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Abstract: We present a method for the solution of 3-D controlled source magnetotelluric 
(CSAMT) inverse problems. The inverse problem is formulated as the minimization of a 
Tikhonov parametric functional with a focusing stabilizer. Observed CSAMT apparent resis­
tivities are converted to log-anomalous apparent resistivities, which are linearly connected to 
anomalous currents via the integral equation. We apply the Born iterative method to solve this 
integral equation , using a focusing regularized inversion. The focusing is based on a specially se­
lected stabilizing functional which minimizes the area where strong model parameters variations 
and discontinuities occur. The method is illustrated using examples of 3-D inversion of model 
CSAMT data , and with a real data example . 

1. INTRODUCTION 

This paper deals with three particular aspects of the CSAMT inverse problem. The first 
is use of apparent resistivity data in the inversion, which is solved by using the concept 
of log-anomalous apparent resistivity. The second aspect is nonlinearity of the inverse 
problem, for the solution of which we apply the Born iterative method (Chew, 1990). 
The third is the non-uniqueness of the solution, which is addressed by using Tikhonov's 
regularization theory. 

Traditional geophysical inversion methods are often based on the Tikhonov regular­
ization theory (Tikhonov and Arsenin, 1977; Zhdanov, 1993) which provides a stable 
solution of the inverse problem. This goal is reached , as a rule, by introducing a 
maximum smoothness stabilizing functional. The obtained solution provides a smooth 
image of real structures that sometimes looks geologically unrealistic. Recently a new 
approach to the reconstruction of noisy images has been developed (Rudin et al., 1992; 
Vogel and Oman, 1998). It is based on a total variation stabilizing functional which 
requires that the distribution of the model parameters be of bounded variation. This 
requirement is weaker than one of maximum smoothness because it can be applied to 
discontinuous functions. However, it still decreases the bounds of the model parameters ' 
variations and therefore distort the image. In papers by Portniaguine and Zhdanov ( 1998, 
1999) we introduced stabilizing functional s, which generate more 'focused ' images than 
conventional methods. We call this approach focusing of inversion images. In the present 
paper we apply this new method to the 3-D CSAMT inversion. 
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The CSAMT method measures complex impedances, which are often converted to 
apparent resistivity and phase. For 3-D inversion, the apparent resistivities have to be 
connected to fields. We solve this problem by converting data to log-anomalou s appar­
ent resistivities, which are linearly connected to anomalous fields. Such conversion has 
certain advantages, as opposed to using anomalous fields directly . Often, only the value 
of apparent resistivity is measured. This makes calculation of the anomalous fields diffi­
cult , becau se recomputing apparent resistivity into anomalous fields require s knowledge 
of phases. Log-anomalous apparent resistivity can be easily computed without knowing 
the phase. Another aspect is that the measurement s at different frequencie s should 
be properly weighted to invert them together. Conversion to log-anomalous apparent 
resistivity makes the measurements dimensionless, which provide s natural weighting to 
the fields at different frequencies. These advantages apply to inverse problems both for 
layered media (finding the background field) and for the subsequent 3-D inversion. 

The electromagnetic (EM) inverse problem is nonlinear. For ease of numerical 
solution, it is often converted to a series of linear problem s. One common technique is 
the Born iterati ve method (Chew, 1990). Thi s method is based on the fact that the EM 
inverse problem is actually a bi-linear problem , a special case of a general nonlinear 
problem. Since the problem is linear to anomalous currents, and the currents are the 
product of the total electric field and anomalous conductivity, the inverse problem 
becomes linear with respect to conductivity if the total fields are fixed. The total electric 
fields, in tum, are connected to anomalous conducti vity via the corresponding integral 
equation (IE). Using these properties, we construct an iterative process whereby the 
linear inverse problem is solved first for anomalous currents, assuming the total electric 
fields are fixed. Second, the values of the total fields are updated using the found values 
of anomalous currents. These new values of the total fields are used in the next iteration 
of the inverse problem. Convergence of the process is assured by using a modified 
Green 's tensor operator (Zhdanov and Fang, 1997). 

Combined with the focusing inversion method, such a strategy allows us to avoid 
solving the full IE for the whole inversion domain . On the first iteration , the linear 
inverse problem produces compact bodies, and the total electric field needs to be found 
only inside the compact domains. The IE for such domain s is much smaller than the IE 
for the whole domain and can be easily solved. 

Our discussion is illustrated by appl ications of the method to synthetic models and 
real CSAMT data, collected in Hamlin Valley, Nevada, for oil exploration. 

2. THE METHOD OF INTEGRAL EQUATIONS 

The IE method is a powerful tool for EM modeling and inversion . The basic principles 
of constructing integral equations in 3-D cases were outlined by Weidelt (1975) and 
Hohmann (1975) . A comprehensive implementation of the IE methods was reali zed 
by Xiong (1992) in the SYSEM code. Also, several IE-based approximate method s 
have been developed recently . These are localized nonlinear approximation (Habashi et 
aI., 1993), quasi-linear approximation (Zhdanov and Fang, 1996a,b), quasi-linear series 
(Zhdanov and Fang, 1997), and quasi-analytic approxim ation (Zhdanov et aI., 2000). 
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The main idea of the IE method is the following. The forward EM problem consists 
of finding the electric and magnetic fields at receivers for a given source and with 
known distribution of electri cal conductivity (Zhdanov and Keller, 1994). We assume 
that the magnetic permeability u. is constant everywhere and is equal to that of free 
space fL = 4JT X 10- 7 Him. Let us represent a 3-D distribut ion of conductivity a as the 
sum of background (normal) conductivity ab and anomalous conductivity So , which is 
nonzero only with in the local domain D. This model is excited by a harmonic source of 
circular frequency w. 

The vectors of total electric E and magnetic H fields in this model can be presented 
as the sum of background (normal) and anomalous (scattered) fields: 

~' E=Eb+Ea 
, H =H"+H". (10.1) 

~/ 

The background field E" is a field generated by the given sources in the background 
model ab, and the anomalous E" field is caused by the presence of anomalous 
conductivity So . 

The anomalous field is presented as an integral over the excess currents in the 
inhomogeneous domain D: 

EO(rj) = III G E(rj I r) .jO(r) du, (10.2) 

o 

Ha(rj) = IIIGH (r; I r) .j" (r) dv, (10.3) 

o 

where GE(rj I r) and GH (r; Ir) are the electric and magneti c Green 's tensors defined 
for an unbounded conductive medium with a background conductivity abo Excess 

~. (anomalous) current density j "(r) at point r is determined by the equation 

j" (r) = !1a (r) (E"(r) + EO(r) ) = !1a (r )E(r ). ( lOA ) 

Expression (10.2) become s the IE with respect to anomalous elect ric field E" (r) , 
if point r j is inside D . Solut ion of this equation yields an anomalous electric field 
inside doma in D . After that , anomalous magnetic fields everywhere and anomalous 
electric fields outside domain D can be found using Equati ons (10.2) and (10.3). The 
background fields are assumed to be known everywhere. 

In tum, the anom alous field is a linear combination of anomalous currents !1a (r )E(r): 

EO(rj) = III G E(rj I r) . !1a (r )E(r) dv, (10.5) 

o 

H" (rj) = III G H (rj I r) . !1a (r )E(r ) dv. (10.6) 

o 

We use discrete analogs of the continuous Equations (10.5), (10.6): 

E, = GeSe l , (10.7) 

~:r 
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H, = G"Seb ( to.8) 

G

where discrete vector e, contains three components of the total electric fields inside the 
anomalous domain, and the vectors E, and H, represent the anomalous fields at the 
receivers. The anomalous conductivity is stored in a sparse diagonal matrix S. Matrices 

e, Gh represent the values of corresponding Green's tensors. 
If point r j is inside the anomalous domain D, Expression (10.7) becomes an integral 

equation with respect to the electric field: 

e, = GSeb (10.9) 

where e, is a vector of an anomalous field, and G is a matrix of the corresponding 
Green's tensor inside the domain D . Equation (10.9) establishes a connection between 
the electric field inside the anomalous domain and the anomalous conductivity. Using 

e, = ea +en , (10. to) 

where en is a vector of normal electric field inside the domain, Equation (10.9) becomes 

e, = GS(ea +en) . (10.11) 

or 

e, =GSet+en • (10.12) 

The solution to (10.12) can be written in matrix notation : 

-- '-"'-' -1 
et = (I-GS) en' (to.13) 

3. THE CSAMT FORWARD PROBLEM 

The scalar CSAMT method produces values of a complex apparent resistivity p 
(Tikhonov, 1950; Cagniard, 1953), which is computed according to 

1 (E )2 p=- _ Y , C= 2n fLo, (to.14)
cf H, 

where f is frequency, fLo is the free space magnetic permeability, E ; is the y-component 
of an electric field, and H, is the x-component of a magnetic field. We assume that 
measurement profiles are parallel to the y axis . 

In general, apparent resistivity is a nonlinear function of electric and magnetic 
fields. It is possible, however, to derive a convenient simplification of the apparent 
resistivity formula which makes these dependencies linear. Below, we demonstrate that 
the logarithm of apparent resistivity is linearly connected to the anomalous fields. 

We represent the field components as the sum of normal (denoted with subscript 'n') 
and anomalous parts (denoted by subscript 'a'): 

E ; = En+ Ea, H, = H; + H; (10.15) 



Provided that the anomalo us field is much smaller than the norma l field, the log of 
apparent resistivity can be easily linearized, using 
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Figure 1. Synthetic EM model: (a) observation system, (b) true model. 
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A normal apparent resistivity Pn can be introduced to obtain 

In(p. ) ~ 2In(£./H. ) -In(cf ) = In ( c~ (~:)') . 

Taking the log of Equatio n (10.14) and using Formula ( 10.15), we obtain 

( 
1 (En+Ea) 2) In(p) = In -f = 2l n(En+ Ea) - 21n(Hn + Ha) - In(cf), 

c Hn+Ha 

In(p ) = 21n( I + Eal En) - 2 1n( I + Hal Hn)+21n(E nl Hn) - In(cf) . 



Figure 2. (a) 3-D resistivity model resulting from smooth inversion, 1.5% misfit. (b) Result of focusing 
inversion with 1.5% misfit. 

Now we introduce log-anomalous apparent resistivity In(Pa) as the difference be­
tween the logs of observed (total) and normal apparent resistivity: 

(10.19) 

(10.20) 

o 
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In(Pa) = In(p) -In(Pn) = 2(Eal En - Hal Hn). 

Combining (10.16), (10.17) and (10.18), we have 

In(p) = 2(Eal En - Hal Hn)+ In(Pn)· 
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Note that the frequency term In(1 /cf) in (10.16) cancel s. The quantitie s in (10.20) are 
dimen sionless. Thus, expression (10.20) for different frequencies can be used together 
in the inversion without additional weighting . If we measure only the absolute value 
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Figure 3. Background model with a resistive layer. The lower half-space is filled with rectan gular cells. 
The size of the cells increases with depth. Sta rs denote the receiver location. Circles den ote the location 
of the transmitter poles. 

of apparent resistivity, but not phase, all we need to use is the real part of logarithmic 
Equation (10.20): 

In IPal = 2 Real(Eal En- Hal Hn). (10.21) 

Note also that log-anomalous apparent resistivity is an approximation. Experiments 
with synthetic and real data show that the maximum of log-anomalous apparent 
resistivit y is on the orde r of 0.2. For this value, linearization (10.17) holds with an 
accuracy of 0.0 1. The est imated noise in the 3-D inverse problem with respect to 
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Figure 4. Model with the ant icline on top of the resistive layer. (a) Cross-section. (b) Plan view; the slice 
is taken at 800 m depth. Stars denote the receiver locations. 

log-anomalous apparent resistivity is also on the order of 0.0 I. Thus, we can safely use 
the notion of log-anomalou s apparent resistivity if its maximum value is less than 0.2. 
For cases with very conductive structures where the value can be more than that, the 
algorithm shows the correct position of the body but underestimate s the conductivity. 

4. FO RMULATION OF THE INVERSE PROBLEM 

The inversion process consists of two major steps. First, we estimate normal apparent 
resistivity by fitting the log of observed apparent resistivity In(p) for all stations and 
all fr equencies with the log of apparent resistivity derived from a layered model In(Pn)' 
The residual of fitting is associated with log-anomalous apparent resistivity. As we 
can see from (10.20), log-anomalous apparent resistivity In(Pa) is a linear combination 
of anomalous fields. Further, we represent anomalou s field as a linear combination of 
responses from individual cells and solve the 3-D inverse problem using the method of 
focusing inversion . 

We introduce a vector of the data d , which combines the values of log-anomalous 
apparent resistivity at the receiver s, for all frequencies. According to (10.20), it is 



Figure 5. Data for the model shown in Figure 4. (a) Original log-anomalous apparent resistivity for the 
first profile. (b) Log-anomalous apparent resistivity predicted from the inversion; 
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where diag(En)- 1 and diag(Hn)-1 are sparse matrice s containing the inverse normal 
fields on the main diagonal. 

Integral Equations (10.7) and (10.8) connect the anomalou s fields at the receivers 
to anomalous currents Set inside the domain . We introduce sensitivity to the currents, 
matrix Gj , as a linear combination of matrice s Ge and Gh : 

Gj = 2diag(En) - IG e - 2diag(H n)- IGh . (10.23) 

Using (10.22) and (10.23), we convert Equation s (10.7) and (10.8) into a single equation : 

a linear combination of anomalous fields, with normal fields as weights. In matrix 
notations , Formula (10.20) is cast as follows : 

We formulate the inverse problem with respect to scaled conductivity m, which 
is connected to anomalous conductivity via a matrix of expected conducti vities Se 
(constraints). The anomalous conductivity is a product of inversion parameter m, 

O. Portniaguine and M.S. Zhdanov 
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Figure 6. Result of inversion for the body atop the resistive layer. (a) Plan view. (b) Cross-section. 

changing from - 1 to 1, and the value of constraint, which is stored in the corresponding 
diagonal of matrix Se' The following relationships hold: 

S = diag(Sem), (10.25) 

Set = diag(et)Sem (10.26) 

Using (10.26) and (10.24), we establish the equation of the forward problem: 

d = Gj diag(et)Seffi. (10.27) 

Or, expressing e, via (10. 13), we may rewrite Equation (10.27) as 
~ . ~ ~. ~ - I ~ 

d = Gj dlag«I - G dlag(Sem)) en)Sem. (10.28) 

Our goal is to find the parameters m given the data d , that is to solve the inverse 
problem. Since this inverse problem is ill-posed, we use the Tikhonov regularization 
method to solve it. We minimi ze the Tikhonov parametric functional with a minimum 
support focusing stabilizer (Portniaguine and Zhdanov, 1999): 

n; 2 
kIld- Gjdiag«I - G diag(Sem» -l en)SemI/2+a L zm " = min. (10.29) 

k= 1 mk + f3~ 



(10.31) 

(10.30) 
«: 2 

~ ~ . 2 " mklid - Gj diag(el)Semll + ex ~ 2 ~ = min, 
k = l mk + f3 

Note that problem (10.29) can be expressed as bilinear, using (10.27): 

--­ -­ . ..-.. - 1 
e, = (I - Gdlag(Sem» en' 
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Figure 7. Model with the body inside the conductive layer. (a) Cross-section. (b) Plan view. 

The main problem with the IE method is that, for general 3-D cases, matrix G in 
Equation (10.31) is full and may be very large . Assume that the anomalous domain D 
is a rectangular prism. Each side of the prism is divided into N rectangular prismatic 
cells . Then the number of cells is N; = N 3• The number of entries in the matrix Gis 
(3 X N;)2 = 9 X N 6 . We can see that the number of entries grows as the sixth power of 
N. This growth is the main limiting factor of the integral equation method. If N = 5 the 
problem is small and readily solvable. Yet, for N = 10 the size of the problem becomes 
very large. 

The use of focusing inversion greatly reduces the size of the problem. Numerical 
solution of (10.30) and (10.31)follows conventional bilinear approaches. First we solve 
(10.30) for m, using some approximation to multiplier e.. Note that if e, is known, 
problem (10.29) becomes purely linear. 
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Figure 8. Original apparent resistivity data simulated by SYSEM (case a) and the data predicted from 
the inversion (case b) for the model with the body inside the conductive layer. 

All subsequent iterations deal with a greatly reduced problem. For example, on the 
second bilinear iteration we use the value of m to update e, using (l 0.31). But m has 
already become sparse, after solving (l0.30). 

It is very important to find a good initial approximation to the unknown multiplier 
e.. The choice of the initial guess determines the course of the inversion . To derive the 
initial approximation to the multiplier e., we use the first iteration of Jacoby's method . 
According to Jacoby's method, off-diagonal terms (10.13) are neglected: 

e, = [diag(I- GS)] - I en'	 (10.32) 

If we consider an anomalous domain consisting of one cell , (l0.32) gives the 
exact solution . It will also be exact if we consider multiple cells located far away 
from each other. Physically, this means that the method provides the solution with no 
electromagnetic interaction between the currents in different cells. 

Note also that this approach implicitly assumes the secondary field to be proportional 
to the primary field. This assumption is similar to the idea of quasi-linear approximation 
(Zhdanov and Fang, 1996a,b). 



(10.34) 

(10.36) 

(10.35) 

(10.33) 

which we modify further : 

Aea + Ben = KG(2KB)(ea + en)+ Bea + Ben' 

Introdu cing the modified Green 's operator GI1I (Zhdanov and Fang, 1997) 

Gm(x)= KG2K(x)+ x, 
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Figure 9. Result of inversion for the model with the body inside the conductive layer. (a) Cross-section, 
(b) Plan view. 

The purpo se of subsequent steps in the inversion problem is the following : the nonlinear 
cross-influence of cell s leads to changes in the shape and size of the anomalous bodie s 
but does not change the location of the bodie s. 

An important que stion is the convergence of the algorithm. To ensure convergence, 
we have to modify the Green's matrix G. In other words, we have to condition Equation 
(10.11) with the conditioners (diagonal matrices) K, Aand B: 

5. BILINEAR CORRECTIONS WITH A MODIFIED GREEN'S OPERATOR 
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We have applied 3-D focusing inversion to synthetic CSAMT data. We consider two 
sets of model s. 
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Figure 10. Model with a near-surface local conductive body. (a) Cross-section. (b) Plan view. Stars show 
the observation points located on the surface. The body is located near coordinate Y = 746000 m. 
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6. TESTS ON MODELS 

provided that the conditioners A and B are connected to normal 8n and anomalous 
conductivity distribution 8 via the relationships 

A=8;;- 1/2(28n +8)/2, B=8;;- 1/28/2. (10.39) 

Property (10.38) ensures convergence of the algorithm. Therefore , instead of (10.31) 
we iterate Equation ( 10.37) to solve for ea , from which we obtain the unknown 
multipli er e., using Equation (10.10). 

we have 

Aea +Ben= Gm(Bea +Ben)' ( 10.37) 

It has been proven (Zhdanov and Fang, 1997) that the modified operator Gm has the 
contraction property 



The first model contains two conductive (1 Ohm m) bodies embedded in a 20-0hm m 
background, with their centers located at a depth of 600 m, 300 m apart. For the full 3-D 
interpretation we have simulated the data on three parallel profiles (Figure 1, case a). 
The horizontal electric bipole transmitterAB was located 8 km away from the central 
profile. Panel b in this figure depicts the true model. 

Figure 2 shows the inversion result s. Smooth inversion (case a) cannot resolve 
the bodies . The focusing inversion (case b) resolves the bodies well. Both models in 
Figure 2 fit the data with the same accuracy of 1.5% (r.m.s. average) . 

Note that focusing inversion makes strong assumption about compactness of material 
property distribution . That is why the apparent resolution is so good. 

The other model contains a resistive (2600 Ohm m) layer covered by a conductive 
(10 Ohm m) layer of 900 m in thickne ss. This model uses the survey geometry which 
is shown in Figure 3. The same figure shows the discretization for the inverse problem , 
where the top of the lower half-space is filled with cells increasing in size with depth. 
We calculate apparent resistivity at 14 frequencies ranging from 0.5 Hz to 4096 Hz, 
on two profiles located as shown in Figure 3. These parameters are based on the real 
explor ation problem described in the last subsection of this paper. 
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Figure 11. Original data simulated by SYSEM (case a) and the data predicted from the inversion (case 
b) for the model with the local body near the surface. 
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Figure 12. The inversion result for a local, near-surface body. (a) Cross-section. (b) Plan view. Inversion 
resolves the bodies below the observation profiles but does not resolve the bodies' strike extent away 
from the profiles. 

The problem is to find the topography of the upper boundary of a layer. For exampl e, 
an anticline structure can be viewed as a departure from the horizontally layered 
background. It can be modeled as an anomalous resistive body located atop the layer, 
like the one shown in Figure 4. Figure 5, case a, shows the data (apparent resistivity) 
computed for this model by the SYSEM full IE forward modeling code (Xiong, 1992). 
Case b in Figure 5 shows the data predicted from the inversion. The result of inversion 
for this model is shown in Figure 6. 

In a real exploration problem, however, anomalies in the upper layers often over­
shadow the deeper structures. In the MT and CSAMT method this effect is called 'static 
shift' . The last two models illustrate this point. Let us consider the model where the 
observation system and background are the same, but the conductive layer contains a 
resistive inclusion in it, as shown in Figure 7. Figure 8 shows observed (case a) and 
predicted apparent resistivity data (case b) for this model. Figure 9 shows the result 
of inversion for this model. Another model consists of a local near-surface conductive 
body. This model is depicted in Figure 10. The response from this model is shown in 
Figure II . Figure 12 shows the result of inversion for this body. As we can see, inversion 
can compensate for the static shift effect s, but cannot resolve a near-surface structure 
located between the profile . 
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Figure 13. Apparent resistivity on the first profile (a) observed, (b) predicted from 3-n inversion. 

7. INVERSION OF REAL DATA 

We applied the developed method to the inversion of real 3-D CSAMT data collected 
in Hamlin Valley for oil exploration. Detailed description of this example is given in 
Portniaguine (1999). 

The observation system is similar to that in Figure 3. We have applied 3-D inversion 
to the two profiles simultaneously. For the full 3-D interpretation we used the original 
data uncompensated for static shift (Figure 13). The compensation for static shift is left 
to the inversion. Panel a in this figure depicts the observed data (apparent resistivity). 
Panel b depicts the data predicted from inversion. The misfit (global r.m.s. error) was 
1%. 

Figure 14 shows the inversion results. The stars in panel b are superimposed on the 
top of the resistive layer. They are picked from the seismic section at the same location 
and correlated with the Devonian layer. This figure depicts two interesting features. 
First, we can see that 3-D inversion accurately predicts a down-dropped block in the 
Devonian. Second, we can see the uplifted part of the fault. Thus, with the 3-D CSAMT 
inversion, we were able to reach the same conclusions as from the seismic data . 
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Figure 14. (a) Cross-section of the resulting resistivity model along the first profile. (b) Horizontal slice 
of the resulting model taken at 800 m depth. 

8. CONCLUSION 

We have developed a new algorithm of 3-D CSAMT data inversion based on integral 
equation forward modeling and regularized inversion . This algorithm combines the ideas 
of the iterative Born method and focusing imaging. 

For inversion, we converted the CSAMT data to log-anomalous apparent resistivity, 
which was linearly connected to anomalous fields. Such a conversion simplifi es the 
inversion algorithm and is convenient to use. 

The results of our work demonstrated that the combination of iterative Born method 
and focusing regularized inversion resulted in a new effective method of CSAMT data 
interpretation over 3-D geoelectrical structures. 
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