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3-D magnetic inversion with data compression 
and image focusing 

Oleg Portniaguine* and Michael S, Zhdanov* 

ABsmACT 

We deve lop a met hod of 3-D magne tic anomaly inver­
sion based on traditional Tikhonov regulariza tion the­
ory. We use a minimu m support stabi lizing functional to 
gene rate a sharp , focused inverse image. An iterative in­
version process is const ructed in the space of weighted 
model parameters that accelerates the converge nce and 
robustness of the met hod. The weighting functions are 
selecte d based on sensitivity analysis, To spee d up the 
computations and to decrease the size of memory re­
quired , we use a compression technique based on cubic 
interpolation , 

Our method is designed for inversion of total mag­
netic anomalies, assuming the anomalous field is caused 
by induced magnetization only, The method is app lied to 
synthetic data for typica l mode ls of magnetic anomalies 
and is tested on real airborne data provided by Exxon ­
Mobi l Upstream Rese arch Company. 

INmODUCTI ON 

Inter pretation of 3-D magnetic data over inhomogeneous 
geological structures is a challenging problem in exploration 
geophysics. Despite significant progress made over the last 
decade, inversion of magnetic survey data still has many prac­
tical difficulties. The majo r difficulty is related to theoretical 
nonuniqueness of the magnetic inverse problem, It is well 
known that there exist magnetic mass distributions generating 
zero external fields. These nonradiating masses cause eq uiva­
lence in inverse problem solution , which can be overcome only 
by introducing a pr iori information abo ut the geo logical struc­
tures. Several methods have been deve loped for dealing with 
the non unique ness prob lem. Most of these methods are based 
on the parametric inversion, where the geom etric parameters 
of the model are fixed and the parameters inverted for are the 
magnetic susceptibilities on the grid within the given geometry 
(e.g., Bhattacharyya, 1980; Rao and Babu , 1991). 

Another approach to the solutio n of this problem was taken 
by Li and Oldenburg (1996). They app lied the powe rful too l 
of a general inversion method to solve the underdetermined 
probl em, with the number of cells significantly larger than the 
amount of dat a available. Li and Oldenburg used a priori in­
formation to select the desi red geological model from a class 
of possible solutions. This goal was reached by constructing a 
model objectiv e funct ion with appropriate weight ing functions. 
The parameters of the weighting functions were selected em­
pirically, based on numerical modeling and qualitative analysis 
of typical magnetic anomalies, Note that the objective func­
tion introduced in Li and Oldenburg (1996) has the flexibility 
to construct many different models that generate practi cally 
the same data. 

We develop an inversion method based on traditional 
Tikhonov regul arization theory. The objective function (the 
Tikhonov parametric functional) consists of two terms : a mis­
fit functional and a stabili zing functio nal. The misfit functio nal 
is responsible for fitting the observed data with synth etic data 
predict ed for the given model. The stabili zing functional in­
corporates information about the basic properties of the type 
of mode ls used in the inversion. We suggest using the mini­
mum support stabilizi ng functional , similar to the one intro­
duced by Last and Kubic (1983), for compact 2-D inversion of 
gravity data.This functional helps generate a sharp, focused in­
verse image similar to the 3-D gravity inversion cons idered in 
Port niaguine and Zhdanov (1999a) , The main difference be­
tween our approach and the one discussed by Last and Kubic 
(1983) is in constructing an iterative inversion process in the 
space of the weighted model parameters. The weightin g func­
tions are selected based on sensitivity analy sis. The y provide 
equal sensitivity of the observed data to the cells located at 
different depths and at different horizontal positions, Th us, 
our weighting functions automatically introduce appropriate 
corrections for the vert ical and horizontal distribution of the 
anomalous susceptibility. This is one of the main differences 
between our approach and the one developed by Li and 
Oldenburg (1996). 

Another difficulty in magnet ic inverse problems is related 
to the enormous areal coverage of modern magnetic surveys, 
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especially in airborne magneti c exploration. Proc essing a large 
amount of data collected in an airborne survey requires access 
to a huge data file stored on a hard dr ive, which slows the in­
versio n process. To spee d the computations and to decrease 
the amount of memory required , we use the compression tech­
nique we outlined ear lier in Portn iaguine and Zhdanov (1999b) 
and Portni aguine (1999). We now consider a meth od with a 
higher compression factor , based on using cubic polynomials 
in the compression algorithm. 

Our inversion meth od is designed to invert any component 
of the anomalous magnetic field, includ ing the tot al magnetic 
anomaly, under the assumption that the anomalous field is 
caused by induced magnetization only. 

The code is applied to synthetic data for typical models of 
magnet ic anomalies. It is also tested on real airborne magnetic 
data, prov ided by Exxo nMobil Upstrea m Research Company. 

FORWARD MOD ELI NG OF MAGNETIC ANOMALIES 

We divide the lower half-space into small rectangular cells, 
each filled by magnetic masses with inten sity of magnetization 
I(r ), which is given as a product of the magnet ic suscep tibility 
x(r), the stre ngth of the indu cing geomagne tic field H O, and its 
dir ection , given by a vector I of unit length . 

We denote the coordinates of the cell center as 
r, = (x" y" z, ), where k = 1, . . . , Nm , and the cell sides as dx , 
dy , dz; Also, we have a discrete number of observa tion points 
r;, = (x~ , y;" 0), where n =1, . . . , Ns . The field at point n from a 
small cell k with unit susceptibility (the magnetic field kerne l 
in,) is eq ual to 

o[ 3(I . r)2 JdXdYdZink = H Iifjj"2 - 1 ~' (1) 

where r = r;, - r, is the vector between the observation point 
and the cell cent er. The magnet ized small cubic cell is ap prox­
imated by a dipole located at its center. 

The discrete forward modeling operator for total field mag­
netic anomalies produced by the arb itrary distribution of sus­
cep tibility can be expresse d in matrix notation as 

d=Fm. (2) 

Here, m is a vector of model parameters (eac h component of 
that vector is the magnetic susceptibility Xof the corresponding 
cell) of length N« , d is a vector of the observed data of length 
N« . and F is a rectangular matr ix of size Ns X Nm , formed by 
the corres ponding magnet ic field kernels [equ ation (1)]. 

COMPRESSION IN SOLVING INVERSE PROBLEMS 

Express ion (2) becomes a matri x eq uation if the data d are 
given and m is unknown. The matri x F of eq uation (2) is a 
full matr ix. In the 3-D case, the size of F is large. To store 
it efficiently, we represen t it as a pro duct of sparse matr ices. 
This also speeds the algorithm as a result of the use of sparse 
arithmetic. 

In the magnetic inverse problem, the data dimension N« is 
commonly smaller than the mode l dimension N«.This suggests 
applying compression to the model side of F. That produ ces 
incomp lete factorization of F: 

- - - T
F ~ FmcWmr, (3) 

where T denotes matrix trans position, Fme is a compressed ma­
trix of the forward opera tor, 

Fmc = threshold (FW~ c' E), (4) 

and Wme and Wmr are the model compression and restoration 
mat rices, respectively, with dimensions of Nm x Nm • Parameter 
E is a threshold level (in percent ) that determin es the accura cy 
of restoration. In actual applications, we set E eq ual to the noise 
level in the da ta. 

Substituting equation (3) into equation (2), we obt ain 

- - TFmcWmrlli = d. (5) 

Formu la (5) provides the compressed form of the inverse prob­
lem equation. 

The greater the amount of inform ation under compression, 
the higher the compressio n factor, which is determined as a ra­
tio of the tot al numb er of elements of the matrix to the numb er 
of non zero element s. Model side compression not only allows 
the use of a fine model grid in the lateral direction (witho ut 
runn ing out of memory to sto re a huge full matrix), but it also 
makes it possible to use regular small cells at every depth in 
the model. This significantly simplifies optimal mesh genera­
tion and also streamlines handling and represent ing the results. 
The basic principles of the compressio n technique are outlined 
in Appendices A and B. 

REGULARIZED SOLUTION OF THE MAGNETIC INVERS E 
PROBLEM IN THE COMPRESSED FORM 

In this section we apply the conjuga te gradient met hod for 
solving a 3-D magnetic inverse problem. We first describe 
the conven tional conj ugate gradient meth od . Remarkably, this 
meth od is very versatile. Ap plied to an overde termined linear 
problem, the conjugate gradient method produ ces the least­
squares solution. A pplied to an underdetermin ed linear prob ­
lem , the meth od converges to the minimum norm solution. We 
also dem onstrate that the linear problem with Tikhonov reg­
ularization can be reformu lated easily as a conjugate gradient 
for the over de termined pro blem. In this approac h, the reg­
ularization par ameter must be chosen ite ratively. Finally, we 
consider the basic pr inciples of focusing inversion and intro­
duce a rewe ighted op timizatio n algori thm for a stab le focusing 
solution of the magnetic inverse problem. 

Conjugate gradient method for linear inverse problem solution 

The solution of compressed inverse pro blem (5) is found 
iteratively according to the following form ulas (Fletcher, 1981): 

Compressed version Uncompressed version 

_ - (-T ) -TI; - W mr Fmcr;- 1 (a) I Ij = F r;_1 (h) 
s, = ITI; (b) 

h, = I; + h;- 1 /~ 1 (e) 
- ( -T)

I 

I - , (6) f; = Fmc Wmrh; (d ) f; = Fh; (i) 
fTr; 

k; = fTf; (e) 

m, = mj_1 - k;hj (j) 

t , = rj- 1 - kjfj (g) 
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where i is the iterat ion nu mber, r is the resid ual vector, I is 
the gradient vector, s is its len gth, h is the conjugate direct ion 
vect or in the space of mod els, f is its pro jection in the space of 
dat a, and k is the ste p len gth , a scalar. The starting values (for 
i = 0) are 

j
mo =0 (a) 

ro = Fmo - d = - d (b) . (7) 

So = 1 (c) 

No te that in equ at ion (6) the mat rix-to-vect or mult iplica­
tions in items (a) and (d) take the most computer time. An 
uncompressed version of the algorithm is produced by sub­
stitut ing ite ms (h) and (i) for (a) and (d), respectively. Two 
sparse multiplications in (a) and (d) are much faster than one 
mul tiplicat ion by a full matr ix in (i) and (h) . That is why the 
compression method spee ds up the algorithm. 

If the number of para me ter s in vector m, which we den ote 
as N"" is no t equal to the number of data points in vector d (de­
not ed as Ns ). then F is rectangular. Int erestin gly, the conjuga te 
gradient meth od can be applied even in this case. 

For an und erdet ermined pr ob lem (whe re N", > Nd ) , the co n­
jugate gradient iterat ions (6) co nverge to the minim um norm 
solution m ", in : 

m min = FT(FFT)-Id. (8) 

Expression (8) is also known as the Riesz representation for­
mula (Parke r, 1994). 

Regular ized conjugate gra die nt method 

The origina l mag netic inverse prob lem and its reformulation 
in the compressed form [eq uation (5)] are ill posed because of 
the nonu niqu eness and instability of the soluti on. The co n­
ven tional way of solving ill-pose d inverse pr oblems, accord­
ing to the regular izati on theo ry (Tik ho nov and Arsenin, 1977; 
Zhdanov, 2002), is based on the minimization of the Tik ho nov 
parametric functio na l, P"(m ): 

rem) = IIFm- dll2 +0'1ImIl 2• (9) 

where II Fm - d ll2 is a misfit functional between theoret ical val­
ues Fm and the obse rved data d, II ml1 2 is a minimum norm 
stabilizing functional, and ex is a regularizatio n param eter. 

The probl em of parametric funct ional minimizati on , 

P" (m) = min , (10) 

can be reformulat ed to apply fo rmula (6) . Co nside r the linear 
inverse problem : 

(11)[;i]m = [:l 
whe re i is the unit mat rix. Two matrices in sq uare brackets 
denote a single matrix created by appe nding the two: 

(12)Al = dl =[;i], [:l 

For exa mple, vecto r d[ is crea ted from vector d by app end ing 
a zero vec tor 0 to its tail. Mat rix Al is crea ted by append ing a 
diagon al mat rix (with .,fa on the main diagonal) to matrix F. 

Equ ati on (11) is the result of adding extra eq uations to the 
original eq uation (2). The num ber of exis ting eq uations in the 
origina l for mula is Nd • The number of additional equ ations is 
eq ual to the number of free parameters Nm , so the system of lin­
ear eq uations (11) always conta ins more eq ua tions (N m + Nd ) 

than unknowns (Nm ) , i.e., it is ove rde termined . For an overde­
termined syste m, the conjugate gradient meth od converges to 
the least-squ ares solution. Th is is eq uivale nt to the minimiza­
tion of the par amet ric functiona l expressed in combined matrix 
notat ions: 

, 2 
IIA lm - d lil = min . (13) 

Reformu lating equation (9) as equation (13) and applying 
formula (6) to the minimizat ion of formula (13), we arr ive 
at the conventional regularized co njugate gradient method 
(Z hdanov, 2002) . 

To select an optimal regularization par ameter ex, we use the 
Tikhonov meth od . First , ex is set to balance the contribution of 
a misfit and a sta bilizer afte r the first iterat ion of a conjugate 
gra dient met hod : 

' T II r l ll ml =klF d , r i = - d - klFml , (14)
0' 1 = [ mj ]. ' 

The subseq uent ite rat ive values are det erm ined by decreasing 
ex to one-ha lf of its previ ous value (Tik ho nov and Ar sen in, 
1977): 

a, 
a i+1 = 2 ' 

The process stops when the value of the misfit functiona l de­
creases below the noise level in the data t/>: 

[r.] < cP · 

Met hod of reweighted optimization 

In our pre vious pa per (Portniaguine an d Zhdanov, 1999a) we 
int roduced a minim um suppo rt stab ilizing functional sMS (m) 
to gene ra te a sharp, focu sed inver se gravi ty probl em solutio n, 
similar to the one developed by Last and Kubi k (1983): 

Nm m2 

sMS(m) = L ~, (15) 
k= l In k + fJ 

where {3 > 0 is a small positive number. 
Substituting th e minimum norm stab ilizing functio nal in for­

mula (9) by formul a (15) , we obta in 

Nm 2 

P" (m) = II Fm - dll2 + 0' L ~ = min , (16) 
k=l In k + fJ 

where {3 is a sma ll nu mber need ed to avoid the singularity whe n 
m k = O. Thus, the focusing inversion is red uced to the solutio n 
of the minimiz at ion pro blem (16). The problem is solved using 
reweigh ted optimizatio n (O 'Leary, 1990). 

To acco unt for the different sensi tivities of the dat a to the 
model para meters, we have to use an additional weighting ma­
tr ix w, for the model parameters. Meh anee e t al. (1998) and 
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Portni aguine and Zhd anov (1999a) have shown that the matrix 
w, with this property can be determined as the square roo t of 
the integrated sensitivity mat rix: 

w, = vIS, (17) 

where Sis a diagonal matrix formed by the inte grated sensitiv­
ities of d to the par ameter nu , determ ined as the ratio 

118d ll ~ (18)Sk = - = l)Fik) . 
8mk i 

In formul a (18), Fi k are the elements of the forward modeling 
matri x F. We denote the diagonal elements of the matrix Wm 

by ( WI , Wz , ... , Wk, .•. , W N.,l . 

Let us consider the minimization probl em with the minimum 
suppo rt stabilizer, weighted with sensitivity weights Wk : 

Nm w2m2 

P"(m) = [Fm - d l12+ ex L ---:f--l-z = min . (19) 
k= l mk + f3 

We introduce an iter ative weight ing mat rix as follows: 

W2(m) = diag[m2+ f32I]W;;;2, (20) 

where diag[mZ+ ,821] is a diagonal matri x form ed by the ele­
ment s m~ + ,82. 

Now we can reformulate problem (19) using matrix not ation : 

1(m)m 1(m)mfP"(m) = IIFW(m)W- - df + exI IW­

= min . (2]) 

We tran sform problem (21) into a space of weighted model 
parameters m., by repl acing the variables: 

m = W(m)mw , Fw = FW(m). (22) 

Substituting equation (22) in expression (21), we find 

P"(mw ) = II Fwmw- dl12+ ex llmw11 2= min . (23) 

Problem (23) seems to be compl etely similar to the classi­
cal minimum nor m opt imization probl em (9) with only one 
important difference: the new for ward modeling operator, 
F = FW(m) , depends on mw, so it changes in the iterationw 

process. 
We can solve probl em (23) using the reweighting algorithm, 

where a minimization probl em for m., is solved in each step 
with fixed F using the regularized conju gate gradient algo­w 
rithm , described above. Then , m and Fw are updated using 
equation (22) and W(m) is updated using equation (20), where 
m is the inversion result in the previous step . This algorithm 
generates a set of equivalent solutions of the inverse prob­
lem which fit the data with the same accuracy. The different 
models within th is set have different degrees of focusing. The 
model afte r the first iteration is actually a maximum smooth­
ness solution. The process continues until the required degr ee 
of focusing is reached. 

To conclude this section, we should note that the reweighted 
optimization technique has been consid ered in several ear­
lier publ ications (Last and Kubic, 1983; Wolke and Schwetlick , 
1988; O 'Le ary, 1990; Farquharson and Oldenburg, 1998). The 
most significant difficulty in the numerical implement ation of 
this technique is related to selecting the parameter ,8, becau se 

for very small values of ,8 the problem has a singularity where 
the individual parameters m , are close to zero. Our approach 
is different in the way the weighting is intr oduced in the opti­
mization process. The most significant practical advantage of 
our approach is that the fina l set of equations, (22) and (23), 
involves only W(m) and not the inverse, W- 1(m). In this case, 
accordin g to equation (20), we can assume that ,8= 0 without 
generating any singularit y: 

W2(m) = diag[m2]W;;;2. (24) 

This idea is similar to the one considered by Go rodnitsky and 
Rao (1997). The y have also found that the reweightin g equ a­
tion (22) focuses the image. 

Also note that our algorithm includes constraints on ma­
ter ial properties, implement ed via a pen alization algorithm 
(Portniaguine and Zhdanov, 1999a). 

Assume that the geological model can be described as a com­
posite of two materials with kno wn physical properties (for 
example, magnetic susceptibility) . One material corresponds 
to the homogeneous background; the oth er char acterizes the 
anomalous body. In this situat ion, the values of the material 
property in the inversion image can be equal to the background 
value or to the anomalous value. However, the geo metric dis­
tribution of these values is unknown. Numerical tests show that 
focusing tend s to produce the smallest possible anomalous do ­
main. At the same time, the material prop erty values m out side 
of this dom ain tend to be equ al to the background values ms. 
We can impose the upper bound for the positi ve anomalous 
par ameter values m; and, durin g the iterative pro cess, cut off 
all values above th is bound. This algorithm can be described as 

m - mb = rna, if m - mi; > ma, 
(25) 

m -mb = 0, if m - mb < 0. 

Thus, according to formula (25), the mater ial propert y values 
m are always distributed within the interval 

mi. < m < mb + ma. 

A similar rule is applied in the case of negative anomalous 
parameter values. 

In summary, the whole algorithm of 3-D magnetic focusing 
inversion with compression consists of the following steps: 

1) precomputing the comp ressed matri x Fmc using formula 
(3), 

2) calculating the sensitivity weights according to equation 
(17), and 

3) using an itera tive focusing inversion, which consist of 
(a) inversion of data via the conjugate gradient method 
according to formul as (6), (b) changing weights accord­
ing to equation (24), and (c) performing penalization of 
material prop ert y distribution, as described above. 

MODEL SUJDY 

We tested our method on typical models of magnet ic anoma­
lies. We considered three models similar to those discussed by 
Li and Old enburg (1996): (1) a cube with anomalous mag­
netic susceptibility (Figure 1a), (2) a 3-D magneti c susceptibil­
ity model of a dipp ing slab (Figure 1b) , and (3) a 3-D magnetic 
susceptibility model of a faulted slab (Figure 1c). 
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For all three models we used a coor dinate system where the 
x-axis is directed toward geographic north , the y-axis points 
to geographic west, and the z-axis is directed downward. The 
data at the surface are measured on a 20 x 20 grid in the x- and 
v-directions, with sampling intervals of 50 m in both directions. 

TIle model grid used in the inversion consists of cubic cells 
of 50 x 50 x 50 m'. In the lateral direction, it covers the area 
of the data grid and extend s down to 500 m in the vertical 
direction . The number of cells in the model grid is 20 x 20 x 10 
(4000 cells). 

Li and Olde nburg (1996) have not iced the instability of 3-D 
magnet ic inversion to the uppermost layer of the cells. They 
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propo sed to cure that by invertin g the data obtained by upward 
analytical continuation to a height equal to the length of the 
side of the cubic cell. We followed the same stra tegy. 

The dat a for models 1,2, and 3 are displayed in Figures I d-f, 
respectively. These pictures represe nt the tota l field anomaly 
at the observation surface. However , for inversion we used 
the data at a height of 50 m (equal to the length of the cell 
side) . The data were contaminated by Gaussian noise, whose 
standard deviation was equal to 2% of the dat a magnitude 
plus 1 nT. The strength of the inducing field for each model 
was 50000 nT. The polariza tion of the inducing field differed 
from one model to another. 
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FIG. 1. (a) Model of a cube with anomalous magnetic susceptibility. (b) Model of a dipping slab. The slab strike direction points to 
the north , continuing from X l = 250 to X2 = 750 m. (c) Model of a faulted dippin g slab. The anomalous susceptibil ity is uniform within 
each slab and is equal to 0.06 SI units. (d- f) Dat a for cube, dippin g slab, and faulted dipp ing slab models, respectively. Gaussian 
noise with a standard deviat ion of 2% of data magnitude plus 1 nT was added to the data. 
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We applied smooth inversion and focused inversion for eac h 
model. The sensitivity matr ix was store d in comp ressed form, 
using the compress ion algor ithm based on the cubic interpola­
tion pyramid. The comp ression factor for all thr ee models was 
22% . 

The first model is a cube with a side of 200 m. The top of the 
cube is buried at a depth of 150 m. Figure l a shows the slice of 
the cube through the x = 500 m profile. The anom alous suscep­
tibility is uniform within the cube and is equal to 0.06 51 units. 
The inducing field has a strength of 500 00 nTand vertical polar­
ization (inclination 1= 90° and declination D = 0°). Figure l d 
shows a map of the synth et ic observed data for this model. 
Figure 2a present s the resu lt of the smoo th inversion, and 
Figure 2d demonstrate s the res ult of the focusing inversion . 

X 10-3 

The smoo th inversion genera tes a diffused image of a cube, 
while the focusing inversion produces a sharp, clear image of 
the magnetic target. For this model the initial value of regular­
ization parameter ex was 0.3, and the final value of ex was 0.0094. 

The second model is a 3-D magnetic susceptibility model of 
a dippin g slab. Figure I b shows the slice of the slab thr ough the 
x = 500 m pro file. The slab strik e direction point s to the north, 
continuing from Xl = 250 to X2 = 750 m. The anomalous suscep­
tibility is uniform within the slab and is equal to 0.06 51 units. 
The induc ing field has the strength of 50000 nT, I = 75°, and 
D = 25°. Figure Ie shows the synthetic observed data for th is 
model. Figures 2b and 2e present the results of the smoo th and 
focusing inversions, respectively. The smoo th image provides 
some information abo ut the location and inclination of the slab, 
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FIG. 2. Results of smoo th inver sion for (a) cube, (b) dipp ing slab, and (c) faulted dipping slab. Results of focusing inversion for 
(d) cube, (e) dipping slab, and (f) faulted dipping slab. 
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but the image is diffused and unfocu sed, while the focusing in­
versio n reco nstruc ts very well the original model of the slab. 

The third model is a slab with a normal fault. Figure 1cshows 
the slice of the slab throug h the x = 500 m profile. The fault ex­
ists at y = 500 m. The inducing field has a stre ngth of 50 000 nT, 
I = 45°, and D =45°. Figure 1f shows the total field data for this 
model. Figures 2c and 2f present the results of the smoot h and 
focusing inversions, respectively. The fault is vaguely visible in 
the smoo th image, while it is clearly recognized in the sharp 
image. 

The performance of the compressio n meth od was tested us­
ing modell , shown in Figure 1a. On a computer with 200 MHz 
processor speed and 256 Mbytes of memory, we solved five 
prob lems with mode ls of differe nt sizes: N" N" N, = 20 x 20 x 
10,25 x 25 x 12, 30 x 30 x 15,35 x 35 x 17, and 40 x 40 x 20. In 
eac h case, data dimensions were changed proportiona lly to the 
N, and N, model dimensions. Results of testing requ ireme nts 
are shown in Figure 3. Figure 3a shows timing, while Figure 3b 
shows memory consumption. The Dashed and solid lines show 
the performance of the uncompressed and compressed ver­
sions, respectively. For the uncompr essed version , we used 
matrices with full stora ge memory organization to preserve 
efficiency.The size of the prob lem is refe rred to the number of 
points in x-direction, assuming that other dimensions change 
proportionally for the five considered cases. 
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FIG. 3. (a) Increased speed and (b) memory savings because 
of compression. Compressed version perfo rmance is shown by 
the solid line. Uncompressed versio n performance is shown by 
the dashed line. Calculations are performed for test model l , 
shown in Figure 1a. 

For cases where the dimensions are small, the uncompressed 
prob lem has the same speed as the compressed one. Tha t hap­
pens because the compressed prob lem has over head to fill 
out the compressed matri x. As the dimension increa ses, the 
compressed version performs much better. For the last case, 
where N, = 40, the uncompressed version does not fit into 
memory (256 Mbytes); therefore, its execution time increases 
dra matically. 

INVERSION OF REAL DATA 

We applied the deve loped code to interpret airborne mag­
net ic data collected for ExxonMobi l Upstream Research Com­
pany over an area in north ern Canada. Figure 4a presents the 
map of the obse rved total magnetic field.The flight line spacing 
was about 300 m, and the flight elevation was about 100 m. The 
measurements were taken approxi mately every 16 m along the 
lines. In our inversion study, we assumed that the direct ion of 
the inducing magnet ic field was close to vertical, since the ob­
serva tion area was in northern Canada. The basement (granite) 
is buried at a depth of about 450 m and is covered by sedime nts 
formed by till and sand layers. The goal of the interpretat ion 
was to locate the magnetization zones in the upper par ts of the 
section, which manifest themselves as the magnetic anomalies. 

In the first stage of interp retation, we divided the observed 
total magnetic field into regional and resid ual anoma lies. This 
pro blem can be solved using polynomial approximation of the 
regional anomalies. One can use the inversion program to sep­
arate the field as well, as described below. 

The lower half-space below the observation area was divided 
into 1 x 1 x 1 km' cells to a depth of 20 km. Appl ying our 3-D 
inversion code, we obtained the distribut ion of the magnetic 
susceptibility within these cells. We determined the regional 
magnetic anomaly by applying the forward modeling code to 
the cells located only at depths be tween 4 and 20 km. The 
residual field was obta ined by subtracting the regional part 
from the observed data. 

In the next stage of interpret ation , we divided the residual 
field into subreg ionaland local anomalies. We introduced a new 
mesh at depth s from 0 to 4 km, formed by cubic cells measuring 
400 x 400 x 400 rrr' . The distribut ion of the magne tic suscep­
tibility within this mesh was found by 3-D inversion. The sub­
regional field was computed as the effect of the cells at depths 
from 1.6-4 km. This field was subtrac ted from the residual field 
to calculate the corresponding local anomalies (Figure 4b) . 

In the last roun d of the inversion, we applied the 3-D in­
version code to the local anomalies only, using a mesh formed 
by cubic cells measuring 300 x 300 x 300 m' located at depths 
from 0 to 1.5 km. In this stage we used two types of inversion: 
(1) the conve ntional maximum smoothness inversion and (2) 
the focusing inversion. 

Figure 4c shows the result of the smooth inversion. It pres­
ents a horizont al slice of the anoma lous magnet ic susceptibility 
distr ibution at a depth of 800 m. The result of the focusing 
inversion is shown in Figure 4d. 

We can clearly see the lateral shape and exten t of the mag­
netized rock formations in these figures. However , the smoot h 
solution produces a diffused image of the magnetic targets, 
while the focused solution provides a much clearer and sharper 
image. 
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APPENDIX A 

COMPRESSIOl'i IN ONE DIMENSION 

To und erstand how to rep rese nt a full matrix as a pro duc t of 
sparse matrices, let us consider the co mpression of a full vector. 
The full matrix ca n be viewe d as a collection of its co lumns (o r 
rows), which are vectors. 

Before we go to the complicated 3-D case, let us consider a 
simple I -D vecto r d. As an illust rat ion , Figure A -l a, shows a 
smooth function , given as a vecto r of 17 value s. 

Let us ret ain the eve n values of d in vector de, which has 
zer oes in place of the odd values. Vector do ret ains the odd 
values of d and has zeroes in place of the eve n values: 

d = de+ do. (A-I) 

Vectors deand doare connected to d via diago na l matrices We 
and w; 

do = Wod, (A-2) 

de= Wed. (A-3) 

The main diagon al of Wehas ones for even indices and zeroes 
for odd indices. The diagonal of w, has ones for odd indices 
and zeroes for eve n indices. Based on that definition , one can 
easil y est ablish the following properties of Weand Wo: 

w, +We = i, w.w, = w, w.w, = We, 

w.w, = w.w, = 0, (A-4) 

whe re i is the identity matrix. 
Consi de r an interpolation matrix w,which predic ts values at 

eve n nodes from values at odd nodes only using cubic polyno­
mials. The mat rix w,contains coefficient s of cubic polynom ials. 
Simp le calculation s show that Wi satisfies the eq ua tion 

w, = WeWiWo' (A -S) 

O ne round of compr ession tran sformat ion consists of (1) 
predictin g even node values, (2) subtracting tru e even values 
fro m th ose predicted , and (3) re taining odd node values as is. 
The result of this tranformation is illustra ted in Figure A-l b. 
Th is transform ation can be expresse d in mat rix not at ion as 

del = Wido- de+ do, 

wher e del is the tra nsformed dat a. Tak ing into acco unt equa­
tions (A-2) , (A-3) , and (A-S), we obta in 

del = WeWiWod - Wed +Wod = del = w,a, 
where 

w, = w.w.w, - We+WOo (A-6) 

We call w, an elementa ry compress ion matrix. Note tha t w, 
is inverse to itse lf because of eq uations (A-4) and (A-S): 

w.w, = (WeWiWo- We+Wo)(WeWiWo- We+Wo) 

= WeWiWo-WeWjWo+We+Wo 

= We+ w, = i. (A-7) 

In the next rou nd of compression tran sformation , we use 
dat a that is twice as coa rse. Such successive transfor mations are 
called inter po lation pyram ids. O ne compression round is called 
an ele men tary compression level. The eleme nta ry compr ession 
matr ices for level n are denoted above as w.. For the first 
level , for examp le, it is W1; for the seco nd level it is W2; etc. 
Figures A-l c and A-l d show the results ofcompress ion through 
the second and third levels. 
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Combining N levels togeth er , we arrive at the full compres ­
sion transformation: 

de = WN, . . . , WzWld = Wed, (A-8) 

where Weis a compression matrix, 

We = WN, .. . , WZWI. (A-9) 

Figure A- l a sho ws the origina l vector d, a smoo th functio n 
of 17 values. The result of the com pressio n tran sform ation is 
shown in Figure A-ld. Note that cubic interpolation pred icts 
the intermedi ate values of the smooth function very well, and 
the compressed vector de cont ains the differences between such 
predictions and the actual values. Therefore, only a few values 
in de are significant, and the rest are close to zero. It is therefore 
possible to store de as sparse, using threshold transfor mation 

de = threshold(Wed, E). (A- lO) 

The inverse operation, restoration , is descri bed by the same 
matrices w, applied in the reverse [order from property 
(A-7)]: 

d = WI, .. .,WN- IWNde = W, de, (A-ll) 

where W, is a restoration matrix: 

W, = WI, . . . ,WN_IWN. (A-12) 

Figure A-l h shows vecto r de thresholded at 1% of its maxi­
mum, which contains only three nonzero values and therefore 
is sparse . Figures A-If and A-l g illustra te the restoration pro ­
cess. Figure A -le shows the resto red vecto r as a solid line; the 
original vector is shown by dots. 

APPENDlX B
 

FAClORIZATION OF MAlRlCES FOR 3·0 COM PRESS ION
 

When solving 3-0 magnet ic inverse prob lems, we have to 
handl e model parameters and data in three dimensions. In this 
section we discuss how the basic principles of 1-0 compression 
can be genera lized to the 3-0 case. 

Consider, for example, a two-level interpolation pyramid ap­
plied to a 3-D function depend ing on three Cartesian coordi­
nates (x, y, z).The compression matri xWeis the product of six 
elementary compression matrices: 

We= WZZWyZWxZWZIWyIWXI, (B-1) 

where the indicesx , y , z deno te the axisalo ng which a particular 
matrix is applied and the numerical indices 1, 2 de note the 
pyramid level. 

In the case of 1-0 linear comp ressio n, we interpolate a func­
tion using a two-poin t sche me. The first-level matrix Wx l has 
two nonzero off-diagonal elements. The matrix We turns into 
a 1-0 compression matrix in the x-direction if 

Wzt = WYI = Wzz = WyZ= I. 
In 1-0 finite-difference cubic interpolation, for example, the 

scheme is four poin t and Wx l has four off-diagonal elements. 
This decreases the spa rsity of We-

A 2-0 compressio n matrix over the x- and y-directions is 
obt ained if W,I= W'2= t.The compr ession matrix at the first 
pyramid level is equal to Wy1Wx1 . In 2-0 bilinear interpola­
tion , the scheme is four po int ; in 2-0 finite-difference cubic 
inte rpolati on , the scheme is 16 poi nt. 

For 3-0 interpolation, the compressio n mat rix at the first 
pyramid level is a produ ct of all three elementary matrices 
over the x-, yo, and z-directions: 

We = Wzt Wylw.. (B-2) 

The interp olat ion scheme is eight point for tri linear interpola­
tion and 64 point for tr icubic inter polation. 

The compression mat rices tend to be less and less spa rse 
with growt h of the dimension and in the complexity of the 
interpola ting function. This effect can be coun tered by stori ng 
We as a factorization of elementary compression matrices, as 
in equation (B-1), without computi ng their product. 

Furth er , we notice that the str ucture of the elementary com­
pression matrices is such that at higher pyramid levels only 
a few point s are reduced. The other points are passed without 
a change, being already redu ced on lower levels. For exa mple, a 
volume of 64 x 64 x 64 points has six pyramid levels, and there 
are three elementary matric es in the X- , yo, and z-directions at 
each level correspo ndingly. The refo re, Wewill be sto red as a 
produ ct of 18mat rices. For the last several levels, these matrices 
cont ain few off-diago nal elements (because the last red uction 
levels are coarse ). On the main diagon al, the elements mostly 
equall. We may therefore further red uce the amo unt of stor­
age by kee ping the ele mentary matr ices with the main diagonal 
subtracted: 

WI = Wxl- I, 
Wz = WYI - i, 

W3 = WZI - i, 
(B-3) 

W4 = Wxz - I, 
W5 = Wyz- I, 
W6= Wzz - I. 

Storing matrices WI,W2,etc., requ ires less sto rage than stor ing 
Wx l , Wyl , etc. 

Now the compression procedure of a vecto r acan be de­
scribed by the recursive formu la 

an+1 = Wnan+an, (B-4) 

where n cha nges fro m 1 to a numb er of elementary matrices in 
the facto rization. The resto rat ion is described by formula (B-4) 
applied in the reverse order: 

an= Wnan+ J +an+ l , (B-5) 

where n changes from the number of elementary matrices to l. 
The use of formulas (B-4) and (B-5) saves space and exec ution 
time beca use the vector unde r tra nsformation is not multiplied 
by t, which would have been the case if we had used matrices 
Wx 1, w.. etc., directly. 


