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[ I] This paper de mo ns trates that there are alternative ap proa ches to the magneto telluric (M T) 
inverse problem so lution based on different types of geoelectrical mod els. The traditional approach 
uses smooth models to describe the conductivity d istribution in underground formations. In this 
paper, we prese nt a new approach, based on approxi mating the geology by models with blo cky 
co nd uct ivi ty structures. We can se lect one or ano the r class of inverse mod els by choosing between 
differe nt stabilizing functionals in the reg ularization metho d. The fina l decision , w hose approach 
may be used for the specific MT data se t, is made on the basis of available geo log ica l information . 
This paper describes a new way of stabi liz ing two -dimens iona l MT inversion using a minimum 
support functiona l and shows the improvement that it provides over traditiona l meth ods for 
geoelec trical mo de ls with blocky structures. The new meth od is applied to MT data co llec ted for 
crus ta l imaging in the Carrizo Plain in Californ ia and to MT data co llec ted for mining exploration 
by INc a Exploration . INDEX TERMS : 0644 Elec tro magnetics : N umerica l me thods; 3260 
Mathematical Geophysics : Inverse theory; K EYWORDS: Electromagnetic , m agnetotelluric, inversion, 
foc using 

1.	 Introduction about the geological structure in the inversion procedure. In the case 
of the traditional smooth inversion this information is provided as 

[2J The two-dimensional (2-D) magnetotelluric inverse problem an assumption that the solution, the geoelectrical model in the MT 
has been addressed by several authors. The most well-known case, should be represented by smooth functions. At the same time, 
approaches are the search for a smooth model [de Groot-Hedlin in some geological situations it can be useful to consider other 
and Constable, 1990; de Lugao et al., 1997; Mackie et aI., 1997; assumptions in selecting the class of possible solutions. For 
Rodi and Mackie, 2001] and the rapid relaxation inversion (RRI) example, the traditional smooth inversion algorithms have difficul­
[Smith and Booker, 1991). The majority of existing algorithms are ties in describing the sharp geoelectrical boundaries between differ­
based on the minimum norm or maximum smoothness criteria used ent geological formations, while in actual geological situations, 
for stable inversion of magnetotelluric data. The RRI method is sharp boundaries may constitute an important goal of interpretation. 
also based on approximate calculation of the Frechet derivatives This problem arises in inversion for a local conductive target with a 
under the assumption that horizontal variations in conductivity are sharp boundary embedded in a resistive host rock, which is a typical 
much smaller than vertical ones. model in mining exploration. Another example is a marine MT 

[3J The magnetotelluric (MT) inverse problem, as almost any survey to map the salt dome structures in sea bottom geological 
inverse problem in geophysics, is ill-posed and therefore unstable. formations [Hoversten et al., 1998). Even in general cases of 
It means that one can find several very different geoelectrical regional geological studies we may be interested in determining 
models fitting the observed data with the same accuracy. The stable large regions with blocky structures. In these situations it can be 
solution of an ill-posed inverse problem can be obtained by using useful to search for a stable solution within the class of inverse 
the corresponding regularization methods [Tikhonov and Arsenin, models with blocky geoelectrical structures . The mathematical 
1977J. The regularization is based on a simple idea ofsearching for technique for solving this problem was developed by Portniaguine 
a solution within the specific class of selected models. Note that the and Zhdanov [1999a). It is based on introducing a new type of 
traditional way to implement regularization in inverse problem stabilizing functional in inverse problem solution, a so-called 
solution is based on considering the class of inverse models with minimum support functional. We call this technique a focusing 
smooth distribution of model parameters. Within the framework of regularized inversion to distinguish it from the traditional smooth 
the classical Tikhonov regularization, one can select the smooth regularized inversion. 
solution by introducing the corresponding minimum norm, or [5J This technique was successfully applied to the inversion of 
" smoothing" stabilizing functionals. This approach is widely used gravity data [Last and Kubik, 1983; Portniaguine and Zhdanov, 
in geophysics and has been proved to be a powerful tool for stable 1999aJ to generate a focused and resolved inverse image of the 
inversion of geophysical data. Note that practically all traditional density distribution in a geological cross section. This idea was 
MT inversion methods use the same approach and therefore they also implemented in inversion of three-dimensional (3-D) con­
produce a smooth image of geoelectrical structures, which in some trolled-source MT (CSMT) data over the structures with sharp 
cases may not describe the geology properly. geoelectrical boundaries [Portniaguine and Zhdanov, 1999b; Zhda­

[4] It is important to emphasize, however, that regularization nov and Hursan, 2000]. In this paper we demonstrate that this 
does not necessarily mean a smoothing of the solution. The main approach helps to generate much more "focused" and resolved 
basis for regularization is the implementation ofa priori information images of blocky geoelectrical structures than conventional MT 

inversion methods. 
Copyright 2002 by the American Geophysical Union. [6J We test the focused regularized inversion of magnetotelluric 
0148-0227/02/200IJBOOO 191$09.00 data on synthetic models. We also apply this technique to interpret 
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the MT data collected in Canizo Plain, California [Unsworth et al., 
1999], and to analyze the MT data collected for mining exploration 
by INCO Explorat ion. 

2. Principles of Blocky Structure Imaging 

[7] The magnetotelluric inverse problem can be formul ated as 
the numerica l solution of the following operator equation: 

A(m) = d, ( 1) 

where A is the forward modeling operator, m = mer) is a scalar 
function describing geoelec trical model parame ter distribu tion, 
conductivit ies a(r) (or resistivities per)), in some volume Vin the 
Earth, (m E M, where M is a Hilb ert space of model parameters 
with an Lz norm), and d is a geophysica l data set (d E D, where D 
is a Hilbert space of data). Inverse problem (1) is usually ill-posed; 
that is, the so lution can be nonunique and unstabl e. The 
conventiona l way of solving ill-posed inverse problems, according 
to regularization theory [Tikhonov and Arsenin, 1977; Zhdanov, 
1993], is based on minimization of the Tikhonov parametric 
functional: 

(2)PO«m ) = <jJ(m) + os (m), 

where <jJ(m) is a misfit functional determined as a square norm of 
difference between observed and predicted (theoretical) data, 

<jJ(m) = II Am - d 111 , (3) 

and sCm) is a stabilizing functional (a stabilizer). The main role of 
the stabilizer is to select an appropriate class of models for the 
inverse problem solution. Actually, the stabilizer can be treated as a 
tool for including a priori inform ation about the geological 
struc tures in the inverse problem solution. 

[8] There are several comm on choices for stabilizers, wh ich 
lead to the different classes of geologica l models used for inver­
sion. One is based on the least squares criteria or, in other words , 
on the Lz norm for funct ions desc ribing geoe lectrica l model 
parameters: 

SL, (m) = II mllz= (m,m) = 1mZdv = min , (4) 

whe re ( , ) deno tes the inner product multipli cation [Parker, 1994] . 
Another stabi lizer uses a minimum norm of difference between the 
selected model and some a priori model mapr: 

SL,apr(m) = 11 m - maprW= min . (5) 

The conventional maximum smoo thness stabilizing functional uses 
the minimum norm of the gradient of model parameters 'ilm : 

z=Smaxsm(m) = II 'il mll ('ilm, 'ilm) = min , (6) 

or, in some cases , the minimum norm of the Laplaci an of mod el 
parameters 'ilZm, 

Smaxsm(m) = II'ilZmIIZ= ('ilZm, 'ilZm) = min. (7) 

The se functionals have been successfully used in many inversion 
schemes developed for EM data interpretation [Berdichevsky and 
Zhdanov, 1984; Constable et al., 1987; Jiracek et al., 1987; Smith 
and Booker, 1991; Ellis and Oldenburg, 1994 ; Rodi and Mackie, 

2001]. These stabilizers produce smoot h geoe lectrica l models 
which in some practical situations may not desc ribe properly the 
real blocky geological structures with sharp bound aries. 

[9] Last and Kubik [1983] and Portniaguine and Zhdanov 
[1999a] considered a different stabilizing functional which mini­
mizes the area of the anomalous model parameters. This functiona l 
is called a minimum support (MS) functiona l, which can be 
described as follows. Consider the following integral of the model 
parameter distribution: 

r~dv,Je(m) = Jv mZ+ eZ (8) 

where e =F 0 is a small numb er, introduced to exclude singularity in 
the points where m = O. 

[1 0] We introduce the support of m (denoted sptm) or mod el 
parameter support, as the combined closed subdomai ns of V where 
m =F O. Then (8) can be modified: 

Je(m) =l [ 1 -~] dv=sPtm - eZl ~dv . (9) 
sptm m + e splm m + e 

From (8) we can see that 

Je(m) -> sptm, e -> O. (10) 

Thus Je(m) can be treated as a functional , proportional (for a small 
e) to the model parameter support . We can use the above integral to 
introduc e a minimum support stabilizing functional sMS(m) as 

) 1 (m - mapr)Z 
SMs (m) = Je m - mapr = Z dv 

v (m - mapr) +e Z
( 

mapr mapr _ [ m - m - ] ( )
- vn > l/Z' 11 

r(m- mapr)Z +ezl r(m- mapr) z+e21 

where ( , ), similar to (4), denotes the inner produ ct multipli cation . 
[11] One can demonstrate that thi s new functional can be 

represented in a form similar to the original minimum norm 
function al. This analogy simplifies the regularized solution of the 
inverse problem based on the new stabilizer. In orde r to demon­
strate this analogy we introduce a variable weighting function: 

1 
we(m) = [ )z+ez] "0 , (12) 

(m - mapr 

where e is a small numb er. Then the stabilizing functional (11) can 
be written as the weig hted least squares norm of m: 

SMs( m) = [we(m)(m - mapr) , we(m)( m - mapr) ] 

= (m- mapr, m- mapr) w, = 11 m - mapr l l ~" 

where the lower subscript "we" denotes the weighted inner product 
mult iplication and the weig hted norm. Using these notations, the 
corresponding parametric functional can be cast in the form 

PO«m ) = IIAm - d111+Qllm - m aprll ~" (13) 

which shows that the minimization probl em of the param etric 
functional with the minimum support stabilizer can be treated in a 
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similar way to the minimization of the convent ional Tikhonov 
functional with the L2 norm stabilizer sL2apr(m) (equation (5» . The 
only difference is that now we introduce some a priori variable 
weighting functions w.( m) for model parameters. This method is 
similar to the variable metric method [Press et al., 1987]. However, 
in our case the variable weighted metric is used in calculation of 
the stabilizing functional only. The minimization problem for the 
parametric functional introduced by (13) can be solved using the 
ideas of traditional gradient type methods [Tarantala, 1987]. In 
Appendix A we present a description of the reweighted conjugate 
gradient (RCG) method which we used for MT inversion. 

3. Formulation of the Weighted Inverse Solution 

[12] In the practical inversion of magnetotelluric data we must 
remember that we have a finite set of observed data (apparent 
resistivities and phases at a finite number of observatio n points for 
specific frequencies). This set of data forms a matrix d in the form 
of a column of length N. ~ 

[13] After discretizing the field data, d, and conductivity 
distribution over the model, ;; = iii, the inverse problem stated in 
( I) can be written in matrix form: 

A(m) = d, (14) 

where A is the discrete matrix analogous to the operator A which 
appears in the numerical solution of the Maxwell' s system of 
equations. 

[1 4] Since the inverse problem (14) is ill-posed, we minimize a 
parametric functional (13) which is the combination of the misfit 
and stabilizing functionals [Tikhonov and Arsenin, 1977] . An 
additional way to constrain the solution is by introducing weights. 
The data-weighting matrix usually contains information on the 
importance of one data point with relation to the others. In this 
way, for example, data of better quality will have a larger weight 
than data of poor quality. The weights can also be used to 
normalize data to make them more uniformly distributed. One 
can also introduce weights for the model parameters to make the 
sensitivity of the data more uniformly distributed for different 
model parameters. The parametric functional we seek to minimize 
is then 

P<> (iii <> ,d) = [WdA(iii) - Wdd] * [wdA(m ) - Wdd] 
+ ex ( w'niii - Wmmapr) *(w'nm - w'nmapr) = min, 

(15) 

where Wd and Wm are some weighting matrices of data and model 
parameters, mapr is some a priori model, and the asterisk means 
transposed matrix. The minimization problem (15) gives us the 
regularized weighted least squares solution to the inverse problem. 
Note that practically all existing inversion methods (see, for 
example, OCCAM MT inversion by de Groot-Hedlin and Constable 
[1990] or gravity and magnetic inversion by Li and Oldenburg 
[1998]) use the weighting of the model parameters in one or another 
form. However, the weights are usually selected on the basis ofsome 
simple assumptions about the variation of the sensitivity with the 
depth to the target. The goal of weighting, usually, is to amplify a 
weak response and to decrease the strong response in order to 
resolve the structures located at different distances from the 
observations. We suggest a new mathematical approach to 
weighting, based on sensitivity analysis, which automatically makes 
the sensitivity of the data more uniform to the model parameters. 

[15] Let us analyze the sensitivity of the data to the perturbation 
of one specific parameter mi. In this case, 

8d; = F;k8mk, (16) 

where F;k are the elements of the Frechet derivative matrix 
computed, for example, using the reciprocity principle [Madden, 
1972;Rodi, 1976; McGillvray and Oldenburg, 1990 ; McGillvary et 
al., 1994 ; de Lugao and Wannamaker, 1996; de Lugao et al., 
1997]. Following Mehanee et al. [1998], we determine the 
integrated sensitivity of the data to the parameter mk as the ratio 

8m118dll = /L;(F;d k = IL(F;d . 
s, = Sm, 8mk V 1 

(17) 

[16] The diagonal matrix with diagon al elements equal to Sk is 
called an integrated sensitivity matrix, S: 

~ (~ * ~) 1/2S = diag F F . (18) 

One can see that the sensitivity depends on the parameter number 
k. In other words, sensitivity of the data to different parameters is 
different because the contribution of the different parameters in the 
observation is also different. 

[17] The way of selecting the model parameter weighting matrix 
can be based on the following <;pnsid£ration. Let us analyze again 
the stabilizing functional with W~ = I : 

s(iii) = (m- mapr)*(iii - iiiapr ) . (19) 

This functional penalizes all departures from the a priori model 
equally. However, we can weight the model parameters propor­
tionally to the integrated sensitivity of the data to these parameters: 

sw(iii ) = (iii - mapr ) * S(iii - iiiapr ) . (20) 

In other words, we can introduce the model parameters weighting 
matrix as the square roots of the integrated sensitivity matrix: 

~ Fe ( ~* ~) 1/ 4w'n= V S = diag F F . (2 1) 

The weighted stabilizer with the weighting matrix Wm=VS 
imposes a stronger penalty on the variations from the a priori 
model for the parameters that contribute to a greater extent to the 
data. On the contrary, the parameters with a smaller contribution to 
the data can have a greater range of variations. As a result, in 
inversion all parameters become practically equally dependent on 
the data, which leads to a more reliable inverse model solution. 

4. Regularized Solution of a Discrete 
MT Inverse Problem 

[18] Now we combine the weighting matrix an smg from 
sensitivity analysis with the variable weighting function of the 
minimum support stabilizer into one algorithm, minimizing the 
parametric functional: 

P<> (m)= [A(m) - d]* [A(m )- d] 
(22)

(~ ~ )* ~2( ~~2 W ~ )_ .+ex m - mapr tv;: m m - mapr - mm, 

where Wm is the constant weighting matrix of model parameters, 
mapr is an a priori model, the asterisk means transposed matrix, 
and We is a variable diagonal weighting matrix. Note that in (22) 
the data-weighting matrix, for simplicity, is set to be equal to the 
identity matrix. In principle, the data weighting can be easily 
incorporated in our algorithm. However, the corres ponding 
algebraic equations become too cumbersome. That is why we 
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Figure 1. Model I, 5 ohm m rectangular conductive body (shown by dashed line) embedded in 50 ohm m 
homogeneous half-space. TE mode inversion results: (a) regularized weighted focusing inversion; (b) regularized 
weighted minimum norm inversion ; (c) NLCG inversion; and (d) RRI inversio n. 

prefer not to keep matrix tV~ in further calculations. Matrix tVm is 
computed once, using (2 1), 

_ ~ (_* _)1/4 
(23)Wm = V S = diag FoFo , 

where F0 is the Frechet derivative matrix of the forward mode ling 
operator, computed for the initial iteration. 

[19] Matrix w; is computed according to (12) so that the 
diagonal elements of We are formed by the values of the func­
tion weCm) in the corres ponding nodes of the model parameter 
grid: 

_ _ . [ (_ _ ) 2 2]- 1/2 
we(m ) = diag m - mapr +e . (24) 

Substitut ing (24) and (23) into (22) , we arrive at the following 
formul a for the parametric functional P"': 

P"(m) = (A(m) - d) *(A(m) - d) + a(m - mapr ) * 

2 2]- I (_* _)1/2
diag (m- mapr) +e diag Fo Fo (m - mapr ) = min. (25)[ 

[20] We use the reweigh ted conjugate gradie nt method (RCG) 
in the space of weighted parameters to minimize the parametric 
functional expresse d by (22) or (25) . This algorithm is presented in 
Appendix A. The forward mod eling is based on the same numer­
ical implementat ion of the finite difference method as of Zhda nov 
et al. [1982] and de Lugao et al. [1997]. We use the reciprocity 
principle [Madden, 1972; Rodi, 1976; McGi llivray and Oldenburg, 
1990; de Lugao and Wannamaker, 1996; de Lugao et al., 1997] for 
Frechet derivative calcu lations. Note that accord ing to the con­
struction the minimum support functiona l ge nera tes a stable 
solution that tends to produce the smallest possible anomalous 

domain. It could make the image look unrealistically sha rp . 
Following Portniaguine and Zhdanov [1999a], we impose the 
upper bound a+(r) and the lower bound a-(r) for the conductivity 
values a( r) determined from inve rsion. During the iterative process 
we force the model parameter values to fit within these bounds. 
This algorithm can be described by 

a (r) = a +(r), a(r):2: a+(r) 

a( r ) = a- (r) , a( r) :S; a- (r) . (26) 

Thus, accord ing to (26) the inverse conductivi ties a( r) are always 
distributed with in the interva l a" (r) :s; a( r) :s; a" (r). The upp er and 
lower bounds of the conductivity are determined on the basis of a 
priori information about the physical properties of the rock 
formations in the inversion area. This information may be available 
based on the well logging or can be reasonab ly estimated. 

5. Numerical Examples 

[21] The 2-D magnetotelluri c focusing inversion has been 
tested on sev era l synthetic mod els. We pr esent here, as an 
example, the results obtained for two different models. Model I 
consis ts of a rectang ular conductor with a resistivity of 5 ohm m 
buried in a 50 ohm m homogeneous half-space. The position of the 
conducto r is shown by the dashed line in Figure I. Twelve 
frequenc ies (0.Q1, 0.03 , 0.1, 0.3, 1,3, 5, 10, 15, 30,50, 100 Hz) 
have been used to generate two sets of synthetic apparen t resis­
tivities and phases for transverse electric (TE) and transverse 
magnetic (TM) modes at 23 stations located at the Earth 's surface . 
The data were contaminated by 4% random noise. The mesh used 
for the inversion consists of 24 columns and IS rows , giving rise 
to 360 blocks to invert for. A 50 ohm m half-space starting model 
has been used for the TE and TM mode inversions . The a priori 
model has been selected to be equal to zero (mapr = 0), and the 
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Figure 2. Behavior of the parametric and misfit functionals for 
the TE mode regularized weighted inversion (top) with focusing 
and (bottom) with minimum norm. 

upper and lower bounds of focusing inversion resistivities have 
been set to 50 and 5 ohm m, respectively. The regularization 
parameter a has been selected automatically on the basis of the 
algorithm outlin ed in Appendix A. 

[22] Regularized weighted invers ion of the TE mode apparent 
resist ivity and phase data without focusing (a minimum norm 
solution) for a misfit of 4% produces the result sho wn in 
Figure lb. In this case we use only constant weighting matrix 
Will> assuming We = 7, where 7is the identity matrix. The misfit was 
reached after 6 iterations. Focusing inversion (with variable 
weighting matrix we) of the same TE mode data has been 
performed for a 4% misfit as well and resulted in the model shown 
in Figure Ia. This misfit was reached after 4 iterations. The 
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behavior of both the parametric functional normalized by its value 
computed from the starting model and the misfit functional 
normalized by the observed data is shown in Figure 2. 

[23] The TM mode regularized weighted minimum norm 
inversion (without focusing) produced a 4% misfit after 34 
iterations. The corr esponding inversion image is shown in 
Figure 3b. The TM mode focusing inversion (with the mini­
mum support stabilizer) has been calculated for a misfit of 4% 
and resulted in the model shown in Figure 3a. The 4% misfit 
was reached after 13 iterations. The plots of the parametric and 
misfit functionals are shown in Figure 4. One can see that the 
focusing inversion converges much faster than the conventional 
minimum norm inversion. This is because it is more difficult to 
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describe the orig inal blocky structure by the model s generated 
by the code with the minimum norm stabilizer. 

[24] For comparison, we inverted the same data using two 
different codes; the RRI by Smith and Booker [1991] and the 
nonlinear conjugate gradient (NLCG) inversio n by Rodi and 
Mackie [200 1]. Figures Ic , Id , 3c, and 3d show the inversion 
results obtained from these codes for both the TE and TM 
modes. One can see that RRI and NLCG inversion codes, as 
one may expect, produce smooth and diffused images which 
correspond to a traditional smooth stabilizer, incorpora ted in 
these codes. Figure 5 shows the invers ion results for the joint 
(TE and TM mode) focusing invers ion (Figure Sa), minimum 
norm inversion (Figure 5b), NLCG (Figure 5c), and RRI (Figure 
5d) algorithms, using 50 ohm m homogeneous half-space start­
ing model. One can clearly see that focusing inversion results in 
a well-reso lved image, while all three other techniques produ ce 
diffused image s. 

[25] Mode l 2 consists of two rectangular bodies with resis­
tivities of 250 and 10 ohm m embedded in a 50 ohm m 
homogeneous half-space. The locations of these bodies are 
shown by a bold solid white line in Figure 6. Two sets of 
synthetic apparent resistivities and phases were generated for 
TE and TM modes at 51 stations using 14 frequencies (0.0 1, 
0.03, 0.1, 0.3, I , 3, 5, 10, IS, 30, 50, 100, 300, 1000 Hz). 
These data were contaminated by 4% random noise. A 50 ohm 
m half-space starting model has been used for the joint (TE 
and TM) inversions. The a priori model was set to be equal to 
zero, and the upper and lower bounds of focusing inversion 
resistiv ities were set to 250 and 10 ohm m, respectively. The 
mesh used for the inversion consists of 52 columns and 26 
rows, giving rise to 1352 blocks to invert for. Figure 6 shows 
the inversi on results for the joint (TE and TM mode) focusin g 
inversion (Figure 6a), minimum norm inversion by our code 
(Figure 6b), and smooth inversion obtained by the NLCG code 
(Figure 6c). Note that all three models fit the observed data 

practically with the same accuracy of 4%. One can clearly see 
that the focusing joint inversion results in a sharper image. To 
provide a better comparison between the focusing and smooth 
images, in Figure 7 we present the horizontal profiles for the 
resistivity distribution at a depth of 2 km for the inverse 
models presented in Figure 6. The solid lines in Figure 7 
correspond to the true resistivity distribution of the original 
model at a depth of 2 km. The dashed lines show the inversion 
results, obtained by focusing inversion (Figure 7a), minimum 
norm inversio n (Figure 7b), and NLCG inversion (Figure 7c). 
One can clearly see that the minimum norm and NLCG 
inversions smooth the blocky structure of the original model, 
especially in the case of conductive body. For comparison, in 
Figure 8 we present the results of join t (TE and TM) focusing 
inversion for two different resistivity bounds. Figure 8a shows 
the joint focusing inversion results corresponding to lower and 
upper resistivity bounds of 8 and 280 ohm m, respectively. 
Lower and upper resistivity bounds of 5 and 300 ohm m, 
respectively, resulted in the joint focusing inversio n results 
shown in Figure 8b. One can see that these images still resolve 
the two bodies well, especially the conductive one. 

[26] Note that we use the blocky model as a true model in our 
test and therefore arrive at the result that the focusing inversion 
produces a better image for this model than the smooth inversion. 
Thus the result of our model study shows that the solution based on 
the focusing inversion (the blocky structure inversion) is obviously 
better if we solve the inverse problem for blocky geoelectrical 
structures. However, if one would solve the inverse problem for the 
smooth structures, the smooth inversio n would generate the better 
image. We can select one or another class of the inverse models by 
choosing between different stabilizing functionals in the regulari­
zation method. The final decis ion on which approach is used for a 
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Figure 7. Resistivity distribution from horizontal profile at a 
depth of 2 km for the joint inversion results of model 2 shown in 
Figure 6. Solid line presents the true resistivity values. Dashed line 
presents the resistivity values obtained from inversion: (a) joint 
regularized weighted focusing inversion; (b) joint regularized 
weighted minimum norm inversion; and (c) joint NLCG inversion. 
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Figure 8. Model 2, 10 and 250 ohm m rectangular bodies (shown 
by solid white line) embedded in a 50 ohm m homogeneous half­
space. Joint focusing inversion results for two different bounds for 
the inverse resistivity: (a) joint regularized weighted focusing 
inversion using upper and lower resistivity bounds of 280 and 
8 ohm m, respectively; and (b) joint regularized weighted focusing 
inversion using upper and lower resistivity bounds of 300 and 
5 ohm m, respectively. 

specific MT data set should be made by the practical geophysicist 
based on available geological information. 

6. Focusing Inversion of MT Data Collected 
in Carrizo Plain, California 

[27J High-resolution magnetotelluric data were collected across 
the San Andreas Fault (SAF) at Carrizo Plain, California for crustal 
imaging [Unsworth et al., I999J. The TE and TM mode regular­
ized weighted inversions with focusing were applied to these data. 
We expected to find some blocky structures in this area associated 
with the resistive granitic rock formations. We used a 20 ohm m 
homogeneous half-space starting model. Figure 9a shows the TM 
mode regularized weighted inversion results with focusing. The 
inversion results with focusing for the TE mode data are shown in 
Figure lOa. One can see that the TE mode inversion shows 
structures similar to those obtained from the TM mode inversion. 
The TE and TM jo int inversion was performed with focusing using 
the TM mode inversion results as a starting model. Figure II a 
shows the jo int focusing inversion results. Figure 11 a shows two 
structures at different depths on the eastern side of the profile. One 
is a shallow « 1 km depth) conductive occurrence at horizontal 
locations 5 and 7 km which can be interpreted as a low-resistivity, 
sandy clay-rich facies of the Monterey shale. The other is a deep 
resistor centered at ~4 km depth. Note that this resistive structure 
was also imaged by previous inversions performed for MT data 
collected across the San Andreas Fault within the Carrizo Plain 
[Mackie et al., 1997; Unsworth et al., 1999J. At the same time it is 
commonly accepted that the Great Valley sedimentary units and 
the Fransiscan formation extend westward to the SAF [Page, 
1981). One possible explanation for the resistive structure located 
east of the SAF is that the resistive body may comprise resistive 
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Figure 9. Carrizo Plain, TM inversion results obtained by (a) 
focusing inversion, (b) RRI, and (c) NLCG. 

crystalline rocks. Supporting evidence for the existence of this 
resistive structure includes the occurrence of granitic rocks in the 
Crocker Flat-Recruit Pass area ncar the crest of the Temblors 
Range, where according to Simonson [1962J it appears that 
crystalline rocks overlie lower Miocene strata. In addition, the 
Western Gulf Vishnu no. I oil well [Graff, 1962J penetrated 
resistive granitic rocks at 2.11 Ian depth at a location east of the 
SAF. Figure Il a shows two other structures on the western side of 
the profile. The shallow (1-2.5 km depth) conductive structure 
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Figure 10. Carrizo Plain, TE inversion results obtained by (a) 
focusing inversion, (b) RRI, and (c) NLCG. 
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correlates well with the geologic mapping and well log data for the 
area under study [Vedder, 1970]. The deep structure is a resistive 
one located on the western side at a depth >3 km. The transition 
boundary between the conductive and resistive bodies located on 
the western side of the profile was identified from seismic 
reflection performed by Da vis et at. [1988]. 

[28} For comparison, Figures 9b, lOb, and lIb show the 
inversion results obtained by the RRI code, and Figures 9c, 10c, 
and II c present the NLCG inversion results. Note that the NLCG, 
the RRI, and focusing inversion results fit the data equally well, 
with the same accuracy of 10%, 15%, and 17% for TE, TM, and 
joint (TE and TM) inversions, respectively. One can see that in 
general, three different codes, based on the hypotheses of the 
smooth and blocky conductivity distribution, produce very similar 
results, probably because the geoelectrical cross section of the 
Carrizo Plain can be reasonably represented by a smooth model. 
However, there are some interesting differences. For example, 
focusing produces more consistent images of conductive and 
resistive formations for both TE and TM mode data at a depth 
below 2 km. This contrasts with a striking difference between TE 
and TM mode inversion results of RRI and NLCG, since the deep 
resistive structure (located on the western side of the profile) is 
missing in the TE mode inversion results ofRRI and NLCG. Thus 
this is an example of the practical situation, where we use three 
different techniques simultaneously to achieve better confidence in 
the inversion result. 

7. Focusing Inversion of MT Data, Collected 
for Mining Exploration 

[29} INCO Exploration conducted an MT survey over an area of 
known nickel deposits. The goal of this survey was to study the 
applic ation of the MT method to explore a typica l sulphide 
mineralization zone in complex geological structures. The survey 
consisted of several lines passing over the prospective mineraliza­
tion zone. The frequency range of MT data was from 10 to 350 Hz. 
We selected ju st one MT line to demonstrate the effectiveness of 
focusing inversion in this situation. The typical sulphide mineral­
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Figure 12. Interpretation of MT data collected for rnmmg 
exploration, TM inversion results obtained by (a) focusing 
inversion and (b) NLCG. 

ization zone in nickel deposits is composed mainly of pyrrhotite, 
pentlandite, and chalcopyrite, characterized by a high conductivity. 
So the geoelectrical targets in this area can be treated as the isolated 
conductive zones within the host rocks. One can expect that the 
focusing inversion should resolve this target better than the conven­
tional maximum smoothness approach. Note, also, that the mining 
target is usually three-dimensional. So 3-D inversion of the array 
MT data could provide the most reliable information about the 
mineralization zone. However, in our case we applied the 2-D MT 
inversion to the profile of TM mode data only in order to get a 
reasonable first hand evaluation of the mining target. A 1000 ohm m 
homogeneous half-space was used as a starting model for the 
focusing and NLCG inversions. Figure 12 shows the results of 
focusing inversion (Figure 12a) and NLCG inversion (Figure 12b). 
The misfit for both focusing and NLCG inversion results was 13%. 
One can see that Figure 12a contains two local conductive targets 
which can be associated with the known mineralization zones. 
Figure 12b also shows two conductive anomalies, but they are 
dispersed and extended at the depth. The focusing inversion, 
obviously, produces a more compact and clear image of two 
mineralization zones, which corresponds well to the known 
geology. 

8. Discussion and Conclusion 

[30} The main goal of this paper is to demonstrate that there are 
alternative approaches to MT inverse problem solutions, based on 
different types of geoelectrical models. The traditional approach 
uses smooth models to describe the conductivity distribution in 
rock formations. In this paper, we present a new approach based on 
approximating the actual geology by the models with the blocky 
conductivity structures. We can select one or another class of the 
inverse models by choosing between different stabilizing func ­
tionals in the regularization method. The final decision, whose 
approach should be used for the specific MT data set, should be 
made on the basis of geological information. If it is known a priori 
that the geological structure can be reasonably characterized by a 
smooth model, then the smooth inversion should be used. On the 
contrary, if it is known a priori that the goal of interpretation is to 
find blocky structures, like an ore body, conductive fault, or salt 

ii 
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dome structure, then the new method developed in this paper will 
be more appro priate. In genera l cases, when there is not enough a 
priori information about the study area, the best solution would be 
to try both techniques and to make comparative analysis of two 
possible geoelectrical cross sections, using both smooth and the 
focus ing inversions. Each of these models will prob ably fit the data 
with the same accuracy. The addi tional geo logical analysis and the 
comparison w ith other geo physica l data on ly could make it 
possible to select one or another solut ion. Our code, based on 
focusing inversion, is designed in such a way that it can generate 
the minimum norm and the focused solutions simultaneously. Thi s 
resul t is reached by a simple se lectio n o f the correspond ing 
we ighting matrix Wedefi ned by (24). In the case of the minimum 
norm inversion this matrix is selected to be equa l to identity matrix. 
In the case of the focusing invers ion it is a varia ble matrix, 
determined by (24). The output of the code consists of two 
result ing models, fitting the data with the same accuracy but 
generating two different images. Thu s the new techniqu e presented 
in this paper brings more flexibility in the interpretation of MT 
data, leaving the final cho ice of the most suitable model to the user. 

[31] We have applie d this technique for crusta l imag ing by 
invert ing the magnetotelluri c data acquired in the Carrizo Pla in 
area of Californi a. Our inversion result confirms the principal 
geoelectrical structures recovered in previous public ation s [Mackie 
et al., 1997; Unsworth et al., 1999] but also produces more focu sed 
and consistent images of conductive and resistive formations for 
both TE and TM mode data at depth below 2 km. We suggest that 
both images, obtained by traditional smooth inversion and by the 
new method, are useful for further interpre tation and analysis 
because they provide complimentary information about the deep 
geoelectr ical struc tures . Finally, application of the new focusing 
inversion to MT data collected for mining exploration by INCO 
Explora tion clearly demonstrates the adva ntage of the new tech ni­
que in this situation. 

Appendix A: Reweighted Conjugate Gradient 
(RCG) Method in the Space of Weighted 
Parameters 

[32] The problem ofparam etric functional minimization (22) can 
be reform ulated in the space of weighted parameters, introd uced as 

iiiW = Wm em , (A I) 

where 

W.ne= we Wm . (A2) 

We can consider the forward operator which relates the new 
weighted parameters ,nw to the data 

d= AW(in"'). (A3) 

In order to keep the same data we should assume 

WA = AW;;).	 (A4) 

[33] Us ing these notatio ns, we can rewrit e the parametric func­
tiona l (22) as 

P"(mw,d) =	 [A ( W,~el mw) - d) *(A(W;;e1 mw) - d] 

+Ci(m -w- m )*(-mw- m-w )• (AS) -r-w 
apr	 apr 

In other words, we keep the same misfit, as in (22 ), because 

<pw(m) = [A ( W~) mw) - d] *[A ( W,~el mw) - d] 

= [A(m) - d]* [A(m)- d],	 (A6) 

and the same stabilizer, as in (22), equa l to the least squares norm 
of difference (m - mapr) with the weights 

Sw = (inw 
- ;n;pr )*(m W 

- m;pr) 

= (m- mapr )*W,~ e (m - mapr ) '	 (A7) 

[34] To construct the iterative process in the space of weig hted 
parameters, one can apply the conventional conjugate grad ient 
method [Tarantola, 1987] to find the minimum of the parametric 
functional (AS). However, in this case we should take into acco unt 
the nonl inea r character of the transformati on s (A I ) and (A2) . 
Portniagu ine and Zhdanov [1999, 1999 b] and Zhdano v and 
Hursan [2000 ] have developed a more efficient approach to the 
solution of this probl em, based on so-called reweighted regularized 
conjugate gradient (RCG) method . In the fram ewo rk of th is 
app roach the variable we ighting matrix We is precomputed on 
each iteration, We= Wen = we(mn) based on the va lues m.. 
obtained on the previou s iteration. As a result, the weighting 
matrix Wme is updated on each iteration as well, 

Wme = Well w'n l (A8) 

and it is treated as a fixed matrix on each iterat ion. The refore the 
transformations (A I) and (A2) on each iteration can be treated as 
linear operations, which simplifies significantly all calculations. 

[35] This approach uses the idea of adaptive regularization 
[Zhdallov, 1993], which invo lves up dating the regularization 
parameter Ci on each iterat ion. The on ly difference is that we 
update now the regu larization parameter and the weighting matrix 
simultaneous ly. Note that witho ut ada ptive regulariza tion one 
shou ld solve the minimization prob lem for param etric functiona l 
(AS) many times for different values of the regularization param­
eter o, which is an extremely time consuming and impractical 
approach. The adaptive regularization substitutes this compl icated 
procedure by one grad ient-type iterative process with the regula­
rization parameter Ci changing from iteration to iterat ion. We use 
similar approach in our reweighted algorithm. 

[36] The reweighted RCG method is based on the successive 
line search in the conjuga te gradient directi on !(mn): 

-t-w <-w	 -r-w -r-w -(-w) mll +1 = mil + 811l = IIlIl - kill IIl n . 

The idea of the line search can be described as follow s. We present 
P"'[m;:' - k!(m;:' )] as a function of one variable k and, evaluating it 
three times along direction I(mn ) , approx imately fit it by a parabola 
and find its minimum and the value of kn , correspondin g to this 
minimum . 

[37] The conjugate gradient directions !(m;;') are selected with 
the following steps: In the first step we use the gradient direction 

I(m il ) = I(mil ) = W~) F* [A(W,~el mil) - d]+ Ci(mil - m;;'r) . 
(A9) 

In the next step, the conjuga te gradient direction is the linear 
combination of the gradient in this step and the direct ion I(mo)in the 



EPM 2 - 10 MEHANEE AND ZHDANOV: MT rNVERSION OF BLOCKY STRUCTURES 

previous step: 

7(mn = 7(m7) + ~ 1 7(m~) . 

In the nth step, 

7(m:+1) = 7(m:+1) + ~1l+ J (m:), 

where 

17(m:) = v:F*[.4 (W';;-em:) - d] + a(m: - m;p} (AIO) 

[38] The coefficients ~ 'L+ l are defined from the condition that 
the directions [(mn+l) and [(mil) are conjugate: 

2 

117(m:+1) 11
(A l l)~ Il+ l = 2 . 

1 1 7(m~ ) II 

In the last step we recompute the real parameters of the model from 
the weighted parameters at the nth iteration: 

mfl+l = W';e1m:+l = W:;;-elw~/ m:+l' (AI2) 

[39] The regularization parameter a describes the trade-off 
between the best fitting and most reasonable stabilization. In a 
case when a is selected to be too small, the minimization of the 
parametric functional P"(m) is equivalent to the minimization of 
the misfit functional <Pw(m); therefore we have no regularization, 
which can result in an unstable incorrect solution. When a is too 
large, the minimization of the parametric functional F(m) is 
equivalent to the minimization of the stabilizing functional sw(m), 
which will force the solution to be closer to the a priori model. 
Ultimately, we would expect the final model to be exactly like the a 
priori model, while the observed data are totally ignored in the 
inversion. Thus the critical question in the regularized solution of 
the inverse problem is the selection of the optimal regularization 
parameter a. The basic principles used for determining the 
regularization parameter a are discussed by Tikhonov and Arsenin 
[1977] and Zhdan ov [1993]. It can be selected from the progression 
of numbers 

ak =aOq\ k=0,1 ,2, . . . , n; q >O. (Al3) 

For any number ak we can find an element mo.., minimizing 
P'" (m), and calculate the misfit 11.4(mo.. - df The optimal value 
of the parameter a is the number akO, for which we have 

2 
11.4(m"kO )- dl1= 52, (A I4) 

where 5 is the level of noise in the observed data. The equality 
(AI4) is called the misfit condition. 

[40] In our code, as we have mentioned above, we use the 
adaptive RCG method [Zhdanov, 1993]. In the framework of this 
method we begin an iteration from a value of ao, which can be 
obtained as a ratio of the misfit functional and stabilizer for an 
initial model, then reduce all according to (Al3) on each subse­
quent iteration and continuously iterate until the misfit condition 
(A14) is reached. 

[41] Note that on each iteration of the reweighted RCG method 
we actually minimize the parametric functional with the different 
stabilizers because the regularization parameter and the weighting 

matrix Wen are updated on each iteration. In order to insure the 
convergence of the misfit functional to the minimum we check the 
misfit value on each iteration . We decrease the regularization 
parameter a if the misfit does not decrease fast enough. This 
procedure in combination with the parabolic line search in the 
conjugate gradient direction on every iteration insures the con­
vergence of the method. 
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