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Abstract

A new method of rapid 3-D magnetotelluric inversion has been developed
based on ideas of quasi-analytical (QA) approximation for forward magnetotel-
luric field modeling. We implemented several modifications of the QA method,
resulting in increasing speed and resolving power of this technique. In par-
ticular, we introduced a new diagonalized form of QA approximation, which
simplified the forward and inverse problem solution without loosing the accu-
racy. Based on the diagonalized QA approximation, we calculated the Frechet
derivative (sensitivity) matrix for a magnetotelluric problem in a closed form.
Also, we used an effective technique for the Green’s tensor calculations based
on the convolution theorem and FFT method. As a result, we constructed
a rapid inversion method which could be used for 3-D inversion of the array
magnetotelluric data within a few minutes on a PC. The effectiveness of the
method was demonstrated on the synthetic models. We present several case
histories, including interpretation of a 3-D MT survey in the southern part of
Hokkaido, Japan, and inversion of 3-D MT data in the Voisey’s Bay Ni-Cu-Co

deposit.



Introduction

Interpretation of array magnetotelluric (MT) data over 3-D geoelectrical structures
remains one of the most challenging problems of electromagnetic geophysics. During
recent years, considerable advances have been made in this area (Madden and Mackie,
1989; Eaton, 1989; Smith and Booker, 1991; Zhdanov and Keller, 1994; Newman and
Alumbaugh, 1996, 1997; Alumbaugh and Newman, 1997; Zhdanov and Fang, 1996,
1999; Golubev et al., 1999; Zhdanov et al., 2000a).

Recently Zhdanov and Hursan (2000) developed a new approach to 3-D electro-
magnetic inversion based on the quasi-analytical (QA) approximation (Zhdanov et
al., 2000b). The effectiveness of this technique was illustrated by numerical examples
of controlled source EM data inversion.

Key elements of an effective inversion scheme include 1) a fast, simple and ad-
equately accurate forward operator capable of handling large scale problems, 2) an
inversion scheme for solving ill-posed problems, and 3) an effective sensitivity matrix
computation algorithm, if a gradient-type inversion scheme is used.

The forward operator used in this paper bears two properties distinguishing it from
that is used by Zhdanov and Hursdn (2000): a) it has been extended for modeling
typical magnetotelluric data, b) a diagonalized form of QA approximation is intro-
duced, resulting in a great reduction of operation complexity without a significant
loss of accuracy.

The inversion algorithm is similar to the one described in Zhdanov and Hursén
(2000). It uses the Tikhonov regularization with an option of smooth and focusing
geoelectric images. The minimization is performed using the reweighted regularized
conjugate gradient (RRCG) method. We improved the inversion scheme by intro-

ducing the logarithm of the total conductivity as a model parameter, automatically



enforcing the positivity of the conductivity.

Since a gradient-type method is used, we specify the sensitivity (Frechet deriva-
tive) matrices for anomalous field and magnetotelluric problems as well. Additionally,
we use the convolution properties of the Green’s operators for economical matrix ma-
nipulations.

These modifications result in constructing a rapid numerical method of 3-D mag-
netotelluric inversion, which, nevertheless, provides a fine and accurate image of the
underground geoelectrical structures. Synthetic MT data inversion demonstrates the
resolving power of this technique.

The case histories presented here include interpretation of a 3-D magnetotelluric
(MT) survey conducted by the New Energy and Industrial Technology Development
Organization (NEDO) in the Minamikayabe area located in the southern part of
Hokkaido, Japan, and inversion of three-dimensional magnetotelluric (MT) data col-
lected by INCO in the Voisey’s Bay Ni-Cu-Co deposit. The interpretation of real
data shows that 3-D MT inversion of the huge array data can be completed on a PC

within several minutes.

Quasi-analytical approximations as forward opera-
tors for inversion

For completeness, we begin our paper with a brief review of the basic principles of QA

approximation, following Zhdanov et al., (2000b) and Zhdanov and Hursdn (2000).

The method of integral equations

Consider a 3-D geoelectrical model with a background (normal) conductivity o, and
local inhomogeneity D with the arbitrary spatial variations of conductivity ¢ =

oy + Ao. The backgrond conductivity is chosen to be horizontally layered half-space.



We assume that p = po = 47 x 107"H/m, where p is the free-space magnetic per-
meability. The model is excited by an electromagnetic field generated by an arbitrary
source. This field is time harmonic as e~™!, where w = 2 x 7 f is the angular fre-
quency. In this paper we consider the quasi-static model of the field, neglecting the
displacement currents (Zhdanov and Keller, 1994).

The electromagnetic fields in this model can be presented as a sum of background

(normal) and anomalous fields:
E=E’+E*, H=H’+H° (1)

where the background field E® is a field generated by the given sources in the model
with background distribution of conductivity o, and the anomalous field E® is pro-
duced by the anomalous conductivity distribution Aoc.

The standard integral formulation of the electromagnetic field is the following

(Hohmann, 1975; Weidelt, 1975):
B (r;)= [ [ [ G (x; 1) Ao (1) (B* (1) +E* (1)) do, (2)

He (r;)= / / /D G (1 | 1) Ao (r) (E® (r) +E° (1)) dv, (3)
where Gg (r; | r) and G (r; | r) are the electric and magnetic Green’s tensors defined
for an unbounded conductive medium with the background conductivity oy.

Expression (2) becomes a singular vector Fredholm integral equation of the second
kind with respect to the anomalous electric field E?, if we consider the points r;
within the domain D with anomalous conductivity. In practice, we need to solve a
large system of linear equations to find the exact solution of this problem, making
the full integral equation solution impractical for inversion purposes, where a rapid

forward modeling scheme is needed.



Quasi-analytical approximation for the anomalous fields

A powerful alternative to the full integral equation solution is to approximate the
rigorous solution using relatively inexpensive algorithms (Born, 1933; Habashy et al.,
1993; Zhdanov and Fang, 1996; Zhdanov et al., 2000b). These techniques provide
not only an option for fast forward modeling, but they are useful in the construction
of inversion schemes as well (Torres-Verdin and Habashy, 1994; Zhdanov and Fang,
1997; Zhdanov and Hurséan, 2000).

In this paper we use the quasi-analytical (QA) approximation, where the anoma-
lous electromagnetic field is expressed using the following integral representations

(Zhdanov et al., 2000b):

E°(r;) ~EY, (r)) = /D Gg(xr; | r) 1A_a—g(2)Eb (r) dv, (4)
HY(5) ~ Ha () = [ G (1 1) 1= O () o 5)

Here function g (r) is the normalized dot product of the Born approximation, EZ,

and the background field, E° inside the anomalous domain, D:

_EP () E ()
=T B

, assuming E™ (r) - E® (r) # 0, (6)

9 %9

where means complex conjugate vector.

The Born approximation is computed by the formula
E® (r) = /D Gr(r|r) Ao () EP (i) dv'. (7)

Note that the only difference between the QA approximation and the Born approx-
imation (7) is in the presence of the scalar function [1 — g (r)]™'. The computational
expense of the the QA approximation is practically the same as the cost of the Born

approximation inside the anomalous body. On the other hand, it is demonstrated in



Zhdanov et al. (2000b) that the accuracy of QA approximation is much higher than
the accuracy of the Born approximation.

In practice we usually solve forward and inverse problems in the space of discrete
data and model parameters.

Suppose that M measurements of the electric or magnetic field are performed in
some electromagnetic experiment. Then we can consider these values as the compo-

nents of electric, € or magnetic, h", vectors of a length 3M:
1 M M prl MyT
e =[E,.. E] ,E;l,...,E; JEL . ED)

i Tl rM i rM Tl rM1T
b= R R LT

where the superscript 7" denotes a transpose operation of a vector row into a vector
column. Superscript ”r” means that the field is expressed at the receiver sites.

Let us discretize the anomalous domain D into N cells such that the anomalous
conductivity is constant within each cell. Then, the anomalous conductivity distri-

bution Ao (r) can be represented as the components of a vector m of length N:
- P i
m = [my, My, ...,my]" = [Acy, Aoy, ..., Aoy]".

Using these notations, we can write the discrete analogs of the quasi-analytical ap-

proximations (4) and (5), as (Zhdanov and Hurs4n, 2000):

%, =ABm ®)
and
8,T4=KH]§m, (9)
where
Ap = Ggéb*, Ay = Gyede, (10)
C= (éb,c*éb,c)_l éb,c*/G\Déb,c, (11)
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and diagonal matrix

~

B(m) = [diag (I - ém)]_l : (12)

We use the following notations in the last formulae. The vectors e*” and h®" represent
the discrete quasi-analytical approximations of the anomalous electric field at the
observation points. Vector I is a column vector of the length N formed by units.
Matrix €>¢ is a sparse tridiagonal 3N x N matrix containing the z, ¥ and z components

of the primary (background) electric field at the centers of the cells of the anomalous

domain D: -tk :
\C
El'
Eb,cN
T
b,cl
Ey
= : (13)
Eb,cN
]
b,cl
EZ
b,cN
L EZ _

Matrices G and Gy are discrete analogs of the corresponding Green’s tensors.
These matrices consist of the elements of either the electric or the magnetic Green’s
tensor acting from the anomalous body to the receivers. M is the number of receivers,
and N is the number of cells in the anomalous body. The number of rows in G EH

equals the length of the data vector; E;‘E,H has 3N columns:

- Al IN 1 IN 1 IN
Gl’l‘ e G.’L‘:L‘ G.’l:y &3 G:Ey G.’Ez =" Gl‘z
M1 MN AMi MN M1 MN
szi ) G”}\r Gl G“fv GHY L G:czN
¥ ors 1 T . 1 11, 1
G Gys U G Gy G Gy
Ggn = :
Ml ... AMN AM1 ... AMN AM1 ... (AMN
Gyﬁ Gny Gyﬁ GylyN Gyfl Gny
sz ~ GZ.T GZy T Gzy Gzz g GZZ
Ml .. AMN M1 ... AMN AM1 ... (MN
= sz GZI Gzy Gzy Gzz GZZ -l

Matrix Gp is a discrete analog of the corresponding electric Green’s tensor acting
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inside the domain D. We will call it the domain scattering matriz. It is the 3N x 3N
scattering matrix consisting of the elements of the electric Green’s tensor inside the

anomalous domain:

F 11 1N 11l 1N il 1IN 1
Ga::z: gt G:c:c Gmy Sk Ga:y Gzz iy Gzz
N1 NN N1 NN N1 NN
Goo v Cpa’ Gy oo Gy Gar oo Goy
. P ik n .. 1 e
= Gyz Gyz ny ny Gyz Gyz
Gp = :
N1 ... ANN ANl ... ANN ANl ... ANN
G v Gy Gy oo Oy Gy oo Gy
GZZ o= GZ:I: Gzy kv Gzy GZZ B GZZ
N1 NN N1 NN N1 NN
i GZIB d i g GZZ’ Gzy S Gzy GZZ et GZZ -

Let us introduce a notation d for the electric or magnetic vector of the anomalous
part of the observed data. This vector contains the components of the anomalous
electric and/or magnetic fields at the receivers. Using these notations, the forward
modeling problem for the electromagnetic field can be expressed by the following
matrix operation:

—~

d=A [diag (I - Cm)] T m =AB(m) m, (14)
where A stands for the electric or magnetic matrices, Ay or Ay, defined in (10).

Quasi-analytical approximation for the magnetotelluric prob-
lem

In magnetotelluric (MT) and controlled source magnetotelluric (CSMT) methods the
observed data are usually not recorded in a form of pure electric or magnetic field com-
ponents. In particular, the results of magnetotelluric measurement are the apparent
resistivity and phase calculated from the mutually orthogonal electric and magnetic
field components. Let us denote an arbitrary horizontal electric field component by

E, and define H as the magnetic field component perpendicular to the direction of



E at a particular receiver site. Note that both E and H are complex numbers. The

magnetotelluric impedance is defined as the ratio of £ and H :

Z=% (15)

Since the impedance does not depend on the actual strength of the source, it is a very
practical parameter for natural electromagnetic field observations. The magnetotel-

luric apparent resistivity is calculated from Z, using

e %m% (16)

where ¢ = 2mpg. If the incident field is a plane-wave and the model is a homogeneous
half-space, p is equal to the true resistivity, making it indicative of the resistivity
structure of the subsurface.

Another commonly measured parameter is the phase angle of the impedance:
¢ =tan ——. (17)

This quantity is less sensitive to the effect of shallow subsurface anomalies, so it is
particularly useful for the detection of deep structures.

To obtain a simple relationship between the anomalous field components and the
MT parameters, by taking into account that E = E* + E® and H = H® + H®, the

logarithm of Z = E/H is expressed as

b fa b fa b b
an:ln%zln(E ;E -Hbi{Ha-%). (18)
Thus,
InZ=In(1+E"E") —In(1+H*/H") + n 2", (19)
where Z° = E®/H" is the background impedance.
From equation (16)
In|Z|=1n (cf-p1/2) :ln(cf)+%lnp. (20)
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The same relationship holds for the background impedance as well. Considering

identities In Z = In |Z| + i¢ and In Z° = In | Z°| + i¢® results in
1
5Inp" +ig =1n (1+E°/E") —In (1+ H*/H"), (21)

where Inp® = Inp — Inp® is the log anomalous apparent resistivity, ¢* = ¢ — ¢° is
the anomalous phase. Knowing the background cross-section, these quantities can be
easily obtained from the measured total apparent resistivities and phases.

The log anomalous apparent resistivities and anomalous phases are organized into

a data vector similar to (14):
g %ln(pa) +ige =In[1+ (&) "] —in[1+ (B*7)'he],  (22)

where " and h®" are diagonal matrices containing the background electric and

magnetic fields at the receivers:

Eb,rl Hb,rl
~br __ . 3.0 :
e’ = ¥ N % . (23)
Eb,rN Hb,rN

and it is assumed that [n is applied to each element of the corresponding vector.
Substituting the QA approximation in (8) and (9) into the vector of anomalous
MT parameters in (22), the QA forward approximation for the data containing the

log anomalous apparent resistivities and phases becomes
dMT = In (kE) —lIn (k[.{) ’ (24)

where s

kp = 1+ (") 'ApB(m)m,
» T (25)
ky = 1+ (b ) 'AyB(m)m.
To further simplify the MT forward operator, Portniaguine and Zhdanov (1999a)

suggested linearizing expressions In(1+ E?/E®) and In(1+ H®/H") by neglecting the
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higher order terms in the power series expansion of the logarithmic function:

In(1+z)~ 2z for small x. (26)
Thus, (24) becomes
di’ = Al B(m) m, (27)
where
AT = (&) 'Gp — () 'Ga) &, (28)

The advantage of this expression is that the observed MT parameters can be ex-

pressed as a linear function of the anomalous electric and magnetic field components.
Diagonalized quasi-analytical approximation

One can see that matrix C is responsible for the scattering inside the anomalous
body, because it is determined by the domain scattering matrix s (see equation
(11)). We can further simplify the quasi-analytical approximation by assuming that
the anomalous electric field in a specific cell is affected mostly by the scattering in the
same cell. In other words, we can simplify C by retaining its diagonal elements only.
This is the basic idea of the diagonalized quasi-analytical approzimation (DQA). The
expressions of the anomalous electromagnetic and MT parameters are the same as
(14), (24), and (27) for the QA approximation, except that formula (11) is replaced

now by the following expression:
= . ~b,cxabe) ! abcx ~b,c
C:dlag[(e’e’) e’GDe’]. (29)

To illustrate the accuracy of the DQA approximation, consider the following numerical
experiment. The geoelectrical model consists of a rectangular conductive body with 10
ohm-m resistivity embedded in a homogeneous half-space with resistivity of 100 ohm-

m (Figure 1). It is excited by a horizontal rectangular loop. The frequency is 1000 Hz.
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The receivers are located above the body along the y axis. Figure 2 shows the real
and imaginary parts of the horizontal electric and vertical magnetic components of
the scattered field computed by solving the full integral equation and the QA and the
DQA approximations. The accuracy of the diagonalized QA approximation is about
the same as the QA approximation using the full matrix C. Since the computational
cost of the diagonal of C is O(N) instead of O(N?), the calculation of the DQA

approximation is practically the same as the Born approximation.

Tikhonov regularization in the solution of inverse
problems

In the previous section we defined quick forward operators for modeling anomalous
fields and magnetotelluric parameters in the presence of three-dimensional model
geometry. In general, these formulae can be expressed by a vector-vector operator

equation including the data vector d and the vector of model parameters m as
d = G(m), (30)

where G is the forward operator symbolizing the governing equations of the EM
modeling problem.
Inversion aims to determine the model parameter vector m based on G and a

known (observed) data vector d:
m = G7!(d). (31)

This problem is usually ill-posed, i.e., the solution can be nonunique and unstable.
The conventional way of solving ill-posed inverse problems, according to regularization
theory (Tikhonov and Arsenin, 1977, Zhdanov, 1993), is based on minimization of

the Tikhonov parametric functional:

P(m) = ¢(m) + aS(m) = min, (32)



where ¢(m) = ||G(m) — d|3 is the misfit functional between the theoretical values
G (m) and the observed data d, s (m) is a stabilizing functional, and « is a regular-

ization parameter. The optimal value of « is determined from the misfit condition,

¢ (m) = dg, (33)

where §4 is the noise level of the data.

Note that the traditional way to implement regularization in inverse problem so-
lution is based on considering the class of inverse models with smooth distribution of
the model parameters (Constable et al., 1987). Within the framework of the classical
Tikhonov regularization, one can select the smooth solution by introducing the cor-
responding minimum norm, or ”smoothing” stabilizing functionals. This approach is
widely used in geophysics and is proven to be a powerful tool for stable inversion of
geophysical data. Most MT inversion methods use the same approach, resulting in a
smooth image of geoelectrical structures.

The traditional inversion algorithms providing smooth solutions for geoelectrical
structures have difficulties, however, in detecting sharp geoelectrical boundaries be-
tween different geological formations. This problem arises, for example, in inversion
for the local conductive target with sharp boundaries between the conductor and the
resistive host rocks, which is a typical model in mining exploration. In these situa-
tions, it can be useful to search for a stable solution within the class of inverse models
with sharp geoelectrical boundaries.

The mathematical technique for solving this problem was developed by Portni-
aguine and Zhdanov (1999b). It is based on introducing a new type of stabilizing
functional in inverse problem solution, the so-called minimum support or minimum
gradient support functionals. We call this technique a focusing regularized inversion

to distinguish it from the traditional smooth regularized inversion.
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The minimization problem (32) can be solved using any gradient type technique.
We use the re-weighted regularized conjugate gradient (RRCG) method. Implementa-
tion details of this algorithm are specified in Zhdanov and Hursan (2000) and Zhdanov

(2001).
Frechet derivatives

A critical point of a gradient-type inversion algorithm is the calculation of the Frechet
derivative (sensitivity) operator F at every iteration of the RRCG method. In this
section we recall first the Frechet dericatives of anomalous field data introduced by
Zhdanov and Hursan (2000). Then, we derive the sensitivity operators for the mag-

netotelluric problem.
Frechet derivative matrix for anomalous field data

In the derivation of the Frechet derivative matrix of the forward operator (14) taking
into account that the model parameters are the anomalous conductivity values in the
cells of the anomalous body, matrix A is independent of the model parameters, and
Bisa diagonal matrix, one can express the perturbation of the forward operator (14)

with respect to the vector of model parameters in the form

6d=A 6 [B(m) m] =A {B(m)im + diag(m)s [B(m)]} . (34)
Since ~ ~ i
5 [B(m)] = ¢ [diag (- Cm)] ™ = -
[diag (I - @m)]-2 C 6m = B*(m) C ém,
the result is
6d=A {B(m) + diag(m)B*(m) C} im = F(m) om, (36)
where
F(m) = A D(m) (37)



is the Frechet derivative matrix, and D is a diagonal matrix:

o~

D(m) =B(m) + diag(m)B?(m) C, (38)

and diag(m) denotes a diagonal matrix formed by the elements of the vector m.
One can see that in the framework of DQA approximation, matrix F is the product
of A and a diagonal matrix D. The numerical computations based on formula (37)
are very fast and efficient, because the full matrix A and diagonal matrix C do
not depend on the variable model parameter, so they are precomputed and fixed
during the inversion. Only vector m and diagonal matrix f’.(m) are updated on each
iteration of the inverse process. Thus, the cost of matrix multiplications involving
F is essentially the same as the multiplication with A which means that the DQA
inversion is almost as inexpensive as the Born inversion. However, it is shown below
that it produces more accurate results than the Born inversion, because it takes into

account the nonlinear effects in the observed EM data.
Frechet derivative matrix for magnetotelluric data

Considering identity 0, [In (f(m))] = [diag (f(m)] ™" 6 (f(m)) for perturbation of
vector operators, the perturbation of forward operator (24) with respect to the model

parameter vector m may be expressed as
O[T (m)] = {diag [kp (m)]}"bpm [k (0)] — {diag [kss ()]} 6pn [k (m)] ~ (30)
The perturbation d,, [kp(m)] can be expressed as
Om [kp(m)] = (&)1 Ap 6 [B(m)m| = ()" Ap D(m) 6m,  (40)

where A stands for the electric or magnetic matrices used in equation (14). A similar
expression can be obtained for 6, [kyz(m)] as well. Combining (39) and (40) finally
gives

S [d" (m)] = AT (m) D(m) 6um, (41)
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where

AMT(m) = {diag [kp(m)]}"* (6" ) 'Ap — {diag [kn(m)]}* (B*7) " Ap.  (42)

Thus, the Frechet derivative matrix for the magnetotelluric forward problem (22) is
FMT(m) = AM”(m) D(m). (43)

Note that in the case of DQA approximation the terms depending on the model pa-
rameters are diagonal matrices in (42). Therefore, similarly to the case of anomalous
field inversion, the iterative updating of f‘MT(m) is relatively inexpensive during the
inversion process. The operational cost of a matrix multiplication with FM7T (m) is
approximately four matrix multiplications involving full matrices Ay and Ay.

The linearized operator (27) provides an even simpler Frechet operator. Since
matrix A[m does not depend on m, the derivation is identical to that considered in

obtaining the Frechet matrix of anomalous field data. Thus,

Flzn ( ) Alzn (m) ® (44)

Besides the simpler formulation, one multiplication by the Frechet matrix costs two
Green’s matrix multiplications only, providing an algorithm twice as fast as that
using the full expression (43). Test inversions of synthetic data demonstrated that
this approximation also produces adequately accurate inverse models.

Once the forward operator with the corresponding Frechet matrices and the min-
imization scheme are implemented, an inversion can be successfully performed. How-
ever, there is a possibility of further improvements by exploiting properties specific
to our particular inverse problem.

In the case of integral-based electromagnetic inverse problems, we consider the
following: 1) the layered Green’s functions exhibit convolution properties, 2) the

total conductivity must be always positive in the predicted model.
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In Appendix A we show that using horizontally homogeneous model discretization
one can drastically reduce the memory and CPU time requirements of the Green’s
matrix manipulations by employing the convolution theorem. Also, in Appendix B
we demonstrate the possibility of using the logarithm of the total conductivity as a

model parameter ensuring realistic inverse models.

Model study

Consider a homogeneous half-space with resistivity of 100 ohm-m, containing a con-
ductive (10 ohm-m) dipping dike. The top of the anomaly is 100 m, and its bottom is
600 m beneath the surface. This model is excited by plane EM waves at four different
frequencies: 1, 10, 100 and 1000 Hz. The theoretical observed field was calculated in
the nodes of a rectangular grid at the surface by solving the full integral equation.
The distance between the observation points is 100 m in the X and Y directions. The
three-dimensional sketch of the true model with the inverted area and the receiver
points is shown in Figure 3a.

Following the traditional approach used in practical MT observations, synthetic
observed apparent resistivities and phases were calculated based on two off-diagonal
elements of the magnetotelluric impedance tensor at each observation point. The
quantities p,, and ¢,, are assigned to the nominal TE mode, whereas p,, and ¢,,
are assigned to the nominal TM mode. Note that this 2-D nomenclature is artificial
and approximate in nature for 3-D structures. However, it is widely used in practical
MT observations, and usually only the quantities pys, ¢yz, pzy and ¢, are available
for inversion. That is why the same approach is used in the model study.

The inverted area is a homogeneous mesh consisting of 15 x 13 x 9 cubic cells
surrounding the anomalous structure to be inverted. Each cell has a dimension of

100 m in the x, y and z directions. The inverted area is also shown in Figure 3a. The
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vertical slices of the inverted area with the true model are presented in Figure 3b.

The data vector consists of 1560 simulated field components. The synthetic data
have been contaminated by 3 percent random noise. The model parameters are the
conductivity values of each cell of the inverted area. Diagonalized quasi-analytical
(DQA) inversions were performed using smooth and focusing regularizations using
the exact and linearized magnetotelluric forward operators introduced by equations
(24) and (27), respectively. Here ”exact” means that the MT parameters are not
approximated, however, the DQA approximation for the anomalous field solutions is
still used. Figures 4 and 5 show the results of inversions for the full and linearized
MT forward operators, respectively. We performed inversions by considering single
TE and TM mode data as well as joint inversion of both TE and TM modes.

The results of the smooth inversion of single TE and single TM mode data using
the exact MT operator are shown in Figures 4a and 4c, correspondingly. Like in the
previous examples, the image has spread around the location of the inhomogeneity
with an underestimated conductivity contrast. However, one can see the inclination
of the dike even in this smooth image. Note that the inversion of single TM mode
data produces a better image of the conductive target than the TE mode inversion.

The focusing DQA inversion produces a sharper and clearer image of the dike
(Figures 4b and 4d). However, the resolution of the TM mode inversion is again
much better than in the case of TE mode inversion, which corresponds well to the
known result published by Wannamaker (1999). In the case of the TE mode, the
primary electric field is polarized along the strike direction, and therefore, it is less
sensitive to the dike boundaries parallel to the strike. In the case of the TM mode,
the primary electric field is directed across the strike, and it becomes more sensitive
to the dike boundaries.

Figures 4e and 4f present the results of joint TE and TM mode smooth and
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focusing inversion. Both images provide a reasonable reconstruction of the position
and inclination of the dike. However, the smooth image is, naturally, more diffuse
and underestimates the conductivity of the dike, while the focusing inversion provides
clearer and more correct image of the conductive target. Generally, the best result is
obtained if the TM mode (when the electric field is perpendicular to the direction of
the strike) is measured. In realistic situations, however, when the strike direction is
unknown, the joint inversion of both modes might be necessary. The joint inversion
provides a reasonable image without knowing the orientation of the target.

As can be seen in Figure 5, the linearized MT forward operator produces similar
pictures for all inversions. Thus, for large scale inversions the linearized MT operator
is preferable because it requires only half the memory and CPU time.

For comparison, the results of the smooth and focusing Born inversions with the
exact MT operator are shown in Figures 6a and 6b respectively, for joint TE and TM
mode data. This model is severely underestimates the size and the conductivity of
the anomaly. The DQA inversion can resolve three-dimensional conductive targets
much better than the Born inversion. At the same time, the computational resources
(computer memory and CPU time) required for DQA inversion are practically the
same as for the Born inversion. That is why this method is called a rapid 3-D

electromagnetic inversion.

Case studies

The ultimate test for a new inversion method is the interpretation of real measure-
ments. Three 3-D data sets were available for our inversion algorithm.

The first experiment is the inversion of a dense array magnetotelluric data set
collected by Takasugi et al. (1992) over the Minamikayabe area, Japan. This area

is important mainly because of its geothermal potential and it has been extensively
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examined by different geophysical methods. Rapid three-dimensional inversion was
performed using both smooth and focusing stabilizers. The inversion results coincide
with the preexisting geological information and independent EM interpretations.

The second case study involves interpretation of the results of an array magnetotel-
luric survey consisting of eleven profiles covering an area of about 28 km?, collected
by INCO Exploration at the Voisey’s Bay area, where massive sulfide deposits were
discovered (Naldrett et al., 1996). A massive inversion consisting of 2760 data and
33600 model parameters was computed in less than 15 minutes.

All inversions were extremely fast compared to other techniques. In case of a
couple of hundreds or a few thousand unknown model parameters the speed was
approximately 10-30 times higher than the QL inversion scheme, while in the case of
the third experiment, where there were above thirty thousand cells, no other method

could be used on a PC-range computer.

Inversion of the Minamikayabe area data

The New Energy and Industrial Technology Development Organization (NEDO)
has been conducting a ”Geothermal Development Promotion Survey” in the Mi-
namikayabe area located in the southern part of Hokkaido, Japan (Takasugi et al.,
1992). This area is particularly interesting because of its geothermal potential. It is
characterized by a resistive magmatic intrusion surrounded by fractured host rocks
with relatively high conductivity. In 1988, MT sounding and AMT soundings were
conducted in this area with site spacing of 100 m along and across observational pro-
files (Figure 7). The frequency range of MT data is from 1 Hz to 130 Hz. Because
the survey area at Minamikayabe is located very close to Uchiura Bay on the north-
eastern side, low frequency data are strongly affected by the ”coast effect” (Takasugi

et al., 1992). Also, we are interested in shallow geological structure in this area, so it
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is reasonable to restrict ourselves to frequencies which are greater than 1 Hz so that
the coast effect can be neglected. We use MT data for inversion at seven different
frequencies between 1 Hz and 100 Hz (96 Hz, 48 Hz, 24 Hz, 12 Hz, 6 Hz, 3 Hz, and 1.5
Hz). The selected background model is similar to one used for QL inversion (Zhdanov
et al., 2000a). It was refined to a four layer model with resistivities of 480 ohm-m, 6
ohm-m, 15 ohm-m and 270 ohm-m, and corresponding thicknesses of 30 m and 450
m and 200 m.

Both nominal TE mode and TM mode data for a total of 161 MT soundings
were used in the inversion. The sketch of a typical cross-section below the center of
the inverted area, based on 2-D interpretation of MT data (according to Takasugi
et al., 1992) is shown in Figure 8. The inverted area was divided into 26 x 26 cells
horizontally (each cell has a 50 m x 50 m size in the x and y directions), and 11
layers in the vertical direction (Figure 7b). The vertical cell sizes are 25 m for the
first layer, 50 m for the next seven layers and 100 m for the cells at the bottom three
layers. The cell sizes increase with depth.

The CPU time for the rapid 3-D MT inversion was about 10 minutes using a Sun
Ultra Sparc 10 workstation. The total number of iterations was about 40. Figure
9a-b shows the volume images of the models predicted by smooth and focusing DQA
inversions, respectively. The vertical cross-sections of the smooth and focusing in-
version results can be seen in Figures 10a-b, respectively. The inversion results are
consistent with the 2-D interpretation results by Takasugi et al., (1992), shown in
Figure 8, and with 3-D inversion results obtained by QL inversion (Zhdanov et al.,
2000a).

The comparisons of observed and predicted TM mode apparent resistivities and
phases at four profiles are presented in Figures 11a-d. They show good agreement

between the observed and predicted apparent resistivity and phase pseudo-sections.
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Inversion of the Voisey’s Bay data

INCO Exploration conducted a three-dimensional MT survey in the Voisey’s Bay
area. The goal of this survey was studying the application of the M'T method to typi-
cal Ni-Cu-Fe sulfide mineralization zone exploration in complex geological structures
(Naldrett et al., 1996; Balch, 2000).

The deposits are hosted by troctolite dikes that are thought to be feeder conduits
for the Voisey’s Bay intrusion of the Nain Plutonic Suite (Naldrett et al., 1996).
The Western Extension, which includes the Reid Brook and Discovery Hill deposits,
is a near-vertical troctolite dike over 3 km in strike length, extending from near-
surface to almost 2 km at depth, where it remains open. Mineralization within the
dike is composed of lenses of disseminated and semi-massive to massive sulfide. The
Ovoid deposit is located under 20 m of overburden at the eastern end of the Western
Extension and is 70% massive sulfide. The Eastern Deeps deposit is located at the
mouth of a feeder dike along the entry point where the dike opens into a large troctolite
magma chamber. The overlying troctolite of the Eastern Deeps deposit is barren of
sulfide in the upper 300-400 m at the western margin and in the upper 800-1000 m
near the eastern limit.

The Voisey’s Bay Troctolite is shown on the Nain Block geology map (Figure 12,
top panel). There is a strong correlation between the known mineralization zones and
the total magnetic field (Figure 12, bottom panel). The Enderbitic Orthogneiss and
Nain Gneiss units are strongly magnetic, while the Tsiuayak Gneiss, the Makhavinekh
and Voisey’s Bay Granites, and the Voisey’s Bay and Sarah Troctolites are mostly
non-magnetic (Balch et al., 1998).

Note that the typical Ni-Cu-Fe sulfide mineralization in the Voisey’s Bay Ni-Cu-Co

deposits is composed mainly of pyrrhotite, pentlandite, and chalcopyrite. Pyrrhotite
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has a high conductivity ranging from 10* to 10% S/m.

Pyrrhotite can be magnetic, so the EM responses can be used in an attempt to
separate sulfide conductors from conductive graphite. However, graphitic rock units
can contain magnetite and will also produce a magnetic response.

The area lies very close to the sea. This means that the groundwater has variable
salt concentration resulting in a significant alteration of the resistivity structure. In
order to be able to find anomalies due to the relatively small conductive ore deposits,
it is extremely critical to delineate the regional resistivity anomalies caused mainly by
the presence of saline groundwater. Since the transition zone between the fresh and
saline waters can have a complicated structure, it was desirable to perform regional
three-dimensional EM measurements targeting a depth range of about one kilometer.

The boundaries of the magnetotelluric survey are shown in Figure 12 by a bold
dashed line. The 3-D MT survey consists of eleven lines passing from the South to
the North. The frequency range of MT data is from 10 Hz to 350 Hz. We chose
MT data for inversion at five different frequencies between 32 Hz and 288 Hz (288Hz,
166Hz, 95Hz 55Hz and 32Hz).

The simple analysis of the apparent resistivity and phase curves showed the pres-
ence of an anomaly zone between profiles number six and eleven. The MT profiles
are numbered from the left to the right in Figure 13. For example, Figure 13 presents
the maps of TE mode apparent resistivity (top panel) and phase (bottom panel) for
a frequency of 96 Hz. We can see clearly the location of the anomalous zone in these
maps.

For detailed investigation we used data from the six profiles in the eastern part
crossing the anomalous zone. The background geoelectrical cross-section in this area,
according to the MT data, was represented by a seven-layer model with the following

resistivity-sequence: p; = 305, py = 283, p3 = 452, py = 461, ps = 607, pg = 452, p; =
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556; h; = 100, hy = 200, hz = 200, hy = 100, hs = 100, hg = 200. This cross-section
has been found using the parameter-estimation code developed by Portniaguine and
Zhdanov (1995). The inverted area consists of 33600 (56 x 50 x 12) cells. Figure 14
presents the 3-D view of the inverted area and its discretization. The structure of the
MT stations is a little bit irregular. The MT data (apparent resistivities and phases)
were interpolated in the six profiles shown in Figure 14.

The rapid 3-D MT inversion method was applied to joint TE and TM mode data
for the 276 interpolated MT soundings at five frequencies.

Since the majority of the anomalies are attributed to the transition zones be-
tween groundwaters of different salinities, it is reasonable to suppose that the smooth
inversion produces realistic images of the conductivity structures.

As a result of the inversion, we obtained a volume distribution of electrical re-
sistivity under the area of about 28 km? to a depth of 1 km. In Figure 15a we can
see the vertical cross-sections of the inverse results below the observation profiles.
Figure 15b presents the general 3-D view of the predicted model. The top panel in
Figure 16 shows 3-D conductive bodies with resistivity below 25 ohm-m, while the
bottom panel presents the domains with resistivity below 50 ohm-m. One can see
a conductive anomaly with a complex shape in these Figures, reaching a depth of
several hundred meters.

The observed and predicted apparent resistivities and phases are shown in Figure
17a-d. Generally, the apparent resistivities show better agreement than the phases.

The images obtained by the rapid inversion scheme correspond well to the results
obtained earlier by QL inversion using a coarser model discretization (Golubev and
Zhdanov, 2000). However, the original QL inversion for this model required several
hours of CPU time, while the rapid 3-D MT inversion runs for just about 14 minutes.

The results were been achieved at approximately 30 iterations.
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Conclusions

We have demonstrated in this paper that the quasi-analytical approximation, devel-
oped by Zhdanov et al. (2000b) and Zhdanov and Hursén (2000) can be effectively
used for 3-D inversion of the array magnetotelluric data. The important modifica-
tions of the QA approximations, introduced in this paper, including a diagonalized
form of QA approximation and fast Green’s tensor calculations, make the developed
technique extremely fast and efficient.

The CPU time was measured during the inversions of synthetic and real data on
a Sun Ultra Sparc 10 workstation. The numbers of data and model parameters with
the execution time are listed in Table 1. One can see that the runtime remains less
than 15 minutes even in the case of several thousands of model parameters and data
enabling the user to perform several inversion attempts on massive data sets with
different inversion parameters.

The practical use of the inversion algorithm was demonstrated on the inversion
of real data sets. The results were consistent with pre-existing geological information
and independent interpretations. The fine discretizations provided more detailed
geoelectrical images than previous results. The new inversion results helped a better
geological understanding of the inverted areas. The speed of the rapid inversion is

superior to existing algorithms, making it a useful tool for practical applications.
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Appendix A — Fast Green’s tensor calculations based
on the convolution and FFT method

For simplicity let us consider forward operator (14). It can be represented in a form
of

d=GgH ja, (A-1)

where Gg g stands for the matrix of electric or magnetic Green’s tensors acting from

the anomalous domain to the receiver, and
Jo=€*B(m) m (A-2)

is the vector of scattering currents inside the anomalous domain based on the QA or
DQA approximation.

It can be easily shown that if the anomalous domain is discretized into a horizon-
tally homogeneous array of cells and the receivers coincide with this grid in horizontal
directions, the Green’s matrix has a block Toeplitz structure. In this case the num-
ber of different entries is much less than the total number of elements of the matrix,
providing a good opportunity for economic storage. More specifically, the size of the
Green’s tensor kernels (the arrays storing all different matrix values) is N, x N,, times
smaller than the number of the elements in the original matrix. Here NV, and N,
stand for the number of cells in z and y directions, respectively. For example, if we
discretize the anomalous body by a 20 x 20 grid in horizontal directions, the number
of elements to be stored in the Green’s tensor kernels is 400 times smaller than the
size of the Green’s matrix.

Moreover, this property provides not only an economical storage, but an effective
computational tool as well. It can be shown that the multiplication with E;‘E g can

be represented as a sequence of discrete 2-D convolutions. Following the notations in
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Hursén (2001), the schematic form of this operation can be summarized as
d=GCEgH jo =8 *ja, (A-3)

where g is an array of Green’s tensor kernels, and * stands for the convolution oper-

ator. Therefore, we can apply the discrete convolution theorem
d=FFT'[FFT(g)- FFT(j.)]- (A-4)

The advantage of using this equation is that we replace the direct Green’s matrix
multiplication with the Fast Fourier transforms reducing the operation complexity

from O(N?) into O(NlogN).

Appendix B — The logarithm of the total conduc-
tivity as a model parameter

We have introduced above the formulation of the electromagnetic inverse problem
with respect to the anomalous conductivity vector, denoted by m. However, during
the minimization anomalous conductivity values resulting in negative total conduc-
tivity can occur. Thus, the anomalous conductivity must be transformed into a new
space of model parameters with the property that the total conductivity always re-
mains positive. The conventional way to solve this problem is to use the logarithm

of the total conductivity as a model parameter:
m = [n(o, + m). (B-1)

Obviously, this model parameter can never produce negative conductivity. The in-

verse transform is

m = exp(m) — oy, (B-2)

32



To calculate the Frechet derivative with respect to this new model parameter, the

forward operator is rewritten in terms of m:
d(m) = d[m(m)] = d[ezp(m) — o). (B-3)
The variation of d with respect to m can be found using the chain rule:

§=d (@) = 6= d[m(m)] = 6md(m)d=m. (B-4)

m

Since

Smd(m) = F(m) = Flezp(m) — 03), (B-5)

where F is given by (37), (43) and (44), and

d;m = exp(m)dm, (B-6)
the result is
6 d(m) = F'(m)om, (B-7)
where
F!(m) = Flezp(m) — op)exp(m) (B-8)

is the Frechet derivative with respect to the logarithm of the total conductivity. Using
this new space of model parameters, the models are realistic, and also the convergence
of the iterative solver is usually faster. This coincides with Wannamaker (2000), who
observed that the conversion into log resistivity decreases the nonlinearity of the

forward operator for the two-dimensional magnetotelluric problem.
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Figure Captions

Figure 1: 3-D geoelectrical model of rectangular conductive prism embedded in a

homogeneous half-space excited by a horizontal rectangular loop.

Figure 2: Behavior of the anomalous horizontal electric and vertical magnetic field
components computed for the model in Figure 1 by solving the full integral
equation (IE), quasi-analytical approximation (QA) and the diagonalized quasi-

analytical approximation (DQA).

Figure 3: a) 3-D geoelectrical model of a tilted conductive dike embedded in a ho-
mogeneous half-space excited by a plane wave source (dike model). The dis-
cretization of the inverted area is also shown. The receivers are marked by dots
right above the inverted area. b) Vertical cross-sections of the inverted area and
the true dike model. The grid of the discretization of the inverted area is also

displayed.

Figure 4: Vertical cross-sections of the predicted inverse model for the dike model
after smooth DQA inversion of TM mode data. The full MT expression has

been used as a forward operator introduced in Equation (24).

Figure 5: Vertical cross-sections of the predicted inverse model for the dike model
after smooth DQA inversion of TM mode data. The linearized MT expression

has been used as a forward operator introduced in Equation (27).

Figure 6: Vertical cross-sections of the predicted inverse model for the dike model

after smooth and focusing Born inversions of joint TE and TM mode data.

Figure 7: a) Distribution of MT sounding sites in the Minamikayabe area. Stars

denote the positions of MT sites. b) Three-dimensional sketch of the inverted
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area and its discretization for the inversion of the Minamikayabe area data. The

locations of the MT stations are marked by stars.

Figure 8: Sketch of a typical cross-section below the center of the inverted area
of the Minamikayabe area, based on the 2-D interpretation of real MT data

(redrawn from Takasugi et al., 1992).

Figure 9: Volume images of the predicted resistivity models after a) smooth and b)

focusing DQA inversions of the Minamikayabe area data set.

Figure 10: Vertical cross-sections of the predicted inverse model obtained by a)

smooth and b) focusing DQA inversions of the Minamikayabe area data set.

Figure 11: Pseudosections of the observed and predicted apparent resistivities and

phases after the DQA inversion of the Minamikayabe area data set.

Figure 12: Block geology map of the Voisey’s Bay area (top) and the corresponding

magnetic map (bottom) (after Balch, 2000).

Figure 13: Maps of the observed TE mode apparent resistivities and phases at f =

95 Hz over the Voisey’s Bay area. Dots mark the observation sites.

Figure 14: Three-dimensional sketch of the inverted area and its discretization for
the inversion of the Voisey’s Bay area data. The locations of the MT profiles

are marked by thick black lines.

Figure 15: a) Vertical cross-sections and b) volume image of the predicted inverse
resistivity model after a smooth DQA inversion of the Voisey’s Bay area data

set.

Figure 16: Volume image of the inversion results with resistivity below 25 ohm-m

(top) and 50 ohm-m (bottom). The shallow anomalies are marked in black,
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while the deep structures are painted in white.

Figure 17: Pseudosections of the observed and predicted apparent resistivities and

phases after the DQA inversion of the Voisey’s Bay area data set.
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Table 1: CPU times of different inversions measured on a

Sun Ultra Sparc 10 workstation

The inverted area Data Inversion

Total No. No. of Total No. No. of CPU time,

Discretization  of cells  fregs. of data iters. minutes
15x13x9 1755 4 1560 50 5
20x 5 x 7 700 11 1056 30 5

26 x 26 x 11 7436 7 2366 40 10

56 x 50 x 12 33600 5 2760 30 14
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Figure 1: 3-D geoelectrical model of rectangular conductive prism embedded in a
homogeneous half-space excited by a horizontal rectangular loop.
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components computed for the model in Figure 1 by solving the full integral equa-
tion (IE), quasi-analytical approximation (QA) and the diagonalized quasi-analytical
approximation (DQA).
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Figure 3: a) 3-D geoelectrical model of a tilted conductive dike embedded in a homo-

geneous half-space excited by a plane wave source (dike model
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of the inverted area is also shown. The receivers are marked by

inverted area. b) Vertical cross-sections of the inverted area and the true dike model.

The grid of the discretization of the inverted area is also displayed.
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Figure 4: Vertical cross-sections of the predicted inverse model for the dike model
after smooth DQA inversion of TM mode data. The full MT expression has been

(24).

used as a forward operator introduced in Equation
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Figure 5: Vertical cross-sections of the predicted inverse model for the dike model
after smooth DQA inversion of TM mode data. The linearized MT expression has

(27).

been used as a forward operator introduced in Equation
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Figure 6: Vertical cross-sections of the predicted inverse model for the dike model

after smooth and focusing Born inversions of joint TE and TM mode data.
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Sketch of a typical cross-section below the center of the inverted area of the

Minamikayabe area, based on the 2-D interpretation of real MT data (redrawn from

Takasugi et al., 1992).
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Figure 14: Three-dimensional sketch of the inverted area and its discretization for the

inversion of the Voisey’s Bay area data. The locations of the MT profiles are marked
by thick black lines.
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p< 25 ohm-m

p< 50 ohm-m

Figure 16: Volume image of the inversion results with resistivity below 25 ohm-m

(top) and 50 ohm-m (bottom). The shallow anomalies are marked in black, while the
deep structures are painted in white.
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