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Quasi-analytical approximations and series 
in electromagnetic modeling 

Michael S. Zhdanov* , Vladimir I. Dmitrlevl , 
Sheng Fang** , and Gabor Hursan " 

ABSlRACT 

The quasi-linear approximation for electromagnetic 
forward modeling is based on the assumption that the 
anomalous electrical field within an inhomogeneous do­
main is linearly proportional to the background (nor ­
mal) field through an electrical reflectivity tensor t In 
the original formulation of the quasi-linear approxima­
tion, 1 was determined by solving a minimization prob ­
lem based on an integral equation for the scattering cur­
rents. This approach is much less time-consuming than 
the full integral equation method ; however, it still re­
quires solution of the corresponding system of linear 
equations. In this paper, we present a new approach to 
the approximate solution of the integral equation us­
ing 1 through construction of quasi-analytical expres ­
sions for the anomalo us electromagnetic field for 3-D 
and 2-D models. Quasi-analytical solutions red uce dra­
matically the computational effort related to forward 
electromagnetic modeling of inhomo geneous geoelec­
trical structures. In the last sections of this paper, we 
extend the quasi-analytical method using iterations and 
develop higher order approximations resulting in quasi­
analytical series whichprovide improved accuracy.Com­
putation of these series is based on repetitive applica­
tion of the given integral contraction operator, which 
insures rapid convergence to the correct result. Numer ­
ical studies demonstrate that quasi-analytical series can 
be treated as a new powerful method of fast but rigorous 
forward modeling solution. 

INlRODUCTION 

1975; Dmitriev and Pozdnyakova , 1992). This method is based 
on expressing the electromagnetic fields in terms of an inte­
gral equation with respect to the excess current within an in ­
homogeneity. The integral equation is written as a system of 
linear algebraic equati ons by approximating the excess cur­
rent distribution ja by the piecewise constant functions. The 
resulting algebraic system is solved numerically (Xiong, 1992). 
The main difficulty of this technique is the size of the linear 
system of equations matrix , which demands excessive com­
puter memory and calculation time to invert. This limita ­
tion of the integral equation technique becomes critical in in­
verse problem solution which requires multiple forward mod­
eling calculations for different (updated) geoelectrical model 
parameters. 

A novel approach to 3-D electromagnetic (EM) modeling 
based on linearization of the integral equations for scattered 
E M fields has been developed recently by Zhdanov and Fang 
(1996a, b, 1997). Within this method , called quasi-linear (QL) 
approximation, the excess currents are assumed to be propor­
tional to the background (normal ) field Eb through an electri ­
cal reflectivity tensor t In the original papers on QL approx ­
imations, the electrical reflectivity tensor was determined by 
solving a minimization problem based on an integral equation 
for the scattering currents (Zhdanov and Fang, 1996a, b). This 
problem is much less time-consuming than the full IE method; 
however, it still requires solution of the corresponding system 
of linear equations. In this paper, we present a new approach to 
estimating)." whichleads to constructin gquasi-analytical (QA) 
expressions for the anomalous electromagnetic field for 3-D 
and 2-D models. We demonstrate also the connection between 
the QL and QA approximations and the localized nonlinear 
(LN) approximations introduced by Habashy et al. (1993) and 
Torres-Verdin and Habashy (1994) and conduct a comparative 
study of the accuracy of different approximations. 

The integral equation (IE) method is a powerful tool for elec­ In the last sections of the paper , we extend the quasi­
tromagnetic numerical modeling (Hohmann, 1975; Weidelt, analytical method using iterative techniq ues and develop 
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approximations ofthe higher orders which provide better accu­
racy than the original QA and LN approximations. Combina­
tion of these iterative solutions forms the quasi-analytical series 
which generate a rigorous solution ofEM modeling problems. 

TENSOR QUASI. LINEAR EQUATION 

Consider a 3-D geoelectric model with the background (nor­
mal) complex conductivity i'Jb and local inhomogeneity D 
with the arbitrary spatial variations of complex conductivity 
i'J = i'Jb + j'..i'J . We assume that /-I- = /-1-0 = 4n x 10-7 Him, where 
/-1-0 is the free-space magnetic permeability.The model is excited 
by an electromagnetic field generated by an arbitrary source 
time harmonic as e-;wt. Complex conductivity includes the ef­
fect of displacement currents: i'J = a - iee, where a and e are 
electrical conductivity and dielectric permittivity. The electro­
magnetic fields in this model can be expressed as a sum of the 
background (normal) and anomalous fields: 

Eb+E3E = , H=Hb+H3 
, (1) 

where the background field is a field generated by the given 
sources in the model with the background distribution of con­
ductivity i'J b, and the anomalous field is produced by the anoma­
lous conductivity distribution j'..i'J . 

It is well known that the anomalous field can be presented as 
an integral over the excess currents in inhomogeneous domain 
D (Hohmann, 1975; Weidelt, 1975): 

E3(rj) = ffl GE(rj Ir)t(r) dv = GEUa 
) , 

(2) 

H3(rj) = ffl GH(rj Ir)t(r) dv = GHUa 
) , 

where Ge(rj Ir) and GH(rj Ir) are , respectively, the electric and 
magnetic Green's tensors defined for an unbounded conduc­
tive medium with the background conductivity i'Jb'GE and GH 

are the corresponding Green's linear operators, and excess cur­
rent j8 is determined by the equation 

j3 = ~aE = ~a(Eb + E3). (3) 

Using Green's operators, one can calculate the electromag­
netic field at any point rj, if the electric field is known within 
the inhomogeneity: 

E(rj) = GE(~aE) + Eb(rj), (4) 

H(rj) = GH(~a E) + Hb(rj) . (5) 

Expression (4) becomes the integral equation with respect to 
electric field E(r) , ifrj ED. 

The QL approximation is based on the assumption that the 
anomalous field E8 inside the inhomogeneous domain is lin­
early proportional to the background field Eb through some 
tensor l (Zhdanov and Fang, 1996a): 

E3(r) ~ l(r)Eb(r) . (6) 

Substituting formula (6) into formula (4), we obtain the QL 
approximation E~l(r) for the anomalous field: 

E~l (rj) = GE(~a(1 + l(r»Eb). (7) 

Rewriting expression (7) gives the tensor quasi-linear (TQL) 
equation with respect to the electrical reflectivity tensor l : 

l(rj)Eb(rj) = GE[~al(r)Eb] + EB(rj) , (8) 

where EB(rj) denotes the Born approximation: 

EB(rj) = GE(~aEb) = l GE(rj Ir)~a(r)Eb(r) dv , 

(9) 
and GdAi'Jl(r)Eb] is a linear operator ofl(r): 

Gd~al(r)Eb] = l GE(rj Ir)~(T(r)l(r)Eb(r) dv. 

(10) 

The original QL approximation (Zhdanov and Fang, 1996a, 
b) was based on the numerical solution of a minimization prob­
lem arising from the TQL equation (8): 

Ill(rj)Eb(rj) - GE[~al(r)Eb]- EB(rj)11 = min . (11) 

The advantage of this approach is that, by choosing a fine 
enough discretization for a function l(rj), one can generate 
an accurate solution. The disadvantage, however, is that sim­
ilar to the full IE method, the QL approach still requires so­
lution of the corresponding system of linear equations. In this 
paper, we develop a new TQL equation solution that results 
in analytical expressions for the electrical reflectivity tensor 
l(rj). This technique is, obviously, much faster than the origi­
nal QL approximation. However, it may be less accurate than 
the corresponding QL approximation with a fine grid for l(rj) 
discretization. In other words, there is a trade-off between the 
simplicity of the approximate solution and its accuracy. 

QUASI.ANALYTICAL SOLUTIONS FOR 3-D
 
ELECIROMAGNETIC FIELD
 

In this section we analyze different approximate solutions of 
the TQL equation (8). The iterative approach to the rigorous 
solution of the TQL equation is outlined in Appendix A. 

Solution for a scalar reflectivity tensor 

In the framework of the quasi-linear approach, we may con­
sider the electrical reflectivity tensor selected to be a scalar 
(Zhdanov and Fang, 1996a) , l = At, where t is the unity tensor. 
In this case, integral equation (8) can be rewritten as 

A.(rj)Eb(rj) = GE[~a A.Eb] + EB(rj) . (12) 

Following Habashy et al. (1993) and Torres-Verdin and 
Habashy (1994), we note that Green's tensor Ge(rj Ir) is sin­
gular at the point where rj =r. Therefore, one can expect that 
the dominant contribution to the integral GE [ Ai'JAEb]in equa­
tion (12) is from some vicinity of the point rj = r. Assuming that 
A(rj) is slowly varying within domain D, we write 

A.(rj)Eb(rj) ~ A.(rj)Gd~aEb] + EB(rj) 

= A.(rj)EB(rj)+ EB(rj) . (13) 

As we seek a scalar reflectivity coefficient A, it is useful to 
calculate the dot product of both sides of equation (13) and the 
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background electric field: 

A(rj)Eb(rj) . Eb(rj) 

= A(rj)EB(rj ) ' Eb(rj ) + EB(rj) . Eb(rj ). (14) 

Assuming that 

Eb(rj) . Eb(rj) =J:. 0, (15) 

and dividing equation (14) by the square of the background 
field, we obtain 

g(rj) 
(16)A(rj) = 1 _ g(rj)' 

where 

EB(rj) . Eb(rj) 
(17)g(rj) = Eb(rj) ' Eb(rj) . 

Substituting equation (16) into equ ation (1), we find 

E(r) = E3(r) + Eb(r) ~ [A(r) + l]Eb(r) 

1 b
-() E (r). (18)

l-gr 

Therefore from equations (4) and (5), we finally determine 

EQA(rj) = E(rj) - Eb(rj)(. .6.O'(r) 
= In GE(rj Ir) ~ _/..\ Eb(r) dv, (19)ff"

and 

HQA(rj) = H(rj ) - Hb(rj) (. .6.O'(r) b 
= In GH(rj Ir) ~ ./.\ E (r) dv . (20)ff"

Formulas (19) and (20) give QA solutions for 3·D electro­
magnetic fields. Note that the only difference between the new 
QA approximation and the Born approximation (9) is the pres­
ence ofthe scalar function [1-g(r) ]-1. Hence computationally, 
the QA approximation and the Born approximation are prac­
tically the same. On the other hand , we show below that the 
QA approximation is more accurate than the Born approx­
imation. 

General solution for different polarizations of the anomalous 
and background electric fields 

The QA solutions developed in the previous section were 
based on the assumption that the electrical reflectivity was 
a scalar . This assumption reduces the areas of practical ap­
plication of the QA approximations because in this case the 
anomalous (scattered) field is polarized in direction parallel to 
the background field within the inhomogeneity. However, in 
general, the anomalous field can be polarized in a different di­
rection than the background field. To overcome this difficulty, 
we introduce a tensor quasi-analytical (TQA) approximation 
to 1. which permits different polarizations for the background 
and anomalous (scattered) fields. 

We again assume that the product 1(r)Eb (r) is a smoothly 
varying function of the coordinates, and it can be taken outside 

the integral over the anomalous dom ain D without substantial 
discrepancies. As aresult, we obtain from the TQL equation (8) 

~(rj )Eb(rj ) ~ GE[.6.O'I]~(rj)Eb(rj) + EB(rj) 

= 
• • b Bg(rj)A(rj)E (rj ) + E (rj) , 

or 

[I - g(rj)]~(rj)Eb(rj) = EB(rj), (21) 

where 

g(rj) = GE[.6.O'(r)I]. 

Solving equation (21) yields 

l (rj)Eb(rj) = [I - g(rj)r1EB(rj) . (22) 

Substituting equation (22) into equation (1) , we obtain 

E(r) = E3(r) + Eb(r) ~ O.(r) + I]Eb(r) 

= [I - g(r)rlEB(r) + Eb(r) . (23) 

Therefore, from equations (4) and (5) we find 

E~QA(rj ) = E(rj) - Eb(rj) = ffLGE(rj Ir).6.O'(r) 

x {[I - g(r)rl EB(r) + Eb(r)} dv, (24) 

and 

H~QA(rj) = H(rj) - Hb(rj) = ffLGH(rj Ir).6.O'(r) 

x {[I - g(r)]-lEB(r) + Eb(r)} dv, (25) 

where 

ffL
g(rj) = GE[.6.O'(r)I] = GE(rj Ir).6.O'(r) dv. 

(26) 

We call expressions (24) and (25) TQA approximations 
for an electromagnetic field. We show below that this ap­
proximation provides a more accurate solution for a forward 
problem than a scalar QA approximation. However, we must 
compute the tensor multiplier [1- g(r)]-1, which is slightly 
more time-consuming than calculation of the scalar coefficient 
[1 - g(r)]-1. 

Quasi-analytical solutions for a 2-D electromagnetic field 

Assume now that both the electromagnetic field and the 
complex conductivity a in the geoelectrical model are two­
dimensional (i.e., they vary only along the directions x and z of 
some Car tesian system of coordinates, and are constant in the y 
direction). In this case, repeating derivations described above 
for the 3·D case, we can obtain the following QA expressions 
for a 2-D electromagnetic field: 

a . f" ( .6.O'(r) b
EQA/rj) ~ IWILD JD Gb(rj Ir) 1 _ g(r) Ey(r) ds, (27) 
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and similarly for magnetic field components: 

Ha (r .) ~ - f" [ oGb(rj Ir) ~iT(r) Eb(r) ds, 
QAx J 1D 07. 1-g(r) y 

(28) 

Ha (r.) ~ - f' [ oGb(rj Ir) ~iT(r) Eb(r) ds , 
QAz J 1D oX 1-g(r) y 

(29) 

where Gb(rj Ir) is a 2-D scalar Green's function for an un­
bounded conductive medium with the background conductiv­
ity iTb , and 

Eff(r) 
(30)g(r) = ~() .E ry 

These formulas can serve as a new effective QA tool for both 
direct and inverse 2-D electromagnetic problem solutions. Nu­
merical tests demonstrate that these approximations produce 
a very accurate result for 2-D models (Dmitriev et al., 1998). 

LOCALIZED NONLINEAR APPROXIMATION 

The TQA approximation can be treated as a generalization 
of the LN approximation introduced by Habashy et al. (1993). 
Let us rewrite equation (23) in the form 

E(r) = [I - g(r)rl[EB(r) - g(r)Eb(r)] 

+ [I - g(r)] -lEb(r) . (31) 

Taking into account once again that Green's tensor GE(rj Ir) 
exhibits either singularity or a peak at the point where rj =r, 
one can calculate the Born approximation Gd.6.iT(r)Eb(r)] us­
ing the formula 

EB(rj) = GE[.o.iT(r)Eb(r)] ~ g(rj)Eb(rj) . 

This result implies 

EB(r) - g(r)Eb(r) ~ 0, (32) 

and is particularly appropriate if the background field is a 
smoothly varying spatial function (Habashy et al., 1993). 

Under assumption (32), equation (31) can be rewritten 

E(r) = E3(r) + Eb(r) ~ [I - g(r)rlEb(r) . (33) 

Therefore, from equations (4) and (5) we find 

ELN(rj) = E(rj) - Eb(rj) 

= ffLGE(rj Ir)~iT(r)[1 - g(r)r1Eb(r) dv, 

(34) 

and 

HLN(rj) = H(rj) - Hb(rj) 

= ffLGH(rj Ir)~iT(r)[1 - g(r)] -l Eb(r) dv. 

(35) 

Formulas (34) and (35) express the LN approximation intro­
duced by Habashy et al. (1993), where 

[I - g(r)rl = t(r) 

is their depolarization tensor. 

Thus we can see that the difference between the TQL ap­
proximation and the LN approximation is determined by a 
term 

ETQA (rj) - ELN(rj) 

= ffLGE(rj Ir)~iT(r)t(r)[EB(r) - g(r)Eb(r)] dv , 

(36) 

Note that both TQA and LN approximations use the same 
depolarization tensor t(r), based on the idea of a localized ef­
fect in the Green's integral operator. The only difference is that 
in the case of the LN approximation we use this localization 
property twice for computing both the depolarization tensor 
and the expression for the Born approximation EB(rj) on the 
right-hand side of the TQL equation (8). In the case of TQA 
approximation, we use the exact formula for EB(rj), and we 
consider TQA a partially localized approximation. This differ­
ence does affect the accuracy of these two approximations for 
different geoelectrical models, illustrated below by numerical 
examples. 

COMPARATIVE ACCURACY SlUDY 

To compare the accuracy ofthe Born, QA ,TQA, and LN ap­
proximations, we conducted several numerical experiments for 
the models presented in Figure 1. Modell consists of a conduc ­
tive rectangular prism embedded in a homogeneous half-space 
excited by a horizontal rectangular loop (Figure 1, top panel) . 
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FIo.I. 3-D geoelectrical models used for comparative accuracy 

study of different approximations. 
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The frequency is 1000Hz, and the conductivity ratio is 10. The 
receivers are located above the body along the y-axis. Model 2 
consists of a conductive cube with a resistivity of 1 ohm-m lo­
cated at a depth of 10m within a homogeneous half-space with 
a resistivity of 10 ohm-m (Figure 1, middle panel) . The sides 
of the cubic prism have a length of 50 m. Model 3 contains the 
body with a horizontal size of 100 m x 100 m, a vertical dimen­
sion of 50 m, and located at a depth of 10 m. The EM field in 
models 2 and 3 is excited by a vertical magnetic dipole located 
on the surface of the earth. 

Figure 2 shows the real and imaginary parts of the horizon­
tal electric and vertical magnetic components of the scattered 
field computed by solving the full integral equation and the 
approximate solutions. The deviations of QA, TQA, and LN 
approximations from the "true" solution are minor , but the 
Born approximation fails. The next figure, Figure 3, presents 
the same approximate solutions but for an expanded vertical 
scale. Wecan see now the small differences between the various 
approximations. 

To analyze more carefully the discrepancies in different ap­
proximations, we consider model 2 presented in Figure 1 (mid­
dle panel) . In this experiment the transmitter (Tx) and receiver 
(Rx) geometry was fixed (transmitter-receiver separation was 
100 m), with profiles run over the conductive prismatic body 
with the center at a depth of35 m below the originofx and y co-
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FIG . 2. Behavior of the anomalous electromagnetic field com­
ponents computed for model 1 by solving the full integral equa­
tion, Born approximation, and the scalar QA, TQA, and LN 
approximations. 

ordinates. For each position of the Tx/Rx system, we computed 
the vertical component of the magnetic field using the rigorous 
full IE method and three different approximations: (1) the QA 
approximation, (2) the LN approximation, and (3) the TQA 
approximation. The relative errors of approximate solutions in 
comparison with the rigorous solution were calculated as 

Hfullll 2 e _ IIHappr ­
- lIH!ullll2 x 100% . (37) 

The main goal of this experiment is to demonstrate that the 
accuracy of approximation is not only a function of the con­
ductivity contrast, frequency, and size of the anomalous body, 
it also depends on the relative locations of the transmitter, re­
ceiver and conductive target. 

Figures 4, 5, and 6 are maps of relative errors for QA, LN, 
and TQA approximations correspondingly at the receiver for 
different positions of the recording system relative to the body 
center at a depth of 35 m below the earth's surface. Figure 7 
shows the profiles of errors along the line connecting transmit­
ter and receiver. One can see that for all three approximations 
the errors increase when the body is located just under the 
transmitter or the receiver. However, the largest discrepancies 
occur when the transmitter is near the inhomogeneity, with sig­
nificantly lower (2-7%) discrepancies for all other locations . 
The most accurate result is delivered by TQA approximation 
(dotted line in Figure 7). The high level of discrepancies for 
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QA approximation near the transmitter can be explained by 
the fact that the primary electric field is equal to zero on the 
vertical axes passing through the position of the transmitter 
dipole . Since the expression for scalar coefficient g(r) in for ­
mulas (17) for the QA approximation becomes singular when 
Eb(r) --+0, there is a significant increase of discrepancies in the 
near zone below the transmitter. 

Another cause of discrepancies in this zone is the fact that 
QA approximation is based on a scalar reflectivity tensor. In 
the area below the transmitter, the primary electric field forms 
a "smoke ring" blown by the transmi tting loop into the earth 
(Nabighian, 1979). The condu ctive body located just below the 
transmitter distorts this field through a secondary electric field, 
direct ed at some angle with the primary field. The scalar re­
flectivity tensor cannot account for this rotation of the sec­

error = IHQA _ Hfulll IIHfull1 
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FIG. 4. Map of the relative errors between the scalar QA ap ­
proximation and the full integral equation solution computed 
for model 2. 
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model 2. 

ondary fields which generates additional discrepancies in the 
approximation. The plots in Figures 4-7 show that TQA and 
LN approximations handle this polarization pretty well. An 
especially accurate result is reached by a TQA solutions. The 
corresponding discrepancies do not exceed 7% and 15% in the 
areas unde r the receiver and transmitter, respectively. 

An increase in discrepancies generated by LN approxima­
tion in comparison with TQA approximation can be explained 
by the fact that LN approximation issource independent. When 
the receiver is closer to the transmitter, the source effect be­
comes more significant, which leads to an increase in discrep­
ancies. The TQA solution approximates the polarization of the 
secondary field and takes into account the source position . As a 
result , it produces a more accurate approximation, so the TQA 
approximation is source dependent. 
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We analyzed also the effect of the conductivity contrast on 
the accuracy of different approximations. In Figure 8, we ex­
amine the relative errors for model 3 shown in Figure 1, bottom 
panel. The horizontal size of the conductive body in this model 
(100 x 100 m) is bigger than in model 2. The center of the con­
ductive body is located just below the receiver. We consider 
now that the ratio of anomalous conductivity to background 
conductivity varies within a range offlve orders of magnitude. 
One can see in the plot in Figure 8 that within a conductivityra­
tiorange from 10- 2 to 30, the best accuracy is provided byTQA 
approximations with the discrepancies less than 10%. For the 
higher cond uctivity ratio, the accuracy of all approximations 
becomes less than 20-30 % . 

Figures 9 and 10illustrate the effect of frequency on the accu­
racy of approximation for model 3. The conductive rectangular 
prism has a resistivity of 1 ohm-m while the background resis-
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FI G. 9. The ratio ofdifferent approximations to the full integral 
equation solution of the scattered Hz as a function of frequency 
computed for model 3 with a conductivity of 10. 

tivity of a half-space is 10 ohm -m. The frequency range is from 
10- 1 up to 104 Hz. Figure 9 shows the ratio of the estimated 
to true (computed by IE method) amplitudes of the anoma­
lous field Hz. Figure 10 presents the difference between the 
phases of the anomalous Hz component computed by true and 
approximate solutions. 

The most significant feature of all these plots is the stable 
beh avior of the QA approximation. The ratio of the approxi­
mated and true amplitudes of the anomalous field Hz is equal 
to one within the entire frequency range. The phase difference 
is also close to zero along the entire horizontal axis of the plot 
in Figure 10. At the same time both TQA and LN approxi ­
mations produce good amplitude estimate till the frequency of 
1 kHz, and good phases only for frequencies below 100 Hz .This 
similarity in the TQA and LN data behavior can be explained 
by the fact that both approximations are based on a depolar­
ization tensor calculation, which is independent of the back­
ground field. Therefore, these approximations cannot take into 
account properly the background field which cause discrepan­
cies in these approximations. At the same time,Figure 11 shows 
that at the frequency range above 100 Hz the induction effects 
become strong and the background field begins to vary signif ­
icantly from its static limit. In the case of the QA approxima­
tion , we evaluate more carefully the induction effect becaus e 
the background field is present in the expressions for scalar co ­
efficient g in formulas (19) and (20) for QA anomalies. That is 
why the QA approximation produces stable results for a wide 
frequency range. 

QUASI·A1"ALYTICAL SERIES 

The main limitation ofthe QA method (as well as QL and LN 
approximations) is that it is still an approximate method oD-D 
forward modeling, and its practical application requires addi ­
tional control ofthe approximation discrepancies. It is possible , 
however, to increase the accuracy of the QA approximation by 
constructing QA approximations of a higher order in a similar 
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fashion to the QL series for QL approximations (Z hdanov and 
Fang, 1997). 

The QL series were based on a new method of constructing 
the converged Born series developed by Singer and Fainberg 
(1995) and Pankr atov et al. (1995). This method was applied in 
Zhdanov and Fang (1997) to cons truct QL series th at almost 
always converged. In this paper, we use the same method to 
generate QA series and calculate the accuracy of the QA ap ­
proximations. These series are built on the QA approxi mation 
as the first term of the series. As a res ult , the computa tion of 
QA series becomes eve n easier and faster than in the case of 
QL series, which required the solution of the linear algebraic 
eq uation in the first step of the iterations. Computa tion of the 
QA series does no t involve any system of eq uation solution. It 
is base d on repetitive application of the given integral contrac­
tio n operator, which insures rapid convergence to the correct 
result. 

Following Zhdanov and Fang, (1997) we modify Green's op ­
erator according to the formula 

Gm (~a (r)Eb (r) ) 

= vi ReabGE(2v1 Reab~a( r)Eb( r)) + ~a( r)Eb(r) 

= vi Reab ffL(h (rj Ir) 2v1Rea b~a (r)E b (r) dv 

+ ~a(r)Eb(r) . (38) 

It was proved in Zhdanov and Fang (1997) that the L2 nor m 
of this operator is always less than or equal to one: 

"Gmll .s 1. (39) 

We can rewrite now the integral eq uation for the ano malous 
field (2) as follows: 

aEa = C(aEa), (40) 

where C(aEa) is an in tegral operator of the anomalous field: 

C(aEa) = Gm[,8aEa] + Gm[,8aEb] - ,8aEb, (41 ) 
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FI G. 11. Mutual coupling ratios of the real and imaginary parts 
of the vertical magnetic field ove r a homogeneous half-space 
of 10 ohm-m as a funct ion of freq uency. 

and 

2ReUb+ 6.u 6.u
 
a = 2JReu b ' {J = 2Reub + 6.u ·
 

The solution of this integral equation can be obtained using 
the method of successive iterations , which is governed by the 
followin g equation: 

aEa(N) = C[aEa(N- l)] , N = 1,2,3 . . . (42) 

These iterations always converge for any lossy medi um because 
C is a contraction operator (Z hdanov and Fang, 1997). 

We star t ite rations with the QA approximation for the 
anomalous field: 

Ea(O) - _ 8_Eb (43) qa - 1- 8 . 

In this case, the first order QA approximation is eq ual : 

aEa(l) = C(aEa(O») = Gm[,8aEa(O)] qa qa qa 

+Gm[,8aEb] - ,8aEb. (44) 

We will call the first ite ration de termined by expression (44) a 
modified quasi-analytical approximation (MQA) : 

Ea(l) = Ea = .!.Gm[llaEa(O)] + .!.Gm[llaEb ] _ IlEb 
qa MQA a JJ qa a JJ JJ . 

Taking into account the definition of the modified Green's op­
erator (38) and form ula (43) , we obtain 

Ea = 2Rea b (GE[~aEa (o)] + GE[~a E b]}
MQA 2Reab + ~a qa 

= 2Reab GE[ ~a Eb]
 
2Reab + ~a 1 - 8
 

2Reab Ea . (45) 
2Reab + ~a MQA 

Equation (45) shows that the modified QA approximation is 
equal to the original QA approximation outside inhomogene ­
ity D: 

E~Q A(rj ) = EQA(rj) , rj 1. D, (46) 

while they are different inside the geoelectrical inhomogeneity. 
Th e second-order QA approximation is equal to: 

aE~~2 ) = C (aE~~l » ) = ( GmJ3 ?(a E~~O») 

+ Gm(aE Bm) + aE Bm , 

where EBm is a modified Born approx imation deter mined by 
the formula 

EBm = .!.Gm{JEb _ {JEb = 2Reu b EB. 
a 2Reu b+ 6.u 

The third-order QA approximation is given by the form ula 

aE~~3 ) = C (aE~~2» ) = (Gm,8)3 (a E~~O» ) + (Gm,8)2(aEBm) 

+Gm(aE Bm) + aEBm . 
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Finally, the Nth-order QA approximation can be treated as 
the sum of N terms of the QA series: 

N - l 

L(Gm,8)k(aEBm ) + (Gm,8)N(aE~~O») ,aE~~N ) = (47) 
k=O 

where G" is the modified Green's operator: 

(Gm,8)(aE~~O») 

= JReubffl GE(rj Ir) 2../ ReubbE~~ O ) dv 

+bE~~O) = JReub ffl GE(rj Ir)~u E~~O ) dv 

~u a(O) + ...(l[efibEqa (rj) . 
2 Reab 

Note, that QA series can be built on TQA and LN approxi­
mations as the first iterations. We select the approach based on 
QA approxim ation for the sake of simplicity. 

ACCURACY ESTIMATION 

The accuracy of the QA approximation of the Nth order is 
estimated in the same way as in Zhdanov and Fang (1997) by 
the formula 

IlaEa - aE~~N)11 11,811 00 
r N (48)cN= IlaE~~)11 ::: l-II,8l1 oo , 

where E;~O) = ~Eb, and TN is the relative convergence rate 
of the QA appro~imations : 

IlaE~~N ) _aE~~ -l )11 

r» = IlaE~ ~N) II (49) 

In particular, the accuracy of the original QA approximation 
E'QA can be estimated by computing , using the formula 

IlaEa-aEQAII 11,811 00 IlaEQA-~Ebll 
c= <---

IlaEQAII - 1 - 11,811 00 IlaEQAII 
(50) 

Thus, the accuracy estimation formula for QA solutions is ex­
pressed by the QA solution itself. 

Formulas (48) and (50) make it possible to obtain a quan­
titative estimation of the QL approximation accuracy without 
direct comparison with the rigorous full IE forward modeling 
solution. 

NUMERICAL MODELING RESULTS 

We developed a computer code based on the QA series for 
the electromagnetic field in a 3-D case. The algorithm was 
tested for 3-D geoelectrical models. 

Consider a 3-D geoelectrical model (model 4), consisting of 
a homogeneous half-space (with resistivity of 100 ohm-m) and 
a thin conductive rectangular inclusion with the resistivity of 
1 ohm-m (Figure 12). The electromagnetic field in this model 
is excited by a horizontal rectangular loop, located 50 m to the 
left of the model, with the loop 10 m on a side and a current of 
1 A. We have used the integral equation code for computing 
the scattering current in the complex conductivity structure 
and the QA series code. 

Figure 13 presents maps of the excess electrical currents 
distribution within the inhomogeneity obtained by a rigorous 

Mode/4 

xFrequency:1000 Hz 
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y 
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40m 

12.5m 
-' 

25 m 

25m 

z 

FIG. 12. 3-D geoelectrical model of a thin conductive rectan­
gular body embedded in a homogeneous half-space excited by 
a horizontal rectangular loop (model 4). 
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FIG. 13. Behavior of the scattering currents induced inside the 
conductive rectangular body in model 4 obtained by solving 
the full integral equation and the approximate solution after 
one, 15, and 50 iterations. 
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integral equation solution and by QA series of different orders 
for a frequency of 1000 Hz. Note that this model is a difficult 
one for QA approximation because it contains a conductiv­
ity contrast of 100. Nevertheless, we can see how the currents 
computed by QA series converge to the true solution. Fig­
ure 14 presents a map of relative errors in the excess current 
calculations between the integral equation technique and the 
QA series of the order of 5 and 15. One can observe that the 
discrepancies decrease during the iterations. 

We applied the QA series solution to model the EM response 
for the more complicated model simulating the Kambalda-style 
nickel sulfide deposit in Western Australia (Stolz et aI., 1995.). 
The sketch of the model is shown in the top panel of Figure 15; 
the bottom panel of Figure 15 shows the vertical geoelectrical 
cross-section of the model. The model consists of a conduc­
tive overburden above an inclined nickel lens.The conductivity 
contrast between the nickel lens and the host rocks is1if,which 
is far beyond the normal limits of QA approximations. Fig­
ure 16presents the horizontal and vertical anomalous magnetic 
fields of forward modeling based on integral equation solution 
and QA series of the order of 1,10,20, and 50. The very high 
conductivity contrast and the proximity of the anoma lous body 
causes inaccuracies in the approximate solutions.Ho wever, the 
alwaysconvergent series algorithm provides the correct values. 

Table 1 shows a comparison of CPU time for EM modeling 
using integral IE (Xiong, 1992) and the QA approximations of 
the different orders for the thin shee t and the Kambalda-style 
nickel-sulfide deposit models. For 1088 cells and 50 iterations 

Relative error after 5 iterations 

g 
>­

x [m] 

Relative error after 15 iterations 

105o-5 

10
 

5
 

g 0 
>­

-5 

- 10 

x [m] 
-10 -5 0 5 10 

FiG. 14. Maps of the relative residuals of scattering currents 
obtained by different orders of QA series with respect to the 
full integral equation solution . The number of iterations is 5 
(top) and 15 (bottom). 

of the QA series, the algorithm spent approximately half the 
CPU time required for the solution of the full integral equation. 
For 4352 cells, the time gain is very significant. It takes about 
2.5 hours for the new code to run 50 iterations, which generates 
the same solution as the integral equation code (Figure 16). It 
took more than five days to reach the same result using full IE 
method . 

CONCLUS ION 

We have generalized the QL method of forward modeling 
and developed a new approach to calculation of the electrical 

Table 1. Compar ison of the CPU time (in seconds) for EM 
modeling using full integral equation solution and QA ap­
proximations of the different orders for the thin sheet and the 
Kambalda-style nickel-sulfide deposit models. 

Cells Full IE 1st-order 20th-order 50th-order 
Cells Full IE QA QA QA 

100 30 11 15 21 
1088 1264 221 368 589 
2176 21687 459 1326 2967 
4352 490752 911 3931 8827 
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FIG. 15. Kambalda-style ore deposit model with an inclined 
dike structure. The bottom panel shows the vertical resistivity 
cross-section . 
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FIG. 16. Magnetic fieldcomponents obtained by different num­
bers of iterations of QA series and full integral equation solu­
tions over the Kambalda-style ore deposit model. 

reflectivity tensor based on the solution of the corresponding 
integral equation. 

Based on this approach, we introduced the new scalar (QA) 
and tensor (TQA) quasi-analytical solutions for electromag­
netic fields in 3-D inhomogeneous media. We demonstrated 
also that TQA approximation is a generalization of the local­
ized nonlinear approximation introduced by Habashy et al. 
(1993). The new TQA approximation permits different polar­
izations for the background and anomalous (scattered) field, 
wbich increases the accuracy of approximation for conductiv­
ity contrasts below 30. The comparative accuracy study of the 
different approximations demonstrates that TQA approxima­
tion has a superb accuracy, especially in the areas close to the 
transmitter and to the anomalous geoelectrical structures. At 
the same time, QA approximation generates a stable and ac­
curate result (discrepancies below 3%) for a wide frequency 
range (from 10- 1 up to 104 Hz). 

The computational time for QA approximations is compa­
rable with that required for the Born approximation, although 
the new approximate solutions are much more accurate. To 
generate a rigorous forward-modeling result, we may apply 
these approximations iteratively. Tbis approach leads us to a 
construction of the QA series. 

The developed approximations of the electromagnetic field 
can be used as effective tools for fast 3-D forward modeling. 
One ofthe attractive areas oftheir application is rapid comput­
ing ofthe Frechet derivative for 3-D electromagnetic inversion. 

Weimproved the accuracy ofthe QA approximation by con­
structing QA approximations of a higher order in a similar way 
as has been done for QL approximations in Zhdanov and Fang 
(1997). These series are a new fast and accurate method of 
3-D EM modeling that accelerate dramatically the solution 
of forward EM problems in inhomogeneous 3-D geoelectrical 
structures. 
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APPENDIX A
 

ITERATIVE METH OD
 

We demonstrate here that approximate expressions (16) and 
(22) for the electrical reflectivity tensor can be treated as the 
first iterations within an iterative solution of the TQL equation 
(8) solution. 

Let us subtract Gd.6. iT ~(rJ )Eb ] from both sides of equation 
(8): 

A b [ A b]).. (rj)E (rj) - GE .6.iH (rj )E 

= GE [ .6.0'(l(r) -l(rj)) Eb] + EB(rj ). (A-I ) 

One can apply an iterative process to solve equ ation (A- I): 

l (k+l)(rj)Eb(rj) - GE [ .6.O' l (k+l)(rj)E b] 

= GE[.6.0'(l (k )(r) - l (k)(rj))Eb] + EB(rj ), (A -2) 

where k is the itera tion number and 

l (O)(r) = O. (A-3) 

Note that convergen ce of this iteration process for a specific 
geoelectrical model depends on the propertie s of the opera tor 

A[ l (r) - l (rj )] = GE [ .6.0'(l(r) - l (rj))Eb]. (A -4) 

It was demonstrated by D mitriev and Sedelnikova (1992) 
that the L2 norm of this ope rator determined on a class of the 
slowly varying functions is usually small, which provides the 
convergence of the iteration process (A-2). This assumption is 
based on the fact that for slowly varying l(r), the difference 
[~(r) - ~(rJ ) ] is small if rJ is close to r , and the kernel G £(rJ Ir) 
is small if the distance betwee n the points rJ and r is large. In 
other words, one can consider that ope rator A [~(r) - ~(rJ) ] ' act ­
ing on the class of slow varying functions, is a small operator 
(has a small L 2 norm). 

We demonstrated that by using a modified Green's operator 
with the norm less or equal to one (Zhdanov and Fang, 1997), 
we can construct the modified tensor QL equation with the 
norm of the opera tor A [~(r ) - ~(rJ) ] always small. So, in this 
situation, the iterative process (A-2) will always converge. 

In the case of a scalar electrical reflectivity tensor, integral 
equation (A-I) can be rewritten as 

)..(rj)[Eb(rj) - EB(rj )] 

= GE[.6.0'()..(r) - ).. (rj))Eb] + EB(rj). (A -S) 

Calculating the dot prod uct of both sides of equation (A-5) 
and the background electric field, and dividing the resulting 
equatio n by the square of the backgro und field, we obtain 

)..(rj) [l - g(rj)] = A[)..(k)(r) - ).,(k)(rj) ] + g(rj) , 

(A -6) 

where g(rJ) is de termin ed by eq uation (17), and 

_ ( .) ] _ GE [ .6.0'().. (r) - )..(rj))Eb] . Eb(rj) 
[ ( ) A ).. r ).. rJ - Eb( ) b() .rj . E rj 

(A -7) 

The integral equation (A-6) can also be solved iter atively: 

)..(k+l)(rj) [l _ g(rj)] = A[)..(k)(r) - )..(k)(rj) ] + g(rj) . 

(A -8) 

As we already discussed above, these iterations will con­
verge to a true solution due to the small norm of opera tor 
A[>.(r) - >.(rJ)] acting on the class of slowly varying functions. 
Note that these iteratio ns will always converge if one uses the 
modified Green 's operator in equation (A-7). 

The first iteration of equation (A-8) yields 

)., (l)(rj) = g(rj) , (A-9) 
1 - g( rj) 

which coincides with the approxima te formula (16). 
Thus, we can see that QA approximation can be treated as 

the first iteration in the solution of the TQL equation using the 
iterative algorithm (A-8). 

Note that in the same way one can demo nstrate that TQA 
approximation can be trea ted as the first iteration in the itera­
tive solution of the TQL equation for tensor l (r ). 


