable weighted metric is used in 
calculation of the stabilizing functional only. 

The minimization of the parametric functional (47) can be carried out using the CG method 
similar to one outlined in appendix B. Numerical calculations, however, demonstrate that the 
most efficient way to solve this problem is based on minimization in the space of weighted 
parameters. We will discuss the basic ideas of this method in the next section. 

5. Minimization in the space of weighted parameters 

The minimization problem (47) can be reformulated using the space of weighted parameters: 
II' ~ _I A 

m W;, vv,/Im. (48) 

We introduce also the weighted data 

dlJ' = Wi/d. (49) 

We can consider the forward operator, which relates the new weighted parameters mil' to 
the weighted data, 

d" = GII'(mlJ') = Wi/G(W;~IW('ml1'). (50) 

Note that from formula (50), we obtain a simple relationship between the Frechet derivative 
matrices of the new, G l1' (rn"), and old, G(m), forward modelling operators: 

6GII'(m U 
' ) = P .Srn" = W: oGW- 1 W: mil'11 d III (' • 
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Therefore, 
_IA A A A A 

s; = W dF "";ll We' (51) 

Using these notations we can rewrite the parametric functional (47) as follows: 

pet( 11') = (,G1I'(m l1' ) _ dW)*(GW(mW 
) _ d W) +a(mu: _ m'" )*(, H' _ H') = ' m apr m nun .m apr 

(52) 

Note that the unknown parameters now are weighted model parameters m 11'. In order to 
obtain the original conductivity distribution we have to apply inverse weighting to the result 
of the minimization of the parametric functional (52): 

A A_I 11' 

m -"";n Wem, . (53) 

The numerical experiments show that, as a rule, the iterative process converges faster for (52) 
than for (47). The minimization method in the space of weighted parameters is similar to the 
RCG method described in appendix B. One can find a detailed description of the re-weighted 
RCG method in the space of weighted parameters in appendix C. 

6. Model studies 

6.1. Model 1 

Consider a homogeneous half-space with resistivity of 100 Q m, containing a conductive 
inhomogeneous body. The resistivity of the inhomogeneity is 16 Q m. The anomalous body 
represents a tilted dyke structure. The top of the anomaly is 200 m and its bottom is 500 m 
beneath the surface. This model is excited by an electric current bipole with 500 m electrode 
separation. The source is located 2000 m from the centre of the inhomogeneity. The source has 
been fed by alternating currents with five differenr frequencies: 0.1, I, 10, 100 and 1000 Hz. 
The .r , y and z components of the anomalous magnetic field have been simulated at nine 
receiver points arranged on a homogeneous grid. The x and y coordinates of the receiver grid 
are .X- = Y = -250, a and 250 m. Both the source and the receiver system are located at the 
surface of the earth. The sketch of the model and the measuring system is shown in figure 3. 
The inverted area is a homogeneous mesh consisting of 6 x 6 x 6 cubic cells surrounding 
the anomalous structure to be inverted. Each cell has a dimension of 100 m in the x, .\' and z 
directions. Note that in this case the cell size is comparable with the skin depth for the highest 
frequency. For better resolution of the inversion one should consider the finer discretization. 
However, in our case, even this rough discretization works reasonably well, as we will see 
from the numerical results of the inversion. The inverted area is also shown in figure 3. The 
vertical slices of the inverted area and the true model are presented in figure 4. 

The data vector consists of 135 simulated field components. The synthetic data is generated 
by a full integral equation code and it has been contaminated by 3% random noise. The model 
parameters are the unknown anomalous conductivity values of each cell of the inverted area. 

The inversion problem is ill-posed and underdetermined, so we use the RCG method 
described above in this paper. We performed Born and QA inversions using smooth (minimum 
norm) and sharp (MS) stabilizers. 

The results of the Born and QA inversions using smooth stabilizer are shown in figures 5 
and 6. As we can expect, we obtain an image which has spread around the location of the 
inhomogeneity. The conductivity contrast is underestimated. It is very difficult to recognize 
the dyke in the image obtained by the smooth Born inversion. The inverse image generated 
by the smooth QA inversion resolves slightly better the inclined dyke. However, the image is 
still diffuse and unclear. 
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Fi gure 3. Three-dimensional gcoc lcctrical model of a tilted con ductive dyke embedded in a 
homogeneous ha lf-space excited by a hor izontal electri c hipol e (model 1). The discreti zation of 
the inverted area is a lso show n. T he rece ivers are ma rked by dot s right abov e the inverted area . 
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Figure 9. Thr ee-dimensional geoe lectrical model of several conduc tive and resistive bodies 
embedded in a homogeneous half -space exc ited by a horizontal e lectric bipolc (mode l 2). The 
d iscretization o f the inverted area is a lso shown. The receivers are marked by dots right above the 
inverted area. 

The differenc e between the QA and Born inversion becomes sig nificant if we use the 
sharp stabilizer, If we have a good es timatio n of the upp er and lower boundaries of the 
model parameters, using thi s stabilize r we ca n usuall y recover the geo metry of the anomalous 
struc ture with high resolution . A lso, this requi res a very accurate forward modelling as a 
basis for the inve rsion. The sha rp Born inversion gives an und erestimated size of the anoma ly 
(fig ure 7). The physical explanation for thi s is that. in the case of co nductive anomali es. the 
Bo rn approx imation gives higher field values tha n the exa ct solution. Therefore. an inver sion 
base d on this will underestimate the conduct ance or the ano ma ly. which corresponds to a 
sma ller size for the given conductivity. 

The QA inver sion solves this probl em. It is based on a much more acc ura te forwa rd 
ope rator than the Born approx imatio n. Th e differ ence between the synthetic data co mputed 
by the QA approximation and full integral equat ion (IE) solution is less than the given noise 
level. Therefore. the Q A inver sion provides almos t perfect reconstruction of the give n model 
(figure S). 

With a reason able es tima te of the noi se level , the stopping criteria of the inversio n ca n 
be assigned to the point where the re lative misfit is minimized to this error level. In our case. 
it was 3% . The re-w eighting in the shar p inversion causes an increment of the mi sfit. We 
rc-weight again only if the misfit drops to the give n noi se level or if the paramet ric functio na l 
increases due to the penalization . 
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6.2. Model 2 

Thi s model repre sent s a more complicated structure with several resistive and conductive 
bodies. The background model and the source arc exactly the sa me as in model I. The 
frequ encies arc O. L I, 10. 100 and 1000 Hz. In this experiment . as in model I. we simulated 
the three components of the anomalou s magnet ic field hy so lving a full IE. and the data was 
contaminated by 3% random noi se. 

The receivers are located on a 4 x 4 grid with x = y = - 450. -150. 150 and 450 m 
coo rdinates at the surface (z = 0). The inverted area has been di scretized by lO x lO x 6 
cubic cel ls of 100 m size in the x , y and z directions. 

Th e 3D picture of the model and the measurement sys tem with the inverted area is presented 
in figure 9. fi gure 10 provides hori zontal slices giving a more detailed image of the model. 

Similarly to the previ ous model study, we performed Born and QA inversions using smooth 
and sharp stabilizers. 

This prob lem is even more underdeterrn incd than the previous one, therefor e the resolution 
of smoo th inversions is poor. We obtain large smooth patches with underestimated co nductivity 
co ntrasts with the Born inversion (figure I I) and a slightly better image with QA inversion 
figure ( 12). 

If we use a focusing inversion algorithm, then we can obtain much more realistic model s 
for both cases . However, the Born inversi on gives a large number of unwanted artifact s. 
overestimated resist ive and underestimated conductive structures (figure 13). Most of these 
devi ation s disappear using the QA invers ion technique (figure 14). We can see that even such 
a complicated 3D model can be reconstru cted based on a relati vely small amount of data. 
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7. Conclusions 

We have presented a new method of 3D EM inversion based on fast and accurate QA 
approximations for both the forward modelling operator and the Frechet derivative. The 
remarkable property of this approximation is that updating the Frechet derivative matrix for 
different iterations requires computing the diagonal matrices only. Therefore, the numerical 
computations based on the QA approximation are very fast and efficient. 

The developed inverse method uses the ideas of regularization and image focusing. Using 
a model study, we demonstrate that QA inversion with focusing provides a sharp and clear 
image of rather complicated 3D targets. 

The future directions for research will include implementation of the more accurate 
reflectivity tensor approximations in the QA inversion code, which were introduced in Zhdanov 
et al (1999). and applying the code to practical data sets. 
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Appendix A. QA approximation in numerical dressing; Frechet derivative matrix 

In practice, we usually solve forward and inverse problems in the space of discrete data and 
model parameters. Suppose that M measurements of an electric or magnetic field are performed 
in some EM experiment. Then we can consider these values as the components of electric, e, 
or magnetic, 11" vectors of a length 3M: 

e = [E~, E;, £;\1. E;,. E; £;\11 , E;, E;, , E~] T• 

h = [H), H;, H\M. H\I. H,I , H,M, H). H/ Htf, 
where the upper subscript' T' denotes a transpose operation of a vector row into a vector 
column. 

Similarly, anomalous conductivity distribution, ,6.0- (r ), on some grid can be represented 
as the components of a vector tri of the length N: 

m = [mI. lJl2•...• lJlNf = [,6.al. ,6.a2•... , ,6.aN f. 
Using these notations, we can write the discrete analogues of the Born approximation (11) and 
QA approximations (18) and (19) as 

B 
e 

A <b = GEe rn, (54) 

ell = GEehrdiag(l- g(m))r l m (55) 

and 

h" = GHeh[diag(l- g(m))r1m. (56) 

We use the following notations in the last formulae. The vectors en, e" and h" represent the 
discrete Born and QA approximations of the anomalous electric field at the observation points. 
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Matrix eh is a sparse tri-diagonal 3N x N matrix containing the x, y and z components of the 
primary (background) electric field at the centres of the cells of the anomalous domain D: 

Eh,1 
\ 

Eh,N 
x 

Eh,1 
I' 

~h 1 I·e = (57) 
Eh,N 

v 

E~,I 

Eh,N 

Matrices GF. and G/I are discrete analogues of the corresponding Green tensors. These 
matrices consist of the elements of either the electric or the magnetic Green tensor acting from 
the anomalous body to the receivers. M is the number of receivers and N is the number of 
cells in the anomalous body. The number of rows in GE, H equals the length of the data vector; 
GE,H has 3N columns: 

... . .. ell . .. IN 
G~.~ G~~ G~:, G:~ x; e .1 ; 

G~l ... eAlN G~,I . .. elvIN G~I . .. eMN 
.1.1' \I x;

ell ... . .. . .. cv: e:,~ e" e~,~IX \'.1' e:~ v; 

GE,H = 
I 

... k/ l e~1 e~N e
\'\ 

.. . e~N e~1 . .. e~N 

... GIN . .. . .. e";.1' ;x e~.~, G~~ G~~ G~r: 

Ml eMN e ;.\ 
... e~1 . .. e~N e~!l . .. e~N

;x 

Vector I is a column vector of the length N formed by units. The column vector gem) of 
a length N represents a function geT) (equation (17)) at the centre of each cell: 

Eh, h . E R. I E h.2*. EB.2 Eh,N* • ER'N] T 

gem) = , ~-')~--"') , ... , I (58)
[ Eh.l* • Eh.1 e->, Eh,~ Eh,N* • E/7.l\ 

where EB.j and Eh,j (j = L 2.... , N) denote the Born approximation and the background 
electric field in each cell within the anomalous domain. 

Direct calculations show that vector gem) can be expressed by matrix multiplication: 

~ b ~ h* ) - I ~ fJ* R g (m ) = ( e e e e/). (59) 

where the vector of the Born approximation inside the anomalous domain. eZ, can be expressed 
by a formula similar to (54): 

B G~ ~h 
e/) = /)e m. (60) 

Matrix GD is a discrete analogue of the corresponding electric Green tensor acting inside the 
domain D. It is the 3N x 3N scattering matrix consisting of the elements of the electric Green 
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tensor inside the anomalous domain: 
GIN GING,~_~ . . . G;~ G~;, .r v G_~~ v; 

G~/ ... G NN 
n G~} G~\N GN! 

,\ ;: GNN 
x; 

G;,~ ... GIN 
YX 

G(I 
vv G_;:~ G;~ GIN 

y; 

Gn = 

G~\I ... G~t G~I'I G~t G~/ GNN 
yz 

G~~ ... GIN 
;,\ G~\I, G~~ G~~ G~;V 

G NN G~I ... G~~N G~,I ;:I' c: G!,!N -
Substituting (60) into (59) we obtain 

g(m) = (eheh*)-Ieb*e B = (eheh*)-leh*Gnehm =Cm. (61 ) 

where 

C = (eheh*)- I e')*GDeb. (62) 

Thus, we can represent equations (54)-(56) in the form 
B <hA A 

e = GEe m = AEm 
A A A AI 

eOA= AEfdiag(I - Cm)r m = AcB(m)m. (63) 
A A A AI 

hOA= AH[diag(I - Cm)r m = AHB(m)m. 

where 
A A A AI I

A E = GEe). A H = GHe), (64) 

and diagonal matrix 

B(m) = [diag(I - Cm)r l 
. (65) 

Let us introduce a notation d for an electric or magnetic vector of the anomalous part 
of the observed data. This vector contains the components of the anomalous electric and/or 
magnetic fields at the receivers. Using these notations, the forward modelling problem for the 
EM field can be expressed by the following matrix operation: 

A A A AI 
d = A[diag(I - Cm)r m = AB(m)m. (66) 

where A stands for the electric or magnetic matrices, A E = GEeb or A H = GHeb, 

respectively. 
Now let us consider the derivation of the Frechet derivative matrix of the forward 

operator (66). Taking into account that the model parameters are the anomalous conductivity 
values in the cells of the anomalous body, matrix A is independent of the model parameters 
and B is a diagonal matrix, one can express the perturbation of the forward operator (66) with 
respect to the model parameters in the form 

8d = A8[B(m)m] = A{B(m)8m + diag(m)8[B(m)]}. 

Since 

8[B(m)] = 8[diag(I - Cm)r l 

= [diag(I - Cm)r2C8m 

= B 2(m)C8m. 
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we obtain 

8d = A{B(1n) + diagCm)1}2(m)C}8m = F(m)8m, 

where 

F(m) = A {B(m) + diag(m)B2(m)C} (67) 

is the Frechet derivative matrix. 
Note that the terms depending on the model parameters are diagonal matrices. The full 

matrices A and C depend only on the background conductivity distribution. Therefore, after 
precomputing full matrices A and C for the background model, the iterative updating of F (m) 

is relatively inexpensive during the inversion process. 

Appendix B. ReG method for the solution of the nonlinear inverse problem 

The discrete nonlinear inverse problem can be formulated as follows: 

d = G(m), 

where G is, in general, a nonlinear forward operator, m is a vector of model parameters and 
d is a vector of the observed data. 

For regularized solution of a nonlinear inverse problem, we introduce a parametric 
functional 

a 2 2A A A A 

P (m) = IIWdA(m) - Wddll +allW;n m - W;nmaprll 

= (l,vdA(m) - Wdd)*(~/A(m) - Wdd) 

+a(l¥;n m -l¥;nmapr)*(-a~nm - Wmmapr ) , 

where Wi! and l¥;n are some weighting matrices of data and model parameters; m apr is some 
a priori model. 

According to the basic principles of the regularization method (Tikhonov and Arsenin 
1977, Zhdanov 1993), we have to find the model nta , a quasi-solution of the inverse problem, 
that minimizes the parametric functional 

pCl(m) = min. 

The ReG method is described by the following iteration process (Zhdanov 1993): 

m n+l = m n + om = m n - k~fCl(mn), (68) 

where the 'directions' of ascent [a (mn ) are selected according to the algorithm described 
below. 

In the initial step, we use the 'direction' of regularized steepest ascent for initial model 
mo: 

fa(mo) = [CI(mo) = F;oWj(A(mo) -- d) +alV;~(mo - m apr), 

where F,no is the Frechet derivative matrix for the initial model. 
In the next step, the 'direction' of ascent is the linear combination of the regularized 

steepest ascent on this step and the 'direction' of ascent fCi (mo) on the previous step: 

fCl(m]) = [CI(m)} + f3f fa (m o). 

In the (n + I )th step 

fCi (mn+l) = [CI (mn+l) + f3~+JCI (mn ) , (69) 
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where the regularized steepest ascent directions are determined now according to the formula 

la(mn) = F;~IIW}(G(rnll) - d) +a~~II(rnll - m apr ) (70) 

and F,1l is the Frechet derivative matrix computed on the nth iteration. 
11 

The length of iteration step, a coefficient k~, can be determined based on the linear or 
parabolic line search: 

pU(mn+l) = P''Lrn; - k~ilX(rnn» = f(k~) = min. 

The solution of this minimization problem gives the following best estimation for the 
length of the step using a linear line search: 

fIX *(m )iCY (m )n n 
k~ = A A,., A A _ • (71 ) _ 

la* (rnn )(F,~II W:7 F,n
ll 

+ a lV;~ )la (rrt ll ) 

One can use a parabolic line search also (Fletcher 1981) to improve the convergence rate of 
the RCG method. 

The CG method requires that the vectors ilX (mil) introduced above will be mutually 
conjugate. This requirement is fulfilled if the coefficients f3n are determined by the formula 
(Tarantola 1987) 

Ill
U (rrt l1 + 1)11 

2 

f31~+1 2Illa(rnn)11 . 

Using equations (68), (70) and (71), we can obtain m iteratively. 
The regularization parameter a describes the trade-off between the best fitting and most 

reasonable stabilization. In a case when a is selected to be too small, the minimization of 
the parametric functional P" (rrt) is equivalent to the minimization of the misfit functional 
¢(rn); therefore we have no regularization, which can result in an unstable incorrect solution. 
When a is too large, the minimization of the parametric functional P" (m) is equivalent to the 
minimization of the stabilizing functional SCm), which will force the solution to be closer to 
the a priori model. Ultimately, we would expect the final model to be exactly like the a priori 
model, while the observed data are totally ignored in the inversion. Thus, the critical question 
in the regularized solution of the inverse problem is the selection of the optimal regularization 
parameter a. The basic principles used for determining the regularization parameter a are 
discussed in Tikhonov and Arsenin (1977) and Zhdanov (1993). 

We use a simple numerical method to determine the parameter a. Consider, for example, 
the progression of numbers 

ak = aoqk: k = 0, 1,2, ... , n; q > O. (72) 

For any number a; we can find an element rrta ! , minimizing PU! (m). and calculate the misfit 
IIC(mu!) - d11 2 . The optimal value of the parameter a is the number akO, for which we have 

IIC(ma!IJ) - dl1 2 = 8. (73) 

where 8 is the level of noise in the observed data. The equality (73) is called the misfit condition. 
In our code we use the following algorithm of the RCG method: 

i-» (mn+l) = lU II 
+ 
1(mn+l) + f311+JIX II (mn ) . 

where an are the subsequent values of the regularization parameter. This method is called the 
adaptive regularization method (Tikhonov and Arsenin 1977). In order to avoid divergence, 
we begin an iteration from a value ofao, which can be obtained as a ratio of the misfit functional 
and stabilizer for an initial model, then reduce an according to formula (72) on each subsequent 
iteration and continuously iterate until the misfit condition (73) is reached. 
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Appendix C. Re-weighted RCG method in the space of weighted parameters 

The re-weighted RCG method is based on a successive line search of the minimum of the 
parametric functional (52) in the RCG direction ~,(m~}): 

UJ U 1 11) U,I a a 11) 
m n+1 = m n + 8m = m n - knlw(mn). 

The iteration step (coefficient k~) is determined from the linear line search: 

l~]* (m;;J)l~ (m~)) 
(74)k; = - . A A 2 A A - .' 

l~}*(m~')(Fl7,1lW d Fum + (1)l~,(m~') 

where Fl: n is the Frechet derivative matrix of the operator WdG(lV;;;-1 Wenm U 
' ) . We can also 

use a parabolic line search for k~ (Fletcher 1981). 
According to (51), it is equal to 

-1A A A A A 

Fum = WdFn w; Wen. (75) 

The RCG directions ~, (m;n are selected according to the same rules as for the 
conventional RCG method presented in appendix B. 

In the first step we use the steepest ascent direction: 
a w a 11) A" - J A * A 11) 11) lL' til 11)
lw(mo ) = lw(mo ) = W eOliV,n Ft) Wd(G (mO ) - d ) + a(mO - m apr)' (76) 

where F,no is the Frechet derivative matrix for the initial model. 
In the (n + l)th step, the 'direction' of ascent, i~/m:+,), is the linear combination of the 

regularized steepest ascent, l~) (m~~ I)' in this step and the'direction' of ascent, i~) (m~'), in the 
previous step: 

-Cl' ( U') laC W) f3Cl'l-a( W)l w m n+ 1 = w m n+ 1 + n+ I w m n . (77) 

The regularized steepest ascent directions for the re-weighted RCG method are determined 
according to the formula 

d Wl~](m:) = Wen Wn~1 i;;Wd(GW(m~) - ) + a(m~' - m~~r)' 

where 

Wen = diagjtrn, - m apr)2 + 8 
21]1/2 ~ diagtjrn; - maprl). (78) 

The coefficients f3~+1 are defined from the condition that the directions i; (m~~l) and 

i~](m~') are conjugate (Tarantola 1987): 

_ Ill~,(mn) f 79 
f3n+1 - Ill~(mn_])112 ( ) 

Note that at each step we re-compute the real parameters of the model from the weighted 
parameters at the nth iteration: 

A A-I W 

m n+l w; W enmn+ 1 • 
(80) 

We call this algorithm the re-weighted RCG method because the weighting matrix Wen 
is updated on each iteration. One can find the formal proof of the convergence of this type of 
optimization technique in Eckhart (1980). 

The iterative process is terminated when the misfit reaches the given level 80: 

¢(mN) = IIrNI1
2 
~ 80. 

Note that, in the practical implementation of the re-weighted RCG method, we update the 
weights, matrix W -;; 1 and the regularization parameter, an, not on every iteration, but after e
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performing a sequence of iterations (usually five or ten) with the fixed values of We-;;(~ and ano' 
This improves the convergence rate and robustness of the algorithm, keeping the value of the 
regularization parameter (XII from being too small during the iteration process. 

Numerical tests show that the MS functional generates a stable solution but it tends 
to produce the smallest possible anomalous domain. Following Portniaguine and Zhdanov 
(1999), we now impose the upper boundary ~a+(r) and the lower boundary ~a-(r) for the 
conductivity values ~a(r) determined as a result of inversion. During the iterative process 
we simply cut off all the values outside these boundaries. This algorithm can be described by 
the following formula: 

~a(r) = ~a+(r), if ~a(r) ;? ~a+(r) 
(81 ) 

~a(r) = ~a-(r), if ~a(r) ~ ~a-(r). 

Thus, according to the last formula the anomalous conductivities ~a (r) are always distributed 
within the interval 

~a-(r) ~ ~a(r) ~ ~a+(r). 
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