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Foundations of Tensor Induction Well-Logging--
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Michael Zhdanov', David Kennedy', and Ertan Peksen' 

ABSTRACT 

One of the most challenging problems in the field of frequency approximations for the quadrature components 
electromagnetic well logging is the development of inter of our induction tensor. Based on this analysis , we find 
pretation methods for the characterization of conductivity that by measuring the quadrature components of the 
anisotropy in an earth formation . We examine the induction tensor in a deviated borehole, the conductivity 
response of a triaxial electromagnetic induction well anisotropy of the media can be resolved from the instru
logging instrument in an unbounded, homogeneous, ment response. This information includes not only the 
transversely isotropic conductive medium. This instru vertical and horizontal conductivities, but also the orienta
ment detects three components of magnetic field due to tion of the logging instrument axis with respect to the ten
each of three transmitters for a total ofnine signals . These sor principal axes. We introduce the formulas for the 
can be mathematically organized as a tensor array which apparent horizontal and vertical conductivities aha, ava, the 
we call the magnetic induction tensor. The magnetic apparent anisotropy coefficient Aa, and the apparent rela
induction tensor components provide a general descrip tive deviation angle a; These can be used as the basis for 
tion of the electromagnetic field in a transversely isotropic a tensor logging instrument response interpretation in 
medium. By theoretically analyzing the triaxial induction unbounded, homogeneous, anisotropic media . The theory 
instrument for its response to the magnetic field compo is illustrated by numerical examples of induction tensor 
nents induced in the conductive medium, we derive low calculations. 

INTRODUCTION 

Formation conductivity (or resistivity) determination 
from a well bore is probably the oldest geophysical tech
nique to be applied in the subsurface and retains a preemi
nent place in logging suites today . Until recently resistivity 
logging instruments and interpretation techniques were con
sidered mature and improvements in technique were evolu
tionary rather than revolutionary. This has been particularly 
true for the induction method. The emphasis in hardware 
improvements has been on the use of more axial dipole 
antennas on each instrument to better sample (or "sound") 
the radial conduct ivity distribution in order to better infer 

... :~ 

invasion profiles ; i.e., the drilling-induced radial variation 
in conductivity. The use of shorter-spaced arrays also 

-e 

enables synthesis of a more ideal vertical response function 
with potentially higher vertical resolution. To better utilize 
the more complete data acquired by the array instruments, 
new interpretation technology has focused on effective 
methods to invert the data-that is, to obtain the formation 
conductivity distribution given the data acquired by the 
instrument. Until recently most of the effort was focused on 
an assumed axisymmetric distribution of conductivity. In 
spite of these advances in technology there remain , how
ever, just as many enigmatic examples of uninterpretable 
log responses as there have always been . A major variat ion 
on the inversion theme was mod eling software for use in 
deviated boreholes, typically drilled from platforms off
shore. Otherwise these logs were uninterpretable. However, 
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problems with conductivity log interpretation in conve n
tional vertically-drilled boreholes occ urred infrequently 
enough so that mostly they could be ignored- and they 
were. 

Horizontal wells change d everything . 
However, it has taken some time for the industry to rec

ognize this because the industry has been, sim ultaneously, 
learning the art of interpreting measurement-while-drilling 
(MWD) propagation instrument responses. Suffice it to say 
that the connection of the instrument responses to forma tion 
resistivities was not understood. Boundary effects curiously 
named "polarization" horn s were known to induc e resistiv
ity responses not corresponding to any resistivity in a het
erogeneous medium. But these were not the only observed 
anomalies. The beginn ing of real progress is marked by the 
study of MWD two-meg ahertz propagati on resis tiv ity 
responses in horizontal we lls drill ed in the Kup aruk field on 
Alaska's north slope. A study by Klein, Martin, and Allen 
(KMA; 1997) identified reservoir anisotropy as a major 
source of confusion. Basically, KMA discovered that in 
hori zontal wells in hydrocarbon-b earing reservoirs at least 
two separate components of condu ctivity can influ ence 
instrument responses. They furth er discovered that the ratio 
of these condu ctivities could be positively enormo us com
pared to what almost everyone thought possibl e-up to 
100: I ! 

KMA suggested strongly that formations could have at 
least two conducti vity values , a horizontal and a vertical con
ductivity (referred to as ahand av) at the same point in the for
mation. An induction logging instrum ent apparent conduc

tivity response aucould have any value .Jahav -s au :::; ah . 
To interpret aufurth er requires a knowl edge of the ang le the 
instrum ent axis makes with the z axis of the conductivity 
tensor a. With axial dipole instruments this requ ires the 

inference of form ation dip and strike from other instru
ments. 

A way to view the deficiencies of contemporary axial
dipole array instrum ents is to note that in fully anisotropic 
form ations they sample at most only 1/3 (if the instrument is 
vertical) of the potenti al data space (i.e., of the three possi
bl e di rect coupled magn etic fi eld compone nts, only 
one-Hzz-is sampl ed; the cross-coupl ed terms are all zero 
in this case), and at least sample only 1/6 (if the instrument 
is signi ficantly tilted and rolled on its ax is there are three 
direct-coupled and three cross -coupled field components) . 
If the full data space were sampled, the complete conductiv
ity tensor at a point could be inferred. A conductivity tensor 
thus determin ed wou ld be the same regardless of the instru
ment's orientation with respect to the tensor, removing the 
anisotro py-induced ambiguity in instrument response. In 
order to sample the full data space a transmitter comprising 

three mutually orth ogonal coil s, and a similar receiver is 
required. There is now demand in the marketplace for the 
services of such ins tru ments, and they have recently 
become comme rcially ava ilable (Kri egshauser et al., 2000) . 

Interest in transverse coil induction logging instruments 
was evident in the Soviet Union before there was any dis
cernible interest in the West (Eidman, 1970; Kau fman and 
Kaganskii, 1972; Tabarovskii et al. , 1976). The work of 
Tabarovskii and several coauthors (1976, 1977, 1979) is 
concerned with analytica l analys is of radially layered ani
sotropic media. Much later, Tabbagh and Giannakopoulou 
(1995) discuss the same problem but employ numerical 
methods to compute model log responses. 

In th is paper the low-frequ ency apparent resis tiv ity 
responses ofsuch a triaxial induction instrument are investi
gated . Figure I schematically illustrates the important fea
ture s of the sys tem. Three mutually orthogo nal transmitter 
coils source corresponding magnetic dipoles, denoted by 
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FIG. 1 Shown schematically are the transmitter and receiver 
arrays of a triaxial induction instrument. The coordinate system 
attached to the transmitter coils is called the instrument frame. 
The principal axes of a transversely isotropic conductivity tensor 
define another coordinate system called the medium frame. The 
x and y directions in this frame are freely chooseable since in 
the "horizontal" plane the conductivity is isotropic. Also shown is 
a coordinate frame attached to the earth (E,N,up) illustrating 
that neither the instrument nor the medium frames have any 
special directional relationship to the earth frame. 
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the Ms . The total fields linking each corresponding receiver 
coil are denoted by the As . The instrument axis and the con
ductivity tensor are each arbitrarily oriented with respect to 
coordinates fixed in the earth. Each of the three transmitters 
couples independently to each of the three receivers-thus 
from the nine magnetic field components nine components 
of apparent conductivity can be determined. Of the nine six 
are independent. These can be arranged in a 3 X 3 symmet
ric positive definite matrix. The three eigenvalues of this 
matrix comprise the three principal components of the con
ductivity. The principal components will be the same 
regardless of instrument orientation and regardless that the 
six independent components of the apparent conductivity 
matrix will in general depend on the orientation of the 
instrument coil system with respect to the principal compo
nents . The eigenvectors of the matrix will define the relative 
orientation of the instrument axes and the conductivity ten
sor principal axes . These might be useful to determine for
mation dip and strike (Moran and Gianzero , 1979). 

Our method for estimating the components of the con
ductivity tensor is similar to the technique of Moran and 
Kunz (1962) for conventional induction logging. The mag
netic flux density in each of three mutually orthogonal 
directions corresponding to the directions of the receiver 
axes is expanded in terms of its Taylor series. Terms linear 
in conductivity are retained as these are dominant at low fre
quency. The retained terms are then solved for an apparent 
conductivity. 

The resulting conductivity expressions will apply, like 
that of Moran and Kunz, only to the simplest possible case . 
An anisotropic medium in which two of the three conduc
tivity components are equal is termed transversely isotropic 
and is the simplest non-trivial case . (Ifall three of the princi
pal components are equal the medium is isotropic.) Our 
results will apply in infinite, homogeneous, transversely 
isotropic media. Perturbations of the instrument response 
due to bed boundaries, borehole, invasion, and cross
bedding are not accounted for in this analysis. Nor does our 
analysis apply at frequencies corresponding to typical 
MWD instrument operation. Thus it represents the simplest 
possible first step on the road leading to a full understanding 
of the conductivity structure of a rock as derived from elec
tromagnetic instrument responses observed in a borehole. 

Our goal is to obtain estimates of the components of the 
conductivity tensor using voltages induced in each of three 
mutually orthogonal receiver coils of an induction logging 
instrument. These voltages are obtained from estimates of 
the magnetic flux linking each coil. The magnetic fields are 
easily computable from formulas only for sources located at 
the origin and directed along the coordinate axes of a coor
dinate frame, called the medium frame , chosen to coincide 
with the principal axes of the conductivity tensor. These for

mulas give the components of magnetic field in the same 
coordinate frame . In practice a borehole will penetrate the 
medium at an oblique angle with respect to this coordinate 
frame. A logging instrument in such a borehole would be 
coaxial with the borehole and rotated around the borehole 
axis by some unknown amount. Thus a coordinate frame 
attached to the instrument, called the instrument frame, with 
three mutually orthogonal axes aligned with the transmitter 
coil axes will not in general be aligned with the medium 
frame . In order to attain our goal we proceed beginning in 
the instrument frame, resolving each of the instrument's 
sources into their components in the medium frame, com
puting the components of field at the receiver locations in 
the medium frame using appropriate medium-frame formu
las, and finally resolving each component of field into its 
three mutually orthogonal projections in the directions of 
the instrument frame coordinate axes . The sum ofthese pro
jected components in the direction of each receiver dipole 
yields the resultant magnetic field linking each receiver 
coil. Finally, we show that at induction logging frequencies 
these magnetic field components are relatively simply 
related to the components of the conductivity tensor. 

The formulas for the fields are obtained from procedures 
suggested by Moran and Gianzero (1979). We show that the 
transformations from the instrument-to-medium and back 
from the medium-to-instrument frames can be compactly 
expressed in tensor notation. Finally, our goal is reached in 
the development of low-frequency asymptotic expansions 
of the field expressions that simply relate the receiver volt
ages to the tensor components offormation conductivity. We 
will show that for a transversely isotropic medium the appar
ent conductivity tensor has only four independent compo
nents . Of these , only the component estimated from the axi
ally oriented transmitter and receiver dipoles corresponds to 
the familiar induction instrument studied by Doll (1949) and 
Moran and Gianzero (1979). In addition to new results, we 
show how the previous work of Doll, Moran , and Gianzero 
can be obtained as a special case in our analysis . 

MAGNETIC FIELD COMPONENTS 

Medium coordinate frame representation 

Consider a 3-D geoelectrical model of a homogeneous, 
unbounded, anisotropic medium with the tensor conductiv
ity 

Oh o 

a= l~ °h 
o JJ 

where 0 h is the horizontal component of the conductivity 

PETROPHYSICS November-December 2001 590 



Foundations of T ensor Induction Well -Lo ggin g 

and o; is the vertical component of the conductivity. We will 
confine ourse lves to con sid eration of nonmagnetic media 
and, hence, ass ume that /1 =/10= 4,n X 10-7H/m where /10is 
the free-sp ace magneti c permeability. The medium is 
excited thr ough an ele ctromagnetic field genera ted by mag
netic dip oles with moment M and time dependence e- ioi: 

where W = Lnfand f is the natural frequency of the source. 
Displacement currents are neglected. 

Maxwell 's equations for the electromagn etic field are 
then 

V'xH=o ·E (I) 

V'x E= iW/1 oH + iW/1 oM6(x, y, z), (2) 

where 6 (x, y, z) is a Dirac delta fun cti on loc ated at the origin. 
Following Moran and Gianzero ( 1979) we can derive the 
expressions for the different components of the magnetic 
field generated by the induction transmitter dip oles aligned 
in each of the x, y, and z directions of the medium coordinate 
system. For each component of transmitter moment there 
are in gen eral three component s of induced field at each 
po int in the medium. Thus there are nine formulas for field 
co mponents. In this section we summarize the se nine basic 
formulas for the magnetic field components. 

A coordinate sys tem with ax es parallel to the principal 
axes of the conductivit y tensor is convenient. Because in 
transversely isotropic media the conductivity tensor has two 
equal "horizo ntal" components, the re is no preferred or 
unique choice of axes in the horizontal plane. Thus there is 
no los s of generality if the x-z pl ane is defined as the plane 
containing the o, pr incipal axis and the borehole axis. The z 
ax is is selected to co incide with the principal axis of 0 
wh ich fixes the x axis as a line perpendicular to z lying in the 
x-z plane, with the dir ection ofy ax is (which is orthogonal 
to the x-z plane) determined by the right hand rule. 

To proceed furth er we need to defin e a no tat ion . The 
transmitter component is indi cated by a superscript on the 
field symbo l. Thus, H X denotes the magnetic field generated 
by a point magnetic dipole at the origin horizontally ori
ented along the x ax is having unit moment M = (1 ,0 ,0). 
Correspondingly, we denote as HYthe magnetic field gener
ated by a point magnetic dipole horizontally oriented along 
the y axis havin g unit moment M = (0,1 ,0) . Finally, the 
magneti c field generated by the vertically oriented point 
magnetic dipole having unit moment M = (0,0,1) is den oted 
as HZ. In general, each component of the source induces 
three components of field in the medium. Components of 

field are indicated by subscripts. So H { indicates the ith 

component ofH due to the jth component of the transmitter, 

M;;i,j = x, y, z. 
· h . ~ 2 2 f 2 ,2 2U s ing t e not atio n p = x + Y , s = vp + II. Z , 

, 2 I f 2 + 2 k 2 . dk ? ' hA < o; Ov, r = >/p Z , h = ZW/10h, an ;; = ZW/10v t e 

expressions for the components of magnetic field per unit 

moment of so urce dipole are written as 

2
ik S[ k 'k kk 2 Zik 2] H X =~ _ h + Z h S - h vX _~ 

x 4,n AS sp 2 P 4 

ikhr 2 2 _ e [ikhr- k; x _ 2ikhx _ ikh 
(3) 

4,n rp 2 p 4 r2 

k 2 2 I . 2 2] + hX + + 3zkhx _ 3x 
3 4 5'r r r 

x Y eik,,s [k vkh 2ikh] H =H =-xy-- --+ 
Y x 4,np2 S . P2 

_ xy eikh/' [_ k; _ 2ikh + k; + 3ikh _ 2] 
2 4 3 4 5 '4,n rp p r r r 

(4) 

x Z eikhr [kh2 3ikh 3 ] 
H =H =-xz-- - - +-- - - (5) 

Z x 4,n r3 r 4 r5 ' 

ik S [k 2 'kh S k k 2 2 'k 2] HY= ~ _ h_+ Z - h vy _~ 
Y 4,n AS sp 2 P 4 

ikhr 
_ e [ikhr- k; / _ 2ikh/ _ ikh 

(6)
2 4 24,n rp p I' 

kh
2 
Y2+ I 3zk' h y 2 3Y2] 

+ 3 +--4-- - 5- ' 
I' I' I' 

H Y=H z - eikh
r 

[k h2 'sik , 3 ] 
z Y --yz-- - - + - -' - - (7)

4,n 1' 3 4 5'I' I' 

ikhr [ 'k k 2 z 2 + I 3 'k 2 3 2 ] H:=_e_. kl2 +~_ h? _~ +_z_ . (8)
4,nr I I' 1' - 1' 3 1'4 

Since these component formulas ass um e unit-dipole 
sources, the field of a source of arbitrary magnitude is 
obtained by simply calculating the field using the formula 
and multiplying the result by the source magnitude. 

Magnetic induction tensor 

The magnetic field compone nts are given in the previous 

section in a coordinate system defined by the horizontal and 

vertical principal axes of the transverse isotrop ic media. In 

practice, the orientat ion of the tran smitter and recei ver coils 
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will be arbitra ry (as well as a priori unknown) wi th respe ct 
to this coordin ate system. Obviously, the instrument will 
respond only to flux from the field components link ing the 
receiver coils. To proceed it is necessary to develop a con
nection between the magnetic field components detected by 
the instrument 's receiver co ils in a coordinate sys tem 
defined by the coil axes (called H ' ), and the components of 
the same field referred to the principal axes of the conduc
tiv ity tensor (ca lled H) to which formulas (3)-to-(8) apply. 
In oth er word s, a transformation of vectors-and ten
sors- from the instrument coordinate description to the 

(J'h(J'h 

prQjecti.on of0;, ontoxf_y' plane 

FIG.2 If the direction of the o; principa l axis of the conductivity 
tensor is (loosely) called the "vertical " axis , then the relative 
deviation angle a is measured between the vertical axis of the 
conductivity tensor and the instrument axis . The rotation angle f3 
is the roll of the positive x-directed transmitter dipole around the 
instrument axis. The roll is measu red from the highest intercept 
of a circle lying in the x-yplane centered on the instrument axis 
and the plane defined by the instrument axis and the vertical 
axis of the conductivity tensor to a point on the x-directed 
receive r axis. 

medium coordinate descr iption , and vice versa, is needed . 
Figure I shows schema tica lly a sonde containin g both three 
orthogonal transm itter co ils wit h moments MX

' , MY', and 
MZ 

' , and three orthogonal receiver coil s oriented parallel to 
the transmi tters. The inst rum ent and medium axes are not 
parall el. Figure 1 also shows the relation of the axes x' , y' , 
z' of the instrument coordinates to the x, y, and z axes of the 
medium coo rdinates . The angle a between z and z' is a rela
tive deviation of the instrument measured from the (not nec
essari ly vertical) Oz principal axis of the med ium, and angle 
f3 is the roll, or relative rotation, that instrument 's x '-directed 
transmitter dipole makes with the x-z plane (Figure 2). For
mulas (3)-to-(8) represent the components of three vectors 
of ma gnetic field s in the tensor prin cipal axes coo rdinate 
frame , eac h vec tor having three components . These three 
vectors form a magnetic tensor given in dyadic notation as 

H= HX i + H Y j + H Zk 

where i, j , and k are th e Ca rtesi an basi s vec to rs of th e 
medium coordinates. We den ote a ten so r u sing a care t, 
or hat , over a bold typ e- fac ed variable symbo l; vecto rs 

H X ar e s im i la r , but h atl e s s . Si nc e ex pa nds to 
H X = H: i +H; j + H: k and si m ila rly for the other vectors 
the dyadic function representation of the tensor in nonion 
form is 

H=H:ii +H; ji+H:ki 

+H Y · ·+ H Y ·· +HYk · x IJ Y JJ JZ 

+H/ ik+H; jk+H: kk . 

It is conven ient to use the matr ix represe ntation of the 
dyadic function for which the coefficie nts of the dyads are 
written in a matrix as 

H: HI H/]
H= H~ H! H; . 

HX Hi u; Zr 
The columns of this tensor are the magnetic field comp o
nents in the med ium coordinate frame for unit magnetic 
dipole transmitters in the directions of the basis vectors. For 
the magnetic field components of transmitters of arbitrary 
moment it is only necessary to multiply the appropriate col
umn in the matrix by the actual m,?ment of the transmitter in 
each direction. Multiplication of H from the right by the col
umn vector M = (Mx, My, Mz)T (where the superscript T 
denotes the transpose of a vector or matrix) accomp lishes 
this. Now, since an arbitrarily oriented dipole of arbitrary 
moment can be reso lve ~ into its x , y, and z components, the 
usual interpretat ion of HM = H is that H gives the compo-
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nents of the ma gnetic field at any point in space for a sin gle 
tran smitter dip ole w ith co mpo ne nts M. However, we con
sider here an al!e m ative int erpretation . It is clear from the 
derivation that H ca n als o represent the fie ld of thr ee ph ys i
cally separate, orthog onal , co -located dip oles (suc h as the 
triaxial transmitter of the tensor inducti on instrume nt that 
we are considering). Th e tran smitter s have a parti cul arl y 
simple representation in a coordinate fram e with its orig in 
co-located with the transmitter ce nter and hav ing basis vec
tors in the direction of the transmitter dipoles. Th is is 
referred to as the instrument frame . In the ins trument fra me 
we ass ume a source spec ifie d by M ' = ( I, I , I ). 

Instrument coordinate frame representation 

In order to use our representati on of the field tensor H for 
an instrument located in an arbi trary orie ntatio n w ith 
respect to the tensor princip al axes , it is nec essary to tran s
form between the transmitter m omen t (and other vectors) in 
the instrument coordina te fra me representa tio n (deno ted 
(x ' ,y ' ,z')) into the medium frame representa tion (de noted 
by (x,Y,z)). 

The medium (unpr ime d) fram e ca n be re lated to the 
instrument (prime d) fra me by two rota tio ns abo ut the origin 
(F igure 2). Let fJ measure the ang le bet ween the tran sverse 
tran smitter axis designated x' , and the lin e of intersection of 
the x'- y' plan e with the x-z plane. Then, think of rolling the 
x'-y' plan e aro und the z' axis through fJ unt il the x' tran smitter 
(and receiver) lies in the x-z plane. We shall call this angle of 
rotation of the instrument on its axis the instrument roll, or 
relative rotation . Then a second rotation, of the z' axis , around 
the y ' axis throu gh an ang le a until z' coincides with the 
medium axis z provides the desired tran sformation of coordi
nates. We shall call a the instrument tilt , or relative deviation. 

Th e action of these rotations on a vector is mathem at i
call y represented by multiplication of vectors in the primed 
fram e by rota tion matri ce s. Th e ro tation through fJ is repre
sented by 

COSfJ sin fJ 0] 
R f3 = -smfJ cosfJ 0 , (9) 

[ o 0 1 

while the rotation through a is represented by 

A [COS a 0 - sin a] 
R , = 0 1 0 . (10) 

sina 0 cosa 
A A A 

The matrix product R = R aR f3 gives the transformation 

of ve ctor components from the instrument (primed) frame 

to the medium (unprimed) fra me . Th is tran sform ation, or 
rotation , matrix is (Moran and Gi an zero, 1979) 

A [COS a cos fJ cos asin fJ - sin a] 
R = - sin fJ cos fJ O. (11 ) 

sin acos fJ sin asin fJ cos a 
AA 1 A A 

As for any squa re matri x, RR - = I whe re I is the 3 x 3 
iden tity matri x. Th e rot ation matri ces also have the special 
prop erty that they are orthono rmal. Thi s t;:ea ns Athat their 
tran sposes are equa I to t Iieir inverses; e.g., = . · · R T R - 1 

Rep resented in the coord inates defined by the conductiv 
ity ten sor principal ax es the field is given in terms of its 
so urces by 

H=HM. 

Den ote the so urce moment by M = (Mx, My, Mz)T when 
referred to the medium frame and by M ' = (M;, M~, M~)T 
when referred to the instrument fram e. Let the coordinate rota

A • 

tion R transform the magn etic field vector components fro~ the 

instrument frame to the medium frame. For example, H = RH' 
and M = RM'. Substitut ing M = RM' into (12), multipl ying 
from the left by R-1, and defining H ' == R-I H gives 

H' =R- 1f[Rl'\1'. (13) 

Th is expresses the magne tic field in the instrument coordi
nate frame in terms of the so urce in the instrument coordi
nate fra me and in terms of the magnetic induct ion tensor 
ex plicitly expressed in the medium coordinate fram e. We 
note that w ith the definition 

H' == R-1HR =RTHR , (14) 

that the field equations in the instrument frame have a form 
identical to their form in the med ium frame; i.e ., 

H ' =H 'M ' (15) 

wh ere H ' is the representation of the magnetic induction ten
sor in the instrument fra me . Th e instrument's receiver volt

ages are prop orti on al to the compo nents of H '. Fo r the uni t 

dip ole so urces that we are discussin g here, H ' can be thought 
of as the total ins trume nt signa l. 

As a math emati cal di gression , it is interes ting to note that 
whi~e the vector tran sform ation is give n by, for example, 

H = RH ', the cor resp onding ten sor tran sformati on is give n A AAA T AT 
by H =RH 'R , l!ayi ng an add itiona l fac tor of R on the 
right side of the RH ' product. Th e for m of the ten sor trans

forma tio n is not intuitive, and ca nno t be in ferred by analogy 
with the co rres ponding vector transformati on . It is a mathe 
mati cal formulati on of the ph ysical relati on sh ip between 
the magn et ic m oment in the tran smitter and the magneti c 
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field in the receiver. The tensor form shows that this rela
tionship is independent of the choice ofcoordinate system. 

APPARENT CONDUCTIVITY ESTIMATION 

Basic instrument response 

Induction logging instruments measure the voltages V 
induced in the receiver coils . For each coil 

V= iW/-IoSH , (16) 

where S is the area of the receiver coil , and H is the magnetic 
field component along the axis of the coil. From the factor i 
in (16) it is seen that V is phase shifted 90° with respect to H. 
The magnetic field itself can be represented as a sum of the 
real (~) , or in-phase, and imaginary ( ~), or quadrature, 
components decomposed as 

H= ~H+ i~H. (17) 

Substituting (17) into (16) , we obtain 

v= - W/-IoS ~ H + iW/-IoS ~ H . (18) 

The magnetic field at the receiver comprises the sum of two 
fields , the so-called primary and secondary field s. The pri
mary field is not part of the signal but represents the direct 
coupling of the transmitter to the receiver. This field is in
phase with the transmitter current. The voltage induced in 
the receiver by this field is in quadrature with the transmitter 
current. This primary field is rejected by the instrument. The 
electromotive force (emf) induced in the formation is also in 
quadrature with the transmitter current. This emf induces 
eddy currents in phase with itself. These eddy currents give 
rise to a secondary magnetic field that couples to the 
receiver coil , which responds with a voltage in quadrature 
with the eddy currents and secondary fields . This voltage is 
phase shifted - 180° with respect to the transmitter current, 
but is still referred to as in-phase with the transmitter. This is 
the so-called R-signal (Moran and Kunz, 1962). 

The in-phase component of the field (receiver voltage in 
quadrature or X-signal) is not easy to observe because of the 
much larger primary field. The quadrature component of the 
magnetic field (receiver voltage in phase, R-signal) is gen
erated entirely by currents induced in the medium. In the 
conductivity range of sedimentary rocks and at induction 
logging frequencies the in-phase contribution of the secon
dary field caused by induced currents is much smaller than 
the quadrature component (Kaufman and Keller, 1989) and 
is not needed in estimating formation conductivity at low 
frequencies or conductivities. Therefore, the usual apparent 

conductivity definition is based on an approximate formula 
that considers only the imaginary (or quadrature) compo

nent of the induced magnetic field (i.e., in-phase receiver 
voltage) . We will follow this principle here to derive expres
sions for the components of the apparent conductivity ten
sor. 

Magnetic field asymptotic approximation 

We obtain low frequency asymptotic approximations 
used in estimating apparent conductivity relations by 

expanding the exponential eik"s and e 
ikhr in the form ofTay

lor series and substituting the resulting leading terms into 
formulas (3)-(8). (A detailed derivation of these approxi
mate expressions is given in Appendix A.) The results are 

o x Iss H; "' - W/-Io ah 
4.n 

(19) 
/ x

2 
2 s- rA rA - S x

2 
I ) --+-+2x --+--+--( sp 2 A rp 2 p 4 A p 2 A 2r3 2r' 

x y xy ( s - rA AS- r I 1 
~H = ~Hx "' - w/-Io ah 2-----+- , (20) 

y 4.n Ap4 Arp 2s 2r3 

~Hx =~H 
z 
"'-

xz 
-w/-I oah , (21) 

Z x 8.nr 3 

o y I
:sHy "'- W/-I oah . 

4.n 
(22) 

X 2 / 2 S - rA rA - S / 1) --+-+2y --+--+--
( sp 2 A rp 2 p 4 A p 2 A 2r3 2r'
 

yz 
~ H{ = ~H; "' --3 W/-I oah, (23)

8.nr 
2 2 o z ~ r + z 

:sHz :::::: W/-I oah· (24)1 

8.nr 

The limiting case of these formulas for the instrument 
axis positioned parallel to the vertical axis of the conductiv

ity tensor is interesting. In this limit for an instrument with 
transmitter-receiver spacing z = L,p ~ 0, a ~ AL, and r ~ L. 
The quadrature components in this limit are 

0 H x _ W/-I o:s x ---av , (25)
8.nL 

~ H; = ~ H[ ::::::0 , (26) 

~ H: = ~ H/ ::::::0 , (27) 

W/-I o 
~HY ::::::--a (28)y 8.nL v, 

~ H{ = ~ H; ::::::0 , (29) 
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CSH Z _ W/lo (30)
Z  4nL a" . 

Equation (30) indicates that for an instrument with its 
axis parallel to av, the vertical magnetic field component of 
the vertical transmitter dipole is approximately proportional 
to the horizontal conductivity a"of the media. This is a well 
known result (Moran and Gianzero, 1979) . Indeed, Doll's 
(1949) well known formula for the apparent resistivity ofan 
axial dipole array corresponding to a vertically oriented 

zinstrument can easily be obtained from CSHz using (18) 
with S =na; where a; is the receiver radius, and also 

remembering that the transmitter dipole in (30) is repre
sented by a unit moment, M' = M = (0,0 ,1) = (0,0, Ina,2) 

where a, is the transmitter radius . The result is 

2 2 2 2 
_ (W/lo) n at a r a" = -Ka" (31)

V - 4nL 

where K is Doll's instrument constant. 
However, (25) and (28) indicate that the horizontal mag

netic field components of the horizontal transmitter dipole 
are functions of the vertical conductivity only. This is a sur
prising result. It is counterintuitive based on the usual con
ceptual picture of the induction signal arising from eddy 
currents that , if circulating around a horizontal axis , would 
be influenced by both a" and avo If confirmed in practice, 
this approximation would suggest the possibility of simply 
separating the horizontal and vertical effects in transverse 
isotropic media using a tensor system of observations. 

EFFECTS OF SONDE ORIENTATION 

Having derived low frequency asymptotic approxima
tions for the field components in (19)-(24), we wish to 
inspect the accuracy of these approximations over a range 
ofparameter values. We do this in the following sections by 
first developing a representation of the fields in polar coor
dinates in the x-z plane, and then applying this representa
tion to an analysis of the accuracy ofour approximation. We 
then examine the instrument response as a sonde at various 
tilt angles is rolled around its axis . 

Tilt effects: relative deviation response 

We have used Cartesian coordinates in the medium 
frame in equations (3)-(8), (19)-(24) , and (25)-(30) to 
describe the magnetic fields. We have also shown how the 
rotation matrix given in (11) can be used to convert these 
expressions into the instrument frame . We now make this 
connection explicitly and derive formulas for the magnetic 
fields and the magnetic induction tensor expressed directly 
in the instrument frame. 

The instrument's position is usually specified in terms of 
the angle between the instrument axis (obtained from a 
wellbore deviation survey) and the vertical direction. How
ever, its response is conventionally described in terms of the 
relative deviation (denoted by a) which is the angle 
between the instrument axis and the direction normal to the 
(not necessarily horizontal) plane of isotropy in a trans
versely isotropic medium. This information could be avail
able from borehole images or dipmeters, or might be 
inferred from structural maps. However, this information 
can be obtained directly from the tensor induction log data. 

We shall show in the next section that the effect of sonde 
roll can be evaluated and eliminated from the observations . 
It is convenient for the present analysis to express H 
directly in terms of the relative deviation alone, with the 
relative rotationf3 taken as 0. Let the instrument's transmit
ter coils coincide with the coordinate origin, with the 
receiver coils located at some distance L from the transmit
ter at a point with polar coordinates in the x-z plane 

x =L sin a, 

y= 0 , (32) 

z =L cos a, 

where a is the relative deviation of the instrument axis with 
respect to the nominal vertical axis of the conductivity ten
sor. The x direction is chosen so that the instrument axis (i.e., 
L) is confined to the x-z plane, and the coil of the y-directed 
receiver is confined to the x-z plane. Therefore 

p =x= Lsina, 

S=~p2+).2Z2, 

= L~sin2 a +).? cos ' a , 

and 

s- LA = L (.Jsin 2 a +).2 cos ' a - ).). 

With the restriction f3 = 0, using these formulas and equations 
(19)-(24), we obtain the following expressions for the magnetic 
field components at the various receivers as functions ofa : 

«n: :::::: w/loa" [1 +sin 
2 

a ~sin2 a +).2 cos 
2 

a - ).]. 
::s x + 2 ' 

4nL 2 hin a 

CSHY
x = CSHx

Y ::::::0 ', 

w/loa" .CSH x = CSH Z :::::: sm a cos a' 
Z x 8nL ' 
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CS H Y :::::: WflO Oh 
y 4nL 

1 ~sin 2 a + ,e cos 2 a - A I ] 

[ A~s i n 2a +A2cos2a - Asin 2a "2 ; 

CSH{ = CSH; :::::: 0 ; 

CSH: :::::: Wfl OOh [1 + cos 2 a]. 
8nL 

Summa rizing these formulas in a matrix form, we have 

CSH[ ~H;j 
CSH= cs;Xy CSHJ ""HZ _W/l OO hr~H' os - - - - . (33) 

y 8rc L 
CSH; CSH{ CSH: 

1 + sin 2 a 

J sin2 a + J. 2 C05 2 a 
+2 

). sin2 a 

- }. 
o sina cosa 

o 2 [, ~"CO" 
J 'in2 a +,' co,, a 

A. sin2 a 

-, _ ~ ] 
2 

o 

sina cosa o 1+ cos " a 

Th e off-diago nal Os in (33) arise fro m the choi ce of coor
dinates and the choice of instrument orientatio n. In this rep
resentation the trans verse transm itter and receiv er dipole s 
are aligned parall el to the x and y axes when a = O. When a 
:;t; 0, the axis of the instrument lies in the x-z plane. How
ever, the y-directed tran smitter and receiver remain par allel 
to the medium frame y coordina te. Thus, with the confin e
ment of the instrument axis to the x-z plane, and if the 
instrument cannot rotate on its longitud inal ax is, no flux 
from the axial tran smitter or the x-directed transm itter can 
link the y-directed receiver; this rem ain s true regardl ess of 
the va lue of a. This also hold s for the axial (o r z-directed) 
component of tra nsmitte r and the y-directed transverse 
recei ver. Put succ inc tly, the y -directed transmitter does not 
couple to the x- or z-directed receivers , nor does the 
y -directed rece iver couple to the x- or a-direc ted transmit
ters. Consequently these terms are equal to zero in the 
induction tensor. 

As in Ca rtes ian coordinates, Doll 's formula for the 

apparent resist ivity can also be eas ily obta ined fro m H: in 

thi s form by letting a ~ O. The term I + cos' a = 2 and 

making the same ass umptio ns as before, formula (31) is 
again recovered. 

Note that, altho ugh the induct ion tensor is now expressed 
in terms of the relative dev iation a, the fields are still in the 
medium frame . 

Figure 3 presents the results of a se lected comparison 
betw een the exact ana lytical so lutio ns for different mag
netic fie ld component s co mputed by formulas (3)-(8), and 
their low fre quency asymptotic approximations, calculated 
usin g formula (33). Th e res ults offie ld ca lculations are pre
sented for a re lative deviat ion angle a of the instrument a = 

60°. Other relative deviat ions show qualitati vely similar 
responses. Ni ne plots are presen ted 'in the figure , co rre
sponding to the nine magnetic fie ld components ca lculated 
for different mutuall y orthogona l polarizations of the tran s
mi tter dipoles. Th e plots of these components are arranged 
in the form of a symmetric mat rix reflecting the sy mmetry 
of the magnetic fie ld compo nents: 

Hx -HY - 0 H X -HZ H; =H{ =0 .y -x -, Z -X , 

In each component plot we show two curves : I) an analyti
ca l so lution (the so lid line) for the quadrature mag netic field 
component, and 2) an asy mptotic low frequency solution 
(circ les) ve rsus a dimensionless parameter ratio of the 
transm itter-receiver sepa ra tion L to the hori zontal skin 

depth Oh = J2 I Wfl OOh. One can see that, for a sma ll U Oh 

ratio, these two curves practicall y coinc ide. They are 
approx ima te ly equal while UOh is less than re 0.01 and 
begin to diverge when UOh > 0.0 5 approximately. How
eve r, the approx ima tion remain s acceptable in most cases 
where UOh is less than or equal to 0.1 . Note that, for the typi
cal induction logging instrument , the frequency is 20.0 kHz , 
and the distance between tran smitter and receiver is equal to 
L = 1.0 m. The med ium is characterized by 0 h = 0.1 Sim and 

o, = 0.0625 Slm, giving a coefficient of anisotropy A= 4. 
For this case UOh :::::: 0.088. For a well logging instrument 
hav ing these parameters the low frequency asy mpto tic 
approx imation prov ides a reasonable es tima te of the actual 
ma gnetic field . Obviously the approximations are best for 
low frequencies and conductivities and become increas ingly 
less accura te at higher frequenc ies and conductivities . Th is 
is just a manifestation of the long-fam iliar probl em of skin 
effect that has been mi nimi zed in con vent ional instrumen ts 
with a "s kin effect boost. " 

Roll effects: relative rotation response 

Figur es 4-6 present the resul ts of rel ative rotati on 

response calculations. We calculated nin e comp onents of 
the matrix of the magn etic induction tensor in the instru 
ment coordinate frame, using rota tion formulas (14) 
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H~ ' H Y, analytic formul as (3)-(8) and expression (14) to compute the 

HHY
/ ]Z, rotation response. The results are shown in the form of polar H Y,'H'= H;: Y . 

diagrams of all nine components of the induction tensor. Fig
H~ H Y: H ~ ' 

z z z ure 4 shows the polar diagrams of the imaginary components l 
x 

ofan induction tensor for the vertica l borehole. Figure 5 pres
The calculations were conducted for the fo llowing 

ents the same result for a deviated borehole with the relative parameters: the horizontal conductivity was 0.1 Slm, the 
deviation a = 45 °. Finally, Figure 6 presents the polar diaanisotropy coefficient was equal toA = 4, the frequency was 
grams for the horizontal well. For convenience of observa 20 kHz, and the distance between transmitter and receiver 
tion, solid lines present the positive values of the magnetic was equal to L = 1 m. We analyzed the induction tensor for ; 

1) a vertical borehole (a """ 0°) ; 2) a deviated borehole (a = field components, while the dashed lines show the negative 

45° ); and 3) a horizontal borehole (a ;:::::: 90 °) . For every values. The numbers at the upper right sides of each diagram 

case we computed the tensor components as the relati ve are the scale factors . They represen t the corresponding values 
rotation angle j3 varie d from 0-to-360 degrees. We used the of the solid circles that bound each diagram. 

a=600 4
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X 10I 
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FIG. 3 Low frequency asymptotic (circles) and analytic solutions (lines) for the magnetic field in a homogeneous anisotropic 
medium for the deviation angle a = 60°. The magnetic field components are plotted versus a dimensionless parameter ratio of the 
transmitter-receiver separation L to the horizontal skin depth Oh = ~2 1 wf1.0oh . For the typical induction logging instrument with L = 1 
m, the interval 0 :5 U Oh :5 0.1 corresponds to a frequency range from zero to :::::25.33 kHz (1/4.n2 x 106 

) , assuming 0h =0.1 S/m . The 
asymptotic solut ions are used to estimate conventional (i.e., Doll) apparent resistivities but without correction for skin effect. At higher 
conductivities and frequencies the approximations become progressively less accurate. 
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Note that due to the symmetry of the induction tensor, the 
matrix of the polar diagrams is symmetrical with respect to 
the main diagonal. One can see in these plots that the polar 
diagram for component H: is a circle, because this compo

nent doesn 't depend on the relati ve rotat ion angl e. All other 
polar diagrams have different but symmetrical shapes and 
vary for the different relative rotation angles of the well. 
Th us, the polar diagram representation makes it possible to 
describe the rotation effect in the induction tensor compo
nents . One can notic e that , due to rotation, components of 
the induction tensor can change their signs, and even can be 
equal to zero for specific orientations. Th is circumstance 
should be taken into account in interpretation of the induc
tion tensor well-l ogging resu lts . 

INSTRUMENT RES PONSE INTERP RETAn ON 

In general it is not known a priori what values the conductiv
ity components ofa medium possess, or the direction of its prin
cipal axes with respect to the instrument. But there is enough 
information in the tensor induction instrument response to 
determine the values of 0, 13, oi; and a"" It is convenient to 
deconstruct the instrument signal beginning with a determina
tion of13 and the evaluation and elimination of its effects. 

Ana lysis of roll effects: f3 determination 

The instrument signal H ' can be viewed as the compo
nents of a magnetic field expressed in the instrument coor 
dinate fram e. These components can be obtained from the 
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FIG.4 Polar induct ion magnetic tensor diagram for the deviation angle a "" O. The imaginary part of the magnetic field is normalized 
by the vertical magnetic field I ~ HzzI . In this model the frequency is 20 kHz and the horizontal conductivity is 0.1 81m , the anisotropy 
coefficient is 4, and the transmitter-receiver distance is L =1 m. The tenso r compone nts are rotated around the borehole by changing 
the relative rotation angle 0° :5 f3 :5 360°. For the vertical position all the cross-coupled components are zero and all the direct
coupled components are constant regardless of the sonde rotation (i.e., roll). 
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same field expressed in the medium coordinates by a suc  response in medium frame, where the formulas for the fields 

cess ive applica tion of two coo rdinate rotations. Th is is have their simplest relation to the conductivity components 
of the medium . expressed by equation (13) . The magnetic induction tensor 

From (34), clearly can be expressed in terms of the same rotation, as given in 
A A ,A A T A A 

(14). Expanding (14) in term s of the compone nt rotatio n TR {3H R {3 = R a HR a . (35) 
ma trices we see that 

A , A TAA A TA T"A A The form ofR {3 is known, but fJ is a priori unknown .We now 
H = R HR = R pRaHR aR p . (34) 

show that the value of fJ can be obtained from the data. For 
convenience, we will temp orar ily introduce double primed H I represe nts the instrume nt response in the instrume nt 
variables to denote the matrix H "= R~HRa , and its elecoordinate frame; i.e., each of its elements is the magnetic 
ments. It turns out that all doubl e primed variables can be fie ld at one of the receivers due to one of the transmitters. In 
eliminated in favor of the observ ations (i.e., single primed general it will be fully populated. H is the inst rume nt 

Imag 
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- B(-)
 o

);:4
 
a=45
 

24~%--:3nO 

H IIH I 
xy zz 90 6.5e-05 
1~0 

18 

270 

FIG. 5 The formation and instrument parameters are the same as those discussed in Figure 4. The relative deviation of 45° illus
trates the interesting variation in the amplitude of the responses as a function of instrument roll. The Hzz component , corresponding to 
a convent ional instrument, does not change , but all the others do. The Hxx and Hyydirect-coupled signals vary according to whether 
the transmitters and receiver coils lie in the vertical (or uz) plane or perpendicular to it. As the sonde rotates the Hxx and Hyy signals 
vary with the degree of roll. The cross-coupled terms vanish at orientations of the sonde where the magnetic field has mirror symme
try when viewed from the receiver coil , insuring that there can be no flux linkage and therefore no voltage induced . At other orienta
tions the medium anisotropy breaks the symmetry and non-zero cross-coupled terms are induced. These change sign at the zero 
crossings, as indicated by the coding of the curves . Noting that Hxx and Hxz are phase shifted versions of Hyy and Hyz, having a con
stant phase lag of 90°, there are only four independent magnetic field components in transversely isot ropic media . 
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variables). The observations are related to the sonde rotation 
by 

A'0.< H _ RAT0.<HAli RA 
'S - p 'S p . (36) 

and thus 
A A A' 

0.< H "_ R 0.< H RAT 
(37)'S - p 'S p ' 

Multiplying out the factors on the right side and equating 
them term-by-term to the eleme nts of the ma gnetic indu c
tion tensor (i.e ., the instrument observations) produces 
equ ations for the observed field components in terms of f3 
and the double-primed variables, from whi ch the doubl e
pr imed quant ities can be elimi na ted. Expand (36) and 

equate the matri x elements on the left and right. Then from 
the matrix elements in the xx position 

0.<H x• 2f3 0.<H x"' + . 2f3 0.<H y "' 'S , = COS 'S "' Sin 'S "' (38)x x y , 

from the yy posit ion 
, "' 2 "' 

CSH>: = sin 2f3 CSH~ , + cos f3 CSH >:, (39)y x y , 

and from the xy and yx positions 
, , 2 "' "' 

CSH >: + CSH x, =sin f3 (CSH ~. - CSH >:. ) . (40)x y x y 

Then subtractin g (39) from (38) leads to 
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FIG. 6 The formation and instrument parameters are the same as those discussed in Figure 4. At the relative deviation of 90° the 
cross coupling terms again vanish for all values of instrument roll. This can be understood in terms of symmetry of the fields most eas
ily by considering that a transverse dipole at any value of instrument roll can be considered to be the superposition of an appropriately 
weighted horizontal and vertical dipole. These components do not cross-couple and therefore the superposition of the components 
cannot cross couple either. The Hxx and Hyy direct-coupled signals vary in intensity according to whether the xx and yyarrays are par
allel or perpendicular to the nominal horizontal plane. 
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,
CSH~ 

x 
-

' 
CSHY, 

y 

2= (COS /3 -
"" 

sin 2 (3)( CSH ~ , - CSH Y" ) 
x y (4 1) 

=cos 2/3(CSHf - CS Hf ) . 

Then division of(40) by (41) permits the cancellation of the 
double-primed vari ables and gives the result 

CSH x: + CSHY,' _ y x 
tan 2/3 =- . , , (42) 

CSHyY, + CSH x ~ 

or, explicitly 

-I xI ( CSHy 
X

: + CSH~' ) _
/3= - tan , , = /3a . (43) 

2 CSH Y, + CSH~ y x 

Note that/3a is expressed solely in terms ofa subset of the 
observations, but it is not uniquely determined by the obser
vations appearing in the formula . However, the quadrant 
which contains /3ais determined uniquely by the signs of 

H;: and H;" , as shown in Table I . Once /3ais known, the 
effects of sonde rotation on the observations can be 
removed using (35) . The transformed observations depend 

~ T ~ ~ 

onl y on a , os, and avo We shall call R aCS HRa the " resid

ual " signal. 

Analysis of residual signal: ah, a v, and a determination 

Consider again the case where the orientation of the 
instrument with respect to the principal axes of the medium 
is given by equations (32) . Note that the axis z' of the instru
ment coordinates coincides with the instrument longitudi
nal axis . Since the instrument frame x' axis is confined to 
the medium frame x-z plane, the relative rotation /3 is 0 and 
the rotation matrix (II) takes the form 

A [COS a 0 - sin . • 
R ; = 0 I 0 . (10) 

sin a 0 cosa 

The instrument's signal, i.e. , the quadrature component of 
the induction tensor, reduces in the instrument frame to 

~ A A AT 
CS H'= R a CSH R a , (44) 

~ A 

where CS H is given by (33) and CS H' represents the instru
ment signal for the case /3 = O. In Appendix B we describe a 
det ailed derivation of the expression for the magnetic field 
components in the instrument system of coordinates. Based 

on this analysis we introduce a magnetic induction matrix 
for a sonde whose longitudinal axis makes an angle a with 
the o; axis of the conductivity tensor. Ifwe define 

.Jsin 2 a + A2 cos 2 a - A 
q= (45)

Asin 2 a 

then using (33) and (44 ) 

"SH y'
x' x' x'[ssn: 0.HZ' _ W!J 0 a h "SH Y: ~H' J (46)"Sir = "SH;: os ' Y Y 8n L
 

"SH;, "SH;' "SH
z'
z'
 

1+ 2qcos2a 0 2qcosasina 

0 - 2q - l 0[ 2 ]

A.Jsin' a +A' cos' a ' 

2qcosa sina 0 2(1+ qsin 2a) 

The instrument's response-i.e. , the individual magnetic 
field components-are the matrix elements of (46) : 

CSHx: = W!J Oah [1 +2qcos 2 a ], (47) 
x 8nL 

0.H y' - wJl oah [ 2 _ 2q _I] 
os y' - 8nL A.Jsin 2a + A2 cos 2 a ' 

, wJloah ' 
CSHx, = 

8nL 
[2qcosasin a]= CSH~ , 

Z x 

WJloah . 2CSH 
Z

Z
: ---.:.-.::-..:.:.. [2 + 2q SIn a ]. (48)

8nL 

Note that (33) and (46) represent the same field. In (33) , 
although the components are expressed in polar coordi
nates, they are still in the medium frame; in (46) they are in 
the instrument frame and represent the instrument signal. 

Apparent conductivity: deviated instrument 

The general case is for an instrument tilted with respect 
to the principal axes of the conductivity tensor and rolled by 
an arbitrary amount around the instrument axis . 

For the axial dipoles the instrument roll is not a factor in 
the coupling of the se dipoles to the medium or to each other. 
In this case as sum~ that we use formula (48) to model meas

urements of CSH;, for a deviated instrument. Substituting 

for q in (48) and simplifying, the measured axial magnetic 
field is described by 

I . 2 12 2 
0. z ' w!J Oahv,_s_In_a_+_A_co_s_a_osH ' = --'----'----"-- - (49) 

z 4nL A 

Solving (49 ) for ah leads to 
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TABLE 1 Inspection of the signs of H: and HI determines 
the quadrant where fJ a lies. The table was constructed by 
inspection of Figure 5. 

r>(HY 
z 

+ -

+ II I 

- III IV 

I	 4nL 0.< z' ~ 2 2 . 2 ()aha = - - ",H , = ah COS a + ahav sin a . 50 
WIl0 z 

Thu s, for the axially directed transmitter and receiver corre

sponding to existing instruments, our formulation yields the 

formul a ofMoran and Gianzero (1979) for the apparent con

ducti vity in a deviated borehol e. With axia l dipole instru 

ments this formul a is all that can be done. With the full data 

set of a triaxial instru ment, the parameters of the medium 

can be solved for. 
Equations (47) et seq. con tain three unknown parame

ters: deviation angle a , horizontal conductivity oi, and ver
tical conductivity a; (disguised as the anisotropy coefficient 

A= ~ah a,,). We can use these equations to find the param e
ters of the transverse isotropic med ia, and the deviation 
angle of the instrument from observed magnetic field com
pon ents. For the special case of /3 = 0 lengthy but straight
forward algebraic calculations presented in Appendix C 
pro vide direct analyti cal expression s for the solution. Let 
g = wllo/8nL , then 

1
aha = -. 

2g 
(51) 

, 1 ' 
8'HX, + - 8'H z• + ('1H;' - ~ \;H; r+2 '1H;' }x	 2 z[ 

2 2 
2	 4g a ha A =----,---------=---.!~--	 (52) 

8'H z:(8'H x: + 8'HY.' + 8'H z.' - 2gaha) z x y z 

Of course, then 

1 
o.; =-2 aha	 (53) 

A 

and 

1 . -I[ 28'H ;: ]a =-sm , , . (54) 
a 2 8'H;, + 8'H:, -3gaha 

In an in fini te, homogeneous , transverse ly ani sotropic 
medium these formation parameters would be exac tly cor 
rect except for a skin effect reduction that we have not dis
cussed . In heterogeneous media the same formula s are used , 
but the paramete rs are referred to as "apparent" condu ctiv
ity, etc., signified by appending the a subscript a. 

Apparent conductivity: vertical instrument 

We have already presented result s relating fields and 
condu ctivity comp onents for a vert ical inst rument in fonnu
las (25)-(30). These should represent the a ~ 0 limit for 
formulas (47) and (48) . In this limit the results are 

8'Hx _ wll o 
x -	 - - (55) 8nL av, 

8'H z _ Wll o 
z - -	 (56) 4nL ah , 

where primes are omitted for a vertical instrument. These 
are identical to (25) and (30) as expected. From the formula for 
the axial field quadrature component 8'H: for a vertical instru

ment, we obtain the expression for apparent conductivity 

aa =	 4nL 8'H: == aha , (57)
Wll o 

identical to Doll's expression. 
Based on the formula for the transverse field quadrature 

component 8'H: for a vertical instrument , we obtain a new 

expression for apparent conductivity 

8nL ~ x_ 
aa =-- ~Hx =ava , (58) 

wll o 

in agreement with the formulas derived for a vertical instru
ment ; i.e., (25). 

A final observation 

We began our study with Mo ran 's and Gia nzero 's (1979) 
formulation of the electromagnetic field response ofa trans
versely isotropic medium. For completeness, we finish by 
observing that the determination of aha, ava, aa, and /3a per
mit the representation of an apparent condu ctivity tensor 
corresponding to any orientation of the instrument. This 

repre sentation is G~ = RT Ga R, where the subscripts indi

cate the "apparent" parameters. In the simple medium that 
corre sponds to our analys is, the values of the "apparent" 
parameters will equal the values of the medium parameters, 
and the primed and unprimed variables indicate the instru -
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ment and medium frame respectively. The elements ofaare 
given in Moran and Gianzero (1979, p. 1284). We know that 
in general ais symmetric, indicating that only six of its nine 
elements are independent. In the presence of transverse 
isotropy we might expect to see only four independent ele
ments due to the additional symmetry of the medium. 
Moran and Gianzero show that in transversely isotropic 
media the six components of the conductivity tensor depend 
only on the four parameters oi, a.; a, and (3. This makes 
explicit that regardless whether the representation is viewed 
from the medium frame ( i.e., os,av, a ,(3) or is viewed from 
the instrument frame (i.e. , axx, etc.) only four parameters are 
required to specify the conductivity tensor. 

NUMERICAL EXAMPLES:
 
HOMOGENEOUS ANISOTROPIC MEDIUM
 

We have used formulas (51)-(54) and also formula (C.15) 
from Appendix C to calculate the apparent conductivities aha, 
ava, apparent anisotropy coefficient Aa, and relative deviation 
angle aaon the basis of tensor well-logging data. 

Calculations were conducted using ah= 0.1 Sim (10 
Q-m), a; = a,,116 = 0.00625 Sim (160 Q-m) . We precom
puted the components of the induction tensor using the ana
lytic formulas (3)-(8). We then applied (51 )-(54) to the syn
thetic tensor induction log and generated plots of apparent 
conductivities a"a, ava, apparent anisotropy coefficient Aa, 
and apparent deviation angle a; versus a ratio of the 
transmitter-receiver separation L to the horizontal skin 

depth 0" =~2 I W flo a". Solid lines in Figure 7 show the 
result of this calculation, i.e ., the apparent conductivity, for 
an instrument with deviation a ~ , while the circles show00 

the actual conductivity value of the tensor component (or 
other parameter). The apparent conductivity values are 
lower than the true conductivities. Figure 8 presents the 
same plot for a = 800 One can see in these plots that, in • 

accordance with the theoretical formulas, the apparent 
parameters closely approach the true parameters of the 
model for low frequencies and conductivities and progres
sively diverge for higher frequencies; i.e., larger values of 
Uo", Nevertheless, one can see that horizontal conductivity 
and the deviation angles are well approximated from the 

analytic tensor well log data in the interval a -s Llo" s O.l. 
The approximate vertical conductivity is less accurate, but 
the apparent vertical conductivity and apparent relative 
deviation are still approximately correct for the relative 
deviations up to and including 80 0 

• 

The deviation of the apparent conductivity from the for
mation conductivity is called "skin" effect in conventional 
induction logging, and is compensated by a so-called skin 
effect boost. The departure of the asymptotic approxima

tions from the exact formation conductivity observed in 
Figures 7 and 8 is due to skin effect. If the method that we 
describe herein were to be used for actual interpretation, 
skin effect boosts would have to be developed for each com
ponent of apparent conductivity. 

Our results suggest that determining the tensor conduc
tivity components of a transversely isotropic medium from 
tensor induction observations in a deviated well is feasible 
if perturbations from a borehole and shoulder beds can be 
neglected, compensated, or corrected. 

CONCLUSION 

We have examined a simple but fundamental model of 

electromagnetic tensor induction well-logging in 
unbounded, homogeneous, transversely isotropic, conduc
tive media using an arbitrarily oriented instrument. We have 
studied the analytical solution for induction tensor compo
nents and derived low frequency asymptotic approxima
tions based on quadrature components. 

The important result is that by measuring the quadrature 
components of the induction tensor we can obtain the prin

cipal values (i.e., a" and av) and the orientation of the con
ductivity tensor with respect to the instrument. This conclu

sion holds whether the instrument is vertical, or rolled and 
tilted with respect to the tensor axes. 

The formulas introduced above for the apparent horizon

tal and vertical conductivities a"a, ava, apparent anisotropy 
coefficient Aa, and apparent deviation angle a.; can be used 

as the basis for tensor well log interpretation in inhomoge

neous anisotropic media when borehole and shoulder-bed 
effects can be neglected. This work strongly suggests that 
instruments developed using the triaxial induction principle 
will probably add great value to formation evaluation. 
However, corrections for borehole and shoulder-bed effects 
are sure to be required, if not in every case , then at least in 
many cases of practical interest. 

The asymptotic formulas developed for the apparent 

conductivity are analogous to the Doll apparent resistivity 
formulas. Modern, practical interpretation of triaxial induc

tion instrument responses will employ computational 
resources and methods not available to Doll. Our result com

pletes Doll's classical method for all ofthe components of the 

magnetic induction tensor in a transversely isotropic medium 
and provides a bridge to the modern methods that will be 
based upon numerical models of the instrument responses. 

The further development of principles for tensor induc
tion interpretation in realistic cases is a topic of great inter
est with much work remaining to be done . 
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APPENDIX A: 2 

LOW FREQUENCY APPROXIMAnON x 2 ( 2 2 ( x ) ] H; ~- --k Y - s 1-2I [1 
4.n Sp2A h p 2 

The exponential terms, e ik ,,s and e 
ikhr 

, appearing in the 
magnetic field formulas have Taylor series expansions 
given by 

eik , S =i (ik vsr e ikhr =i (ik hrr (A.l) 
n=O n! n=O n! 

For low frequencies or conductivities these series can be 
approximated by their leading terms. Thus e ik , s ~ I + ik.s 

ik hr +~ i 2 k;S2 and e ~l + ikh r +~ i2 k ?; r2 . These approxi

mations are substituted into formulas (3)-(8) to obtain a 
closed-form low-frequency approximation of the magnetic 

field . The approximations are used to derive approximate for
mul as for the instrument responses linear in oi and a" These 
formulas can be solved for approximations of the conductivi 
ties, ahaand aVa> of an infinite, homogeneous, and anisotropic 
medium. The approximations are accurate to the same order 
as the Doll apparent conductivity formula that was the indus
try standard until recently-indeed the Doll formula is a spe
cial case contained in the formulas described below. 

The magnetic induction tensor contains nine compo
nents, but since the tensor is symmetric, onl y six of these are 

distinct. Further, H: and HI are formally identical upon 
exchange of x and y in their respective formulas , and H; 
can be obtained from u; if x is replaced with y in the for

mula. In the interest of saving space the formulas for only 
four components are derived below, but upon exchange of 
appropriate variables (i.e., source and receiver labels) all 
nine components can be obtained from the four formulas 
given. 

HX field calculations 

H: calculation. The hori zontal component of the magnetic 

field excited by the hori zontal magnetic dipole is calculated 
by formula (3) . Expanding the exponentials as outlined 
above and substituting the first three terms into (3), after 
much tedious algebra we obtain 

I _ r 2 _ 1 2 
2 2 2 2+ k?; _ p_+ r~ - 2~ ( :t) (A2) 

x--,- _ p-:---...:::. r ....::.2 X=-2 H i 2
 
rp" r 3
 

"-/x' + o(ki" )l 
r 

The quadrature component is 

x l I 2 2 
CSHx ~ 4.nwfl oah Sp 2 y - s

[ ( (A 

2 2 2 2 2 2 2xp+rp-r x 
+ 4 

rp 

After some transformation 

~ x 1 
~Hx ~ -wflOah 

4.n 

2 2 .1Y X 2 S - rr; 

x 
2 l) 1-2 ~ 

(A.3) 

2 2 ] l x-r 
+ 3 . 

2 r 

.1 2 ]rr: - s x 1 
[ sp 2A + rp 2 + 2x P 4 A + P 2 A + 2r 3 - 2r . 

(AA) 

If the transmitter and receiver coils are located in the vertical 

borehole, thenp ~ 0, s ~ Alzl, r ~ [z], and 

~ x l I 
~Hx ~-wfl oav -1-1. (A.5) 

8.n z 

H~ calculation. Using formulas (4) and the approximations 

based on (A .1) we obtain 

H X _ xy 
y - 

4.n 

1
2[ S ( P2] 1 1 2r] 3 33) k - 2-- +-+--- +-+o(k s ) . 
h 14 2 2 23 4 5 hIIp S rp r p r 

(A.6) 

In this case the quadrature component is 

x xy [ s - rA As - r 1]CSH y ~ -wflOah 2--- - -+-- . (A.7) 
4.n Ap4 Arp2s 2r 3 

For transmitter and receiver coils located in a vertical bore

hole , then y ~ 0, s ~ Alzl, r ~ 14 The quadrature compo
nent is equal to 
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0.- x xy [ (A2
- 1) AS - r p 2 ] o.,sH y :::;;-~ Wj1 00h - 2 - --+- ~ O . 

4np 2 2A 2 /z l Ars 2r 3 

H~ calculation. Substituting the power series approxima

tion s into (5) we obtain 

2 2x xz [ 1 33 ]H z =--5 3+-khr +o(k hr ) . (A.8) 
4nr 2 

The quadrature component is 

xz
C:SH; :::;; -- w j1 00 h . (A.9) 

- 8nr 3 

For tran smitter and receiver coi ls are located in a nearly ver
tical bor ehol e x ~ 0, s ~ Alzl, r ~ 14 In this case the quad

rature component is equal to C:SH: :::;; o. 

HY and H Zfields 

The phy sical pr incipl e of reciprocity and the essential 
equivalence of the transverse source and receiver dipoles 
pro vides much redundancy in the formulas for the field 
components. Thus the formula for H: is transformed into 
the formula for H;: when every y is replaced by an x, and every 

x is replaced by a y. By recipro city HI will equal H; and the 

formul as will transform from one to the other upon exchange 
of xs and ys. The formul a for HI can be obta ined by instru

ment symm etry from the formul a for H: when x is replaced 

with y. The formul a for H; is obtained by reciproci ty from 

HI upon exchange ofy and z. So, by exploitation of these rela

tions , only the H/ component remains to be calculated. 

H: calculation. The low frequ enc y approximation for H: 
IS 

2 2 
z 1 [3Z - r 1 2 2 1 2 2 3 3 ]Hz =-~ 2 +-khr +-kh z + o(k hr )3 . 

4n r r 2 2 

(A.IO) 

The quadrature component is 

2 2 
0.- z r + z 
o.,sH z :::;; 3 Wj1 00 h · (A. 11) 

8nr 

In a "vertic al" borehole x = 0 and y = 0 then C:SH: :::;; 

Wj1 00 h / 4nl zl . 

APPENDIXB:
 
INDUCTION TENSOR IN THE INSTRUMENT
 

COORDINATE FRAME
 

Consider a special case where the direction of the instru
ment axis with respect to the conductivity tensor axes is deter
mined by the deviation angle a and the relative rotation angle 
f3 is equal to zero. We assume that three mutually orthogonal 
receiver coils are oriented along the instrument coordinate sys
tem x ' , y ' , z ' and are located at the point (x, y, z) in the bore
hole at some distance L from the transmitter, according to for
mula (32). Note that the axis z' of the instrument coordin ates 
coincides with the instrument longitudinal axis. 

The rotation matrix (11) take s the form 

A [COSa 0 - sin aj 
n, = 0 1 0 (10) 

sin a 0 cosa 

The rotation formula (44) reduces to 

HX: H ~' x x H
Z

:1 x 

H;: H:: H;: = (B.1) 

rH;. H:' H;, 

cosa 

o 
0 

1 

- Sina] [ H: 
0 HX =0 

H:=0

HY 

H:][ cosa 

H' =0 0 

0 

I 

sina ] 

0 = 
[ 

sina 0 cosa ~: H; : 0 ~: - sina 0 cosa 

H ; cos' a - 2H ; sina cosa (H ; -H; )sina cosa 
2 o 

+H ; sin a +H ; (cos' a -sin2a ) 

H Yo o
Y 

(H ; -H; ) sina cosa H; sin2a +2H; sina cosa 
+H ; (cos' a - sin2a) 

o 
+H ; cos2 a 

Using the last formula, we can find the expressions for all 
magnetic field components in the instrument coordinates. 
For later convenience in notation we define 

2~s in 2 a + A2 cos a - A 
q= (B .2) 

Asin 2 a 

H;:calculation. Let us find H;:. The magnetic field compo

nents are equated to the corresponding components in (46) . 

November-December 2001 PETROPHYSICS 607 



Z hda nov et al. 

c.sH;: = sstt; cos 2 a - »sn; sin acos a + »n; sin 2 a 

WIlOO h [I 2 2 ( ~sin 2 a + A2 cos 2 a- A l]= + cos a 
8nL Asin 2 a 

= WIlOOh [1 + 2qcos2a] . 
8nL 

(B.3) 

This component can also be ex pressed through vertical con
ductivity : 

2 
~Hx ' WIl 0 °h [ 12 2,.1, cos a (~ . 2 12 2 1) ] 
'0 x ' == /I, + 2 Sill a +/1, cos a -/I, • 

8n L sin a 

(B.4) 

Th us , 

2 
]c.sH;, , == c.sH; [ A2+-2,.1, . cos--a (.JSIll ' 2a +,.1, 2cos 2a - A) . 

Slll2a 

(B.5) 

On the other hand, for small a we have 

~sin 2 a + ,.1,2cos 2 a - A 1- ,.1,2 
<:::;--- (B.6) 

. 2
Sill a 2,.1, cos a 

Th erefore, for small a 

r wllo 0 v [ 2 ]snr. = (l - cos a ) A + cos a . (B.7) 
x 8nL 

If a == 0 then c.sH: = (Wll o / 8nL)ov . So for small a 

c.sH;:= c.sH: [ (l - cosa) ,.1,2+ cosa ] . (B.8) 

In the case of isotrop ic media A= 1, and c.sH;:= c.sH: .
 

H;' calculation. Le t us find Hi'.
 

c.sH/ =(c.sH: - c.sH: )sin a cos a + c.sH: (cos 2 a - sin 2a )
 

WIl OOh [ ~sin2a +A2cos 2a -A ] 
= 2cosa ,

8nL hin a 

- Wll o°h [2q cos a sin a ]. 
- 8nL 

(B.9) 

In the case of isotropic me dia A== 1, and c.sH~', = c.sH~ = O. 

H;: calculation. Because of the choice of our coordinates 

HJ =H;: , and Hi ' component doesn't change with the ro

tation. We have 

H r,' = WIl OOh . 

Y 8nr 

2
2[ 1 _ ~sin 2 a + ,.1, cos 2 a - A 1] 

A~sin 2 a + ,.1,2cos 2 a Asin 2 a - "2 

_[ 1 1]
- 2 A~sin 2 a +A2cos 2 a - q- "2 ' (8. 10) 

H:: calculat ion. For example, let us find H::.
 
~
'0
H z' »n: 

'0 
. 2 2 ~H

'0 z x , ~H zz . 2 2 a
z ' = x Sill a + Silla cos a + '0 Sill cos 

WIlOOh [ 2 ~. 2 2 2 . 2 2 2 ] = -I + - SIn a + A cos a + (S In a + cos a ) 
8nL A 

- WIl OOh 2 [1+ qsin 2 a]. (B .Il)
- 8nL 

Thus, 

f . 2 2 2 
c.sH~ = wll o0h "SIll a + A cos a (B.12) 

z 4nL A 

Ifa == 0, 

c.sH/ = Wllo°h (B.13) 
4nL 

So 

f . 2 12 2 
c.sH~ = c.sH/ "SIll a + /I, cos a . (B.14) 

z A 

In the case of isotropic media A== 1, and c.sH/ = c.sH/ . 

Summarizing the res ults in a matrix form, we have 

c.sH' :::; wfl 00' h (B.15) 
8n L 

1 + 2qcos2 a 0 2'1 cosa sina II M; 

0 [ 2 
'J... .JSin2a+). 2 cos2 a 

]- 2'1 - I o My 

2'1 cosa sina 0 2(1 + q sin2 a) II M; 
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APPENDIXC:
 
DERIVATION OF THE FORMULAS FOR
 

APPARENT CONDUCTIVITIES AND
 
THE ANISOTROPY COEFFICIENT
., 

The derivati on is based on the formula (46) for the induc
tion matrix in the deviated borehole. Introducing the nota
ti on s g = wfl o/Sn r and h' = S'H'/ gOh ' a n d q = 

( ~sin 2 a + A,z cos a - A. ) / (A. sin 2 a), for notat ion al con 

venie nce , we make the definiti on s 

h;:= I + 2q cos 2 a (e. 1) 

and
 
, 2
 

hY. = - 2q- I (C .2) 
Y 2 2.J ' 2A. SIn a + A. cos a 

h;:= hi ' =2qcos a sin a = qsin 2a (e. 3) 

h:: = 2 + 2q sin 2 a = 2(1 + q sin 2 a) . (CA) 

Th erefore h;: + - : = 3 + 2q and h;: = q sin 2a. Solving the 
last two equations, we obtain . 

I . , 2h ~ 
q = - (hx,+h z,-3) andsin2a= . z . (e.S ) 

2 x Z h X, + h '. - 3 
x Z 

On the other hand, obviously: 
• , ' 2 

(h;. - l)(h:. - 2) = h;, . (e.6) 

Th en, mult iplyin g by (gOh)2, we find 
, , ' 2 

(S'H:, - 2goh)(S'H;. - goh)= S'H ;. (e. 7) 

and 

, • . , ' 2 
2g 2O~ - gOh(2S'H;. + S'H:. ) + (S'H :. S'H;. - S'H ;, ) =o. 

(e.S) 

Express ion (C.S) can be treated as the qu adratic equa tion 
with respect to the unknown conductiv ity 0h. Solving this 
equation, we find 

C:SH x: + l C:SH z.' ± f(C:SH x: + 1 S'H z.') 2 +2S'H x:
2 

x 2 Z 'J x 2 Z Z

01 ,2 = 
2g 

(C.9) 

where 01 .2 is simply intended to conve y that the quadratic 
form has two possibl e solutions. For example, in the cas e of 
the ver tical boreho le 

I 1 
S'H: :=::::- Wfl OOv-1-1= gov , (e. 10) 

Sn z 

~ Z 1 2 1
:sH z :=:::: 3 Wfl oOh2z = -1-1tou « 0h = 2g0h , 

Sn Izl 4n z 
rc.in 

S'H: :=::::0. (e. 12) 

Making these substitutions into (C.9) leads to 

Ov + 0h ± 1Ov - 0hI 
01 2= . , 2 

Taking into account that typically 0h > 0", we obtain 

Ov + 0h + lov - 0hI Ov + 0h + (0 h - 0 v) 
0 1 = = = 0h. 

2 2 
and 

Ov + 0h - IOv - 0h 1 Ov + 0h - (0 h - 0 v) 
02 = -:...--....::..---'----'--- --'- = 0 v . 

2 2 

It can be shown that in the general case of a deviated bore
hole 

0 1 = °h= 

~Hx ' + 1 ~Hz ' + f(~HX ' 1 ~H z' ) 2 + 2 ~Hx ' 2:s x· "2:S z' 'J :s x· - "2 :S z' :s z' 

2g 
(e. I 3) 

and 

S'H X: +l S'H z: - f( S'H '~ ' _ 1 S'H ~ ' ) 2 + 2S'H~ ' 2 
x 2 Z 'J x 2 Z Z 

0 2 =------=---.::....-:....-~-~--=---_..::...-_---=----

2g 

~sin 2 a + ,1,.2 cos 2 a - A. . 2 ]
= Oh 1+ . 2 (2cos 2a +s1l1 a ) .

[ A. SIn a 

(C.14) 

In the case of small a 

(1_,1,.2) 2 . 2 ]
0 2 :=:::: oi 1+ 2 (2cos a + S1l1 a) :=::::[ 2A cos a 

(e. I S) 

(1_ ,1,.2)] 0h 
o; 1+ ,1,.2 = ")!= OV. [ 

Aft er determination of 0hwe can find a and q according to 
the formulas 

1 '. 1 . . 
q = - (h~ +h z. - 3)=-- (S'H X, + S'H z. -3goh), 

2 x Z 2go oi x Z 

and 

2h;, 2S'H ~ ' 
x (e. I6)sin 2a = x ' + h z: _3 

' Z S'H X,' + S'Hz.' - 3gohhx x Z 

On the other hand 

2
hY

• = - 2q-1. (C.I 7) 
Y 12 2.J ' 2A. SIn a + I\. cos a 
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Therefore, 

1 2 
q+--2-= 2 ' ' (C.1S) 

s in a A si n 2 a (h; + 2q + 1) 

Fro m h5' = 2 + 2q sin 2 a we have 

--=~ (C.19) 
sin 2 a h;:-2 

Therefore, 

1 2 
q + - 2- = , . (C.20) 

sin a A2 sin 2 a (h>: + 2q+l )y 

Substituting (C.19) into (C.20), we obtai n 

2 ~ 4
A = " = " ". (C.21)

h'. Z»: y + 2q + 1) hZZ, (hx 
X

, + hy>; + h'. Z - 2) 

F inall y, rep lacing h: with th e corresponding H: factor, etc., 

and substituting g where appro pria te, we obtain the fo rm ula 

for th e coefficient of an iso tropy, 

2 4g 
2 «: 2 

A = , , ' , ,(C.22) 
CJH ;, (CJH;, + CJH; + CJH ;, - 2gah) 

and 

2CJH X ,
Z (C.23) 

sin 2a = CJH x: + CJH :: - 'sgo; 
x 
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