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ABSTRACT

In this paper we develop an interpretation method
for the characterization of conductivity anisotropy
in an earth formation, based on the tensor induction
well logging (TIWL) technique. The method is based
on examining the response of a tri-axial electromag-
netic induction logging instrument in a deviated well
penetrating a transversely isotropic medium. The
foundations of the TIWL method were developed
in Zhdanov et al. (2001), where the low frequency
approximations for the quadrature components of
the induction tensor were derived. In this paper
we further examine the basic principles of tensor
induction logging in two-, three—, and multi-layer
anisotropic formations in vertical and deviated wells
using numerical simulation of tensor induction logs.
We introduce a technique for correct reconstruction
of the apparent conductivities of the anisotropic for-
mations, based on application of a regularized New-
ton method. The method is fast and provides a “real
time” interpretation. The practical effectiveness of
this technique for tensor induction log interpretation
is illustrated using results of numerical experiments.

INTRODUCTION

The identification of hydrocarbons and quantifica-
tion of hydrocarbon pore volume in so—called “low
resistivity pay” reservoirs has been a perennial prob-
lem for petrophysicists. More recently, the cor-
rect interpretation of resistivity logs in highly devi-
ated and horizontal wells has challenged the petro-
physicist’s understanding of resistivity instrument
responses and reservoir resistivity distribution, par-
ticularly in anisotropic reservoirs. New resistivity in-
strumentation promises to mitigate or remove these
difficulties.

We examine the response of a tri—axial electro-
magnetic induction logging instrument in a deviated
well penetrating a transversely isotropic medium.
The instrument responds to three mutually orthog-
onal components of magnetic field excited by each
of three mutually orthogonal transmitters, the re-
sponses comprising a nine component induction ten-
sor. Zhdanov et al. (2001) derived low frequency
approximations for the quadrature components of
the induction tensor by theoretically analyzing this
tri—axial induction instrument for its response to
magnetic field components induced in an infinite,
homogeneous, anisotropic medium. The analysis

showed that the tensor components of conductiv-
ity and their orientation can be resolved from the
quadrature components of the instrument response,
providing a basic tensor logging instrument response
interpretation. In this paper we further examine the
basic principles of tensor induction logging in two-,
three—, and multi-layer anisotropic formations in
vertical and deviated wells using numerical simula-
tions of tensor induction well logging (TIWL) data.
We develop a technique for correct reconstruction of
the apparent conductivities of the anisotropic forma-
tions, based on application of a regularized Newton
method. We demonstrate the effectiveness of this
technique for interpretation of tensor induction log
data in a deviated well in an anisotropic medium.
The method is fast and provides a “real time” inter-
pretation.

PRINCIPLES OF TENSOR INDUCTION
WELL LOGGING IN DEVIATED WELLS

Deviated wells and directional drilling are impor-
tant in the oil industry. The main objective of this
work is to study the TIWL response in a deviated
well.

TIWL is based on analyses of the response of a
tri-axial electromagnetic induction instrument in an
anisotropic conductive medium. This instrument de-
tects three components of the magnetic field due to
each of three transmitters for a total of nine signals
that are conveniently displayed as the components
of a matrix

. Hy Hi Hj
H=| H® HY H: |,
HT H H

where superscripts indicate the transmitter compo-
nents and subscripts represent the receiver compo-
nents.

In the Carthesian system of coordinates (z,y, z),
with the z axis directed along the axis of sym-
metry of the transversely isotropic (TI) conductive
medium, the conductivity tensor can be represented
by the diagonal matrix

Op O 0
o= 0 Op 0 ’
0 0 o,

where oy, is the horizontal conductivity and o, is the
vertical conductivity.
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In this case, the expressions for the induction ten-
sor components are written as (Zhdanov et al., 2001)
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where the notations p = /22 + y2, s = \/p* + X222,
X = 01,/0,, T = \/p® + 22, ki = iwpop, and k2 =
iwpo, are used.

The magnetic field components are given in for-
mulae (1)—(6) in a coordinate system defined by the
horizontal and vertical principal axes of the trans-
verse isotropic media. In practice, the orientation of
the transmitter and receiver coils will be arbitrary
with respect to this coordinate system. In order to
use the representation of the field tensor H for an
instrument located in an arbitrary orientation with
respect to the tensor principal axes, it is necessary

to transform the transmitter moment in the instru-
ment frame (denoted by (z',y',2)) into the medium
coordinates (denoted (z,y,2)). This transformation
can be made by application of a rotation matrix.

The primed frame is related to the unprimed
frame by two rotations about the origin. First, think
of rotating 2z’ around the y’ axis through an angle
« until 2’ coincides with z. After this rotation the
z—y and z'—y' planes are co-planar. A further ro-
tation around the z (= 2’) axis through an angle 8
brings z and z’ and y and y' into coincidence. The
action of these rotations on a vector is mathemati-
cally represented by multiplication of vectors in the
primed frame by a rotation matrix. The product
gives the components of the vector in the medium,
or unprimed, frame. R

The rotation matrix R, as we discussed above,
consists of two rotations

R=R.Ry,

where ﬁa describes the rotation around the g’ axis

cosa 0 —sina
R, = 0 1 0 ,
sinae 0 cosa

and ﬁg describes the rotation around the z (= 2)
axis through an angle £,

R cosf sing8 0
Rg=| —sinf cosB 0
0 0 1

The product of these two rotation matrices is given
by

R = RoR. =
cosacosf3 cosasinff —sina

—sinf cos 3 0 . (M
sinacos 3 sinasinff cosa

Represented in the coordinates defined by the con-
ductivity tensor principal axes, the field is given in
terms of its sources by

H=HM. (8)
Denoting the source moment by M =
(M, My, M,)" when referring to the medium frame
and by M’ = (M, M, M)" when referring to the
instrument frame, then the coordinate rotation R
transforms the field coordinates from the medium



frame to the instrument frame. For example, H =
RH and M’ = RM. Multiplication of the latter
example from the left by R~ gives

M=R"1M". 9)

Substituting (9) into (8), multiplying from the left
by R and noting that H' = RH, gives

H =RAR'M'. (10)

This expresses the magnetic field in the instru-
ment coordinate frame in terms of the source in
the instrument coordinate frame and in terms of the
magnetic induction tensor explicitly expressed in the
medium coordinate frame. We note that, with the
definition

H' = RHR™' = RHR", (11)

the field equations in the instrument frame have a
form identical to their form in the medium frame;
ie., R

H =HM, (12)

where H' is the representation of the induction ten-
sor in the instrument frame. The components of H'
are used in the estimation of receiver voltages.

APPARENT CONDUCTIVITIES BASED
ON LOW FREQUENCY ASYMPTOTICS

The analysis of the low frequency asymptotics of
the expressions (1)—(6) helped develop the follow-
ing formulae for the low frequency “horizontal” ap-
parent conductivity, Uga, apparent anisotropy coef-
ficient, A%, and apparent dip angle, a2, calculations
(Zhdanov et al., 2001):

1 ’ 1 ’
o _ A 2!
Ohy = 500 [Im o+ 2ImHz +
1 2
(ImH;’,' - §ImHj,') +2Im’H% |, (13)

)‘0 — 4930}2m
¢ ImHZ’

1

- , o (14)
(mHY, + mHE + ImHE - 2900ha )
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and

2ImH f,’
= —sin

o_L1_.
¢ 2 ImHZ + ImHZ — 3go0?, |’

a (15)

where Im is the imaginary part of the magnetic field
component; Hj,', H;’,, Hj,', and HY are the mag-

netic field components in the instrument coordinate
system; go is a constant given by

wo

go = 8nl’

where w is the angular frequency, po is the free-
space magnetic permeability, and L is a transmitter-
receiver separation.

The expression for the “vertical” apparent con-

ductivity, ¢%,, has the form

&

0 U?La
Opa — W (16)
a

For a vertically oriented tool, the expression for the
apparent horizontal conductivity coincides with the
traditional expression for the apparent conductivity
in isotropic media,

arL
00, = W—ZO ImH?, 17)

which is called “conventional apparent conductiv-
ity”. In this special case, the expression for the ver-
tical apparent conductivity calculation is (Zhdanov
et al., 2001)

o _ 8L 20

Opa = e ImHZ". (18)
In formulae (17) and (18), HZ® and HZ° are the
magnetic field components for the vertically oriented
tool. The exact formulae for these components can
be obtained from the general expressions (6) and (1)
by evaluating the last formulae in the limit p — 0.

In this case s > AL, r — L, 2 = L, and

o eikhL )
- eikhL ) 1+A2
H2 = —— [1 — ikl — — 35 E2L*|. (20)

Thus, the TIWL method consists in measuring
the components of the magnetic induction tensor
by a tri-axial induction instrument and computing
the apparent conductivities using formulae (13) and
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(16). These formulae are based on the low frequency
asymptotics of field components (1)—(6). There-
fore, these apparent conductivities provide only an
approximate estimate for the real conductivities of
anisotropic media. In order to obtain more accurate
parameter estimates for the medium, we can use a
simple inversion scheme based on the exact expres-
sion of the induction tensor components. We discuss
this technique in the next section.

REGULARIZED NEWTON METHOD FOR
INTERPRETATION OF TIWL DATA

In this section, we develop a technique for cal-
culating the tensor induction well logging apparent
conductivities using the rigorous solutions for the
homogeneous anisotropic media (1)—-(6). Our tech-
nique is based on inversion of the tensor induction
log data for the parameters of the equivalent homo-
geneous anisotropic media using a regularized New-
ton method. We will illustrate this method for an ar-
bitrary induction array orientation. The expressions
for the magnetic field components in homogeneous
anisotropic media in the instrument coordinate sys-
tem can be obtained from the corresponding formu-
lae (1)—(6), developed in the medium coordinate sys-
tem, by application of the rotational transformation
(11).

The algorithm of the regularized Newton method
is described by Zhdanov (1993). If n is the iteration
index

ra = A(m,) - d, =

Ly =1"(m,) = F,tn +vn(m—m,,), (22)
Hy, = FL Fpo, + 1], (23)

may; =m, — B 1 (24)

where A is a nonlinear operator of the forward mod-
eling described by formulae (1)—(6) and (12); d is a
vector of observed data, m,, is a vector of model pa-
rameters (horizontal and vertical conductivities, o,
and o,, and the dip angle «) on the n—th iteration,
Mgy, is the a priori model, r is a residual vector of
the difference between the predicted, A(m,), and
observed data; Fy,, is a Frechet derivative matrix;
Hl = (F;‘nnFm")'1 is a quasi Hessian matrix; 12°
is the regularized direction of a Newton method on
the n—th iteration (Zhdanov, 1993).

The regularization parameter v is updated on
each iteration according to a progression of numbers

Vg = Voqk; k= 0,1,2,....,m; (25)

where coefficient ¢ determines the rate of decreasing
v : 0 < ¢ < 1. The first iteration of the Newton
method is run with » = 0. The initial value of the
regularization parameter, v, is determined after the
first iteration, m,, as the ratio

S A —d|®
Hml—maer?

For any number v}, we calculate the misfit

|| A (m,,) —d ||2. The optimal value of the param-
eter v is the number vy, for which we have satisfied
the misfit condition,

H A (mr/ko) —-d “2: ‘5a (26)

where ¢ is the level of noise in the observed data.
There are three unknown model parameters; i.e.,
the dip angle a and the horizontal and vertical
conductivities, o5, and o,. Therefore, the Frechet
derivative matrix can be calculated directly by tak-
ing derivatives of expressions (1)-(6) and (12), with
respect to unknown parameters. The matrix is

( 8H®,  OH®,  OH® ]
—— — - N
00y, 00, da :
8H=, 8H*®, OH*,
do do da
—_ R v
F = Py oHY oHY 5 (27)
_yl yl !
30;., Oy, da P
8H?, 8H?, 8H?,
PR R = =N
L don 8oy fa 4

In the Newton algorithm the calculations start
with an initial guess, which is usually set equal to
the a priori model, my = my,,, and then update it
on each iteration according to (24). The method is
fast and usually converges after 4-to—6 iterations.

The correct choice of the initial guess is vital for
the Newton method. If the algorithm starts with
the initial guesses, that are “far” from the true solu-
tion, the Newton method may not converge. Fortu-
nately, in our case, we select a starting model that
is often very close to the true solutions. The initial
model parameters are based on the low frequency
apparent conductivities, o), and o0, , and appar-
ent anisotropy coefficient )\2, introduced above by
expressions (13), (16), and (14).

The regularized Newton routine solves for three
parameters at each TIWL observation point. These
parameters are the horizontal and vertical conduc-
tivities, and the dip angle.

NUMERICAL EXAMPLES

In the model study, we examined the basic prin-
ciples of the TTWL method using numerical simula-



tion. We considered the simplest case of a layered
model of rock formation without a borehole and in-
vaded zones. The tensor induction tool has three
mutually orthogonal transmitters and three mutu-
ally orthogonal receivers, with the “vertical” trans-
mitter and receiver oriented along the deviated bore-
hole. The distance between the transmitter’s po-
sition and the receiver’s position was 1.0 m. The
calculations were performed for a tool moving along
a borehole, sampled every 0.25 m. The operating
frequency was 20 kHz.

The synthetic data were computed using a library
of 3-D Green’s tensors in layered anisotropic forma-
tions (Cheryauka and Zhdanov, 2001a). The forward
response for a layered model can be calculated using
Green’s functions. After computing the Green’s ten-
sor components, the magnetic fields may be found as

~

H-= iw,uoé‘ﬂ, (28)

where G¥ is the Green’s tensor for a layered model

. G; Gy G
G'=| G G! G
G GY G:

The response of the layered anisotropic model was
calculated in the model coordinate system. The re-
sult then was transformed from the model frame to
the instrument frame, using a rotation matrix.

Two-layer model with a dip angle We as-
sume that tensor induction logging is conducted by a
tool coaxial with a borehole. We calculate the model
responses (induction tensor components) for the dif-
ferent positions of the tool along the borehole. Using
these responses as the synthetic data, we compute
the low frequency (09, and 09,) apparent conduc-
tivities according to formulae (13) and (16) as an
initial model. Then more accurate estimations of
the apparent conductivities, op, and oy, Were com-
puted using the Newton inversion, as described in
the previous section. The results were plotted as
apparent resistivity curves, p%,, p5., Pha, and pya,
versus depth for a different dip angle «, equal to 0,
30, 60, and 85 degrees, respectively (Figures 1-4).
Each of the Figures (1-4) has four panels. The
first panel on the left shows the parameters of the
two layer model. The second two panels present the
apparent resistivity curves versus depth. The last
panel displays the apparent anisotropy coefficient
values versus depth. The solid lines show the true
parameters of the model. The apparent resistivities
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and anisotropy coefficient, p9 ., p,, and X9, ob-
tained by the low frequency asymptotics, are shown
by the dotted lines. The circles represent the in-
verted apparent resistivities and anisotropy coeffi-
cient, pha; pva, and Ag.

The data were contaminated by 3% random Gaus-
sian noise at each observation point. One can see
that the low frequency asymptotics overestimates
the vertical resistivities and the anisotropy coeffi-
cient for dip angle values below 45 degrees. At «
equal to 60 degrees, the apparent parameters are
surprisingly close to the true model. At the larger
dip angle (a = 85 degrees) the low frequency asymp-
totics underestimate the vertical resistivities and the
anisotropy coefficient. At the same time, the appar-
ent parameters inverted by use of the regularized
Newton method are very close to the true parame-
ters of the model for any dip angle (the curves shown
by circles in Figures 1-4).

Note that in this model, with the conventional in-
duction tool, we can obtain only one apparent con-
ductivity, which reflects the integrated effect of both
vertical and horizontal conductivities.

The boundary cannot be seen by using only the
apparent resistivity expression for pg, (Figure 1).
But the vertical apparent resistivity clearly responds
to the position of the boundary. The p,, curve
changes sharply when the tool reaches the bound-
ary. This model provides a simple illustration of an
important additional power of tensor induction well
logging in anisotropic formation in comparison with
the traditional induction logging tool.

Three-layer model with a dip angle In
the next set of numerical simulations, we consider
a model of a three-layer formation. Figure 5 shows
the model on the left panel. This model is a very
good example of a practical situation where conven-
tional induction logging can miss a geological struc-
ture. The layer thickness is 5m. There is no hor-
izontal conductivity variation in this model, while
the vertical conductivity of the second layer is dif-
ferent from the top and bottom layers. On the sec-
ond panel from the left, representing the horizontal
apparent resistivities, we cannot see any indication
of the second layer. However, it is possible to deter-
mine the layer boundaries by using vertical resistiv-
ity information (the third panel from the left). The
last panel displays the anisotropy coefficient values
versus depth.

The synthetic data simulated for this model were
contaminated by 3% random Gaussian noise. The
solid lines show the true parameters of the model.
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The apparent resistivities and anisotropy coefficient,
P05 Poas and A2, obtained by low frequency asymp-
totics, are shown by the dotted lines. The circles
represent the inverted apparent resistivities pha, pva,
and anisotropy coefficient, \,, computed using the
regularized Newton method. Figure 5 presents the
TIWL data interpretation results for a case of a ver-
tical well (the dip angle a is equal to 0). Figures 6-8
show similar results for the different dip angles 30,
60, and 85 degrees, respectively. One can observe the
same regularity in these plots as in Figures 1-4. The
low frequency asymptotics overestimates the verti-
cal resistivities and the anisotropy coefficient for dip
angle values below 45 degrees, and underestimates
these parameters for a dip angle above 60 degrees.
The inversion of TIWL data, based on the Newton
method, provides practically correct reconstruction
of the true parameters of the model within the entire
range of dip angles (the curves shown by circles in
Figures 5-8).

Multi-layer models of anisotropic for-
mations with a dip angle We considered
three multi-layered models of anisotropic forma-
tions, based on the well known benchmark mod-
els: Anderson and Barber (1999) model, “Okla-
homa” model, and “Chirp” model. The first one
is a modified model, considered by Anderson and
Barber (1999, p.135, Figure 3). The horizontal re-
sistivity profile of our model is the same as in An-
derson and Barber (1999). It is shown by the solid
line in the left panel of Figure 9. We introduced the
anisotropic layers in this model with the vertical re-
sistivity shown by the solid lines in the right panel
of Figure 9. We simulated the synthetic data for
this model using a library of 3-D Green’s tensors in
the layered anisotropic formations (Cheryauka and
Zhdanov, 2001a). The data were contaminated by
3% random Gaussian noise. Figure 9 presents the
TIWL data interpretation results for the case of a
vertical well (the dip angle « is equal to 0). Fig-
ure 10 presents similar results for the dip angle of
30 degrees. The solid lines show the true param-
eters of the model. The apparent resistivities and
anisotropy coefficient, p,, p%,, and X2, obtained
by the low frequency asymptotics, are shown by the
dotted lines. The circles represent the inverted ap-
parent resistivities ppq, Pva, and anisotropy coeffi-
cient, A,, computed using the Newton method.
The second multi-layered model is the “Ok-
lahoma” model (Barber et al., 1999). In our
anisotropic model we use the same horizontal resis-
tivity as in the original ”Oklahoma” model (solid

line in the left panel of Figure 11) but we also add
some anisotropy to the model by assigning various
vertical resistivities (solid line in the right panel of
Figure 11). The computer simulated data for this
model with 3% random noise added were processed
using the TIWL interpretation technique outlined
above. The results of interpretation for the dip an-
gles of 0 and of 30 degrees are presented in Figure 11
and 12. One can see that we can reconstruct well the
horizontal resistivity distribution, while the vertical
resistivity is mostly underestimated in this case.

The third model is the “Chirp” model (Fang and
Wang, 2000), represented by a solid line in the left
panel of Figure 13 (the horizontal resistivity profile).
We modified this model, adding a profile of vertical
resistivity (right panel in Figure 13). The results of
the synthetic TIWL data interpretation for different
dip angles are shown in Figures 13-14. Once again
the apparent resistivities describe well the horizontal
resistivity, but recover the vertical resistivity much
less successfully. These results show that, in the
case of complicated geoelectrical models, the simple
interpretation tool based on the apparent resistivity
model cannot well resolve the different anisotropic
layers. In this case one should use more advanced
technology based on multilayered inversion. Some
elements of this development are discussed in the
paper by Cheryauka and Zhdanov (2001b).

CONCLUSIONS

In this paper we examined the basic principles of
tensor induction well logging (TIWL) in the devi-
ated borehole in anisotropic layered formations. We
introduced a simple technique of TIWL data inter-
pretation based on calculating the components of
the apparent conductivity tensor (“horizontal” and
“vertical” apparent conductivity). In the case of low
frequency asymptotics, we can use the analytical ex-
pressions for apparent conductivity (or resistivity)
tensor calculations. In the higher frequency range,
one can use a regularized Newton method to gen-
erate the corresponding apparent conductivities (or
resistivities) of the anisotropic media.

We analyzed the responses of synthetic tensor in-
duction logs in the deviated borehole through two—,
three—, and multi-layer anisotropic formations in
vertical and deviated wells using numerical simula-
tion. Our results demonstrate that the tensor in-
strument is sensitive to anisotropic parameters of
geological formations. These cannot be detected in
a general case by conventional induction logging.



At the same time, we found that the simple in-
terpretation tool based on the apparent resistivity
model cannot well resolve the different anisotropic
layers in the case of the complicated geoelectrical
models. There is a need to develop a more advanced
technology for TIWL data interpretation based on
multilayered inversion.
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Figure 1: The first panel on the left shows a two-layer anisotropic model with resistivities pp; = 1Qm,
pp1 = 10m, ppa = 10m, and pye = 5Qm. The second and third panels present the apparent resistivity curves
versus depth. The last panel displays the apparent anisotropy coefficient values. Data are contaminated by

3 % random noise. The dip angle is 0°.
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Figure 2: The first panel on the left shows a two-layer anisotropic model with resistivities pn; = 1Qm,
py1 = 10m, pp2 = 1Qm, and p,2 = 5Qm. The second and third panels present the apparent resistivity curves
versus depth. The last panel displays the apparent anisotropy coefficient values. Data are contaminated by

3 % random noise. The dip angle is 30°.
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Figure 3: The first panel on the left shows a two-layer anisotropic model with resistivities pp1 = 1Qm,
pu1 = 10m, ppe = 10m, and p,2 = 5Qm. The second and third panels present the apparent resistivity curves
versus depth. The last panel displays the apparent anisotropy coefficient values. Data are contaminated by

3 % random noise. The dip angle is 60°.
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Figure 4: The first panel on the left shows a two-layer anisotropic model with resistivity pp1 = 1Qm,
po1 = 1Qm, ppa = 10m, and py2 = 5Qm. The second and third panels present the apparent resistivity curves
versus depth. The last panel displays the apparent anisotropy coefficient values. Data are contaminated by
3 % random noise. The dip angle is 85°.
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Figure 5: The first panel on the left shows a three-layer anisotropic model. The thickness of the pay zone
is 5m with the resistivities ppz = 1Qm, and p,2 = 5Qm. The second and third panels present the apparent
resistivity curves versus depth. The last panel displays the apparent anisotropy coefficient values. Data are
contaminated by 3 % random noise. The dip angle is 0°.
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Figure 6: The first panel on the left shows a three-layer anisotropic model. The thickness of the pay zone
is 5m with the resistivities pp2 = 1Qm, and py2 = 5Qm. The second and third panels present the apparent
resistivity curves versus depth. The last panel displays the apparent anisotropy coefficient values. Data are
contaminated by 3 % random noise. The dip angle is 30°.
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Model Regularized Newton method ( Noisy data 3 %)
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Figure 7: The first panel on the left shows a three-layer anisotropic model. The thickness of the pay zone
is 5m with the resistivities pps = 1Qm, and py2 = 50m. The second and third panels present the apparent
resistivity curves versus depth. The last panel displays the apparent anisotropy coefficient values. Data are
contaminated by 3 % random noise. The dip angle is 60°.
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Figure 8: The first panel on the left shows a three-layer anisotropic model. The thickness of the pay zone
is 5m with the resistivities ppz = 1Qm, and py2 = 5Qm. The second and third panels present the apparent
resistivity curves versus depth. The last panel displays the apparent anisotropy coefficient values. Data are
contaminated by 3 % random noise. The dip angle is 85°.
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Figure 9: Multi-layer model of anisotropic formation. The left panel shows the apparent horizontal resis-
tivities versus depth, and the right one illustrates the apparent vertical resistivities versus depth. Data are

contaminated by 3 % random noise. The dip angle is 0°.
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Figure 10: Multi-layer model of anisotropic formation. The left panel shows the apparent horizontal
resistivities versus depth, and the right one illustrates the apparent vertical resistivities versus depth. Data
are contaminated by 3 % random noise. The dip angle is 30°.
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Figure 11: Multi-layer model of anisotropic formation (Oklahoma-like model). The left panel shows the
apparent horizontal resistivities versus depth, and the right one illustrates the apparent vertical resistivities

versus depth. Data are contaminated by 3 % random noise. The dip angle is 0°.
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Figure 12: Multi-layer model of anisotropic formation (Oklahoma-like model). The left panel shows the
apparent horizontal resistivities versus depth, and the right one illustrates the apparent vertical resistivities
versus depth. Data are contaminated by 3 % random noise. The dip angle is 30°.
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Figure 13: Multi-layer model of anisotropic formation (Chirp-like model). The left panel shows the apparent
horizontal resistivities versus depth, and the right one illustrates the apparent vertical resistivities versus
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Figure 14: Multi-layer model of anisotropic formation (Chirp-like model). The left panel shows the apparent
horizontal resistivities versus depth, and the right one illustrates the apparent vertical resistivities versus
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