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Abstract: We extend linear and nonlinear approximations for electromagnetic fields to a medium 
with inhomogeneous distribution of both electrical and magnetic material properties. These 
approximations are presented in the form of tensor integrals over a domain with anomalous pa­
rameters . The developed approximations combine the linear and nonlinear estimations depending 
on the ratio of complex conductivity and magnetic susceptibility perturbations. These approxima­
tions form a basis for fast EM modeling and imaging in multi-dimensional environments where 
joint electrical and magnetic inhomogeneity is an essential feature of the model. Numerical tests 
carried out for one-dimensional electromagnetic logging applications demonstrate the validity of 
the theory and the effectiveness of the proposed approximations. 

1. INTRODUCTION 

Traditionally, in modeling electromagnetic fields in geophysical explorations, one takes 
into account the distribution of the anomalous electrical conductivity only. However, 
there are many practical situations when a conductive object has significant magnetic 
properties as well. For example, a magnetite-containing ore body, some geological 
formations of sedimentary or volcanic origin, and drilling mud with heavy material in­
gredients are characterized by both anomalous conductivity and magnetic susceptibility, 
which can produce significant effects on the electromagnetic tool response. 

The foundations of the ·integral equation method were developed in pioneering 
works by Hohmann (1975), Tabarovsky (1975), Weidelt (1975), etc. Recently developed 
localized nonlinear (Habashy et aI., 1993; Torres-Verdin and Habashy, 1994), quasi­
linear (Zhdanov and Fang, 1996, 1997) and quasi-analytical (Zhdanov et aI., 2000) 
approximations in an electrically inhomogeneous medium are the basis for high­
performance forward modeling and inversion methods. Some theoretical aspects of 
Born type approximations for magnetic properties were considered by Murray et al. 
(1999) and Cheryauka and Sato (1999) . In this paper we extend these approaches and 

. formulate linear and nonlinear approximations for a model with joint fluctuations of 
electrical and magnetic properties. 
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Synthetic modeling examples illustrating the comparison with analytical solutions 
for one-dimension al induction logging and casing- scanning problems show the areas of 
potential applications of these nonlinear algorithms. 

2. INTEGRAL EQUATION FORMULATION 

Let us con sider the general 3-D EM forward problem illustrated in Figure 1. A med ium 
with joint electrical and magnetic inhomogeneities is excited by electr ical , i nc, and 
magnetic, M inc, harmonic currents distributed within a dom ain Vinc' Time dependence is 
« >' , 

A lossy unbounded medium is characteri zed by a complex electrical co nductiv- . 
ity a (r) = O' (r) - iwe(r), and a magnetic susceptibility x (r), where O' (r) and e(r) 
are electrical conductivity and dielectric constant respectively. To symmetrize further 
considerations, we introduce a complex magnetic permeability il : 

il (r) = iWfLo(l + x (r» , 

where fLo is the free space magnetic permeability. Note that, in general cases, a (r) , 
il(r ) can be frequency-dependent and, in anisotropic media, can be repre sented by 3 x 3 
dyadic functions. In this paper we will study the isotropi c medium only. 

We assume that the materi al property distributions a (r), il (r) are expressed by a sum 
of background, a b(r), il b(r), and anom alous, a a(r), ila( r), distributions: 

a (r) = a b(r) +a a(r), 

il (r) = il b(r) + il a(r) . (5.1) 

We assume that anomalous distributions are nonzero only within the corresponding 
doma ins Va and VJ1' The electromagnetic fields E, H in this model can be presented as a 

inc M inc 

J , ~n c Vcr 

o,- -u,
 

Figure 1. Model statement. 
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superposition of background Eb , H b and anomalous E", H " fields, 

E = Eb+Ea, 

H=Hb+H' , (5.2) 

which satisfy Maxwell equations 

V x Hb - oh(r)E b = i nc, 
V X Eb - iLb(r)Hb = Mine, (5 .3) 

and 

V x H" - cTb(r)Ea = cTa(r)(Eb+ E"), 

V x E' - iLb(r)H ' = iL, (r)(Hb+ H' ). (5 .4) 

The background field can be derived using the Green 's function method (Felsen and 
Marcuvitz, 1994): 

Eb =((;J Ein c+(;M EMinc) . , 
VlI\C 

Hb = ((; JHine+(;MHMine) . , (5.5 ) 
ViOl.: 

where we use the notation 

((;j )y = f (;(r lr ')j(r' )dr'. 

v 

In the last formul a, (; JE,(;JH ,(;MH, and (; ME are tensor Green 's functions satisfying 
the following second-order differential equations: 

V x -__I_V x (; JE(r' lr) - cTb(r )(;JE(r' lr) = Io(r- r '), 
/Lb(r) 

(;JH(r' lr) = I _V x (; JE(r' lr), 
I.l.b(r)
 

I ~ MH , ~ WH , ~ ,

V x -_- V x G (r [r ) - iLb(r) G ' (r [r) = Io(r - r ), 

O"b(r) 

(; ME(r' /r) = I _v x (; MH(r '[ r) , 
O"b(r) 

where i is the identity tensor, and o(r - r ') is the Dirac function (Tai, 1979). 
The volume densitie s of electrical and magnet ic anomalous currents j ', M' are equal 

to 

j ' (r) = cT, (r) (E b + E' ), 

Ma(r) = iLa(r) (Hb + H' ). (5.6) 

Therefore, the anomalous field excited by arbitrary anomalous currents J", M" can be 
expressed by a formula similar to Equation (5.5): 

Ea=((;J Eja) +(;M EMa) ,
Vo- Vii 

H" =((;J Hj a) + ((;MHMa) . (5.7) 
Vo ~, 
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3. BORN APPROXIMATION 

The conventional Born approximation, EB , H B , is based on an assumption that within 
domains Va and VII the anomalous fields E", H" are negligibly small in comparison with 
the background fields Eb, Hb : 

Ea(r) ~ 0, 
r EVa U VII" (5.8) 

W(r) ~ 0, 

In this case, according to Equation (5.6), Formula (5.7) for anomalous fields outside 
domains Va and VII is simplified: 

Ea ~ EB= (G1EJB1 +(GMEMBI ' 
Vcr VI! 

H" ~ HB = (G1flJB \ + (GMflMB\ , (5.9) tv, tv, 

where Born current densities JB, MBare 

JB = aaEb, M B = iLaHb . 

In fact, this approximation is linear with respect to the anomalous material properties 
aa, iLa and can be treated as a first-order term in a complete Born-Neumann series. 
These series of limited numbers of terms can be treated as nonlinear approximations; 
however, their convergence, in most cases, is problematical. 

4. LOCALIZED APPROXIMATION 

The Localized Nonlinear (LN) approximation (Habashy et aI., 1993; Torres-Verdin and 
Habashy, 1994) is based on the assumption that the internal electrical field has a small 
spatial gradient, which can be neglected to zero order regardless of medium properties. 
As a result, the scattering tensor can be expressed in explicit form. Extending this 
method, we consider that variations of both electrical and magnetic fields in the vicinity 
of some inner point r of anomalous areas are sufficiently smooth : 

E(r + or) = E(r) +or· VEer) + O(or2 ) , 
r EVa' Vw (5 .10) 

H(r + or) = H(r) +or · VH(r) + O(or2
) , 

Note that, in the last formula, we consider the dyadic product of vector operator V 
and the vectors of electric and magnetic fields, E(r) and H(r) . Following Habashy et a!. 
(1993), we obtain four scattering tensors for a model with joint electrical and magnetic 
inhomogeneities. Substituting expan sions (5.10) into Equation (5.7) and neglecting 
terms of order higher than the one with respect to or, we find from Equations (5.2) and 
(5.7) 

E ~Eb+(G1 Eaa lv .E+(GME iLa lv ·H, , . 
H ~ H b + (G1flaalv .E+(GMHiLalv .H. , . . 

1
 
I 

j
 
I
 
{ 
; 
} 
i 
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Introducing new compact notation s and placing the background field Eb, Hb into the 
right-hand side of the expre ssions, we obtain the following system of equations: 

E- t CfiM E · H~ t e .Eb , 

tmfi lH. E-H ~ _tm ·Hb, (5.11) 

where dimen sionle ss scattering tensors are 

e = 

and the integral s of the Green's dyadic functions are 

t [I _ fil Er' , r " = [1 - fi MHr ' 

AA l E (G1 E _ ) A M E ( AM E_ )
II = O"a Va ' II = G fl a V,, ' 

AA 1 H ( A1H_ ) H M (GM H n )
 
II = G O"a Va ' II

A = ,.,.a V,, '
 

Applying simple linear operations to the equations in Formula (5.11), we express the 
anomalous fields in the form 

E LN = e EEb +tM EHb , 
r EVa U Vfl" (5.12) 

H LN = tl HEb+tMHHb, 

Al E A ME A1 H AM H 
where r , r , rand r are new EM scatterin g tensors as introdu ced In 

(Murray et al., 1999; Cheryauka and Sato, 1999): 

A lE e.det e, e A M E A 1 E A M E A m r = r , r, r =r II r ,
 
A M H Adel Am A 1 H A M HAeA ME
 
r = r h r , r =r rII , 

and 

Adel _ [ A_ Ae A M EA mAl HJ- 1 
r - I r II r II ,c
 

Adel_[A · Am A 1 HAeA M E J - 1
 
rh-I-rII rII .
 

The fields ELN, H LN outside the perturbed areas are
 

ELN
= ((;1 EJLN)V + ((;MEMLNk, 
a 

H LN = ((;lHJLN) + ((;M HM LN) , (5.13)
Va V1J 

where the LN current densities JLN,M LN are 

M EHb), M L N l
J L N = a a(tl EEb + t = /L a(t H Eb + r" H Hb) . (0.1) 

A lE A ME A 1 H A M II 
Note that the structures of the scattering tensors r , r , r , r can be 

simplified if the locations of electrical and magnetic inhomogeneit ies do not intersect , 
or the contributions of anomalous conductivity aaor anomalous magnetic permeability 
/Ladominate the other. 

I 
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5. QUASI.LINEAR APPROXIMATION 

Zhdanov and Fang (1996, 1997) developed a quasi-linear (QL) approximation, based on 
a linear relationship between anomalous and background fields inside an inhomogeneous 
domain, expressed by an electrical reflectivity tensor 5.e : 

5.c(r)Eb(r),EQL(r) ~ r EVa . (5.14) 

This tensor can be effectively approximated by a system of smooth basis functions on a 
coarse spatial grid because of a smooth variation of the field inside the inhomogeneity. 
Using a similar approach, we can introduce a 'magnetic reflectivity tensor' 5. '": 

5.m(r)Hb(r), HQL(r) ~ r E V (5.15) w 

According to Equations (5.7), (5.14) and (5.15) , the QL approximations of the 
anomalous fields outside the perturbed areas are expressed by the formulae 

EQL = ({;J EjQL) + ((;.M EMQL) ,
v; V,l 

HQL= ((;.JHjQL) + ((;.MHMQL) , (5.16)v, V,t 

where appropriate current densities jQL, MQLare: 

jQL = aa(I+ 5.c)Eb
, MQL = fla(I+5.m)Hb. 

The electrical and magnetic reflectivity tensors, 5.e and 5."'. are determined by a 
minimization technique applied to the corresponding areas of anomalous conductivity 
support, Va, and anomalous magnetic permeability support, Vii ' according to the 
following equations. 
(1) Within the joint area of the domains Va and Vii' rEV = v, nVii 

5.cEb
- ((;.J Eaa(I + 5.c)Eb + (;.M E fla(I+ 5.m )H b }v I 

~ ~, I = min. (5.17)
5.mHb - (GJ H aa(I + 5.c)Eb+ GM H fla(I + 5.m)Hb}v 

(2) Within the area outside Vii but inside Va , rEV = v, \ Vii 

II5.CEb-((;.J Eaa(I+5.C)Eb}vll =min. (5.18) 

(3) Within the area outside v, but inside Vii' rEV = Vii \ Va 

!I 5.m Hb_((;.MHfla(I+ 5. m )H b}vII = min. (5.19) 

Note that the solution of Equations (5.17)-(5.19) is nonlinear with respect to aa and 
fla, because 5.e and 5.mare nonlinear functions of aa and fl a. 

6. QUASI-ANALYTICAL APPROXIMATION 

The Quasi-Analytical (QA) approximation (Zhdanov et al ., 2000) is based on the same 
assumption as the QL approximation that the anomalous fields inside an inhomogeneous 
domain are linearly proportional to the background EM fields through the reflectivity 
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tensors ~e and ~m (Equations (5.14) and (5.15» . The main difference is that , using 
an analytic technique in the QA approximation, Zhdanov et al. (2000) obtained the 
reflectivity tensor ~e in explicit form. Here we extend the QA approach for media with 
joint electrical and magnetic inhomogeneities. 

EM fields at inner points can be expres sed using Equations (5.14) and (5.15) as 

~eEb = EB+ ({;J£aJeEb}v +({;M EJ1a~mUb } v ' . . 
~ mUb = UB+ ({;J Haa~eEb} v + ({; MHJ1 a~ mUb}v ' (5.20) . .
 

where E B , uB are anomalous Born fields: 

EB= ({; JEaaEb)v. + ({;ME J1aUbk =EBa +EBl 
l , 

UB= ({;J HaaEb}v + ({;Mn J1aUb} v = UBa + UB/" . (5.21) 

Subtracting weighted Born fields from Equation (5.20), we obtain 

~ c( Eb _ EBa) _ ~mE B/" = EB+ (({;JE aa~ e(r/) _ ~C(r){; J Eaa)Eb) v. 
+ (({;MEJ1a ~m (r' ) _ ~ m(r){;MEJ1a)Ub)v ' 

. . 
_~e UBa + ~ m(Ub _ UB/") = UB+ (({;JfI aa~e (r/) _ ~ e(r) {;J H aa)Eb}v. 

+ (({;M H J1a~m (r') _ ~m( r){;M H J1a)Ub)v . (5.22) 
I ' 

Following Habashy et al. (1993) and Torres-Verdin and Habashy (1994), we can 
take into account that the Green's tensors {;J £ , {;ME, {;J Hand (;M fI exhibit either a 
singularity or a peak at the point rj = r . Therefore, one can expect that the dominant 
contribution to the integral in Equation (5.22) is from some vicinity of the point rj = r . 
Assuming also that ~e and ~m are the slowly varying functions within domain s Va, V,I 
one can rewrite Equation (5.22) in the form 

~ C(Eb _ EBa) _ ~m EBJ1 R::: EB, (5.23) 

_ ~eU Ba + ~ m(Ub _ UBII) R::: UB. (5.24) 

Note that the system of Equations (5.23) and (5.24) is, in general cases, underdeter­
mined, because we have two vector equations for two unknown tensors ~ e and ~ "'. Let 
us consider now two special cases with scalar and diagon al reflect ivity tensors. 

In the case of scalar reflectivity tensors (~ e = Aei, ~ m= Ami, where j is a unit tensor), 
the linea r system of Equations (5.23) and (5.24) is overdetermined. We can obtain two 
scalar equations for Ae and Am by choosing the specific type of the multipliers. In 
particular, we calculate first, the dot product of both sides of Equation (5.23) and the 
complex conjugate electric field Eb*, and, second, calculate the dot product of both sides 
of Equation (5.24), the compl ex conjugat e magnet ic field Ub* : 

Ae(Eb. Eb* _ EBa . Eb*) _ Am EB/" . Eb* R::: EB. Eb*, (5.25) 

_AeUBa . Ub* + Am(Ub . Ub* _ UBII . Ub*) R::: UB. Ub*, (5.26) 

where ,*, denote s the complex conjugate vector s. 
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As a result, we obtain a system of two linear equations with respect to j.C and j.m : 
b. b b b B. bA

C
E E * _ EBa . E * _EBI-'. E * ) ( ) (E E * ) 

( _HBa.Hb* Hb .Hb *-HBI-'.Hb* Am = HB.Hb* ' (5.27) 

which can be easily resolved as follows: 

AC = D - 1 [(EB. Eb*) (Hb. H b* _ H BI 
1 . H b*) + (EBI-'.Eb*) (HB. Hb*)], 

Am = D- 1 [(HB. H b*) (Eb. Eb* _ EBa . Eb*) + (HBa . H b*) (E B.Eb*) ] , (5.28) 

assuming that the determinant, D , of the matrix of the linear Equation (5.27) is not 
equal to zero: 

EBa D = (Eb. Eb* - . Eb*) (Hb. H b* - HBI-' .H b*) _ (EBI 
• Eb*) (H Ba . H b*) =f- O.1 

For example , in the case of the purely electrical inhomogeneities, 

EBfl =0, HBfl = 0, 

EB EBa, H B H Ba, = = 

and the formula for the electrical reflectivity coefficient become s 

e _ (EBa • Eb*) 
A - . (5.29) 

(Eb. Eb* - EBa . Eb*) 

Formula (5.29) is equivalent to the one developed in Zhdanov et a1. (2000). Note that 
by choosing different multipliers in Equations (5.25) and (5.26) one can select various 
situations for reflectivity coefficients . 

In the case of diagonal reflectivity tensors j.c, j.m , we obtain from Equations (5.23) 
and (5.24) a 6 x 6 system of linear equations with respect to the six unknown diagonal 
components of tensors A ~j' A~ , i = 1,2,3: 

Eb E Ba _EB/' - 0 0 o oI I I 

E Ba _ E B /' o Eb - 0 o o 
o 

_H Ba 
I 

o 
o 

A ~I 

A32 

A~3 x 
A~I 

A ~2 

2 2 2 
0 Eb _ E Ba _E B /' o o3 3 3 

o 0 H
I
b_H

I 
BI' o o 

_H Ba H b H Bfl 0 o _ o2 2 2 
Bo _H

3 
Ea o o Hf- H 3 /l 

EB 
I 

EB 
2 

_ E3 
B 

(5.30) -I B 
HI 
HB 

2 

A33 / \ Hf 
To solve this sparse problem we consider separately three pairs of equations: the l st 

and the 4th, the 2nd and the 5th, and the 3rd and the 6th: 

(E~ - EiB a)A ~i - E~ I-'A~= Ef 
i = 1,2,3. (5.31)

[ B- Hr A ~j + (Hjb 
- HjB fl)A~ = H j



Solving each of the 2 x 2 equations from the system (5.31) under the assumption that 
the determinant , D;, of the corre sponding matrix of the linear equations (5.31) is not 
equal to zero , 

D . = (Eb ­ E Ba)(Hb _ H B1i) _ H Ba E Bli -/-0 
I I 1 I I I , or-, 

Let us consider now several numerical applications of the developed approximations. 
In the first set of numerical experiments, we check the validity of the linear and 

nonlinear approximations in a one-dimensional cylindrically layered model , excited by 
a vertical magnetic dipole (Figure 2). The EM induction respon se in the cylindrically 
layered model can be calculated using an integral equation method. In Append ix A we 

73 

(5.34) 

(5.32) 

(5.33) 

p)=10 Ohm.m 
X)=O 

i = 1, 2,3 . 
A ~1'! = D ~ I [H B(E b - ERa ) + E BH Ba]

II · I I I 1 It' 

Finally, for purel y electrical inhomogeneities, we find 

E Ba 
A ~; = b I Ba' i = 1,2,3,

E; -E; 

we obtain the values of the diagonal tensor components Af; and A ~ 

Ae. = D ~ I [E B(Hb _ H BJJ.) + HB EBJJ.]
II I I I I I I ' 

while for purel y magnetic inhom ogeneities we have 

H Bli 
A~ = ' B ' i = 1,2,3. 

/I H b-H. JJ. 
I I 

r 
Z 

.---------- .. ---­ -;;;:::=r'-=-~-:::------_. _--..i< ( ) r,=O.1 m) rz=var 
------..-__ _ I "--- -- ~ -........- 1 _- -------­ ! 

-T ----- -- .­ --r ! 
I J... R11 j 

I ::t::: R21 i 
I p,=var I 

j x,= var I
T i 

~ · _ · : _=-cJ:::::::::- ---­ --_._ I v- <:D <, ------~ \ I j / 
----­ "----./ ..»>- -------._-_ ._,- _._,.-:._-=::..: :..:::-~ . , _..--_._--­ ..__.-­

Figure 2. One-dimensional cylindrically layered model and induction array. The characteri stics of the 
three-coil induction tool TxRx\R x 2 are as follows: f =50 kHz ; L 1 = 1.5 m, L 2 =1 m; M1 =1 A m2 ; 

M2 = -0.2963 A m2 , where f is the frequency, L 1 and L z are the tool spacings, and M 1 and M2 are the 
receiver moments. 

7. NUMERICAL RESULTS AND VALIDATION 

A. Cheryauka et al. 
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implement a quasi-analytical approach to computing the EM field in the model with 
axial symmetry and present the corresponding formulae. In our simple computational 
test we consider the second layer in the three-layered model as an anomalous domain 
(scatterer) with respect to the two-layer model 'borehole space-background formation ' , 
chosen as a background model. This model study simulates an invaded zone effect in a 
thick formation , which is a typical problem in induction logging. 

At the same time, electromagnetic fields in cylindrically layered models with a radial 
piecewi se distribution of electromagnetic parameters can be expre ssed in closed integral 
form and can be calculated with arbitrary accuracy. The mathematical description 
and the solution for the vertical component of the magnetic field can be found, for 
instance, in Augustin et al. (1989). We treat the result obta ined by using this calculation 
technique as an 'exact' solution. We analyze a synthetic voltage signal of a borehole 
compensated array with characteri stics close to pract ical ones. The voltage signal of the 
conventional three-coil differential induction tool is represented as a linear combination 
of the two-coil tool 's respon ses (Kaufman and Keller, 1989): 

V = VI + V2 = ill [M I H:~(L I) + M2H:o:(L 2 ) ] 

00 

il l f 2+ 2n 2 PI VIU.. )(M )cosAL) + M 2 cos AL2)dA, 

° where {VI, M j , L i l. {V2, M2, L2} are the voltage signal s, the coil moment s, and the spac­
ings of the l st and the 2nd two-coil induction subarrays; VI (A) is the so-called 'l ayered 
function ' within the borehole space and H~: is a primary field in the homogeneou s 
medium with the parameters of the borehole space kT= ill 0-1, PT= A2 - kf. 

Figure 3 shows the real and imaginary parts of the voltage (R and X signals in 
logging terminology), calcul ated by using the exact data (the closed form solution: real 
part, solid line; imaginary part, dotted line) and the combined approximation (real part, 
'+' symbols; imagin ary part, '0 ' symbols). As one can find from Equat ions (5.6) and 
(5.7), the anomalous field components are determined by the superposition of electric 
and magnetic scattering currents depending on fluctuations of the material properties. 
We can separately choose a form of the approximation for these currents and compose 
a hybrid type approximation. Here we implement the quasi-analytical approximation for 
the anomalous electrical resistivity Q and the Born approximation for the anomalous 
magnetic susceptibility X. 

We compute three-coil induction tool responses for three cases: 
( I) a variable resistivity P 2 of the second cylindrical layer with a fixed magnetic 

susceptibility X2 = 0.01 and the radius of the outer boundary r i = 1.5 m (Figure 3a); 
(2) a variable susceptibility X2 with a fixed resist ivity P2 = 2 Ohm m and the radius 

of the outer boundary rz = 1.5 m (Figure 3b); and 
(3) a variable radiu s of the outer boundary r: of the second cylindrical layer with a 

fixed resistivity P2 = 2 Ohm m and magnetic susceptibility X2 = 0.01 (Figure 3c). 
Our calculations dem onstrate that the Born approximation provides a reasonable 

response estimation in a model with variable magnetic susceptibility, because the range 
of susceptibility variations in the invaded formations is small. At the same time, the 
electrical resistivity can change by a factor up four orders of magnitude, and one has 
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a) pz- var iation 
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Figure 3. The comparison of the synthetic voltage signals. The responses were calculated using the closed 
form solution (real part, solid line; imaginary part, dashed line) and the combined QA approximation 
for the electr ical resistivity Q2 and Born approximation for the magnetic susceptibility X2 (real part, '+' 
symbols; imaginary part, '0' symbols). (a) Variation of the layer electrical resistivity. (b) Variation of the 
layer magnetic susceptibility. (c) Variation of the layer outer bound ary. 
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to apply the nonlinear approx imations (in our case we use the QA approximation) for 
high-contrast and large-size anomalous areas. 

In the second set of numeric al simulations, we study the ability of the nonlinear 
methods to simulate an EM field in borehole models with casing. These model s 
have extremely high contrasts in electri cal conductivity and magnetic susceptibility 
parameters. For instance, the mild steel , which is widely used for borehole casing , has 
electrical resistivity in the order of 10- 6 Ohm m and magnetic susceptibility in the order 
of 103 (Balasnis, 1989). 

Figure 4 demonstrates the result s of the comparison between exact , localized and 
quasi-analytical solutions. The approximate data produced by both nonlinear methods 
for anomalous fields have good accuracy and graphically fit the exact data . At the same 
time , the quasi -analytical formulation gives the better approximation, becau se it takes 
into account the contribution from scattering currents depending on a primary source 
location. 

For this model we study also the validity of casing approximation using well known 
electrical (5) and magnetic (M) thin sheets models (Figures 5 and 6). In the general 
case of electrical and magnetic inhomogeneities and arbitrary polarization of a primary 
source the EM fields are function s not only of wave numbers k, of a medium, but 
they also depend on ratios (contrasts) of electrical and magnetic properties (Felsen and 
Marcuvitz, 1994). Thus, we-plan to consider the quality of the approximate solutions and 
the effects of anomalous electrical conductivity and magnetic susceptibility separately. 

We have found that the casing can be considered as an 5 thin sheet, which is 
characterized by a specific conductance (Figure 5): 

1 
5 = - dr = const. 

P2 
and low-magnetic properties only. The real thickness of the casing, dr , may vary from 
0.001 m to 0.05 m (with the corresponding change of the conductivity 1/ P2 to keep 
the conductance constant) without significant effect 'in the induction tool response for 
materials of low-magnetic susceptibility value , X2 ::: I , (upper panel , Figure 5). Highly 
magnetized casing with X2 = lOto 103 (Figure 5, middle and bottom panels) cannot be 
satisfactory simulated by 5 thin-sheet approximation. 

A similar effect is observed for an M thin sheet with a resistivity P2 = la-I Ohm m 
and with a constant integrated magnetic susceptibility (Figure 6, upper panel ): 

M = (l +X2) dr = const. 

However, this equivalence is not perfect for a lower resistivity of 10- 3 Ohm m 
(Figure 6, middle panel); and one cannot neglect the casing thickness for a highly 
conductive casing with P2 = 10- 6 Ohm m (Figure 6, bottom panel). 

8. CONCLUSIONS 

In this paper we have introduced a family of nonlinear approximations of electromag­
netic field in models with joint electrical and magnetic inhomogeneities. These approx­
imations are presented in the form of tensor integrals over a domain with anom alous 
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parameter s. The developed approximations combine linear and nonlinear estimations 
depending on the range of the complex conductivit y and magnetic susceptibility per­
turbations. The introduced family of nonlinear appro ximations could form a basis for 

dr=0.05 m 
dr=0.02 m 
dr=0.01 m 
dr=0.005 m 

+ dr=0.001 m 

Imaginary part 

Three-dimensional electro magnetics 

1.5 r' -~----~----~----, 

Total magnetic field, (Aim) 

dr=0.05 m 
dr=0.02 m 
dr=0 .01 m 
dr=0.005 m 

+ dr=0.001 m 

Figure 5. S-equivalence in the casing model , p;1 dr = 1O~ S . 

Real part 
1 .5 'r--~----~---~----' 

0.5 

.0 
10° 10

2 
-0.5 

10.2 
10° 

0 
10 ­ 10' 

1.5, 1.5
II 

.IIl1t1lI111't++ - dr=0 .05 m I - dr=0 .05 m...................... -.+ 
...., . + ---_. dr=0.02 m 1 

---_. dr=Om m 
~ - -_ ..__........ ...\-,\: ~+ ......... 

dr=0.01 m I . . ~ t++ 
......... dr=0 ,01 m 

\ \ + 
dr=0 ,005 m 

r}~\ \' + 
dr=0.005 m 

\ \" + dr=0.001 m + dr=0.001 m 
05 f <, 0.5 "' + '. ::0+\\.+ I: \ : 

;f:: \\ ~~\~ ~ + 

\\" 
\ \{~i~ 

I -0.5 
. 0 

10° 10
2 10.2 

10° 10
210 ­

1.5 

- dr=0.05 m - dr=0.05 m 
--­_. dr=0.02 m 

1 
---_. dr=0.02 m 

......... dr=0.01 m ......... dr=0,01 m 
dr=0.005 m dr=0.005 m 
dr=0.001 m + dr=0.001 m 

05t--. 0.5 
++ 

+++ot++ 
+ ++. + 
+ +++ ... 

0·· ···· + 
0 

..~..... ... + 

+.....++ 

-0 5 ' -05 L~ 
10.2 

10° 10
2 . .0 

10° 10
210 . 

frequency, (kHz) frequency, (kHz) 

78 



10
2 

10
2 

dr-O .OS m 
dr=0 .02 m 
dr=0 .01 m 
dr=O.OOS m 
dr=0 .001 m 

dr=O.OS m 
dr=0 .02 m 
dr=0 .01 m 
dr=O.OOS m 
dr=0 .001 m 

I­

I·.. :.... 
i + 
I 

dr=O.OS m 
dr=0 .02 m 
dr=0.01 m 
dr=0.005 m 
dr=0.001 m 

10° 

10° 10
2 

~ y~ 

frequency, (kHz) 

10.2 

10.2 

10.2 

ojllll••mllUIlUIIUlIlI'llllllIlUlIMIUIIlIIUlIl............ 

0.5 

0.5 

0.5 

1.5r. -~---------~-___, 

1.Sr' -~---------~--, 

1.5r' -~---------~-___, 

01'·'''''''''' ..,, ,, 
-0.5 '--~-:-----"""-:---

-0 .5LI _ _ '-:­ -:-­ '-:-_ --l 

-0 .5 LI __'-:­ ~'-:- ~-:-__.J 

10
2 

10
2 

10
2 

79 

Total magnetic field, (AIm) 

Imaginary part 

dr=0.05 m 
dr-om m 
dr=0 .01 m 
dr-O .OOS m 
dr-0.001 m 

dr-0.05 m 
dr-0.02 m 
dr=0.01 m 
dr-O.OOS m 
dr-0.001 m 

dr=O.OS m 
dr=0.02 m 
dr=0 .01 m 
dr=0.005 m 

+ dr=0 .001 m 

10° 

10° 

10° 

Real part 

10 
2 

10.2 

10-2 

frequency, (kHz) 

o 

a 

o 

o .511.!JdIISUMUEl'~Ul1M1"Ul!~!..!'p~:.~ 

Figure 6. M-equivalence in the casing model, (l +X2)dr = 1M. 

O.5~rIlMlillaUMUBlt.~dUMlI8UIIIHII'!!!J __~ 

S~ .~"~O. ;:::'-"!~:"" ":< + 
I "'" " '. . 't: 

\\\),.... - \ 

P2= 10-1 Ohm-m 

P2= 10-6 Ohm-m 

-0.5 1 I 

-0.5 1 I 

-0.5 1 I 

A. Cheryauka et al. 

fast EM modeling and imaging in the multi-dimensional environment where the joint 
electrical and magnetic inhomogeneities are the essenti al feature of the model. The 
numeri cal test s carried out for one-dimensional electromagnetic logging application 
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have demonstrated the validity of the theory and the effectiveness of the proposed 
approximations. 
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Appendix A. QUASI-ANALYTICAL ONE-DIMENSIONAL SOLUTION 

Consider a one-dimensional cylindrically layered model with the cylindrical coordinate 
sys tem {p ,¢, zl and the axial distribution of electrical conductivity a (p) and magnetic 
permeability il (p ). The incident field is excited by the vertical magnetic dipole of a un it 
moment located at the axis of symmetry at the point zp . We formulate a simple axial 
symmetrical one-dimensional boundary value problem, where the model prop erties do 
not depend on the ¢ and z coo rdinates and the EM field is also azimuthally uniform. 

Applying this Fourier transform with respect to the variable z to the initial Equation s 
(5.6) and (5.7) replacing all the functions E,H,G with the ir appropria te spec tra e.h.g, 
we obt ain 

a (Al E- (e'' a») (AME- (h" ha»)e = g aa e + e Va(p' .</J') + g u« + V"(p '.</J') '
 

h" = (glff a a(eb+ea)k (p,,</J ')+(gMff ila(hb+h a»)v" (P"</J')' (5.A I)
 

Defining Green 's ten sor functions, G, of the circular source by integration of the 
Green 's tensor functions Gof the point sources as 

2rr 

G= f G(¢ ')d¢ ' , (5;A2) 

o 
and substituting their spectra gafJ in Equation (5.A I ), we obt ain 

a (vDE- (b a») (vME- (h" ha»)e = g a a e +e v, (p') + g /-La + V,,(p') '
 

h" = (gl ff a a(eb+ea»)va(p') + (gA1ff ila(bb+h a»)v,,(P'>' (5.A3)
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According to Equat ion (5.5), the tensors gJE, gJ H , gMH, gM£ satisfy the following 
equations: 

I 8( ' ) 
V * - ( » VJ £( 'I ) I p-p(V * X -_-- X -ab P g P P = 

A 

,

{t b(P ) p
 

g.lH(p'lp) = ~(') V * x gJE(p'l p),l 
{tb p 

AI 8( ') 
(V * - - V * - ( »vg MH( ' I ) = I p-pX _ X -{tb P P P ,


ab(p) P
 

gM£(p'lp) = _ (o ' ) V * x gMH(p'lp), (5.A4) 
a b P 

where V * = f" ip + iAiz is a Fourier spectrum of the axial symmetrical vector-operator 
V. 

Equations (5.A4) for the tensor function s gxf! in the cylindrically layered model can 
be solved in close analytical form. However, we do not present here the general analyti ­
cal solutions because of the tremendous length and compl exity of these expressions. We 
restrict our study to the simplest case of the homogeneous model only. In this case , the 
solutions of Equations (5.A4) can be expre ssed in the compact form 

gJE(p 'lp ) = iLbg(p ' lp) 

gJ H (p' lp) = g' (p 'lp) 
g' = V * x g, (5.A5) 

gMH(p ' lp) = CTbg(p ' lp) , 

gM£(p'jp) = g' (p 'lp) 

where the function g(p 'lp) is generated by the diagonal Green's tensor function g(p' lp ) 
for the homogeneou s full space: 

g=g +k- 2V*(V* . g), e = iLbCTb i= o. (5.A6) 

The Green's tensor function g(p 'l p) satisfies the tensor Helmholtz equation : 

V*2 +k2g = _i 8(P - p').g (5.A7) 
p 

In a cylindrical coordinate system it is determined by a differenti al matri x operator 
applied to the scalarfunction g(p ' lp) : 

I a2 o nA ­ a 2 apap ' 

g= 0 I a2 g (5.A8) 
( - a 2 apap' , 

o ° 
p -:::::. p ' g = IK o(ap' )Io(ap ), 

a = JA 2 - k2 , Re(a ) > O. (5.A9) 
l o(ap' )Ko(ap), p > p' 

Here 10 , Ko are the modified Bessel and MacDonald functions of the zero order. 



82 Three-dimensional electromagnetics 

Using Equations (5.A5), (5.A8) and (5.A9) and the similar notations as in Equations 
(5.5)-(5.9), we can calculate the spectra of the back ground fields, 

b - , . v , hb k2 ,. v e = J.LbP I z •g , = P I z . g, (5.AlO) 

and the spectra of the Born approximations are 

B Ba BI' (- v - b) + (V' - h '') e = e + e = J.LbgO'ae Va(p ) g J.La VI, (p) ' 

hB hBa hBIL (V ' _ b) +(-V- hb) = + = g O'ae Va(p ) O'bgJ.La VI,(p ) ' (5.A l l ) 

The diagonal reflectivity tensors, ).e , ). ill , are determ ined as the solutions of the linear 
system of equat ions obtained by the Fourie r transform of Equations (5.22) in dia gonal 
tensor form. In the case of an axial symmetrica l model excited by the vertical magnetic 
dipole, the electrical reflectivity coefficient Ae can be found from a scalar Equation 
(5.27). In particular, in the model with high-contrast conductivity and low-contrast 
magnetic susceptibility distributions (Figure 3), we can use the analytical expression for 
electrical reflectivity coefficient xe , based on Formula (5.33): 

eBa(p) 
Ae(p) = b '" B . (5.A12) 

e",(p) -e",a(p) 

Note that in this model we use the conventi onal Born approximation with respect 
to the magnet ic anomaly and do not introduce the magnetic reflectivity coefficient x ill. 

Using Equation (5.A I2) , we write 

(1 +Ae(p)r 1 = 1- e~a( p) 
e",(p) 

P P2 

= 1- ilbaa(f I ,(ap' )K1(ap' )p' dp' + ~\~a:;) f K T(ap' )p' dP'). (5.A13) 

PI P 

where a = J)., 2 - k2 . The integrals in Formula (5.A I3) can be evaluated in explicit form 
using the tabular integral (Gradstein and Ryzhik, 1994, p. 661, 5.54) 

f ,BxUp(a x )V1'- 1(,Bx) - axUp_1(ax)VI'( ,Bx) 
x UI'(ax )V I'( ,Bx) dx = 2 ~ , 

a -,B 

where Up(x )and Vp(x) are arbitrary cylindrical functions of p order, and the interval 
p' E [PI , P2 ] is the thickness of the cylindrical layer with the anomalous conductivity a a' 

Finally, the vertical magnetic field Hz mea sured at the axis of symmetry at the point 
Zq is derived from the expressions 

00 

Hz = Hz b + -; 1 f hz()., )cos ALdA, 

o 
ik L e

H b = --(1 - ikL ) 
z 2n: L3 ' 

h , = (iz . g'a a(1 + Ae)ebk(p) + (i z •abgilahbk (p)' (5.A14) 
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where L = Izp - Zq I is the distance between the position of the transmitting magnetic 
dipole zp and the position of the receiver Zq and k is the wave number of background 
homogeneous space. 
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