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[1] The integral equation method has been proven to be an efficient tool to model three­
dimensional electromagnetic problems . Owing to the full linear system to be solved, the 
method has been considered effective only in the case of models consisting of a strongly 
limited number of cells. However, recent advances in matrix storage and multiplication 
issues facilitate the modeling of horizontally large structures. Iterative methods are the 
most feasible techniques for obtaining accurate solutions for such problems. In this paper 
we demonstrate that the convergence of iterative methods can be improved significantly, if 
the original integral equation is replaced by an equation based on the modified Green's 
operator with the norm less or equal to one. That is why we call this technique the 
Contraction Integral Equation (CIE) method. We demonstrate that application of the 
modified Green's operator can be treated as a preconditioning of the original problem. We 
have performed a comparative study of the convergence of different iterative solvers 
applied to the original and contraction integral equations. The results show that the most 
effective solvers are the BIGGSTAB, QMRCGSTAB, and CGMRES algorithms, 
equipped with preconditioning based on the CIE method. INDEX TERMS: 0644 

Electromagnetics: Numerical methods; 0619 Electromagnetics: Electromagnetic theory; KEYWORDS: 

electromagnetic, modeling, integral equation, contraction 
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to solve the electromagnetic forward problem. In that 1. Introduction 
algorithm only a reasonably small submatrix of the 

[2] Many geoelectrical structures can be modeled by a original coefficient matrix is stored at a time . Portniaguine 
set of 3-D inhomogeneities embedded in a horizontally et al. [1999] applied the compression algorithm, which is 
layered medium. The integral equation (IE) method is based on a special linear transformation of the full 
well known as one of the most accurate techniques for coefficient matrix, such that most elements ofthe resultin g 
modeling these kind of problems [Weidelt, 1975; Hoh­ matrix become nearly zero. Thus , thresholding tho se 
mann , 1975; Wa nnamaker et al., 1984; Xiong, 1992]. entries to zero results in significant storage reductions. 
The IE method consists of several independent steps [5] Iterative schemes form an alternative to the direct 
making it ideal for easy parallelization providing high matrix inversion. For example, they have been playing a 
performanc e. significant role in forward electromagnetic modelin g 

[3] The major obsta cle in the full integral equation based on differential methods. There are several studies 
soluti on is handlin g the coefficient matrix with a full concerning the finite difference or finite element methods 
structure. For mod els consisting of more than a couple of dealing with convergence issues of iterative techniques 
thousand s of cells, the storage of the coefficient matrix is [Mackie et al., 1994; Alumbaugh and Newman, 1995; 
practically impo ssible, not to mention the horrendous Smith, 1996; Varentsov, 1999; Coggon, 1971; Jin, 1993 ; 
cost of its direct inversion. Rdtz, 1999; Druskin et al. , 1999]. However, only a few 

[4] There have been several attempts to overcome the iterative methods solving integral equations have been 
stora ge and computational cost probl em for large matrix tested [Samokhin, 1993 ; Habashy et al., 1993; Singer and 
inversion . Xiong [1992] applied a block iterative scheme Fainberg, 1995; Zhdanov and Fang, 1997; Avdeev et al., 

1997; Zhdanov et al., 2000]. 
Copyright 2002 by the American Geophysical Union. [6] In papers by Pankratov et al. [1995], Zhdanov and 
0048-6604/02/200IRS00251 3$11 .00 Fang [1997] , Zhdanov et al. [2000] , and Avdeev et al. 
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[2002], an alternative fonn of the electromagnetic inte­
gral equation was used based on the modified Green's 
operator with a norm less than one. Based on this 
contraction operator we consider the Contraction Integral 
Equation (CIE), which can be treated as a preconditioned 
conventional integral equation. The preconditioners are 
diagonal operators determined by the conductivity dis­
tribution within the geoelectrical model, facilitating inex­
pensive manipulation s. Existing codes based on the 
solution of the conventional integral equation can be 
easily improved by applying preconditioning matrices 
described in this paper. 

[7] In contrast to the series representations used by 
Pankratov et al. [1995], Zhdan ov and Fang [1997], 
Zhdan ov et at. [2000], and Avdeev et at. [2002], within 
the framework of CIE formulation any existing iterative 
solver can be easily applied. Iterative techniques tested 
for the conventional IE and CIE methods include a) the 
Successive Iteration (SI) method, b) the Conjugate Gra­
dient Normal Equation Residual (CGNR) method, c) the 
Biconjugate Gradient (BICG) method, d) the Biconju­
gate Gradient Stabilized (BICGSTAB) method, e) a 
qua si-minimal res idu al variant of the BiCGSTAB 
(QMRCGSTAB), and f) the Complex Generalized Mini­
mum Residual (CGMRES) algorithms. Also, we exam­
ine the effect of an initial model choice for the iterative 
solution by introducing a simple strategy for multiple 
frequency modeling. 

[8] The model used in the numerical experiments is a 
relatively complex 3-D structure consisting of several 
conductive structures of different sizes, conductivity 
contrasts and depths. This model has been originally 
selected within the framework of the COMMEMI project 
[Zhdanov et al. , 1997; Varentsov et al., 2000]. 

[9] As a result of this work we conclude that the 
convergence rate of the iterative methods applied to the 
CIE solution is much better than for the conventional IE 
method. The most effective solvers are the BIGGSTAB, 
QMRC GSTAB and CGMRES algorithms (equipped 
with preconditioning based on the CIE method). 

2. Integra l Equa tion Method in 
Electromag netic Modeling 

[10] To make the presentation clearer, we begin our 
paper with a short review of the conventional integral 
equation method. Consider a 3-D geoelectric model with 
background (normal) complex conductivity ch and local 
inhomogeneity D with an arbitrarily varying complex 
conductivity cr = crb + ~cr, which can be, in a general 
case, frequency dependent (Figure I). We assume that 
fL = fLo = 4'11' X 10- 7Him, where fLo is the free-space 
magnetic permeability. The model is excited by an 
electromagnetic field generated by an arbitrary source. 
This field is time harmonic as e-iwt 
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Figure 1. 3-D geoelectric model consisting of a local 
body with arbitrary conductivity situated in a horizon­
tally layered half-space. 

tivity includes the effect of disp lacement currents: 
cr = a - iwf. , where a and f. are the electrical conductiv­
ity and dielectric permittivity, respectively. The electro­
magnetic fields in this model can be presented as a sum 
of background (normal) and anomalous fields: 

E=Eb +EG
, H =Hb +HG

, ( 1) 

where the background field is a field generated by the 
given sources in the model with a background distribu­
tion of conductivity crb, and the anomalous field is 
produced by the anomalous conductivity distribution ~cr. 

[ll ] The anomalous field can be expre ssed as an 
integral over the excess currents in inhomogeneous 
domain D [Weidelt, 1975; Hohmann, 1975]: 

EG(rj) = GE [~cr ( r)E] = JJ.L GE(rj I r)~cr( r ) 

. [Eb(r) + EG(r )]dv, (2) 

W(rj) = GH[~cr( r)E l = JJ1GH (rj I r) ~cr ( r) 

. [Eb (r) + EG(r )]dv, (3) 

where GE and GIl are the electric and magnetic Green 's 
operators; GE(rj Jr) and GH(rjlr ) are the electric and 



HURSAN AND ZHDANOV: CONTRACTION INTEGRAL EQUATION METHOD 1 - 3 

magnetic Green's tensors defined for an unbounded 
stratified conductive medium with a background con­
ductivity ab. They can be found as the solution of the 
following differential system [Tang, 1979; Felsen and 
Marcuvitz, 1994]: 

\l X GH = abGE + 8, (4) 

and 

\l X GE = iWfLoGH , (5) 

where 8 is the tensor delta function 

~ [o(rj - r) o 
0=	 0 o(rj - r) oo ] . (6) 

o o o(rj - r) 

The \l x operator affects one column of the tensor at a 
time. It has been demonstrated that the solution of 
equation (4) and (5) for the horizontally layered back­
ground model is reduced to the Hankel transform of 
some elementary functions [Anderson, 1979; Xiong, 
1989; Zhdanov and Keller, 1994; Cheryauka and 
Zhdanov, 2001]. A detailed specification is given by 
Wannamaker et al. [1984]. 

[12] Expression (2) becomes a singular vector Fred ­
holm integral equation of the second kind with respect to 
the anomalous electric field E", if we consider the points 
rj within the domain D with anomalous conductivity: 

Ea(rj) = GE[Lia(r) (Eb(r) + Ea(r ))] , r , rj E D. (7) 

We can also represent the same integral equation with 
respect to the total field: 

E (rJ	 = Eb(rj) + GE[Lia(r )E (r )], r , rj E D. (8) 

Once the unknown electric field is found inside D, we 
use (2) and (3) to find the response of the anomaly at any 
receiver position rj. Since the most resource intensive 
step in the algorithm is the solution of (7) or (8), the main 
effort in this paper is devoted to the rapid solution of this 
problem. 

3. Contraction Integral Equation (CIE) 
Method 

[13] The integral equation (7) in a different operator 
form is: 

Ea = Aa(Ea),	 (9) 

where the nonlinear operator Aa is defined as 

Aa(Ea) = GE(LiaE b) + GE(LiaE a). (10) 

The simplest technique to attempt to solve the operator 
equation (9) is the method of successive iterations : 

Ea,k=Aa(Ea,k-I) , k =1 ,2 ,. .. ( 11) 

This method is also known as Born or Neumann series. 
It converges only if A" is a contraction operator, 
which means that IIAa (Ea,l _ Ea,2)11< IIEa,1 _ Ea,211, 
for arbitrary Ea 

, ) and Ea 
,2. Here II...11 is the L2 norm. 

[14] Also, the total field equation (8) can be repre­
sented in a similar form: 

E = At(E ),	 (12) 

where 

At(E ) = Eb + GE(LiaE). (13) 

Unfortunately, A" and At are contraction operators 
only for weak scatterers, where the size of the ano­
malous domain is much smaller than the wave-length 
inside the body, and the conductivity contrast Liaj ab 
is small [Habashy et al., 1993] . 

[1 5] Based on the iterative dissipative method devel­
oped by Singer and Fainberg [1995], Pankratov et al. 
[1995], and Zhdanov and Fang [1997] applied some 
linear transformations to Green 's operator GE such that 
its norm is smaller than 1 for any conductivity 
distribution and frequency, i.e., the method of successive 
iterations becomes always convergent. The specific form 
of this linear transformation is motivated by the energy 
inequality for the anomalous electromagnetic field, 
which expresses a fundamental physical fact, that the 
energy flow of the anomalous field outside the domain 
with the anomalous conductivity is always non-negative. 

[1 6] As a result , the original equations (7) or (8) can be 
converted into a contraction operator-based equation. 
Following the notations of Zhdanov and Fang [1997], 
the anomalous field equation (7) can be rewritten as 

aEa + bEb = Gm [b (Ea + Eb
) ] , (14) 

where 

2Reab + Lia b Lia ( )
a = =	 15 

2,jReab ' 2,jReab' 

and operator Gm(x) is defined as a linear transforma­
tion of the original electric Green's operator: 

Gm(x ) = V ReabGE(2 VReabx) + x. (16) 

Equation (14) can be rewritten with respect to the 
product of a and the total electric field E, using simple 
algebraic transformations: 

E+ (b - a)Eb = E- V ReabEb = Gm [ba-IE] , (17) 
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where iE is the scaled electric field 

E = aE ( 18) 

Equation (17) can also be presented in the form 

iE = e(iE) = Gm [ba- liE] + V ReGbEb. (19) 

In this equation operator e(iE) is a contraction operator 
for any lossy media [Zhdanov and Fang, 1997]: 

lie(iE(I) - iE(Z))II~ klliE(I ) - iE(z)ll , (20) 

where II. . ·11is Lznorm , k < I , and iE(I ) and iE(Z) are any 
two different solutions. That is why this method is called 
the contraction integral equation (ClE) technique, and e 
is called a contraction Green 's operator. 

[17] Using the original Green 's operator given by the 
expre ssion (2) and taking into account formula (16), one 
can rewrite equation (19) as follows: 

iE = V ReGbGE( 2VReGbba-liE) + ba-liE + vReGbEb, 

or, after some transformation 

(I - ba-l )iE - V ReGbGE( LlGa-liE) = V ReGbEb. 

Note that according to (15) , 

I -ba- I = (a- b)a- I = V ReGba- l . 

Therefore, the final form of the contraction integral 
equati on with respect to the scaled electric field E is: 

v ReGba- liE = v ReGbEb + V ReGbGE( LlGa-liE) . 

(21) 

This is the basic equation of the CIE electromagnetic 
modeling method. Note that this is equivalent to (12), 
expanded with preconditioners: 

V ReGb (a- liE) = V ReGbAt (a- liE ). (22) 

4. Numerical Solution of the Integral 
Equations 

[1 8] In this section we demonstrate that discretization 
of (22) leads to a preconditioned variant of the linear 
system arising from the original equation (8), where the 
preconditioners are diagonal matrices. Thus , not only we 
can easily construct new programs to solve the precondi­
tioned system, but existing codes can be modified with­
out requiring a major debugging effort . 

[1 9] To solve the integral equation numerically we need 
to discretize the anomalous body by N cells (Figure 2). 
Assuming that in each individual cell the complex con­
ductivity LlGand the electric field are constant , we can 
rewrite (7) in a discrete form as 

e" = GDSa(ea+ eb
) , (23) 

where GD is a 3N x 3N matrix containing electric Green's 
tensor integrals 

l lr . .. r lN ll . .. lN ll . .. lN 
xx xx r xy r xy r xz r xz 

NI . . . rNN NI . . . rNN NI rNNr r . . . xx xx xy xy r xz xz 
r l l ... r lN r 11 . . . r lN r l1 . . . r lN 

yx yx yy yy yz yz 

G =D 
I 

r NI . .. rNN rN I ... r NN r N1 
'" rNN 

yx yx yy yy yz yzl l ... r lN ll . . . l l . .. lNr zx zx r zy r ;: r zz r zz 

r NI .. . rNN rN I . .. r NI . . . rNN 
zx zx zy r : zz zz 

r~ = JJlkG~(rj I rk)dv, (X, ~ =x,y,z , (24) 

eb and ea are 3N x I vector columns of the background 
and anomalous fields , 

b 
e = [E~,,, .. .E~,N ' E; ,I '" .E;,N ,E~,I ' · · . E~,Nr 

a 
e = [E; ,I ' " .E; ,N,E; ,I'" .E;,N' E;,I , . . .E;,Nr· 

and sais a 3N x 3N diagonal matrix with the anomalous
 
conductivities.
 

sa= diag([LlGI , . . . , LlGN,LlGI ,.. .,LlGN,LlGl ,...,LlGNJ).
 

Note that integration in (24) requires the princ iple valu e
 
of the Green's tensor [Hohmann, 1975; Wannamaker et
 
al., 1984; Xiong, 1992].
 

[zo] We can also define the matrix with the back­
ground conductivity values inside each cell: 

~ di ( [- b rzb rzb rzb - b -b])Sb = zag <J " .. • , <JN, <J" . . . , <JN, <J I, • . . , <JN . 

Equation (23) can be rewritten with respect to the total 
electric field e = ea + eb

: 

e = eb + GDSae. (25) 

This equation is a 3N x 3N linear system with respect to 
the total electric field , 

bAe = e , (26) 
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Figure 2. Model of the local body discretized by 
rectangular cells. 

where 

A = 1- GDSa 
. (27) 

[21] Matrix A is a 3N x 3N complex non-Hermitian 
matrix with a full structure. For a small number of 
unknowns the direct solvers are pract ical, especially in 
!be case of multiple sources. If N is large, the storage of 
A is extremely memory consuming, not to mention the 
O(N3

) complexity of direct matrix inversion. However, it 
has been demonstrated that we can perform multiplica­
tions with A without storing it in its full size [Avdeev et 
al. , 1997; Ellis, 1999; Humin, 2001]. Thus, iterative 
techniques based on repetitive matrix multiplications are 
particul arly adequ ate for finding the solution of (26) . 

[22] However, in general , A can be ill-conditioned, 
especially for large models with high conductivity con­
trasts . This causes slow convergence or even divergence 
of iterative algorithms. Below it is demonstrated that 
solving the discrete form of the contraction integral 
equation (21) instead of (25) results in a considerable 
speed-up with all iterative solvers , due to the stabilizing 
effect of the preconditioners. It can be easily shown that 
the discrete form of (21) is the following: 

J ReSb (I - GDsa
) a-Ie = J ReSbeb, (28) 

where diagonal matrix a is equal to 

a= (2 JReSbf I (2ReSb+Sa
) , (29) 

e = ae . (30) 

[23] Considering (26) and (27), we can easily see that 
equation (28) is just the preconditioned variant of (26), 

Ac =eb , (3 1) 

where 
~ ~ ~ ~b ~ b 

A=MrAM2, e = M le, (32) 

and 

e = M 2e, (33) 

with the notations 

M1 = J ReSb
, (34) 

and 

M2= a-I = (2 JSb)(2ReSb + sa) -I. (35) 

Thus, we have transformed the original matrix equation 
(26) into the preconditioned equation 

M IAM2(Mzle) = Mleb 
, (36) 

where M I is the left preconditioner, and M2 is the right 
preconditioner, 

[24] There are different mathematical methods for 
introducing the preconditioners for the general matrix 
equation [Golub and yal}-!:..oan, 1996] . The main goal is 
constructing matrix MIAM2, which has a significantly 
lower condition number than the original matrix A. This 
is done by using the contraction Green's operator with 
the norm always less or equal to one. In other words, the 
physical nature of our system of equations is considered 
and preconditioners are formed based on a fundamental 
physical law that the energy flow of the anomalous 
electromagnetic field outside the domain containing 
conductivity inhomogeneity is always positive. 

5. Iterative Solvers 

[25] In this section we discuss the basic properties of 
six iterative solvers including 1) the successive iteration 
(SI), 2) the Conjugate Gradient Normal Equation Resid­
ual (CGNR) , 3) the Biconjugate Gradient (BICG) , 4) the 
Biconjugate Gradient Stabilized (BICGSTAB), 5) a 
quasi-minimal residual variant of the BiCGSTAB 
(QMRCGSTAB), and 6) the Complex Generalized Mini­
mum Residual (CGMRES) methods. 

5.1. Successive Iteration (SI) Method 

[26] This technique is the simplest iterativ e solver. 
Given a linear equation as x = Fx, starting with an initial 
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guess xo, we obtai n the next iteration as Xl = Fxo, 
x2 = FXI and so on. One step of this technique con sists 
of one matrix mu ltiplication only. However, the neces­
sary condition for the convergence of this technique is 
that the matrix F represent s a contrac tion operator 
(Banach theorem about the fixed point of the contraction 
operator). Oth erwise, it has weak convergence or it 
diverges. Unfor tunately in electromagnetic modeling 
based on the con ventional integral equation method, this 
method usuall y does not converge, especially for large 
scatterers with high anomalous conductivities. 

[27] Based on the modifi ed Born series developed by 
Pankratov et al. [1995] and Singer and Fainberg [1995], 
Zhdanov and Fang [1997] found a remedy for the 
divergence problem by modi fying the original integral 
equati on such that the modifi ed operator is a contraction 
operator for any scat terer size and conductivity distribu­
tion. In other words, if we apply the SI method to the 
preconditioned integral equation, describ ed above, the 
con vergence is guara nteed for any lossy medium. More­
ove r, there is an analytical expression for the upp er 
bound for the solution error [Zhdanov and Fang, 1997] 
that can be used as a straightforward termination criteria 
of the iterative process. In the previou s section we have 
shown that this nice modification can be treated as a 
special preconditioning, making it applicable to iterative 
techniques more powerful than the successive iterations. 

5.2. Conjugate Gradient Nor mal Equation 
Residual (CGNR) Method 

[28] Assume Ax = b is a linear system with a positive 
defini te Hermiti an coefficient matrix. Con sider 

I ~ 
<j> (x) = -x*Ax - x*b (37) 2 . 

Since \7 <j> (x) = Ax - b , it follo ws that X = A- lb is the 
unique minimizer of (37). One way to produce a vector 
sequence {xj} that conve rges to X is to introduce the 
Kryl ov subspace 

) { ~ ~2 ~k }J( (~ = span Aro, A ro, ' . . , A ro ,A, ro 

and where ro = AXo - b and minimize <j> over this space 
[Golub and Van Loan, 1996]. 

[29] The best known iterative method performing this 
operation is the Conjuga te Gradient (CG) method [Hes­
tenes and Stiefel, 1952] . Note that it is designed for 
problems with a positive definite Hermiti an coefficient 
matrix. Fo r nonhermitian system s it exhibits erratic 
convergence beh avior. 

[30] The simplest way to overc9.me this probl em is to 
precondition the original system ~x~ b with the com­
plex conjugate of A, i.e. we solve A*Ax = A*b, where * 
denotes the complex conjugate transposed matrix. One 

step of this method contains two matrix mult iplications. 
The CGNR method was used by Portn iaguine et al. 
[1999] for solvin g the compressed prob lem. Since A*A 
is a posit ive definit e Hermitian , the CGN R meth od 
always converges. However, the squaring of the con­
dition number result s in a slowdown in the convergence. 

5.3. Biconjugate Gradient (BICG) Method 

[31] Thi s method was introduced as a genera lizat ion of 
CG for nonhermitian sys tems [Lanczos, 1952; Fletcher, 
1976]. It is based on simultaneous min imization over 
two Krylov subspaces , 

) { ~ ~2 ~k }J( ( ~ = span Aro, A ro, "' , A ro ,A, ro 

and 

) { ~ ~2 * ~k }(~ J( A*,ro = span A*ro,A ro, · · · ,A "*ro . 

It conv erges faster than CGNR, since no squaring of the 
condition number occurs. However, this method also 
requ ires that matrix A is a pos itive definite Herm itian 
coefficient matrix, which is not always the case in 
numerical modeling. Therefore, erratic convergence has 
been observed in several situations [van der Vorst, 1992; 
Freund and Nachtigal, 1991]. Moreover, the operations 
of transpose matri x-vector multiplication still appear in 
each itera tion, resulting in difficulties when A* is not 
readily ava ilable. 

5.4. Biconjugate Gradient Stabilized 
(BICGSTAB) Method 

[32] Many recently propo sed meth ods can be viewed 
as improvements over some of the drawb acks of Bl CG . 
One of the most notabl e variants is the Conj ugate 
Gr adient Square d (CGS) suggeste d by Sonneveld 
[1989]. In th is algorithm the calculation of A* is not 
requ ired while retaining the convergence rate of BlCG. 
However, erratic con vergence behavior may still occur. 
Based on simil ar ideas which led to CGS , van der Vorst 
[1992] introduced the Biconjugate Gradient Stabilized 
(BICGSTAB) method, wh ich is reported to have better 
convergence rates than CGS in many situations [Dries­
sen and van der Vorst , 1991; van der Vorst, 1992]. 

5.5. A Quasi-Minimal Residual Variant of 
BICGSTAB (QMRCGSTAB) 

[33] Freund [1993] introduced a variant ofCGS, which 
is reported to smooth the convergence of CGS while 
retaining its good con vergence rate. This is based on a 
" quasi-minimization" of the residu al ove r the span ofthe 
vectors evaluated during the CGS algori thm . The method 
is called the Tran spose-Free Qua si-M inimal Resid ual 
(TFQMR) method. It has been used by Ellis [1999] to 
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calculate an EM scattering problem in time domain. 
Following the same logic to smooth the BICGSTAB 
technique, the Quasi-Minimal Residual variant of BICG­
STAB (QMRCGSTAB) has been developed by Chan et 
at. [1994] This method is known to be as smooth as the 
TFQMR; however, its convergence rate is usually higher 
[Chan et al., 1994]. 

5.6. Complex Generalized Minimal Residual 
(CGMRES) Method 

[34] The basic idea of the conventional Generalized 
Minimal Residual (GMRES) method [Saad and Schultz, 
1986] is to find the solution along an orthonormal basis 

{Ag'{ ,Ag~ , . .. ,Ag~ } 

in the Krylov subspace 

~ ~2 ~k }K = span { Ar n , A rn , ... , A rn 

at the n-th step of the iterative process, 

s 
"k (II) 

XII+ l = x, - ~ n/ g / , s::; n, 
/=1 

where r" = Ar, - b. 
[35] The more orthonormal basis functions are calcu­

lated (the larger s is), the smoother the convergence 
becomes, requiring fewer iterations with smaller ampli­
fication of the roundoff errors during the iterative proc­
ess. However, at each iteration the orthogonalization 
process has to be performed, requiring 2s matrix multi­
plications, and the number of vectors to be stored is also 
proportional to s. The notation GMRES(s) is often used 
to emphasize the number of orthogonal basis functions. 
One special case is the so called "brute force " GMRES, 
which is based on increasing s until the desired error 
level is reached within one outer iteration [Kelley, 1995]. 
However, ifs becomes large, the number of basis vectors 
to be stored may be very memory demanding. 

[36] The GMRES method has been extended for the 
case of an operator equation in a complex Hilbert space 
by Samokhin [1993] and Zhdanov [2002]. We call this 
modification the Complex Generalized Minimal Resid­
ual (CGMRES) method. The main advantage of this new 
technique is that it converges even if the matrix A is not a 
positive definite Hermitian matrix. The only requirement 
for the converg~nce of the CGMRES method is that 
complex matrix A is an absolutely positively determined 
matrix. The last property, according to Zhdanov [2002], 
means that matrix Asatisfies the condition 

IX*(AX) I :::: -y (x*x), -y > 0, (38) 

for all x. 

[37] Note that due to the energy inequality [Zhdanov 
and Fang, 1997], the coefficient matrix for electromag­
netic IE forward modeling is always an absolutely 
positively determined, ensuring the convergence of the 
CGMRES for any model. However, the convergence rate 
can be increased significantly by applying CGMRES to 
the preconditioned IE system (31). 

5.7. Operation Complexity 

[38] Table I summarizes the operation count per one 
iteration for the tested algorithms without precondition­
ing . Using left and right diagonal preconditioners, two 
extra vector-vector multiplications are added to the 
displayed values for each matrix multiplication. Because 
of the full matrix of the integral equation, the speed is 
determined almost entirely by the number of matrix 
multiplications. For sparse systems, the relative con­
tribution of vector-vector multiplications can also be 
significant. 

6. Choice of the Initial Guess 

[39] All iterative methods may be started from any value 
of Xo. If no initial guess is specified, usually one starts 
from zero. However, some time can be saved by picking 
an appropriate initial gue ss having relative residuals less 
than one. The basic idea is that it is economical to 
calculate the initial solution if its cost is lower than the 
resulting complexity reduction during the iterative 
process. Zhdanov and Fang [1997] used the quasi-linear 
approximation as the initial guess of the successive 
iterations. Consequently, they called the method quasi­
linear series. Similarly, Zhdanov et al. [2000] applied the 
quasi-analytical approximation to the SI method, obtain­
ing the quasi-analytical series. Evidently, the concept of 
inexpensive approximation-based starting solutions is 
not limited to the method of successive iterations, it can 
be applied to any iterative solver. 

[40] If more than one frequency is modeled, and the 
adjacent frequencies are not extremely different (say, 
they are at the same magnitude), there is an even better 
choice for an initial guess. With the solutions at fi , and 
assuming that the variation of the background and total 
electric fields inside the anomalous body is similar with 
respect to the frequency, e can be picked ath on the basis 
of eb(fi) and e(fi) as 

b() e(fi ) (e h) = e h eb(fi )" (39) 

This calculation is very inexpensive (two vector 
products) and in the presented modeling experiments it 
could save approximately 40 -60% of the number of 
iterations starting from zero even if the ratio of two 
frequencies was 10. For time domain modeling, where 
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Table 1. Summary of the Operation Count per One Iteration 

Numbe r of Multiplications per Iteration 

Method Matrix -Vector Vector-Vector 

SI 
CGNR 
BICG 

BICGSTAB 
QMRCGSTAB 

CGMRES(5) 

I 
2 
2 
2 
2 
2s 

0 
3 
3 
5 
7 

2 + (2 + 5/2)(5 - I) 

the frequency spectra are sampled more densely, the 
saving factor is even higher. 

7. Numerical Results 

[41] In this section a comparative study of the outlined 
iterative solvers is performed through a 3-D forward 
modeling experiment. The model is one of the new 
generation of 3-D models of the COMMEMI project , 
initiated by Zhdanov et al. [1997]. This model was 
introduced by Varentsov et al. [2000] and named Model 
3D-3. It consists of seven conductive blocks (Figure 3). 

[42] Five of them are adjacent in the j -direction and are 
elongated in the x-direction, forming a subsurface syn­
cline-like structure. These blocks have the same size (3 
km) in the x-direction, while their sizes in the y- and z­
directions (from body 1 to body 5) are different and equal 

-2.8 i
Normal section (Ohm-m) 

-2.4 

to 0.4, 0.6, 0.4, 0.6 and 0.4 km, and 0.4, 0.6, 0.4, 0.6 and 
0.4 km respectively. The resistivities of the blocks (from 1 
to 5) are 300, 30, 100, 30 and 300 Ohm-m. 

[43] The sixth block forms a middle depth local 3-D 
body with a very low resistivity of0.1 Ohm-m, and with a 
size of 1 x 2 x 0.8 krrr' in the x, y and z directions. The 
upper edge of this body lies at a depth of 0.2 km. 

[44] The seventh body describes a regional quasi-2-D 
crustal structure with dimensions of 1 x 5.6 x 2 krrr' in x, 
y and z directions respectively and with a low resistivity 
of 0.3 Ohm-m. lts upper edge is at a depth of 1 km. 

[45] The background vertical section of the model 
consists of three layers with resistivities of 1000, 10000 
and 10 Ohrn-rn, and with thicknesses for the first and the 
second layers of 1 and 6.5 km, respectively. The obser­
vation region selected for the comparison is [-4, 4] x 
[-4,4] krrr'. 

[46] This model combines a high conducti vity contrast 
up to 30000 with the anomalou s structure almost out­
cropping at the ground surface, which is quite typical for 
mining EM applications and for regional MT studies. It 
requires a large grid to approximate all the structures with 
the proper resolution. The inhomogeneity discretization is 
as follows: each body is horizontally subdivided by 0.2 x 
0.2 km2 cells in the x and y directions, while the vertical 
discretization interval increases with depth, starting from 
0.05 km for the subsurface structures and ending with 0.5 
km at the bottom of the deepest quasi-2-D body. The total 
number of cells used for this experiment is 8008. The 
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Figure 3. 3-D geoelectric model consisting of seven blocks within a layered medium excited by a 
plane-wave source [after Varentsov et aI., 2000]. 
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Figure 4. Behavior of the relative residual norm during the iterations without (top) and with 
(bottom) diagonal preconditioners in the solution of the integral equation for the 3-D modeling 

1 2
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Number of iterations 

experiment. 

model is excited by a plane-wave with an electric field 
oriented in the x-direction. The frequency is 1 Hz. 

[47] The aim of this numerica l experiment is to find the 
total electric field inside the anomalous body by solving 
the discrete conventional and contraction integral equa­
tions and to compare the convergence rates of different 
iterative solvers. Iterations were performed until the L 2 

norm of the residual normalized to the L2 norm of the 
right hand side dropped below 10- 4

, or until the number 
of iterations reached 500. The choice ofthe stopping error 
level is based on information from the actual accuracy of 
the Green's tensor integrals of the scattering matrix 
[Xiong, 1992]. 

[48] The history of the relative residual during the 
iterations is plotted in Figure 4. The upper panel shows 
the behavior of the relative residual norms ofthe different 
iterative solvers applied to the discretized conventional 
integral equation (without preconditioning). The succes­
sive appro ximations clear ly diverge, and the mCG 
method has extremely erratic behavior. The CGMRES 

with three orthogonal basis functions stagnates. Since the 
CGNR method solves the always Hermitian norma l 
equation, monotonous convergence is provided. How­
ever, one of its typical properties is that the convergence 
rate decreases, so an excessively large number of iter­
ations is required. The BICGSTAB and QMRCGSTAB 
techniques appear to be convergent, but neither of them 
could reach the desired error level within 500 iterations . 
Cons idering that one matrix multip lication requires 
approximately 20 seconds on a SUN Ultra Sparc-lO 
workstation, it is extremely expensive or impossible to 
obtain a solution based on the conventiona l IE method 
without preconditioning. 

[49] The bottom panel of Figure 4 shows the relative 
residual norms after the diagonal preconditioners, based 
on the CIE method outlined above, have been utilized. In 
this case only the m CG has failed to converge, and all 
other methods produce decreasing errors. The conver­
gence rates are significantly different. The CGNR method 
still converges very slowly due to the squaring of the 
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Table 2. CPU Times of Convergence to a Relative Residual of STAB) are much faster, requiring 36, 33 and 26 iterations 
10- 4 Using Six Iterative Solvers Required for the Solut ion of the only. 
Conventional and Contraction Integral Equations for Model 1a [50] Table 2 represents the CPU time required on a 

SUN Ultra Spare 1 workstation by different solvers to 
CPU Times of Convergence reach a normalized residual below 10- 4

. The calculations 
to Il rll/llbli ::; 10-

4 

were performed on a SUN Ultra Spare 10 workstation. 
Method Conventional IE Contraction IE The cheapest techniques for this specific model are the 

BICGSTAB and QMRCGSTAB , since they need only 
SI No convergence 5720 two matrix multiplications per iteration, while the

CGNR >20000 >20000 
CGMRES(3) requires six of them.BICG No convergence No convergence 

BICGSTAB >20000 1052 [51] Choosing an inexpensive approximation as an 
QMRCGSTAB >20000 1351 initial guess, the total number of iterations decreases by 

CGMRES( s) >20000 3925 two or three for each method. If results of the nearest 
frequency are used as an initial guess applying (39), then a The time units are measured in seconds. 
the saving rate can be much higher. For example, using 

condition number ofthe original equation. The successive the result calculated for f = 0.1 Hz results in approx­
iteration method requires almost 300 iterations, so in spite imately 40 -60% fewer iterations than if the initial guess 
of its low cost per iteration (one matrix multiplication) the is zero (compare the bottom panel in Figure 4 and the top 
overall operation count is still large. The other transpose ­ panel in Figure 5). If the result off= 0.5 Hz is available, 
free algorithms (CGMRES , QMRCGSTAB and BICG- less than 10 iterations are needed for the CGMRES , 
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Figure 5. Behavior of the relative residual norm during the iterations using initial guesses based 
on the electric field calculated at f = 0.1 Hz (top) and f = 0.5 Hz (bottom) in the solution of the 
integral equation for the 3-D modeling experiment atf= 1 Hz. 
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E/IEb' at the surface 
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Figure 6. Amplitude of the x-component of the total electric field at the surface obtained by 
solving the CIE by four different solvers . The results have been normalized to the background 
electric field. 

QMRCGSTAB and BICGSTAB methods (Figure 5, 
bottom panel). 

[52] Figure 6 presents the comparison of the x-compo­
nent of the electric field for a period of I s for different 
solution techniques. There are four solutions shown, 
obtained by the SI, BICGSTAB, QMRCGSTAB and 
CGMRES(3) solvers for the CIE system. Since the rela­
tive error is about 0.01%, there are no visible differences 
between the results. The SI solution has been used in the 
comparative experiment between different modeling tech­
niques by Varentsov et al. [2000]. However, the modelin g 
results obtained by the BICGSTAB, QMRCGSTAB and 
CGMRES(3) solutions applied to the CIE require much 
less comput er resources than the SI solution. 

8. Conclusions 

[53] In this paper we consider the Contraction Integral 
Equation (CIE) method for 3-D electrom agnetic model­
ing. The method is based on the numerical solution of the 
modified integral equation with the contraction Green 's 

operator, introduced by Pankratov et al. [1995] and 
Zhdanov and Fang [1997]. We suggest using CG-type 
iterative methods to solve the contraction integral equa­
tion, which are much more powerful than the successive 
iterations originally used by Pankratov et al. [1995] and 
Zhdan ov and Fang [1997] . We have examined the 
performance of different iterative solvers in the solution 
of an electromagnetic scattering problem, based on the 
CIE method . Also, the effect of the initial guess has been 
investigated. As a result, one can conclude that for this 
problem the CGMRES, BICGSTAB and QMRCGSTAB 
algorithms are fast enough to provide a practical tool to 
model complex geoelec tric structures consisting of a 
large number of cells. The choice of an inexpen sive 
initial guess for modeling several frequencies results in 
further reduction of operations. 

[54] The high convergence rate of the iterative methods 
applied to the contraction integral equation is based on 
the fact that this new equation is the preconditioned form 
of the conventional integral equation with the precond i­
tioning matrices determined by the conductivity distri­
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bution within the geoelectrical model. This form of the 
preconditioners is based on the fundamental radiation 
properties of the electromagnetic field, expressed by the 
energy inequality, which has a clear physical interpreta­
tion: the total energy of the anomalous electromagnetic 
field radiated outside the domain with the anomalous 
conductivity is always non-negative. This physical prop­
erty of the electromagnetic field provides the mathemat­
ical convergence property of the iterative methods with 
the new preconditioners introduced in this paper. This is 
probably the most important result of our research. 

[55] Acknowledgments . Th e authors acknowledge the 
support of the University of Utah Consortium for Electro­
magn etic Modeling and Inversion (CEMI), which includes 
AGIP, Baker Atlas Logging Serv ices, BRP Minerals, Exxon­
Mobil Upstream Research Company, INCO Exploration, Inter­
national Energy Servic es, Japan National Oil Corporation, 
MIND ECO, Naval Research Laboratory, Rio Tinto-Kennecott, 
Sumitomo Metal Mining Co., and 3JTech Corp oration. This 
paper is based in part upon work supported by the National 
Scien ce Foundation under grant 9987779. 

References 

Alumbaugh , D. L., and G. A. Newman, Time efficient 3-D 
electrom agnetic modeling on massively parallel computers, 
in Proceedings of the First International Symposium on 
Three-Dimen si on al El ectromagn eti cs , pp . 205 - 218 , 
Schlumberger-Doll Res., Ridgefield, Conn., 1995. 

Anderson, W. L., Numerical integrati on of related Hankel trans­
forms of orders 0 and I by adapti ve digita l filtering, Geo­
physics, 44, 1287-1305, 1979. 

Avdeev, D. B., A. V. Kuv shinov, O. V. Pankratov, and G. A. 
Newman, High-perform ance three-dimensional electromag­
netic modelling using modified Neumann series: Wide-band 
numerical solution and examples, 1. Geomagn. Geoelectr, 
49,151 9-1539,1997. 

Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and G. A. 
Ne wman, Three dimen sional indu ction logging prob lems , 
part I, An integral equation solution and model comp arison , 
Geophysics, 67,413 -426, 2002. 

Chan, T. F., E. Gallopoulos, V. Simoncini, T. Szeto , and C. H. 
Tong, A quasi-minimal residual variant of the Bi-CGSTAB 
algorithm for nonsymmetric systems , SIAM 1. Sci. Comp., 
15,338-347, 1994. 

Cheryauka, A. B., and M. S. Zhdanov, Electromagnetic tensor 
Green 's functions and their integral s in transverse isotropic 
media, in Proceedings of the Consortium for Electromag­
netic Modeling and Inversion 2001 Annual Meeting, pp. 
39- 84, Univ. of Utah , Salt Lake City, 2001. 

Coggon, J. H., Electromagnetic and electric al modeling by 
the finite element method, Geophysics , 36, 132 -155 , 
1971. 

Driessen , M., and H. A. van der Vorst, Bi-CGSTAB in semi­
condu ctor modeling, in Simulation of Semiconductor De­

vices and Processes, vol. 4, edited by W. Fichtner, pp. 
45 - 54, Hartung-Gorre, Zurich, 1991. 

Druskin , V., L. Knizhnerman, and P. Lee, New spectral Lanczos 
decomposition method for induction modeling in arbitrary 
3D geometry, Geophysics, 64, 701 -706, 1999. 

Ellis, R. G., Smooth 3D inversion of airborn e transient electro­
magneti c data using the TFQMR-FFT fast integral equation 
method, in Proceedings of the Second International Sympo­
sium on Three-Dimensional Electromagnetics, pp. 123 - 127, 
Univ. of Utah , Salt Lake City, 1999. 

Felsen, L. B., and N. Marcuvitz, Radiation and Scattering of 
Waves, 888 pp., IEEE Press, Piscataway, N. J., 1994 . 

Fletcher, R., Conjugate gradient methods for indefinite linear 
system s, in Lecture Notes in Mathematics, vol. 596, pp. 73­
89, Springer-Verlag, New York, 1976. 

Freund, R. W., A transpose-free quasi-minimum residual algo­
rithm for non-Hermitian systems, SIAM 1. Sci. Comp. , 14, 
470 -482, 1993. 

Freund, R. w., and N . M. Nachtigal, QMR: A quasi-minimal 
residual method for non-Hermitian linear systems, Numer. 
Math. , 60,315 - 339, 1991. 

Golub, G. H., and C. F. Van Loan, Matrix Computations, 3rd 
ed., 694 pp. , Johns Hopkins Univ. Press, Baltimore, Md ., 
1996. 

Habashy, T. M., R. W. Groom, and B. R. Spies, Beyo nd the 
Born and Rytov approxinations: A nonlinear approach to 
electromagnetic scattering, J. Geophys. Res., 98, 1759 ­
1775, 1993. 

Hestenes, M. R., and E. Stiefel, Methods of conju gate gradients 
for solving linear sys tems, 1. Res. Natl. Bur. Stand ., 49, 
409 -435, 1952 . 

Hohmann, G. w., Three -dimensional induced polarization and 
EM modeling, Geophysics, 40, 309-324 , 1975. 

Hursan, G., Storage reduction and fast matrix multipl ication 
int egral -based geophysical problem s, in Proceedings of 
200I Consortium for Electomagnetic Modeling and Inver­
sion Annual Meeting, pp. 17- 36, Univ. of Utah, Salt Lake 
City, 2001. 

Jin, J., The Finite Element Method in Electromagnetics, 464 
pp., John Wiley, New York, 1993. 

Kelley, C. T., Iterative Methods fo r Linear and Nonlinear 
Equat ions, vol. 16, Frontiers in Applied Mathematics, SIAM 
Ser., Soc. for Ind. and Appl. Math ., Philadelphia, Pa. , 1995 . 

Lanczos, C; Soluti on of systems of linear equations by mini­
mized iterations, J. Res. Natl. Bur. Stand., 49, 33- 53, 1952 . 

Mackie, R. L., J. T. Smith , and T. R. Madden, Three-dimen­
sional EM modeling using FD equations: The MT example, 
Radio Sci., 29, 923- 935, 1994. 

Pankratov, O. V. , D. B. Avdeev, and A. V. Kuvshinov, Scatter­
ing of electromagnetic field in inhomogeneous earth : For­
ward problem solution, Izv. Akad. Nauk SSSR Fiz. Zemli, 3, 
17-25, 1995. 

Portniaguine, O. N., G. Hursan, and M. S. Zhdanov, Compres­
sion in 3D electromagnetic modeling, in Proceedings of the 
Second International Symposium on Three-Dim ensional 



HURS AN AND ZHDANOV: CONTRACTION INTEG RA L EQUAT ION METHOD 1 - 13 

Electromagnetics, pp. 209-2 12, Univ. of Utah, Salt Lake 
City, 1999. 

Ratz, S., A 3D finite element code for modeling of electromag­
netic responses, in Proceedings of the Second International 
Symp osium on Three-Dimensional Electromagnetics, pp . 
33 - 36, Univ. of Utah, Salt Lake City, 1999. 

Saad, Y., and M. N. Schultz, GMRES: A genera lized minimal
 
residual algorithm for solving nonsymm etric linear system,
 
SIAM J. Sci. Stat. Comp., 7, 856-859, 1986.
 

Sam okhin, A. B., Integral equ ations of electrodynamics for
 
three- dimensional structures and iteration methods of sol­

ving them (A review), J. Comm. Tech. Electr., 38, 15- 34,
 
1993.
 

Singer, B. S., and E. B. Fainberg, Generalization of the iterative
 
dissipative method for modeling electromagnetic fields in
 
nonuniform media with displacement currents, J. Appl. Geo­

phys., 34, 41 -46,1 995 .
 

Smith, J. T., Conservative mod eling of 3D EM fields , parts 1,2, 
Geophysics, 61,1308-1324,1 996. 

Sonneveld , P., CGS, a fast Lanc zos-type solver for non sym­

metr ic linear sys tems, J. Sci. Stat. Comp., 10, 36-52,
 
1989.
 

Tang, C. M., Electromagnetic fields due to dipole antennas
 
embedded in stratified aniso tropi c media, IEEE Trans. An­

tennas Propag ., 27, 665 - 670, 1979.
 

van der Vorst, H. A., BICGSTAB : A fast and smoo thly conver­

ging variant of Bi-CG for the solution of nonsymmetric
 
linear systems , SIAM J. Sci. Stat. Comp., 13, 63 1- 644,
 
1992.
 

Varentsov, I. M., The selection of effective FD solvers on 
3D EM modeling schemes, in Proceedings of the Second 
International Symposium on Three-Dimensional Electro­
magnetics, pp. 20 1-204, Univ. of Utah, Salt Lake City, 
1999. 

Varentsov, I. M., I. Y.Fomenko, N. G. Golub ev, S. Mehanee, G. 
Hursan, and M. S. Zhd anov, Comparative study of3 -D finite 
difference and integral equation methods, in Proceedings of 

2000 Consortium for Electomagnetic Modeling and Inver­
sion Annual Meeting, pp. 35 -74, Univ. of Utah, Salt Lake 
City,2000. 

Wannamaker, P. E., G. W. Hohmann, and W. A. SanF ilipo,
 
Electromagnetic model ing of three dimensional bodies in
 
layered earths using integral equations, Geophysics , 49,
 
60-74, 1984.
 

Weidelt , P., EM indu cti on in thr ee-dimensional str uctures, 
J. Geophysics, 41, 85-109,1 975 .
 

Xiong, Z., Electromagnetic field s of elec trical dip oles em­

bedd ed in a stratified aniso tropic earth, Geophysics, 54,
 
1643- 1646, 1989.
 

Xiong, Z., EM modeling of three-dimensional structures by the 
method of system iteration using integral equations, Geophy­
sics, 57,1556-1561,1 992. 

Zhdanov, M. S., Geophysical Inverse Theory and Regulariza­
tion Problems, 609 pp., Elsevie r Sci., New York, 2002. 

Zhdanov, M. S., and S. Fang , Quasi-lin ear series in three-di­

mensional electroma gnetic mod eling, Radio Sci., 32, 2167 ­

2188, 1997 .
 

Zhdan ov, M. S., and G. V. Keller, The Geoelectrical Methods in 
Geophysical Exploration, 873 pp ., Elsevier Sci., New York, 
1994. 

Zhdanov, M. S., I. M. Varentsov, J. T. Weaver, N. G. Golubev,
 
and V. A. Krylov, Method s for modeling EM fields (results
 
from COMMEMI), J. Appl. Geophys., 37(3 -4), 133 - 271,
 
1997.
 

Zhdanov, M. S., V. I. Dmitri ev, S. Fang, and G. Hursan, Quasi­
anal yti cal approx ima tio ns and series in e lectromagnetic 
modeling, Geophysics, 65,1 746 -1 757 ,2000. 

G. Hursan and M. S. Zhdanov, Department of Geology and
 
Geophysics, University of Utah, 714 WBB , 1460 East, 135
 
South Salt Lake City, UT 84112, USA. (hgabor@min es.utah.
 
edu; mzhdanov@mines.utah.edu)
 

mailto:hgabor@mines.utah

