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[1] This paper demonstrates that there are alternative approaches to the magnetotelluric (MT)
inverse problem solution based on different types of geoelectrical models. The traditional approach
uses smooth models to describe the conductivity distribution in underground formations. In this
paper, we present a new approach, based on approximating the geology by models with blocky
conductivity structures. We can select one or another class of inverse models by choosing between
different stabilizing functionals in the regularization method. The final decision, whose approach
may be used for the specific MT data set, is made on the basis of available geological information.
This paper describes a new way of stabilizing two-dimensional MT inversion using a minimum
support functional and shows the improvement that it provides over traditional methods for
geoelectrical models with blocky structures. The new method is applied to MT data collected for
crustal imaging in the Carrizo Plain in California and to MT data collected for mining exploration

by INCO Exploration.
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1. Introduction

[2] The two-dimensional (2-D) magnetotelluric inverse problem
has been addressed by several authors. The most well-known
approaches are the search for a smooth model [de Groot-Hedlin
and Constable, 1990; de Lugao et al., 1997; Mackie et al., 1997,
Rodi and Mackie, 2001] and the rapid relaxation inversion (RRI)
[Smith and Booker, 1991]. The majority of existing algorithms are
based on the minimum norm or maximum smoothness criteria used
for stable inversion of magnetotelluric data. The RRI method is
also based on approximate calculation of the Frechet derivatives
under the assumption that horizontal variations in conductivity are
much smaller than vertical ones.

[3] The magnetotelluric (MT) inverse problem, as almost any
inverse problem in geophysics, is ill-posed and therefore unstable.
It means that one can find several very different geoelectrical
models fitting the observed data with the same accuracy. The stable
solution of an ill-posed inverse problem can be obtained by using
the corresponding regularization methods [Zikhonov and Arsenin,
1977]. The regularization is based on a simple idea of searching for
a solution within the specific class of selected models. Note that the
traditional way to implement regularization in inverse problem
solution is based on considering the class of inverse models with
smooth distribution of model parameters. Within the framework of
the classical Tikhonov regularization, one can select the smooth
solution by introducing the corresponding minimum norm, or
“smoothing” stabilizing functionals. This approach is widely used
in geophysics and has been proved to be a powerful tool for stable
inversion of geophysical data. Note that practically all traditional
MT inversion methods use the same approach and therefore they
produce a smooth image of geoelectrical structures, which in some
cases may not describe the geology properly.

[4] It is important to emphasize, however, that regularization
does not necessarily mean a smoothing of the solution. The main
basis for regularization is the implementation of a priori information
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about the geological structure in the inversion procedure. In the case
of the traditional smooth inversion this information is provided as
an assumption that the solution, the geoelectrical model in the MT
case, should be represented by smooth functions. At the same time,
in some geological situations it can be useful to consider other
assumptions in selecting the class of possible solutions. For
example, the traditional smooth inversion algorithms have difficul-
ties in describing the sharp geoelectrical boundaries between differ-
ent geological formations, while in actual geological situations,
sharp boundaries may constitute an important goal of interpretation.
This problem arises in inversion for a local conductive target with a
sharp boundary embedded in a resistive host rock, which is a typical
model in mining exploration. Another example is a marine MT
survey to map the salt dome structures in sea bottom geological
formations [Hoversten et al., 1998]. Even in general cases of
regional geological studies we may be interested in determining
large regions with blocky structures. In these situations it can be
useful to search for a stable solution within the class of inverse
models with blocky geoelectrical structures. The mathematical
technique for solving this problem was developed by Portniaguine
and Zhdanov [1999a]. It is based on introducing a new type of
stabilizing functional in inverse problem solution, a so-called
minimum support functional. We call this technique a focusing
regularized inversion to distinguish it from the traditional smooth
regularized inversion.

[s] This technique was successfully applied to the inversion of
gravity data [Last and Kubik, 1983; Portniaguine and Zhdanov,
1999a] to generate a focused and resolved inverse image of the
density distribution in a geological cross section. This idea was
also implemented in inversion of three-dimensional (3-D) con-
trolled-source MT (CSMT) data over the structures with sharp
geoelectrical boundaries [Portniaguine and Zhdanov, 1999b; Zhda-
nov and Hursan, 2000]. In this paper we demonstrate that this
approach helps to generate much more “focused” and resolved
images of blocky geoelectrical structures than conventional MT
inversion methods.

[6] We test the focused regularized inversion of magnetotelluric
data on synthetic models. We also apply this technique to interpret
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the MT data collected in Carrizo Plain, California [Unsworth et al.,
1999], and to analyze the MT data collected for mining exploration
by INCO Exploration.

2. Principles of Blocky Structure Imaging

[7] The magnetotelluric inverse problem can be formulated as
the numerical solution of the following operator equation:

A(m) = d, (1)
where A4 is the forward modeling operator, m = m(r) is a scalar
function describing geoelectrical model parameter distribution,
conductivities o(r) (or resistivities p(r)), in some volume V¥ in the
Earth, (m € M, where M is a Hilbert space of model parameters
with an L, norm), and d is a geophysical data set (d € D, where D
is a Hilbert space of data). Inverse problem (1) is usually ill-posed;
that is, the solution can be nonunique and unstable. The
conventional way of solving ill-posed inverse problems, according
to regularization theory [Zikhonov and Arsenin, 1977, Zhdanov,
1993], is based on minimization of the Tikhonov parametric
functional:

P%(m) = ¢(m) + as(m), 2)

where ¢(m) is a misfit functional determined as a square norm of
difference between observed and predicted (theoretical) data,

b(m) = || Am —d ||, 3)
and s(m) is a stabilizing functional (a stabilizer). The main role of
the stabilizer is to select an appropriate class of models for the
inverse problem solution. Actually, the stabilizer can be treated as a
tool for including a priori information about the geological
structures in the inverse problem solution.

[8] There are several common choices for stabilizers, which
lead to the different classes of geological models used for inver-
sion. One is based on the least squares criteria or, in other words,
on the L, norm for functions describing geoelectrical model
parameters:

sp, (m) = ||m|[*= (m,m) = /szdv = min, (4)

where ( , ) denotes the inner product multiplication [Parker, 1994].
Another stabilizer uses a minimum norm of difference between the
selected model and some a priori model 7,

(5)

stapr (m) = ”m = maerZ: min.

The conventional maximum smoothness stabilizing functional uses
the minimum norm of the gradient of model parameters Vm:

Smax sm (M) = ||VmH2: (Vm,Vm) = min, (6)

or, in some cases, the minimum norm of the Laplacian of model
parameters V2,

smaxsm(m) = Hvlmllzz (Vzm, Vzm) = min. (7)

These functionals have been successfully used in many inversion
schemes developed for EM data interpretation [Berdichevsky and
Zhdanov, 1984; Constable et al., 1987; Jiracek et al., 1987; Smith
and Booker, 1991; Ellis and Oldenburg, 1994; Rodi and Mackie,
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2001]. These stabilizers produce smooth geoelectrical models
which in some practical situations may not describe properly the
real blocky geological structures with sharp boundaries.

[9] Last and Kubik [1983] and Portniaguine and Zhdanov
[1999a] considered a different stabilizing functional which mini-
mizes the area of the anomalous model parameters. This functional
is called a minimum support (MS) functional, which can be
described as follows. Consider the following integral of the model
parameter distribution:

2
il = /V L a, (®)

where e # 0 is a small number, introduced to exclude singularity in
the points where m = 0.

[10] We introduce the support of m (denoted sptm) or model
parameter support, as the combined closed subdomains of ¥ where
m # 0. Then (8) can be modified:

& 1
Jo(m) = | ————|dv=sptm — & ——dv.
(m) /smm [ m2+ez} v =sp e /Splm - dv. (9)

From (8) we can see that

Jo(m) — sptm, e — 0. (10)
Thus J,(m) can be treated as a functional, proportional (for a small
e) to the model parameter support. We can use the above integral to

introduce a minimum support stabilizing functional s, (m) as

2
SMS(m) = Je (m - mapr) = / (m — map;) dv
v (m = mgpr)“+e?
m—m =
— apr 2 m — Mapr | (11)

[(m = mapr)2+32]l * [(m — map,)z—}—ez]

where (, ), similar to (4), denotes the inner product multiplication.
[11] One can demonstrate that this new functional can be
represented in a form similar to the original minimum norm
functional. This analogy simplifies the regularized solution of the
inverse problem based on the new stabilizer. In order to demon-
strate this analogy we introduce a variable weighting function:

1

1727
[(m - map,)z—l—ez]

(12)

We(m) =

where e is a small number. Then the stabilizing functional (11) can
be written as the weighted least squares norm of m:

smus(m) = [we(m) (m — Mape ), We(m) (m - map,)}

= (= mapey ), = [lm — [,

where the lower subscript “w,” denotes the weighted inner product
multiplication and the weighted norm. Using these notations, the
corresponding parametric functional can be cast in the form

P (m) = |[am — d|[}+o|m — mgy |,

(13)

which shows that the minimization problem of the parametric
functional with the minimum support stabilizer can be treated in a
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similar way to the minimization of the conventional Tikhonov
functional with the L, norm stabilizer Sz, o () (equation (5)). The
only difference is that now we introduce some a priori variable
weighting functions w,(m) for model parameters. This method is
similar to the variable metric method [Press et al., 1987]. However,
in our case the variable weighted metric is used in calculation of
the stabilizing functional only. The minimization problem for the
parametric functional introduced by (13) can be solved using the
ideas of traditional gradient type methods [Tarantola, 1987]. In
Appendix A we present a description of the reweighted conjugate
gradient (RCG) method which we used for MT inversion.

3. Formulation of the Weighted Inverse Solution

[12] In the practical inversion of magnetotelluric data we must
remember that we have a finite set of observed data (apparent
resistivities and phases at a finite number of observation points for
specific frequencies). This set of data forms a matrix d in the form
of a column of length N.

[13] After discretizing the field data, d and conduct1v1ty
distribution over the model, G = ni, the inverse problem stated in
(1) can be written in matrix form:

A(m) =
where A4 is the discrete matrix analogous to the operator 4 which
appears in the numerical solution of the Maxwell’s system of
equations.

[14] Since the inverse problem (14) is ill-posed, we minimize a
parametric functional (13) which is the combination of the misfit
and stabilizing functionals [Zikhonov and Arsenin, 1977]. An
additional way to constrain the solution is by introducing weights.
The data-weighting matrix usually contains information on the
importance of one data point with relation to the others. In this
way, for example, data of better quality will have a larger weight
than data of poor quality. The weights can also be used to
normalize data to make them more uniformly distributed. One
can also introduce weights for the model parameters to make the
sensitivity of the data more uniformly distributed for different
model parameters. The parametric functional we seek to minimize
is then

(14)

Po (i, ) = | Wadi(in) — Wad | * | Wad () - 7ad
+ OL(A,,,?~ VAV,,,fﬁap, *(VT’,,,)?: - A,nr?zap,) = min,
(15)

where W, and W,, are some weighting matrices of data and model
parameters, 7, is some a priori model, and the asterisk means
transposed matrix. The minimization problem (15) gives us the
regularized weighted least squares solution to the inverse problem.
Note that practically all existing inversion methods (see, for
example, OCCAM MT inversion by de Groot-Hedlin and Constable
[1990] or gravity and magnetic inversion by Li and Oldenburg
[1998]) use the weighting of the model parameters in one or another
form. However, the weights are usually selected on the basis of some
simple assumptions about the variation of the sensitivity with the
depth to the target. The goal of weighting, usually, is to amplify a
weak response and to decrease the strong response in order to
resolve the structures located at different distances from the
observations. We suggest a new mathematical approach to
weighting, based on sensitivity analysis, which automatically makes
the sensitivity of the data more uniform to the model parameters.

[15] Let us analyze the sensitivity of the data to the perturbation
of one specific parameter m,. In this case,

bdd; = Fiydmy, (16)
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where Fj are the elements of the Frechet derivative matrix
computed, for example, using the reciprocity principle [Madden,
1972; Rodi, 1976; McGillvray and Oldenburg, 1990; McGillvary et
al., 1994; de Lugao and Wannamaker, 1996; de Lugao et al.,
1997]. Following Mehanee et al. [1998], we determine the
integrated sensitivity of the data to the parameter m, as the ratio

s, = 18l _ Vi ()b ﬁ

Gmk
[16] The diagonal matrix with diagonal elements equal to Sy is
called an integrated sensitivity matrix, S:

(17)

A*,\)I/Z (]8)

S = dlag(F F

One can see that the sensitivity depends on the parameter number
k. In other words, sensitivity of the data to different parameters is
different because the contribution of the different parameters in the
observation is also different.

[17] The way of selecting the model parameter weighting matrix
can be based on the following con51derat1on Let us analyze again
the stabilizing functional with W2 =T

() = (i — Hiape ) * (M — Mlgpe ). (19)
This functional penalizes all departures from the a priori model
equally. However, we can weight the model parameters propor-

tionally to the integrated sensitivity of the data to these parameters:

Sw(m) = (i — Mgpe)* S (1 — Mgy (20)
In other words, we can introduce the model parameters weighting
matrix as the square roots of the integrated sensitivity matrix:

Wy, = \[ d1ag(F F) N .

The weighted stabilizer with the weighting matrix I7Vm=\/§
imposes a stronger penalty on the variations from the a priori
model for the parameters that contribute to a greater extent to the
data. On the contrary, the parameters with a smaller contribution to
the data can have a greater range of variations. As a result, in
inversion all parameters become practically equally dependent on
the data, which leads to a more reliable inverse model solution.

(1)

4. Regularized Solution of a Discrete
MT Inverse Problem

[18] Now we combine the weighting matrix arising from
sensitivity analysis with the variable weighting function of the
minimum support stabilizer into one algorithm, minimizing the
parametric functional:

S\ N * -~
Po() = [A(m) d] { () — d} )
(7 — Mgy ) * W W (i — g ) = min,
where #,, is the constant weighting matrix of model parameters,
Mgy is an a priori model, the asterisk means transposed matrix,
and W, is a variable diagonal weighting matrix. Note that in (22)
the data-weighting matrix, for simplicity, is set to be equal to the
identity matrix. In principle, the data weighting can be easily
incorporated in our algorithm. However, the corresponding
algebraic equations become too cumbersome. That is why we



EPM 2-4
a) FOCUSING
0 50
40
! E
= £
& a &
2 N R
4
3
10
4 0
0 2 4 6 8
50
140
£
s E
E s 30
= z
°a 2
§ .‘% 20
[+
10
: 0
0 2 4 6 8
Horizontal location (km)
Figure 1.

MEHANEE AND ZHDANOV: MT INVERSION OF BLOCKY STRUCTURES

b) MINIMUM NORM
1 —E _
= £
£ s
£ 2 2
£ 2z
& 2
a @
o
3
4
0 2 4 6 8
! g
= £
g 3
c2 2
g 3
o o
e 3
['s
3
4
0 2 4 6 8

Horizontal location (km)

Model 1, 5 ohm m rectangular conductive body (shown by dashed line) embedded in 50 ohm m

homogeneous half-space. TE mode inversion results: (a) regularized weighted focusing inversion; (b) regularized
weighted minimum norm inversion; (¢) NLCG inversion; and (d) RRI inversion.

prefer not to keep matrix W 2 in further calculations. Matrix W,,, is
computed once, using (21),

5 = ok~ 1/4
W= V3= diag(F: Fo> " (23)
where F is the Frechet derivative matrix of the forward modeling
operator, computed for the initial iteration.

[19] Matrix Ww? is computed according to (12) so that the
diagonal elements of w, are formed by the values of the func-
tion w,(m) in the corresponding nodes of the model parameter
grid:

o ) N2 gl
W, () = dlag[(m — lapr) € ] : (24)
Substituting (24) and (23) into (22), we arrive at the following
formula for the parametric functional P*:

~ ~

PeGi) = (A(m) — d)* (AG) — ) + o — i) *

A~k A~

-1 1/2
diag [(ﬁl — ﬁzap,)z—i—ez} diag (Fo Fo) (i — Mhape) = min. (25)

[20] We use the reweighted conjugate gradient method (RCG)
in the space of weighted parameters to minimize the parametric
functional expressed by (22) or (25). This algorithm is presented in
Appendix A. The forward modeling is based on the same numer-
ical implementation of the finite difference method as of Zhdanov
et al. [1982] and de Lugao et al. [1997]. We use the reciprocity
principle [Madden, 1972; Rodi, 1976; McGillivray and Oldenburg,
1990; de Lugao and Wannamaker, 1996; de Lugao et al., 1997] for
Frechet derivative calculations. Note that according to the con-
struction the minimum support functional generates a stable
solution that tends to produce the smallest possible anomalous

domain. It could make the image look unrealistically sharp.
Following Portniaguine and Zhdanov [1999a)], we impose the
upper bound o (r) and the lower bound ¢ (r) for the conductivity
values o(r) determined from inversion. During the iterative process
we force the model parameter values to fit within these bounds.
This algorithm can be described by

o() = o™ (r), o(r) 2 o*(r)
(26)

Thus, according to (26) the inverse conductivities o(r) are always
distributed within the interval 6~ (r) < o(r) < o (r). The upper and
lower bounds of the conductivity are determined on the basis of a
priori information about the physical properties of the rock
formations in the inversion area. This information may be available
based on the well logging or can be reasonably estimated.

5. Numerical Examples

[21] The 2-D magnetotelluric focusing inversion has been
tested on several synthetic models. We present here, as an
example, the results obtained for two different models. Model 1
consists of a rectangular conductor with a resistivity of 5 ohm m
buried in a 50 ohm m homogeneous half-space. The position of the
conductor is shown by the dashed line in Figure 1. Twelve
frequencies (0.01, 0.03, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 100 Hz)
have been used to generate two sets of synthetic apparent resis-
tivities and phases for transverse electric (TE) and transverse
magnetic (TM) modes at 23 stations located at the Earth’s surface.
The data were contaminated by 4% random noise. The mesh used
for the inversion consists of 24 columns and 15 rows, giving rise
to 360 blocks to invert for. A 50 ohm m half-space starting model
has been used for the TE and TM mode inversions. The a priori
model has been selected to be equal to zero (7., = 0), and the
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Figure 2. Behavior of the parametric and misfit functionals for
the TE mode regularized weighted inversion (top) with focusing
and (bottom) with minimum norm.

upper and lower bounds of focusing inversion resistivities have
been set to 50 and 5 ohm m, respectively. The regularization
parameter o has been selected automatically on the basis of the
algorithm outlined in Appendix A.

[22] Regularized weighted inversion of the TE mode apparent
resistivity and phase data without focusing (a minimum norm
solution) for a misfit of 4% produces the result shown in
Figure 1b. In this case we use only constant weighting matrix
W ., assuming W, = I, where I is the identity matrix. The misfit was
reached after 6 iterations. Focusing inversion (with variable
weighting matrix w,) of the same TE mode data has been
performed for a 4% misfit as well and resulted in the model shown
in Figure la. This misfit was reached after 4 iterations. The
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behavior of both the parametric functional normalized by its value
computed from the starting model and the misfit functional
normalized by the observed data is shown in Figure 2.

[23] The TM mode regularized weighted minimum norm
inversion (without focusing) produced a 4% misfit after 34
iterations. The corresponding inversion image is shown in
Figure 3b. The TM mode focusing inversion (with the mini-
mum support stabilizer) has been calculated for a misfit of 4%
and resulted in the model shown in Figure 3a. The 4% misfit
was reached after 13 iterations. The plots of the parametric and
misfit functionals are shown in Figure 4. One can see that the
focusing inversion converges much faster than the conventional
minimum norm inversion. This is because it is more difficult to
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Figure 5. Model 1, 5 ohm m rectangular conductive body
(shown by dashed line) embedded in 50 ohm m homogeneous half-
space. Joint (TE and TM) inversion results: (a) regularized
weighted focusing inversion; (b) regularized weighted minimum
norm inversion; (¢) NLCG inversion; and (d) RRI inversion.
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weighted focusing inversion; (b) regularized weighted minimum
norm inversion; and (c) NLCG inversion.

describe the original blocky structure by the models generated
by the code with the minimum norm stabilizer.

[24] For comparison, we inverted the same data using two
different codes; the RRI by Smith and Booker [1991] and the
nonlinear conjugate gradient (NLCG) inversion by Rodi and
Mackie [2001]. Figures lc, 1d, 3¢, and 3d show the inversion
results obtained from these codes for both the TE and TM
modes. One can see that RRI and NLCG inversion codes, as
one may expect, produce smooth and diffused images which
correspond to a traditional smooth stabilizer, incorporated in
these codes. Figure 5 shows the inversion results for the joint
(TE and TM mode) focusing inversion (Figure 5a), minimum
norm inversion (Figure 5b), NLCG (Figure 5¢), and RRI (Figure
5d) algorithms, using 50 ohm m homogeneous half-space start-
ing model. One can clearly see that focusing inversion results in
a well-resolved image, while all three other techniques produce
diffused images.

[25] Model 2 consists of two rectangular bodies with resis-
tivities of 250 and 10 ohm m embedded in a 50 ohm m
homogeneous half-space. The locations of these bodies are
shown by a bold solid white line in Figure 6. Two sets of
synthetic apparent resistivities and phases were generated for
TE and TM modes at 51 stations using 14 frequencies (0.01,
0.03, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 100, 300, 1000 Hz).
These data were contaminated by 4% random noise. A 50 ohm
m half-space starting model has been used for the joint (TE
and TM) inversions. The a priori model was set to be equal to
zero, and the upper and lower bounds of focusing inversion
resistivities were set to 250 and 10 ohm m, respectively. The
mesh used for the inversion consists of 52 columns and 26
rows, giving rise to 1352 blocks to invert for. Figure 6 shows
the inversion results for the joint (TE and TM mode) focusing
inversion (Figure 6a), minimum norm inversion by our code
(Figure 6b), and smooth inversion obtained by the NLCG code
(Figure 6¢). Note that all three models fit the observed data
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practically with the same accuracy of 4%. One can clearly see
that the focusing joint inversion results in a sharper image. To
provide a better comparison between the focusing and smooth
images, in Figure 7 we present the horizontal profiles for the
resistivity distribution at a depth of 2 km for the inverse
models presented in Figure 6. The solid lines in Figure 7
correspond to the true resistivity distribution of the original
model at a depth of 2 km. The dashed lines show the inversion
results, obtained by focusing inversion (Figure 7a), minimum
norm inversion (Figure 7b), and NLCG inversion (Figure 7c).
One can clearly see that the minimum norm and NLCG
inversions smooth the blocky structure of the original model,
especially in the case of conductive body. For comparison, in
Figure 8 we present the results of joint (TE and TM) focusing
inversion for two different resistivity bounds. Figure 8a shows
the joint focusing inversion results corresponding to lower and
upper resistivity bounds of 8 and 280 ohm m, respectively.
Lower and upper resistivity bounds of 5 and 300 ohm m,
respectively, resulted in the joint focusing inversion results
shown in Figure 8b. One can see that these images still resolve
the two bodies well, especially the conductive one.

[26] Note that we use the blocky model as a true model in our
test and therefore arrive at the result that the focusing inversion
produces a better image for this model than the smooth inversion.
Thus the result of our model study shows that the solution based on
the focusing inversion (the blocky structure inversion) is obviously
better if we solve the inverse problem for blocky geoelectrical
structures. However, if one would solve the inverse problem for the
smooth structures, the smooth inversion would generate the better
image. We can select one or another class of the inverse models by
choosing between different stabilizing functionals in the regulari-
zation method. The final decision on which approach is used for a

a) FOCUSING

6 8
Horizontal location (km)

Figure 7. Resistivity distribution from horizontal profile at a
depth of 2 km for the joint inversion results of model 2 shown in
Figure 6. Solid line presents the true resistivity values. Dashed line
presents the resistivity values obtained from inversion: (a) joint
regularized weighted focusing inversion; (b) joint regularized
weighted minimum norm inversion; and (c) joint NLCG inversion.
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Figure 8. Model 2, 10 and 250 ohm m rectangular bodies (shown
by solid white line) embedded in a 50 ohm m homogeneous half-
space. Joint focusing inversion results for two different bounds for
the inverse resistivity: (a) joint regularized weighted focusing
inversion using upper and lower resistivity bounds of 280 and
8 ohm m, respectively; and (b) joint regularized weighted focusing
inversion using upper and lower resistivity bounds of 300 and
5 ohm m, respectively.

specific MT data set should be made by the practical geophysicist
based on available geological information.

6. Focusing Inversion of MT Data Collected
in Carrizo Plain, California

[27] High-resolution magnetotelluric data were collected across
the San Andreas Fault (SAF) at Carrizo Plain, California for crustal
imaging [Unsworth et al., 1999]. The TE and TM mode regular-
ized weighted inversions with focusing were applied to these data.
We expected to find some blocky structures in this area associated
with the resistive granitic rock formations. We used a 20 ohm m
homogeneous half-space starting model. Figure 9a shows the TM
mode regularized weighted inversion results with focusing. The
inversion results with focusing for the TE mode data are shown in
Figure 10a. One can see that the TE mode inversion shows
structures similar to those obtained from the TM mode inversion.
The TE and TM joint inversion was performed with focusing using
the TM mode inversion results as a starting model. Figure 11a
shows the joint focusing inversion results. Figure 11a shows two
structures at different depths on the eastern side of the profile. One
is a shallow (<1 km depth) conductive occurrence at horizontal
locations 5 and 7 km which can be interpreted as a low-resistivity,
sandy clay-rich facies of the Monterey shale. The other is a deep
resistor centered at ~4 km depth. Note that this resistive structure
was also imaged by previous inversions performed for MT data
collected across the San Andreas Fault within the Carrizo Plain
[Mackie et al., 1997; Unsworth et al., 1999]. At the same time it is
commonly accepted that the Great Valley sedimentary units and
the Fransiscan formation extend westward to the SAF [Page,
1981]. One possible explanation for the resistive structure located
east of the SAF is that the resistive body may comprise resistive
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Figure 9. Carrizo Plain, TM inversion results obtained by (a)
focusing inversion, (b) RRI, and (c) NLCG.

crystalline rocks. Supporting evidence for the existence of this
resistive structure includes the occurrence of granitic rocks in the
Crocker Flat-Recruit Pass area near the crest of the Temblors
Range, where according to Simonson [1962] it appears that
crystalline rocks overlie lower Miocene strata. In addition, the
Western Gulf Vishnu no. 1 oil well [Graff, 1962] penetrated
resistive granitic rocks at 2.11 km depth at a location east of the
SAF. Figure 11a shows two other structures on the western side of
the profile. The shallow (1-2.5 km depth) conductive structure
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Figure 10. Carrizo Plain, TE inversion results obtained by (a)
focusing inversion, (b) RRI, and (c) NLCG.
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correlates well with the geologic mapping and well log data for the
area under study [Vedder, 1970]. The deep structure is a resistive
one located on the western side at a depth >3 km. The transition
boundary between the conductive and resistive bodies located on
the western side of the profile was identified from seismic
reflection performed by Davis et al. [1988].

[28] For comparison, Figures 9b, 10b, and 11b show the
inversion results obtained by the RRI code, and Figures 9¢, 10c,
and 11c present the NLCG inversion results. Note that the NLCG,
the RRI, and focusing inversion results fit the data equally well,
with the same accuracy of 10%, 15%, and 17% for TE, TM, and
joint (TE and TM) inversions, respectively. One can see that in
general, three different codes, based on the hypotheses of the
smooth and blocky conductivity distribution, produce very similar
results, probably because the geoelectrical cross section of the
Carrizo Plain can be reasonably represented by a smooth model.
However, there are some interesting differences. For example,
focusing produces more consistent images of conductive and
resistive formations for both TE and TM mode data at a depth
below 2 km. This contrasts with a striking difference between TE
and TM mode inversion results of RRI and NLCG, since the deep
resistive structure (located on the western side of the profile) is
missing in the TE mode inversion results of RRI and NLCG. Thus
this is an example of the practical situation, where we use three
different techniques simultaneously to achieve better confidence in
the inversion result.

7. Focusing Inversion of MT Data, Collected
for Mining Exploration

[29] INCO Exploration conducted an MT survey over an area of
known nickel deposits. The goal of this survey was to study the
application of the MT method to explore a typical sulphide
mineralization zone in complex geological structures. The survey
consisted of several lines passing over the prospective mineraliza-
tion zone. The frequency range of MT data was from 10 to 350 Hz.
We selected just one MT line to demonstrate the effectiveness of
focusing inversion in this situation. The typical sulphide mineral-
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Figure 11. Carrizo Plain, joint (TE and TM) inversion results
obtained by (a) focusing inversion, (b) RRI, and (c) NLCG.
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Figure 12. Interpretation of MT data collected for mining
exploration, TM inversion results obtained by (a) focusing
inversion and (b) NLCG.

ization zone in nickel deposits is composed mainly of pyrrhotite,
pentlandite, and chalcopyrite, characterized by a high conductivity.
So the geoelectrical targets in this area can be treated as the isolated
conductive zones within the host rocks. One can expect that the
focusing inversion should resolve this target better than the conven-
tional maximum smoothness approach. Note, also, that the mining
target is usually three-dimensional. So 3-D inversion of the array
MT data could provide the most reliable information about the
mineralization zone. However, in our case we applied the 2-D MT
inversion to the profile of TM mode data only in order to get a
reasonable first hand evaluation of the mining target. A 1000 ohm m
homogeneous half-space was used as a starting model for the
focusing and NLCG inversions. Figure 12 shows the results of
focusing inversion (Figure 12a) and NLCG inversion (Figure 12b).
The misfit for both focusing and NLCG inversion results was 13%.
One can see that Figure 12a contains two local conductive targets
which can be associated with the known mineralization zones.
Figure 12b also shows two conductive anomalies, but they are
dispersed and extended at the depth. The focusing inversion,
obviously, produces a more compact and clear image of two
mineralization zones, which corresponds well to the known
geology.

8. Discussion and Conclusion

[30] The main goal of this paper is to demonstrate that there are
alternative approaches to MT inverse problem solutions, based on
different types of geoelectrical models. The traditional approach
uses smooth models to describe the conductivity distribution in
rock formations. In this paper, we present a new approach based on
approximating the actual geology by the models with the blocky
conductivity structures. We can select one or another class of the
inverse models by choosing between different stabilizing func-
tionals in the regularization method. The final decision, whose
approach should be used for the specific MT data set, should be
made on the basis of geological information. If it is known a priori
that the geological structure can be reasonably characterized by a
smooth model, then the smooth inversion should be used. On the
contrary, if it is known a priori that the goal of interpretation is to
find blocky structures, like an ore body, conductive fault, or salt
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dome structure, then the new method developed in this paper will
be more appropriate. In general cases, when there is not enough a
priori information about the study area, the best solution would be
to try both techniques and to make comparative analysis of two
possible geoelectrical cross sections, using both smooth and the
focusing inversions. Each of these models will probably fit the data
with the same accuracy. The additional geological analysis and the
comparison with other geophysical data only could make it
possible to select one or another solution. Our code, based on
focusing inversion, is designed in such a way that it can generate
the minimum norm and the focused solutions simultaneously. This
result is reached by a simple selection of the corresponding
weighting matrix w, defined by (24). In the case of the minimum
norm inversion this matrix is selected to be equal to identity matrix.
In the case of the focusing inversion it is a variable matrix,
determined by (24). The output of the code consists of two
resulting models, fitting the data with the same accuracy but
generating two different images. Thus the new technique presented
in this paper brings more flexibility in the interpretation of MT
data, leaving the final choice of the most suitable model to the user.

[31] We have applied this technique for crustal imaging by
inverting the magnetotelluric data acquired in the Carrizo Plain
area of California. Our inversion result confirms the principal
geoelectrical structures recovered in previous publications [Mackie
et al., 1997; Unsworth et al., 1999] but also produces more focused
and consistent images of conductive and resistive formations for
both TE and TM mode data at depth below 2 km. We suggest that
both images, obtained by traditional smooth inversion and by the
new method, are useful for further interpretation and analysis
because they provide complimentary information about the deep
geoelectrical structures. Finally, application of the new focusing
inversion to MT data collected for mining exploration by INCO
Exploration clearly demonstrates the advantage of the new techni-
que in this situation.

Appendix A: Reweighted Conjugate Gradient
(RCG) Method in the Space of Weighted
Parameters

[32] The problem of parametric functional minimization (22) can
be reformulated in the space of weighted parameters, introduced as

m" = Wme;ﬁv (Al)
where
ﬁ/me = ﬁ’e ﬁ/m- (A2)

We can consider the forward operator which relates the new
weighted parameters m" to the data

d=a"m"). (A3)
In order to keep the same data we should assume
A¥ =4 (A4)

[33] Using these notations, we can rewrite the parametric func-
tional (22) as

P (fn,d) = [A(W ) —d)* (A( W25, ) - 4]

(i i, ) * (i = gy ) (A3)
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In other words, we keep the same misfit, as in (22), because
du() = [A(W, 2, ) -] *[a( Wiiny) |

= [A@m) —d|*[4@m) -],

(A6)

and the same stabilizer, as in (22), equal to the least squares norm
of difference (m — 7i,,) with the weights

Sw = (m" — g )*¥(m" — my, )

=(m— r?tap,)*W,ie(ﬁ — Magpr). (A7)

[34] To construct the iterative process in the space of weighted
parameters, one can apply the conventional conjugate gradient
method [Zarantola, 1987] to find the minimum of the parametric
functional (A5). However, in this case we should take into account
the nonlinear character of the transformations (A1) and (A2).
Portniaguine and Zhdanov [1999, 1999b] and Zhdanov and
Hursan [2000] have developed a more efficient approach to the
solution of this problem, based on so-called reweighted regularized
conjugate gradient (RCG) method. In the framework of this
approach the variable weighting matrix W, is precomputed on
each iteration, W, = W, = W,(m,) based on the values 7,
obtained on the previous iteration. As a result, the weighting
matrix W, is updated on each iteration as well,

~. ~

Wme = Wen Wy, (AS)

and it is treated as a fixed matrix on each iteration. Therefore the
transformations (A1) and (A2) on each iteration can be treated as
linear operations, which simplifies significantly all calculations.

[35] This approach uses the idea of adaptive regularization
[Zhdanov, 1993], which involves updating the regularization
parameter o on each iteration. The only difference is that we
update now the regularization parameter and the weighting matrix
simultaneously. Note that without adaptive regularization one
should solve the minimization problem for parametric functional
(AS5) many times for different values of the regularization param-
eter o, which is an extremely time consuming and impractical
approach. The adaptive regularization substitutes this complicated
procedure by one gradient-type iterative process with the regula-
rization parameter o changing from iteration to iteration. We use
similar approach in our reweighted algorithm.

[36] The reweighted RCG method is based on the successive
line search in the conjugate gradient direction /(,):

W AW AW __ Sw T ow
m, =m, + ém" = m, — k"l(mn)‘

The idea of the line search can be described as follows. We present
P[m,, — ki(m),)] as a function of one variable & and, evaluating it
three times along direction /(m,), approximately fit it by a parabola
and find its minimum and the value of k,, corresponding to this
minimum. R

[37] The conjugate gradient directions /(m,, ) are selected with
the following steps: In the first step we use the gradient direction

() = 1(g) = WP [A(W, 255 ) —d) + oy — iy
(A9)

In the next step, the conjugate gradient direction is the linear
combination of the gradient in this step and the direction /(71 ) in the
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previous step:

In the nth step,

I(y,y) =1(y,,) + Bl (Aiy),

where

, = ). (A10)

1(y) = Wyl B [,y ) =) + iy -

[38] The coefficients B, are defined from the condition that
the directions /(7,+,) and /(m,) are conjugate:

H H

In the last step we recompute the real parameters of the model from
the weighted parameters at the nth iteration:

Bn+l - (All)

-~ 15=1mw
Mpy1 = I/Vme mn+l = W Wen Myp1- (Alz)

[39] The regularization parameter o describes the trade-off
between the best fitting and most reasonable stabilization. In a
case when « is selected to be too small, the minimization of the
parametric functional P() is equivalent to the minimization of
the misfit functional &,,(7); therefore we have no regularization,
which can result in an unstable incorrect solution. When « is too
large, the minimization of the parametric functional P%(m) is
equivalent to the minimization of the stabilizing functional s,, (),
which will force the solution to be closer to the a priori model.
Ultimately, we would expect the final model to be exactly like the a
priori model, while the observed data are totally ignored in the
inversion. Thus the critical question in the regularized solution of
the inverse problem is the selection of the optimal regularization
parameter o The basic principles used for determining the
regularization parameter « are discussed by Tikhonov and Arsenin
[1977] and Zhdanov [1993]. It can be selected from the progression
of numbers

o = g’ k=0,1,2,...,n; q¢>0. (A13)
For any number o, we can find an element MMe,, minimizing
P (im), and calculate the misfit |4 (i, — d||*. The optimal value
of the parameter « is the number oy, for which we have

Hﬁ(ﬁzm ) — 2H2= &, (A14)

where § is the level of noise in the observed data. The equality
(A14) is called the misfit condition.

[40] In our code, as we have mentioned above, we use the
adaptive RCG method [Zhdanov, 1993]. In the framework of this
method we begin an iteration from a value of oy, which can be
obtained as a ratio of the misfit functional and stabilizer for an
initial model, then reduce «,, according to (A13) on each subse-
quent iteration and continuously iterate until the misfit condition
(A14) is reached.

[41] Note that on each iteration of the reweighted RCG method
we actually minimize the parametric functional with the different
stabilizers because the regularization parameter and the weighting

MEHANEE AND ZHDANOV: MT INVERSION OF BLOCKY STRUCTURES

matrix W, are updated on each iteration. In order to insure the
convergence of the misfit functional to the minimum we check the
misfit value on each iteration. We decrease the regularization
parameter o if the misfit does not decrease fast enough. This
procedure in combination with the parabolic line search in the
conjugate gradient direction on every iteration insures the con-
vergence of the method.
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