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Foundations of Tensor Induction Well-Logging

Michael Zhdanov', David Kennedy?, and Ertan Peksen'

One of the most challenging problems in the field of
electromagnetic well logging is the development of inter-
pretation methods for the characterization of conductivity
anisotropy in an earth formation. We examine the
response of a triaxial electromagnetic induction well-
logging instrument in an unbounded, homogeneous,
transversely isotropic conductive medium. This instru-
ment detects three components of magnetic field due to
each of three transmitters for a total of nine signals. These
can be mathematically organized as a tensor array which
we call the magnetic induction tensor. The magnetic
induction tensor components provide a general descrip-
tion of the electromagnetic field in a transversely isotropic
medium. By theoretically analyzing the triaxial induction
instrument for its response to the magnetic field compo-
nents induced in the conductive medium, we derive low

ABSTRACT

frequency approximations for the quadrature components
of our induction tensor. Based on this analysis, we find
that by measuring the quadrature components of the
induction tensor in a deviated borehole, the conductivity
anisotropy of the media can be resolved from the instru-
ment response. This information includes not only the
vertical and horizontal conductivities, but also the orienta-
tion of the logging instrument axis with respect to the ten-
sor principal axes. We introduce the formulas for the
apparent horizontal and vertical conductivities 0y, 04, the
apparent anisotropy coefficient A,, and the apparent rela-
tive deviation angle «,. These can be used as the basis for
a tensor logging instrument response interpretation in
unbounded, homogeneous, anisotropic media. The theory
is illustrated by numerical examples of induction tensor
calculations.

INTRODUCTION

Formation conductivity (or resistivity) determination
from a well bore is probably the oldest geophysical tech-
nique to be applied in the subsurface and retains a preemi-
nent place in logging suites today. Until recently resistivity
logging instruments and interpretation techniques were con-
sidered mature and improvements in technique were evolu-
tionary rather than revolutionary. This has been particularly
true for the induction method. The emphasis in hardware
improvements has been on the use of more axial dipole
antennas on each instrument to better sample (or “sound”)
the radial conductivity distribution in order to better infer
invasion profiles; i.e., the drilling-induced radial variation
in conductivity. The use of shorter-spaced arrays also

enables synthesis of a more ideal vertical response function
with potentially higher vertical resolution. To better utilize
the more complete data acquired by the array instruments,
new interpretation technology has focused on effective
methods to invert the data—that is, to obtain the formation
conductivity distribution given the data acquired by the
instrument. Until recently most of the effort was focused on
an assumed axisymmetric distribution of conductivity. In
spite of these advances in technology there remain, how-
ever, just as many enigmatic examples of uninterpretable
log responses as there have always been. A major variation
on the inversion theme was modeling software for use in
deviated boreholes, typically drilled from platforms off-
shore. Otherwise these logs were uninterpretable. However,
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problems with conductivity log interpretation in conven-
tional vertically-drilled boreholes occurred infrequently
enough so that mostly they could be ignored—and they
were.

Horizontal wells changed everything.

However, it has taken some time for the industry to rec-
ognize this because the industry has been, simultaneously,
learning the art of interpreting measurement-while-drilling
(MWD) propagation instrument responses. Suffice it to say
that the connection of the instrument responses to formation
resistivities was not understood. Boundary effects curiously
named “polarization” horns were known to induce resistiv-
ity responses not corresponding to any resistivity in a het-
erogeneous medium. But these were not the only observed
anomalies. The beginning of real progress is marked by the
study of MWD two-megahertz propagation resistivity
responses in horizontal wells drilled in the Kuparuk field on
Alaska’s north slope. A study by Klein, Martin, and Allen
(KMA; 1997) identified reservoir anmisotropy as a major
source of confusion. Basically, KMA discovered that in
horizontal wells in hydrocarbon-bearing reservoirs at least
two separate components of conductivity can influence
instrument responses. They further discovered that the ratio
of these conductivities could be positively enormous com-
pared to what almost everyone thought possible—up to
100:1!

KMA suggested strongly that formations could have at
least two conductivity values, a horizontal and a vertical con-
ductivity (referred to as 0, and 0,) at the same point in the for-
mation. An induction logging instrument apparent conduc-
tivity response o, could have any value /o, 0, <0, <0y, .
To interpret o, further requires a knowledge of the angle the
instrument axis makes with the z axis of the conductivity
tensor 0. With axial dipole instruments this requires the
inference of formation dip and strike from other instru-
ments.

A way to view the deficiencies of contemporary axial-
dipole array instruments is to note that in fully anisotropic
formations they sample at most only 1/3 (if the instrument is
vertical) of the potential data space (i.e., of the three possi-
ble direct coupled magnetic field components, only
one—H,,—is sampled; the cross-coupled terms are all zero
in this case), and at least sample only 1/6 (if the instrument
is significantly tilted and rolled on its axis there are three
direct-coupled and three cross-coupled field components).
If the full data space were sampled, the complete conductiv-
ity tensor at a point could be inferred. A conductivity tensor
thus determined would be the same regardless of the instru-
ment’s orientation with respect to the tensor, removing the
anisotropy-induced ambiguity in instrument response. In
order to sample the full data space a transmitter comprising
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three mutually orthogonal coils, and a similar receiver is
required. There is now demand in the marketplace for the
services of such instruments, and they have recently
become commercially available (Kriegshéuser et al., 2000).

Interest in transverse coil induction logging instruments
was evident in the Soviet Union before there was any dis-
cernible interest in the West (Eidman, 1970; Kaufman and
Kaganskii, 1972; Tabarovskii et al., 1976). The work of
Tabarovskii and several coauthors (1976, 1977, 1979) is
concerned with analytical analysis of radially layered ani-
sotropic media. Much later, Tabbagh and Giannakopoulou
(1995) discuss the same problem but employ numerical
methods to compute model log responses.

In this paper the low-frequency apparent resistivity
responses of such a triaxial induction instrument are investi-
gated. Figure 1 schematically illustrates the important fea-
tures of the system. Three mutually orthogonal transmitter
coils source corresponding magnetic dipoles, denoted by
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FIG. 1 Shown schematically are the transmitter and receiver

arrays of a triaxial induction instrument. The coordinate system
attached to the transmitter coils is called the instrument frame.
The principal axes of a transversely isotropic conductivity tensor
define another coordinate system called the medium frame. The
x and y directions in this frame are freely chooseable since in
the “horizontal” plane the conductivity is isotropic. Also shown is
a coordinate frame attached to the earth (E,N,up) illustrating
that neither the instrument nor the medium frames have any
special directional relationship to the earth frame.
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the Ms. The total fields linking each corresponding receiver
coil are denoted by the Hs. The instrument axis and the con-
ductivity tensor are each arbitrarily oriented with respect to
coordinates fixed in the earth. Each of the three transmitters
couples independently to each of the three receivers—thus
from the nine magnetic field components nine components
of apparent conductivity can be determined. Of the nine six
are independent. These can be arranged ina 3 X 3 symmet-
ric positive definite matrix. The three eigenvalues of this
matrix comprise the three principal components of the con-
ductivity. The principal components will be the same
regardless of instrument orientation and regardless that the
six independent components of the apparent conductivity
matrix will in general depend on the orientation of the
instrument coil system with respect to the principal compo-
nents. The eigenvectors of the matrix will define the relative
orientation of the instrument axes and the conductivity ten-
sor principal axes. These might be useful to determine for-
mation dip and strike (Moran and Gianzero, 1979).

Our method for estimating the components of the con-
ductivity tensor is similar to the technique of Moran and
Kunz (1962) for conventional induction logging. The mag-
netic flux density in each of three mutually orthogonal
directions corresponding to the directions of the receiver
axes is expanded in terms of its Taylor series. Terms linear
in conductivity are retained as these are dominant at low fre-
quency. The retained terms are then solved for an apparent
conductivity.

The resulting conductivity expressions will apply, like
that of Moran and Kunz, only to the simplest possible case.
An anisotropic medium in which two of the three conduc-
tivity components are equal is termed transversely isotropic
and is the simplest non-trivial case. (If all three of the princi-
pal components are equal the medium is isotropic.) Our
results will apply in infinite, homogeneous, transversely
isotropic media. Perturbations of the instrument response
due to bed boundaries, borehole, invasion, and cross-
bedding are not accounted for in this analysis. Nor does our
analysis apply at frequencies corresponding to typical
MWD instrument operation. Thus it represents the simplest
possible first step on the road leading to a full understanding
of the conductivity structure of a rock as derived from elec-
tromagnetic instrument responses observed in a borehole.

Our goal is to obtain estimates of the components of the
conductivity tensor using voltages induced in each of three
mutually orthogonal receiver coils of an induction logging
instrument. These voltages are obtained from estimates of
the magnetic flux linking each coil. The magnetic fields are
easily computable from formulas only for sources located at
the origin and directed along the coordinate axes of a coor-
dinate frame, called the medium frame, chosen to coincide
with the principal axes of the conductivity tensor. These for-
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mulas give the components of magnetic field in the same
coordinate frame. In practice a borehole will penetrate the
medium at an oblique angle with respect to this coordinate
frame. A logging instrument in such a borehole would be
coaxial with the borehole and rotated around the borehole
axis by some unknown amount. Thus a coordinate frame
attached to the instrument, called the instrument frame, with
three mutually orthogonal axes aligned with the transmitter
coil axes will not in general be aligned with the medium
frame. In order to attain our goal we proceed beginning in
the instrument frame, resolving each of the instrument’s
sources into their components in the medium frame, com-
puting the components of field at the receiver locations in
the medium frame using appropriate medium-frame formu-
las, and finally resolving each component of field into its
three mutually orthogonal projections in the directions of
the instrument frame coordinate axes. The sum of these pro-
jected components in the direction of each receiver dipole
yields the resultant magnetic field linking each receiver
coil. Finally, we show that at induction logging frequencies
these magnetic field components are relatively simply
related to the components of the conductivity tensor.

The formulas for the fields are obtained from procedures
suggested by Moran and Gianzero (1979). We show that the
transformations from the instrument-to-medium and back
from the medium-to-instrument frames can be compactly
expressed in tensor notation. Finally, our goal is reached in
the development of low-frequency asymptotic expansions
of the field expressions that simply relate the receiver volt-
ages to the tensor components of formation conductivity. We
will show that for a transversely isotropic medium the appar-
ent conductivity tensor has only four independent compo-
nents. Of these, only the component estimated from the axi-
ally oriented transmitter and receiver dipoles corresponds to
the familiar induction instrument studied by Doll (1949) and
Moran and Gianzero (1979). In addition to new results, we
show how the previous work of Doll, Moran, and Gianzero
can be obtained as a special case in our analysis.

MAGNETIC FIELD COMPONENTS

Medium coordinate frame representation

Consider a 3-D geoelectrical model of a homogeneous,
unbounded, anisotropic medium with the tensor conductiv-

ity

(A 0 0
o=| 0 Op 0
0 0 o,

where 0, is the horizontal component of the conductivity
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and o, is the vertical component of the conductivity. We will
confine ourselves to consideration of nonmagnetic media
and, hence, assume that u = o = 4 X 10" H/m where Uo 1S
the free-space magnetic permeability. The medium is
excited through an electromagnetic field generated by mag-
netic dipoles with moment M and time dependence ™
where o = 27t/ 'and f'is the natural frequency of the source.
Displacement currents are neglected.

Maxwell’s equations for the electromagnetic field are
then

VXH=06"E (1)
VX E=iwuoH + iou Md(x, y, z), (2)

where (x, y, z) is a Dirac delta function located at the origin.
Following Moran and Gianzero (1979) we can derive the
expressions for the different components of the magnetic
field generated by the induction transmitter dipoles aligned
in each of the x, y, and z directions of the medium coordinate
system. For each component of transmitter moment there
are in general three components of induced field at each
point in the medium. Thus there are nine formulas for field
components. In this section we summarize these nine basic
formulas for the magnetic field components.

A coordinate system with axes parallel to the principal
axes of the conductivity tensor is convenient. Because in
transversely isotropic media the conductivity tensor has two
equal “horizontal” components, there is no preferred or
unique choice of axes in the horizontal plane. Thus there is
no loss of generality if the x—z plane is defined as the plane
containing the o, principal axis and the borehole axis. The z
axis is selected to coincide with the principal axis of &
which fixes the x axis as a line perpendicular to z lying in the
x-z plane, with the direction of y axis (which is orthogonal
to the x—z plane) determined by the right hand rule.

To proceed further we need to define a notation. The
transmitter component is indicated by a superscript on the
field symbol. Thus, H* denotes the magnetic field generated
by a point magnetic dipole at the origin horizontally ori-
ented along the x axis having unit moment M = (1,0,0).
Correspondingly, we denote as H” the magnetic field gener-
ated by a point magnetic dipole horizontally oriented along
the y axis having unit moment M = (0,1,0). Finally, the
magnetic field generated by the vertically oriented point
magnetic dipole having unit moment M = (0,0,1) is denoted
as H". In general, each component of the source induces
three components of field in the medium. Components of

field are indicated by subscripts. So H ,j indicates the ith
component of H due to the jth component of the transmitter,
M;ij=xy,z

Using the notation p= \/x2 + %, 5= \/p2 +Az7,
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2 [ ) ;
A =onlo,, r=+p* + zz,kh2 = iwuoy ,and k; = iouo, the
expressions for the components of magnetic field per unit
moment of source dipole are written as
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Since these component formulas assume unit-dipole
sources, the field of a source of arbitrary magnitude is
obtained by simply calculating the field using the formula
and multiplying the result by the source magnitude.

Magnetic induction tensor

The magnetic field components are given in the previous
section in a coordinate system defined by the horizontal and
vertical principal axes of the transverse isotropic media. In
practice, the orientation of the transmitter and receiver coils
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will be arbitrary (as well as a priori unknown) with respect
to this coordinate system. Obviously, the instrument will
respond only to flux from the field components linking the
receiver coils. To proceed it is necessary to develop a con-
nection between the magnetic field components detected by
the instrument’s receiver coils in a coordinate system
defined by the coil axes (called H'), and the components of
the same field referred to the principal axes of the conduc-
tivity tensor (called H) to which formulas (3)-to-(8) apply.
In other words, a transformation of vectors—and ten-
sors—from the instrument coordinate description to the

projection of ¢, onto x'-y' plane

FiG.2 If the direction of the o, principal axis of the conductivity
tensor is (loosely) called the “vertical” axis, then the relative
deviation angle a is measured between the vertical axis of the
conductivity tensor and the instrument axis. The rotation angle
is the roll of the positive x-directed transmitter dipole around the
instrument axis. The roll is measured from the highest intercept
of a circle lying in the x-y plane centered on the instrument axis
and the plane defined by the instrument axis and the vertical
axis of the conductivity tensor to a point on the x-directed
receiver axis.
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medium coordinate description, and vice versa, is needed.
Figure 1 shows schematically a sonde containing both three
orthogonal transmitter coils with moments M*, M, and
M, and three orthogonal receiver coils oriented parallel to
the transmitters. The instrument and medium axes are not
parallel. Figure 1 also shows the relation of the axes x’, y',
z' of the instrument coordinates to the x, y, and z axes of the
medium coordinates. The angle a between z and z’ is a rela-
tive deviation of the instrument measured from the (not nec-
essarily vertical) o, principal axis of the medium, and angle
B is the roll, or relative rotation, that instrument’s x'-directed
transmitter dipole makes with the x—z plane (Figure 2). For-
mulas (3)-to-(8) represent the components of three vectors
of magnetic fields in the tensor principal axes coordinate
frame, each vector having three components. These three
vectors form a magnetic tensor given in dyadic notation as

H=Hi+H"j+Hk

where i, j, and k are the Cartesian basis vectors of the
medium coordinates. We denote a tensor using a caret,
or hat, over a bold type-faced variable symbol; vectors
are similar, but hatless. Since H" expands to
H* =H{i+H, j+ H:kand similarly for the other vectors
the dyadic function representation of the tensor in nonion
form is

H=Hfii + H ji+H! ki
+H ij+ Hy jj+H: K
+H7 ik+H jk+H? Kk .

It is convenient to use the matrix representation of the
dyadic function for which the coefficients of the dyads are
written in a matrix as

H' H} H
H=|H, H} H
H; H H;

The columns of this tensor are the magnetic field compo-
nents in the medium coordinate frame for unit magnetic
dipole transmitters in the directions of the basis vectors. For
the magnetic field components of transmitters of arbitrary
moment it is only necessary to multiply the appropriate col-
umn in the matrix by the actual moment of the transmitter in
each direction. Multiplication of H from the right by the col-
umn vector M = (M., M,, MZ)T (where the superscript T
denotes the transpose of a vector or matrix) accomplishes
this. Now, since an arbitrarily oriented dipole of arbitrary
moment can be resolved into its x, y, and z components, the
usual interpretation of HM = H is that H gives the compo-
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nents of the magnetic field at any point in space for a single
transmitter dipole with components M. However, we con-
sider here an alternative interpretation. It is clear from the
derivation that H can also represent the field of three physi-
cally separate, orthogonal, co-located dipoles (such as the
triaxial transmitter of the tensor induction instrument that
we are considering). The transmitters have a particularly
simple representation in a coordinate frame with its origin
co-located with the transmitter center and having basis vec-
tors in the direction of the transmitter dipoles. This is
referred to as the instrument frame. In the instrument frame
we assume a source specified by M’ = (1,1,1).

Instrument coordinate frame representation

In order to use our representation of the field tensor H for
an instrument located in an arbitrary orientation with
respect to the tensor principal axes, it is necessary to trans-
form between the transmitter moment (and other vectors) in
the instrument coordinate frame representation (denoted
(x',y',z") into the medium frame representation (denoted
by (x,,2)).

The medium (unprimed) frame can be related to the
instrument (primed) frame by two rotations about the origin
(Figure 2). Let f measure the angle between the transverse
transmitter axis designated x’, and the line of intersection of
the x'—y' plane with the x—z plane. Then, think of rolling the
x'-y' plane around the z' axis through 8 until the x" transmitter
(and receiver) lies in the x—z plane. We shall call this angle of
rotation of the instrument on its axis the instrument roll, or
relative rotation. Then a second rotation, of the z" axis, around
the y’ axis through an angle « until z' coincides with the
medium axis z provides the desired transformation of coordi-
nates. We shall call & the instrument tilt, or relative deviation.

The action of these rotations on a vector is mathemati-
cally represented by multiplication of vectors in the primed
frame by rotation matrices. The rotation through f is repre-
sented by

cosff sinf 0
ﬁﬂ= —sinf cosf 0|, 9
0 0 1

while the rotation through « is represented by

cosa 0 —sina
R,=| 0 1 0 (10)
sinaa 0 cosa

The matrix product R = R, R g gives the transformation
of vector components from the instrument (primed) frame
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to the medium (unprimed) frame. This transformation, or
rotation, matrix is (Moran and Gianzero, 1979)

cosacosfB cosasinfi —sina
R=| —sinf cos f3 0 | (11)

sinacosfB sinasinfS cosa

As for any square matrix, RR™' =1 where I is the 3 X 3
identity matrix. The rotation matrices also have the special
property that they are orthonormal. This means that their
transposes are equal to their inverses; e.g., RT=R".

Represented in the coordinates defined by the conductiv-
ity tensor principal axes the field i is given in terms of its
sources by

H=HM.

Denote the source moment by M = (M,, M,, M_,)T when
referred to the medium frame and by M’ = (M}, M}, M.)"
when referred to the instrument frame. Let the coordinate rota-
tion R transform the magnetic field vector components from the
instrument frame to the medium frame. For example, H = RH'
and M =RM'. Substltutmg M=RM' into (12) multiplying
from the left by R™", and defining H' = R™'H gives

H'=R™'HRM'. (13)
This expresses the magnetic field in the instrument coordi-
nate frame in terms of the source in the instrument coordi-
nate frame and in terms of the magnetic induction tensor
explicitly expressed in the medium coordinate frame. We
note that with the definition

H =R 'HR=R"HR, (14)

that the field equations in the instrument frame have a form
identical to their form in the medium frame; i.e.,

H =H'M (15)
where H'is the representation of the magnetic induction ten-
sor in the instrument frame. The instrument’s receiver volt-
ages are proportional to the components of H'. For the unit
dipole sources that we are discussing here, H' can be thought
of as the total instrument signal.

As amathematical digression, it is interesting to note that
while the vector transformation is given by, for example,
H= RH the corresponding tensor transformation is given
by H RH RT having an additional factor of R” on the
right side of the RH' product. The form of the tensor trans-
formation is not intuitive, and cannot be inferred by analogy
with the corresponding vector transformation. It is a mathe-
matical formulation of the physical relationship between
the magnetic moment in the transmitter and the magnetic
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field in the receiver. The tensor form shows that this rela-
tionship is independent of the choice of coordinate system.

APPARENT CONDUCTIVITY ESTIMATION

Basic instrument response

Induction logging instruments measure the voltages V'
induced in the receiver coils. For each coil

V= iouSH (16)

where S'is the area of the receiver coil, and H is the magnetic
field component along the axis of the coil. From the factor i
in (16) it is seen that ¥ is phase shifted 90° with respect to H.
The magnetic field itself can be represented as a sum of the
real (R), or in-phase, and imaginary (3), or quadrature,
components decomposed as

H=RH+iSH. (17)

Substituting (17) into (16), we obtain

=—wueS S H+ioueSRH . (18)

The magnetic field at the receiver comprises the sum of two
fields, the so-called primary and secondary fields. The pri-
mary field is not part of the signal but represents the direct
coupling of the transmitter to the receiver. This field is in-
phase with the transmitter current. The voltage induced in
the receiver by this field is in quadrature with the transmitter
current. This primary field is rejected by the instrument. The
electromotive force (emf) induced in the formation is also in
quadrature with the transmitter current. This emf induces
eddy currents in phase with itself. These eddy currents give
rise to a secondary magnetic field that couples to the
receiver coil, which responds with a voltage in quadrature
with the eddy currents and secondary fields. This voltage is
phase shifted —180° with respect to the transmitter current,
but is still referred to as in-phase with the transmitter. This is
the so-called R-signal (Moran and Kunz, 1962).

The in-phase component of the field (receiver voltage in
quadrature or X-signal) is not easy to observe because of the
much larger primary field. The quadrature component of the
magnetic field (receiver voltage in phase, R-signal) is gen-
erated entirely by currents induced in the medium. In the
conductivity range of sedimentary rocks and at induction
logging frequencies the in-phase contribution of the secon-
dary field caused by induced currents is much smaller than
the quadrature component (Kaufman and Keller, 1989) and
is not needed in estimating formation conductivity at low
frequencies or conductivities. Therefore, the usual apparent
conductivity definition is based on an approximate formula
that considers only the imaginary (or quadrature) compo-
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nent of the induced magnetic field (i.e., in-phase receiver
voltage). We will follow this principle here to derive expres-
sions for the components of the apparent conductivity ten-
SOr.

Magnetic field asymptotic approximation

We obtain low frequency asymptotic approximations
used in estimating apparent conductivity relations by

ikys ikpr

expanding the exponential """ and e™*" in the form of Tay-
lor series and substituting the resulting leading terms into
formulas (3)—(8). (A detailed derivation of these approxi-
mate expressions is given in Appendix A.) The results are

1
SH =—wuooy
4

2 2 i A 2 (19)
yz +x_2+2x23—4" 72_5+j_3__i’
spA mp p A pA 22X 2r
. ; -k As— 1
SH =SH] =2 wueoy 20—~ 2Ly —| (20)
4r Ap Arps  2r
SHI = SH; = oue0n, 1)
8ar
(\st),y = WUOy
2 2 A A 2 (22)
)c2 +y_2+2y25—4r L HA=s Vo i’
spA p*A  ptA 2wt 2
5 z Z
SH! =SH; = yﬂ WU, 23)
2, 2
g = Ptz
(\\SHZ z—3wyoa;,. (24)
&nr

The limiting case of these formulas for the instrument
axis positioned parallel to the vertical axis of the conductiv-
ity tensor is interesting. In this limit for an instrument with
transmitter-receiver spacingz=_L,p - 0,0 > AL, and r > L.
The quadrature components in this limit are

SHE ="V, (25)
QHS = SHY? =0, (26)
SHY =S HF =0, (27)
%Wz%%m, (28)
QH] =S H] =0, (29)
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SHE =280 4 (30)
4L

Equation (30) indicates that for an instrument with its
axis parallel to 0,, the vertical magnetic field component of
the vertical transmitter dipole is approximately proportional
to the horizontal conductivity o, of the media. This is a well
known result (Moran and Gianzero, 1979). Indeed, Doll’s
(1949) well known formula for the apparent resistivity of an
axial dipole array corresponding to a vertically oriented
instrument can easily be obtained from SH, using (18)
with § =ma; where a, is the receiver radius, and also
remembering that the transmitter dipole in (30) is repre-
sented by a unit moment, M' = M = (0,0,1) = (0, 0, Ina})

where g, is the transmitter radius. The result is

2.2 2 2
_(wpo) 7 aia,

4rL

V= o, =—Koy, (3 1)
where K is Doll’s instrument constant.

However, (25) and (28) indicate that the horizontal mag-
netic field components of the horizontal transmitter dipole
are functions of the vertical conductivity only. This is a sur-
prising result. It is counterintuitive based on the usual con-
ceptual picture of the induction signal arising from eddy
currents that, if circulating around a horizontal axis, would
be influenced by both ¢, and o,. If confirmed in practice,
this approximation would suggest the possibility of simply
separating the horizontal and vertical effects in transverse
isotropic media using a tensor system of observations.

EFFECTS OF SONDE ORIENTATION

Having derived low frequency asymptotic approxima-
tions for the field components in (19)-(24), we wish to
inspect the accuracy of these approximations over a range
of parameter values. We do this in the following sections by
first developing a representation of the fields in polar coor-
dinates in the x—z plane, and then applying this representa-
tion to an analysis of the accuracy of our approximation. We
then examine the instrument response as a sonde at various
tilt angles is rolled around its axis.

Tilt effects: relative deviation response

The instrument’s position is usually specified in terms of
the angle between the instrument axis (obtained from a
wellbore deviation survey) and the vertical direction. How-
ever, its response is conventionally described in terms of the
relative deviation (denoted by «) which is the angle
between the instrument axis and the direction normal to the
(not necessarily horizontal) plane of isotropy in a trans-
versely isotropic medium. This information could be avail-
able from borehole images or dipmeters, or might be
inferred from structural maps. However, this information
can be obtained directly from the tensor induction log data.

We shall show in the next section that the effect of sonde
roll can be evaluated and eliminated from the observations.
It is convenient for the present analysis to express H
directly in terms of the relative deviation alone, with the
relative rotation § taken as 0. Let the instrument’s transmit-
ter coils coincide with the coordinate origin, with the
receiver coils located at some distance L from the transmit-
ter at a point with polar coordinates in the x—z plane

x=Lsina,
y=0, (32)
z=Lcosa,

where « is the relative deviation of the instrument axis with
respect to the nominal vertical axis of the conductivity ten-
sor. The x direction is chosen so that the instrument axis (i.e.,
L) is confined to the x—z plane, and the coil of the y-directed
receiver is confined to the x—z plane. Therefore

p=x=Lsina,

=p2+ A
S/ 1272

:Lw/sin2 a+Atcos’ a,

and

s=ILl=1L (\/sin2 a+Arcos*a—4).

With the restriction A= 0, using these formulas and equations
(19)-(24), we obtain the following expressions for the magnetic
field components at the various receivers as functions of a:

x _ WHoOy, 1+sin’a +\/sin2a+izcosza—/1 )

We have used Cartesian coordinates in the medium — SH; e 5 — :

frame in equations (3)—(8), (19)—(24), and (25)-(30) to L Asin” a
describe the magnetic fields. We have also shown how the

. e . SHy = SHY =0;
rotation matrix given in (11) can be used to convert these Y x )
expressions into the instrument frame. We now make this

. .« e . . Cx X e X 2 wlu 00/7 3

connection explicitly and derive formulas for the magnetic =~ SH; = SH; = msm acosa;
fields and the magnetic induction tensor expressed directly
in the instrument frame.
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SH? = 2L
4L

Asin’ 2

1 _\/sin2a+izcos2a—/l 1

bl

A\/Sin2 a+ A cos’a

SH! =SH; =0;

, W o0y
SH? ~ 2

5 [1 +cos 2 al.
8L

Summarizing these formulas in a matrix form, we have

SH' SH? SHE
. .| wu,o
SH=|SH, SH] SH; |x——*. (33)
) 8 8nL
SHY SH! SH:
1+sin’ a
[ sina cosa
sin?a + A cos’a - 4 0
P—_—
Asin? a
1
gl —ee———s
iVsin?a + A% cos? a
0 0
Vsin?a + A2 cos’a -4 1
Asin? 2
4 2
sina cosa 0 1+cos“a

The off-diagonal Os in (33) arise from the choice of coor-
dinates and the choice of instrument orientation. In this rep-
resentation the transverse transmitter and receiver dipoles
are aligned parallel to the x and y axes when @ = 0. When «
# 0, the axis of the instrument lies in the x—z plane. How-
ever, the y-directed transmitter and receiver remain parallel
to the medium frame y coordinate. Thus, with the confine-
ment of the instrument axis to the x—z plane, and if the
instrument cannot rotate on its longitudinal axis, no flux
from the axial transmitter or the x-directed transmitter can
link the y-directed receiver; this remains true regardless of
the value of . This also holds for the axial (or z-directed)
component of transmitter and the y-directed transverse
receiver. Put succinctly, the y-directed transmitter does not
couple to the x- or z-directed receivers, nor does the
y-directed receiver couple to the x- or z-directed transmit-
ters. Consequently these terms are equal to zero in the
induction tensor.

As in Cartesian coordinates, Doll’s formula for the
apparent resistivity can also be easily obtained from A in
this form by letting a = 0. The term 1 + cos’a =2 and
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making the same assumptions as before, formula (31) is
again recovered.

Note that, although the induction tensor is now expressed
in terms of the relative deviation «, the fields are still in the
medium frame.

Figure 3 presents the results of a selected comparison
between the exact analytical solutions for different mag-
netic field components computed by formulas (3)—(8), and
their low frequency asymptotic approximations, calculated
using formula (33). The results of field calculations are pre-
sented for a relative deviation angle « of the instrument @ =
60°. Other relative deviations show qualitatively similar
responses. Nine plots are presented ‘in the figure, corre-
sponding to the nine magnetic field components calculated
for different mutually orthogonal polarizations of the trans-
mitter dipoles. The plots of these components are arranged
in the form of a symmetric matrix reflecting the symmetry
of the magnetic field components:

Hf =H} =0, Hf =H}, H} = H! =0.

In each component plot we show two curves: 1) an analyti-
cal solution (the solid line) for the quadrature magnetic field
component, and 2) an asymptotic low frequency solution
(circles) versus a dimensionless parameter ratio of the
transmitter-receiver separation L to the horizontal skin
depth 6, =/2/ wpo0;,. One can see that, for a small L/9,,
ratio, these two curves practically coincide. They are
approximately equal while L/d, is less than = 0.01 and
begin to diverge when L/d, > 0.05 approximately. How-
ever, the approximation remains acceptable in most cases
where L/0,, is less than or equal to 0.1. Note that, for the typi-
cal induction logging instrument, the frequency is 20.0 kHz,
and the distance between transmitter and receiver is equal to
L = 1.0 m. The medium is characterized by g, = 0.1 S/m and
0,=0.0625 S/m, giving a coefficient of anisotropy 4 = 4.
For this case L/3;, = 0.088. For a well logging instrument
having these parameters the low frequency asymptotic
approximation provides a reasonable estimate of the actual
magnetic field. Obviously the approximations are best for
low frequencies and conductivities and become increasingly
less accurate at higher frequencies and conductivities. This
is just a manifestation of the long-familiar problem of skin
effect that has been minimized in conventional instruments
with a “skin effect boost.”

Roll effects: relative rotation response

Figures 4-6 present the results of relative rotation
response calculations. We calculated nine components of
the matrix of the magnetic induction tensor in the instru-
ment coordinate frame, using rotation formulas (14)
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H) H! HZ

X «\l X:
H'=|\H' H H
A

HZ’ HZ, HZI

The calculations were conducted for the following
parameters: the horizontal conductivity was 0.1 S/m, the
anisotropy coefficient was equal to A = 4, the frequency was
20 kHz, and the distance between transmitter and receiver
was equal to L = 1 m. We analyzed the induction tensor for;
1) a vertical borehole (¢ = 0°); 2) a deviated borehole (& =
45°); and 3) a horizontal borehole (a = 90°). For every
case we computed the tensor components as the relative
rotation angle 8 varied from 0-to-360 degrees. We used the

IS

(o]
0=60 x10

analytic formulas (3)—(8) and expression (14) to compute the
rotation response. The results are shown in the form of polar
diagrams of all nine components of the induction tensor. Fig-
ure 4 shows the polar diagrams of the imaginary components
of an induction tensor for the vertical borehole. Figure 5 pres-
ents the same result for a deviated borehole with the relative
deviation a =45°. Finally, Figure 6 presents the polar dia-
grams for the horizontal well. For convenience of observa-
tion, solid lines present the positive values of the magnetic
field components, while the dashed lines show the negative
values. The numbers at the upper right sides of each diagram
are the scale factors. They represent the corresponding values
of the solid circles that bound each diagram.

— Analytic
0 Asyn);tpt. M)f’

Hxx (A/m)
<)

Hyx (A/m)
& i

Hzx (A/m)

E
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Fig. 3 Low frequency asymptotic (circles) and analytic solutions (lines) for the magnetic field in a homogeneous anisotropic
medium for the deviation angle a = 60°. The magnetic field components are plotted versus a dimensionless parameter ratio of the
transmitter-receiver separation L to the horizontal skin depth 65 = +/2/ wugop. For the typical induction logging instrument with L = 1
m, the interval 0 < L/3, < 0.1 corresponds to a frequency range from zero to =25.33 kHz (1/47° x 10°), assuming oy = 0.1 S/m. The
asymptotic solutions are used to estimate conventional (i.e., Doll) apparent resistivities but without correction for skin effect. At higher
conductivities and frequencies the approximations become progressively less accurate.
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Note that due to the symmetry of the induction tensor, the
matrix of the polar diagrams is symmetrical with respect to
the main diagonal. One can see in these plots that the polar
diagram for component H; is a circle, because this compo-
nent doesn’t depend on the relative rotation angle. All other
polar diagrams have different but symmetrical shapes and
vary for the different relative rotation angles of the well.
Thus, the polar diagram representation makes it possible to
describe the rotation effect in the induction tensor compo-
nents. One can notice that, due to rotation, components of
the induction tensor can change their signs, and even can be
equal to zero for specific orientations. This circumstance
should be taken into account in interpretation of the induc-
tion tensor well-logging results.

Imag H_/|H_|
xx " &b o.o%g

INSTRUMENT RESPONSE INTERPRETATION

In general it is not known a priori what values the conductiv-
ity components of a medium possess, or the direction of its prin-
cipal axes with respect to the instrument. But there is enough
information in the tensor induction instrument response to
determine the values of «, f, ), and o,. It is convenient to
deconstruct the instrument signal beginning with a determina-
tion of B and the evaluation and elimination of its effects.

Analysis of roll effects: 8 determination

The instrument signal H' can be viewed as the compo-
nents of a magnetic field expressed in the instrument coor-
dinate frame. These components can be obtained from the

HJHL
g

FIG.4 Polarinduction magnetic tensor diagram for the deviation angle a = 0. The imaginary part of the magnetic field is normalized
by the vertical magnetic field |SH.,|. In this model the frequency is 20 kHz and the horizontal conductivity is 0.1 S/m, the anisotropy
coefficientis 4, and the transmitter-receiver distance is L = 1 m. The tensor components are rotated around the borehole by changing
the relative rotation angle 0° < 8 < 360°. For the vertical position all the cross-coupled components are zero and all the direct-
coupled components are constant regardless of the sonde rotation (i.e., roll).
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same field expressed in the medium coordinates by a suc-
cessive application of two coordinate rotations. This is

response in medium frame, where the formulas for the fields
have their simplest relation to the conductivity components

of the medium.
From (34), clearly

RsHR} =RIHR, . (35)

expressed by equation (13). The magnetic induction tensor
can be expressed in terms of the same rotation, as given in
(14). Expanding (14) in terms of the component rotation
matrices we see that .
Ao ARk KA L AR A The form of R 4 is known, but 3 is a priori unknown. We now

, T THT B ) p

= = ; 4 ,
H'=RHR=R R HR.R 5 (34) show that the value of B can be obtained from the data. For

~ . : ; convenience, we will temporarily i 1
H' represents the instrument response in the instrument i POLatLy mtr()dug eAdouble primed

: . " __ T .
coordinate frame; i.e., each of its elements is the magnetic variables to denote the matrix H —.RaHRa.’ and its ele-
field at one of the receivers due to one of the transmitters. In ~ ments. It turns out that all double pr1meq var@bles can be
general it will be fully populated. H is the instrument eliminated in favor of the observations (i.e., single primed

imag H_/|H
g XXI ébl 058

FIG. 5 The formation and instrument parameters are the same as those discussed in Figure 4. The relative deviation of 45° illus-
trates the interesting variation in the amplitude of the responses as a function of instrument roll. The H,, component, corresponding to
a conventional instrument, does not change, but all the others do. The H,, and H,, direct-coupled signals vary according to whether
the transmitters and receiver coils lie in the vertical (or o) plane or perpendicular to it. As the sonde rotates the H,, and H,, signals
vary with the degree of roll. The cross-coupled terms vanish at orientations of the sonde where the magnetic field has mirror symme-
try when viewed from the receiver coil, insuring that there can be no flux linkage and therefore no voltage induced. At other orienta-
tions the medium anisotropy breaks the symmetry and non-zero cross-coupled terms are induced. These change sign at the zero
crossings, as indicated by the coding of the curves. Noting that H,, and H,, are phase shifted versions of H,, and H,,, having a con-
stant phase lag of 90°, there are only four independent magnetic field components in transversely isotropic media.
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variables). The observations are related to the sonde rotation
by

SH'=R;SH"R;. (36)
and thus
SH"=R; SH'R}. (37)

Multiplying out the factors on the right side and equating
them term-by-term to the elements of the magnetic induc-
tion tensor (i.e., the instrument observations) produces
equations for the observed field components in terms of 3
and the double-primed variables, from which the double-
primed quantities can be eliminated. Expand (36) and

Imag H_/|H
9 R,/ gbl 42,

equate the matrix elements on the left and right. Then from
the matrix elements in the xx position

SH} =cos’ SH) +sin’f SH),  (38)
from the yy position
SH) =sin’ SH) +cos’8 SH),  (39)
and from the xy and yx positions
SH) + SHY =sin’f (SHE —SH)).  (40)

Then subtracting (39) from (38) leads to

H /H_]
yx ' zz

FIG. 6 The formation and instrument parameters are the same as those discussed in Figure 4. At the relative deviation of 90° the
cross coupling terms again vanish for all values of instrument roll. This can be understood in terms of symmetry of the fields most eas-
ily by considering that a transverse dipole at any value of instrument roll can be considered to be the superposition of an appropriately
weighted horizontal and vertical dipole. These components do not cross-couple and therefore the superposition of the components
cannot cross couple either. The Hy and H,, direct-coupled signals vary in intensity according to whether the xxand yy arrays are par-

allel or perpendicular to the nominal horizontal plane.
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S]—]X’fl — %Hj = (COS:Z ﬁ—Sinz ﬁ)(%H;I - SH)’}V)(41)

=cos2B(SHY — SH)) .

Then division of (40) by (41) permits the cancellation of the
double-primed variables and gives the result
SHY +SH)
tan2ff = ———, (42)
SH y,g +SH)

or, explicitly

1 [sHS +sH)
ﬂ=5tan P —_ Eﬁa . (43)
SH; + SH

Note that 3, is expressed solely in terms of a subset of the
observations, but it is not uniquely determined by the obser-
vations appearing in the formula. However, the quadrant
which contains f, is determined uniquely by the signs of

j and H ', as shown in Table 1. Once Ba is known, the
effects of sonde rotation on the observations can be
removed using (35). The transformed observations depend
only on a, 05, and o,. We shall call RIS HR the “resid-

ual” signal.

Analysis of residual signal: 0, 0,, and a determination

Consider again the case where the orientation of the
instrument with respect to the principal axes of the medium
is given by equations (32). Note that the axis z’ of the instru-
ment coordinates coincides with the instrument longitudi-
nal axis. Since the instrument frame x' axis is confined to
the medium frame x—z plane, the relative rotation j is 0 and
the rotation matrix (11) takes the form

cosa 0 —sina
R,=| 0 1 0 | (10)
sinaa 0 cosa

The instrument’s signal, i.e., the quadrature component of
the induction tensor, reduces in the instrument frame to

SH'=RTSHAR,, (44)

where SH is given by (33) and SH' represents the instru-
ment signal for the case § = 0. In Appendix B we describe a
detailed derivation of the expression for the magnetic field
components in the instrument system of coordinates. Based
on this analysis we introduce a magnetic induction matrix
for a sonde whose longitudinal axis makes an angle & with

_\/sin2a+/12cosza—i

_ : (45)
Asin® a
then using (33) and (44)
SHE SHY SHE
U X! ! 17z Wiy O
SH'=|SH,, SH) SHj |~ —0 "k (46)
, , ) 8 L
SH, SH) SH;
1+2gcos’a 0 2q cosa sina
0 [__} 0
AVsin @+ 7 cos’a '
2g cosa sina 0 2(1+ gsin*a)

The instrument’s response—i.e., the individual magnetic
field components—are the matrix elements of (46):

! WU oOp 2
SH, =———[14+2gcos” a], 47
* 8L : 1 ) i
g = 2% 2 ~2g~1
g 87L | jsin? & + A% cos? a
WU (O, '
SH =M[2qcosasina]= SHE,
8L *
P WU Op .2
SH: =——[2+2gsin” a]. 48
e (48)

Note that (33) and (46) represent the same field. In (33),
although the components are expressed in polar coordi-
nates, they are still in the medium frame; in (46) they are in
the instrument frame and represent the instrument signal.

Apparent conductivity: deviated instrument

The general case is for an instrument tilted with respect
to the principal axes of the conductivity tensor and rolled by
an arbitrary amount around the instrument axis.

For the axial dipoles the instrument roll is not a factor in
the coupling of these dipoles to the medium or to each other.
In this case assume that we use formula (48) to model meas-
urements of A} for a deviated instrument. Substituting
for g in (48) and simplifying, the measured axial magnetic
field is described by

s 2
WO Vsin? @ + A2 cos? &

: R RE = (49)
the o, axis of the conductivity tensor. If we define 4L A
Solving (49) for g}, leads to
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TABLE 1 Inspection of the signs of H5 and HY determines
the quadrant where j, lies. The table was constructed by
inspection of Figure 5.

o
HY A
+ 11 I
— I1I v
Oha = % SHZ =,Jo} cos’ a + 0,0, sin® . (50)

Thus, for the axially directed transmitter and receiver corre-
sponding to existing instruments, our formulation yields the
formula of Moran and Gianzero (1979) for the apparent con-
ductivity in a deviated borehole. With axial dipole instru-
ments this formula is all that can be done. With the full data
set of a triaxial instrument, the parameters of the medium
can be solved for.

Equations (47) et seq. contain three unknown parame-
ters: deviation angle «, horizontal conductivity o, and ver-
tical conductivity o, (disguised as the anisotropy coefficient
A =4/0y 0,). We can use these equations to find the parame-
ters of the transverse isotropic media, and the deviation
angle of the instrument from observed magnetic field com-
ponents. For the special case of =0 lengthy but straight-
forward algebraic calculations presented in Appendix C
provide direct analytical expressions for the solution. Let
g =wu/8rL, then

o L.
ha 2g
. (51
| — , (51)
SH +3 SH + (%H;‘. —E%Hj) +2QH, |,
40252
12 = g Gha ) (52)
SH;Z[%H;.' + SH) + SHZ -2gaha)
Of course, then
1
Ova = 75 Oha (53)

and
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o 2QH
a, =—sin

2 SHY + SHE —3g04,

(54)

In an infinite, homogeneous, transversely anisotropic
medium these formation parameters would be exactly cor-
rect except for a skin effect reduction that we have not dis-
cussed. In heterogeneous media the same formulas are used,
but the parameters are referred to as “apparent” conductiv-
ity, etc., signified by appending the a subscript a.

Apparent conductivity: vertical instrument

We have already presented results relating fields and
conductivity components for a vertical instrument in formu-
las (25)—(30). These should represent the & = 0 limit for
formulas (47) and (48). In this limit the results are

Wit o

SHY = o,, (55)
8L
z W o
QH? = oy, 56
s = O (56)

where primes are omitted for a vertical instrument. These
are identical to (25) and (30) as expected. From the formula for
the axial field quadrature component SH ; for a vertical instru-
ment, we obtain the expression for apparent conductivity

4nl
Oy =—=QH? =g, (57)
Wio

identical to Doll’s expression.
Based on the formula for the transverse field quadrature
component SH; for a vertical instrument, we obtain a new

expression for apparent conductivity
_8nL

Wlto

Oq SH; =0ya, (58)
in agreement with the formulas derived for a vertical instru-
ment; L.e., (25).

A final observation

We began our study with Moran’s and Gianzero’s (1979)
formulation of the electromagnetic field response of a trans-
versely isotropic medium. For completeness, we finish by
observing that the determination of 04,, 0,4, @4, and 8, per-
mit the representation of an apparent conductivity tensor
corresponding to any orientation of the instrument. This
representation is g, = ﬁTéa ﬁ, where the subscripts indi-
cate the “apparent” parameters. In the simple medium that
corresponds to our analysis, the values of the “apparent”
parameters will equal the values of the medium parameters,
and the primed and unprimed variables indicate the instru-
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ment and medium frame respectively. The elements of & are
given in Moran and Gianzero (1979, p. 1284). We know that
in general & is symmetric, indicating that only six of its nine
elements are independent. In the presence of transverse
isotropy we might expect to see only four independent ele-
ments due to the additional symmetry of the medium.
Moran and Gianzero show that in transversely isotropic
media the six components of the conductivity tensor depend
only on the four parameters 0y, 0,, @, and . This makes
explicit that regardless whether the representation is viewed
from the medium frame (i.e., oy, 0, @, B) or is viewed from
the instrument frame (i.e., O, etc.) only four parameters are
required to specify the conductivity tensor.

NUMERICAL EXAMPLES:
HOMOGENEOUS ANISOTROPIC MEDIUM

We have used formulas (51)—(54) and also formula (C.15)
from Appendix C to calculate the apparent conductivities 0,
0ya, apparent anisotropy coefficient A,, and relative deviation
angle a, on the basis of tensor well-logging data.

Calculations were conducted using o, =0.1 S/m (10
Q-m), 0,=0,/16 =0.00625 S/m (160 Q2-m). We precom-
puted the components of the induction tensor using the ana-
lytic formulas (3)—(8). We then applied (51)—(54) to the syn-
thetic tensor induction log and generated plots of apparent
conductivities 04, 0v4, apparent anisotropy coefficient A,,
and apparent deviation angle @, versus a ratio of the
transmitter-receiver separation L to the horizontal skin

depth &), =+2/wug 0;. Solid lines in Figure 7 show the
result of this calculation, i.e., the apparent conductivity, for
an instrument with deviation & = 0°, while the circles show
the actual conductivity value of the tensor component (or
other parameter). The apparent conductivity values are
lower than the true conductivities. Figure 8 presents the
same plot for @ = 80°. One can see in these plots that, in
accordance with the theoretical formulas, the apparent
parameters closely approach the true parameters of the
model for low frequencies and conductivities and progres-
sively diverge for higher frequencies; i.e., larger values of
L/S;. Nevertheless, one can see that horizontal conductivity
and the deviation angles are well approximated from the
analytic tensor well log data in the interval 0 < L/d; < 0.1.
The approximate vertical conductivity is less accurate, but
the apparent vertical conductivity and apparent relative
deviation are still approximately correct for the relative
deviations up to and including 80°.

The deviation of the apparent conductivity from the for-
mation conductivity is called “skin” effect in conventional
induction logging, and is compensated by a so-called skin
effect boost. The departure of the asymptotic approxima-
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tions from the exact formation conductivity observed in
Figures 7 and 8 is due to skin effect. If the method that we
describe herein were to be used for actual interpretation,
skin effect boosts would have to be developed for each com-
ponent of apparent conductivity.

Our results suggest that determining the tensor conduc-
tivity components of a transversely isotropic medium from
tensor induction observations in a deviated well is feasible
if perturbations from a borehole and shoulder beds can be
neglected, compensated, or corrected.

CONCLUSION

We have examined a simple but fundamental model of
electromagnetic tensor induction well-logging in
unbounded, homogeneous, transversely isotropic, conduc-
tive media using an arbitrarily oriented instrument. We have
studied the analytical solution for induction tensor compo-
nents and derived low frequency asymptotic approxima-
tions based on quadrature components.

The important result is that by measuring the quadrature
components of the induction tensor we can obtain the prin-
cipal values (i.e., 05 and 0,) and the orientation of the con-
ductivity tensor with respect to the instrument. This conclu-
sion holds whether the instrument is vertical, or rolled and
tilted with respect to the tensor axes.

The formulas introduced above for the apparent horizon-
tal and vertical conductivities 0,4, 0,4, apparent anisotropy
coefficient A,, and apparent deviation angle a,, can be used
as the basis for tensor well log interpretation in inhomoge-
neous anisotropic media when borehole and shoulder-bed
effects can be neglected. This work strongly suggests that
instruments developed using the triaxial induction principle
will probably add great value to formation evaluation.
However, corrections for borehole and shoulder-bed effects
are sure to be required, if not in every case, then at least in
many cases of practical interest.

The asymptotic formulas developed for the apparent
conductivity are analogous to the Doll apparent resistivity
formulas. Modern, practical interpretation of triaxial induc-
tion instrument responses will employ computational
resources and methods not available to Doll. Our result com-
pletes Doll’s classical method for all of the components of the
magnetic induction tensor in a transversely isotropic medium
and provides a bridge to the modern methods that will be
based upon numerical models of the instrument responses.

The further development of principles for tensor induc-
tion interpretation in realistic cases is a topic of great inter-
est with much work remaining to be done.
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FIG. 8 True parameter values (circles) and apparent electrical conductivity parameters (lines) of a homogeneous anisotropic
medium for the relative deviation angle @ = 80°. Except for the relative deviation, the model is the same as used in Figure 7. Obvi-
ously, the worst case for the asymptotic approximations is for very high relative deviations. Possibly a relative-deviation dependent

skin effect boost could be found to mitigate this effect.
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APPENDIX A:
LOW FREQUENCY APPROXIMATION

ik,s ikyr

The exponential terms, ™" and e™"", appearing in the
magnetic field formulas have Taylor series expansions
given by

ikvs' S (ikvs)n ikpr - (ikhl’)n
e —ZO——H! , e _20—”’ . (A

For low frequencies or conductivities these series can be
approximated by their leading terms. Thus e® = 1+ ikys
+1i%k]s® and ™ =1 + ikyr + 1 i’k r*. These approxi-
mations are substituted into formulas (3)-(8) to obtain a
closed-form low-frequency approximation of the magnetic
field. The approximations are used to derive approximate for-
mulas for the instrument responses linear in o, and 0,. These
formulas can be solved for approximations of the conductivi-
ties, 0y, and 0,,, of an infinite, homogeneous, and anisotropic
medium. The approximations are accurate to the same order
as the Doll apparent conductivity formula that was the indus-
try standard until recently—indeed the Doll formula is a spe-
cial case contained in the formulas described below.

The magnetic induction tensor contains nine compo-
nents, but since the tensor is symmetric, only six of these are
distinct. Further, H;' and H; are formally identical upon
exchange of x and y in their respective formulas, and Hy

can be obtained from H,’ if x is replaced with y in the for-
mula. In the interest of saving space the formulas for only
four components are derived below, but upon exchange of
appropriate variables (i.e., source and receiver labels) all
nine components can be obtained from the four formulas
given.

H" field calculations

H; calculation. The horizontal component of the magnetic
field excited by the horizontal magnetic dipole is calculated
by formula (3). Expanding the exponentials as outlined
above and substituting the first three terms into (3), after
much tedious algebra we obtain
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2.2, .2 2
X T
kT2 TP % 3 (A2)
p r
2 2
ro—3x
= gt (kjﬁ)}
,
The quadrature component is
22 ’
SHY =— wuyo), Yy =s1-2—
4 p?A p
(A.3)
_|_x“,02 +r2,02 —2r°x? 1 x? =2
rp4 2 r3
After some transformation
o1
SHY = — wu oo,
47
2 2 _ _ 2
y2 +x_7+2xzs 4r}. r/12 § x_}_i .
sp°A mp” p' A pAh 2 2r
(A4)

If the transmitter and receiver coils are located in the vertical
borehole, thenp - 0, s = A|z|, r - |z, and
1 1

SHy =—wuoo, ——.

87 ] (A-5)

H, calculation. Using formulas (4) and the approximations
based on (A.1) we obtain

4
2
1 1
k} % 2—p—2 +—2+—3——2—: +%+o(k,fs3) :
Ap s wo2r p r

(A.6)
In this case the quadrature component is

S—rh  As—r 1
Z-2 | (A
Ap Arps  2r

x XY
SH, =——wugoy| 2
y A Ho hli

For transmitter and receiver coils located in a vertical bore-
hole, then y - 0, s > A|z|, r = |z|. The quadrature compo-
nent is equal to
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2 _ _ 2
(A" =1 As r+p_]~)0'

Xy
—_ -2
5 a)/ioah{ 2/12|z| s 5,3

4mp

H’; calculation. Substituting the power series approxima-
tions into (5) we obtain

1
Hi =134k +ok}r*)|. (A8
4mr® 2
The quadrature component is
SHE =~ o0} (A.9)
8mr

For transmitter and receiver coils are located in a nearly ver-
tical borehole x - 0,s = A|z|, » = |z|. In this case the quad-

rature component is equal to SH; =0.

H” and H* fields

The physical principle of reciprocity and the essential
equivalence of the transverse source and receiver dipoles
provides much redundancy in the formulas for the field
components. Thus the formula for H; is transformed into
the formula for /" when every y is replaced by an x, and every
x is replaced by a y. By reciprocity ;" will equal H; and the
formulas will transform from one to the other upon exchange
of xs and ys. The formula for /) can be obtained by instru-
ment symmetry from the formula for A when x is replaced
with y. The formula for H, is obtained by reciprocity from
H_ upon exchange of y and z. So, by exploitation of these rela-
tions, only the H; component remains to be calculated.

H; calculation. The low frequency approximation for H;
is

2. .3
= 1
H; = 1 32—r+—khzr2+lkh222+0(k,?r3) .
4mr? P2 2 P
(A.10)
The quadrature component is
2 2
+
SHE = wpe0s . (A.11)
8nr

In a “vertical” borehole x=0 and y=0 then SH;, =
e /4J'L'|Z| )
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APPENDIX B:
INDUCTION TENSOR IN THE INSTRUMENT
COORDINATE FRAME

Consider a special case where the direction of the instru-
ment axis with respect to the conductivity tensor axes is deter-
mined by the deviation angle a and the relative rotation angle
B is equal to zero. We assume that three mutually orthogonal
receiver coils are oriented along the instrument coordinate sys-
tem x', y', z' and are located at the point (x, y, z) in the bore-
hole at some distance L from the transmitter, according to for-
mula (32). Note that the axis z' of the instrument coordinates
coincides with the instrument longitudinal axis.

The rotation matrix (11) takes the form

cosa 0 —sina
R,=| 0 1 0 (10)
sina 0 cosa

The rotation formula (44) reduces to

[ prx y z'
HX HY H?
x! y z | _
Hy, H) H}|= (B.1)
HY HY HZ
[cosa 0 —sina H: H':ZO H: cosa 0 sina
0 1 0 H' =0 H’ HA’ =0 0 1 0 |=

| sina 0 cosa H: HY =0 H: —-sina 0 cosa

FH;‘ cos’a —2H sina cosa
a2
+H sin"a

(H; - H])sina cosa
+H? (cos’a—sin’a)
24
0 H? 0
(H; - H})sina cosa

.9 .
0 H: sin"a+2H; sina cosa
2 .
+H? (cos’a—sin’a)

2
+H cos“a

Using the last formula, we can find the expressions for all
magnetic field components in the instrument coordinates.
For later convenience in notation we define

=w/sin2a+/1:cosza—/1 B.2)
Asin” a

H ;‘ calculation. Let us find # ;‘ . The magnetic field compo-
nents are equated to the corresponding components in (46).
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! p o
SH) =QH cos’ a —23H: sinacosa + SH? sin® a

. 2 2 2
a+ A cos“a—A
] 14+2cos’ a \/sm —
8L Asin“ a
:wﬂoah

1+2gcos® al.
8L [ 1 ]

(B.3)

This component can also be expressed through vertical con-
ductivity:

SHY = D8oTn [/12 2Acos” Q‘(\/ sin?a +4%cos’a /1)}

8t L sin‘a
(B.4)
Thus,
%Hx. —\sH{ A? MCOS “ (Vsin?a +A%cos’a A)}
sin’a
(B.5)
On the other hand, for small & we have
. 2 2 .2 2
«/sm a+/lzcos a lzl A . (B.6)
sin’ a 2Acosa

Therefore, for small &

4 WU O,
QHY = 2O

B - {(l cosa)iz+cosa} (B.7)

If @ = 0 then SH; = (wuo / 87L)o, . So for small a
%Hf = %Hf[ (1 — cosa) A* + cos a} . (B.®)
In the case of isotropic media A = 1, and SH; = QH; .

H calculation. Let us find A’ .
' ; 2 .2
SH) =(SH; — SH; )sinacosa + SH; (cos™ a—sin“a)

= BH0 5 2cosa
8L

\/sin2 a+Acos’a —/'L
Asina

_ Wlo O

2gcosasina].
- [29 ]

(B.9)

In the case of isotropic media A = 1, and JH" = QH; =0.
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H;. calculation. Because of the choice of our coordinates
Yy — Y
H, —Hy,

tation. We have

,and H. yy component doesn’t change with the ro-

C_ WOy
H) =—""%.
Y 8mr
) 1 _\/sin2a+lzcosza—/1_l
lx/sin2a+12 cos® a Asin® & 2

! 1
=2 —g——|.
|:i‘\/Sin2 o+ 12 COSZ a 2} (BIO)

H ZZ calculation. For example, let us find H > .

! .2 . .
SH = QH, sin“a +23H; sinacosa + SH sin? cos® «

o 2
=LK —1+—\/sin205+/120052oe+(sinzoz+coszcc)2
8L A
_ W00
LRI 511 + gsin? a]. (B.11)
8L
Thus,
L WU O \/sin2a+izcos2a
SHE = (B.12)
4L A
Ifa=0,
gz = 280 (B.13)
4rL
So
5 9 2 2
: + A
SHi = SHY Vsin? & cos” a (B.14)

A

In the case of isotropic media A =1, and SHZZ,/= SH; .

Summarizing the results in a matrix form, we have

WHO )

!
SH' ~ (B.15)
8 L
1+2gcos’ a 0 2g cosa sina Mx
2 -2 -1 0 My .
k sin 0:+AZ cos?a
2g cosasina 0 2(1 + qsin2a) Mz
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APPENDIX C:
DERIVATION OF THE FORMULAS FOR
APPARENT CONDUCTIVITIES AND
THE ANISOTROPY COEFFICIENT

The derivation is based on the formula (46) for the induc-
tion matrix in the deviated borehole. Introducing the nota-
tions g =wuo/8mr and h'=SH'/go,, and ¢ =

(\/sin 2a+ A*cosa—A)/ (Asin? @), for notational con-
venience, we make the definitions

B =1+2gcos’ a (C.1)
and '
W = £ —2g-1 (C2)
/1\/sin2 a+ A*cos’ a
hj' = hj =2gcosasina = gsin2a (C.3)
hi =2+2gsin’a=2(1+gsin’a).  (C4)

Therefore hx‘ + hj’ =3+2gand h';; = gsin2a. Solving the
last two equations, we obtain
1(h)" +h% —3) and sin2 28 (C.5)
g==(h} +h} =3) and sin2a =—"—. :
2 k. +hi =3

On the other hand, obviously:

(hS =1z =2)=h"". (C.6)
Then, multiplying by (go,)?, we find
(SHZ —2g04)SH —goy)=SHY  (C.7)

and

' ' ' ' 2
2g%0, — g0, QSHY +SH2) + (SHZSHS —SHE ) =0.

(C.8)

Expression (C.8) can be treated as the quadratic equation
with respect to the unknown conductivity oy. Solving this
equation, we find

gy 1 z' o~y x 1 cx z'\2 Cx x'2
SHy +5SH: i\/(\st: +5SH. )" +28H

O12 =

SH; =0.
Making these substitutions into (C.9) leads to
o, +0, £|0, —0y|
- .
Taking into account that typically o;, > o,, we obtain
_0 +0 +|0‘,—0h|_0., +0, +(0,—0,) _

(C.12)

0),3'=

0 = Op.
2 2 '
and
o, +o, —|oy—0a| o, +0,— (04 —0,
02 = = = 0y.

2 2

It can be shown that in the general case of a deviated bore-
hole

gy =0 =

SHY +1SHE + \/(%H;‘.' —-1aH2)? +28H

2g
(C.13)
and
SHY +1SHE - \/ (SHY —LSH)? +28H?
o, = . -
2 2%
.2 2 2
+ A -2
=0y 1+\/Sm “ . 2COS @ (Zcosza+sin2a) :
Asin” a
(C.14)
In the case of small «
1- A%
0y = 0y, 1+(—2—)—(2cosza+sin2a) =
24 cosa
(C.15)
1- A2
0h1+( 2 ) =a—:=0v-
A A

After determination of 0, we can find @ and ¢ according to
the formulas

(SHY + SHE —3g0y),

1 ’ i
=—(h’ +h% =3)=
q 2(X > —3)

2g 2g0 Op
(C.9) d
an
where 0, is simply intended to convey that the quadratic
form has two possible solutions. For example, in the case of 20" 2SHE
. sin2a = ——= = , = . C.16)
the vertical borehole 1 1 1+ W -3 S HY +9 7 =3g0; (
QH =— =
Rt 877 @hoOy | z| 80v, E. 1‘0) On the other hand
QH? =~ w042z = 1 Witg 0y =280 B = 2 -2¢-1. (C.17)
;= 000 =————WUoOp = h s : . .
87 z|’ 42| " Isin® @ + 2 cosa
(C.11)
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Therefore,
1 2
g g i , . (C.19)
sin“a  A“sin” a(h) +2q +1)
From hz =2+2¢gsin? a we have
2 o2 (C.19)
sin“a  hl =2
Therefore,
1 2
+——=F—— . (C.20)
sin“a  A"sin” a(hy; +2¢ +1)
Substituting (C.19) into (C.20), we obtain
4
2= 19 (€21)

L 3 = z g x y 2y
h(hy +2q+1) ki (hy +hy +h =2)

Finally, replacing /; with the corresponding H factor, etc.,
and substituting g where appropriate, we obtain the formula
for the coefficient of anisotropy,

4 20,2
M =— </ — ,(C.22)
SH: (SH; +SH; +SH —2goy)
and
, 23HE
sin2a = ; = : (C.23)
SH +SH] —3gos
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