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Abstract 

Int erp retation of magneto telluri c data over inhomogeneous geolog­
ical st ructures is st ill a challenging problem in geophysical exploration. 
We have developed a new 3-D MT inversion method and a computer 
code based on full nonlinear conjugate gradient inversion and quasi­
analyt ical approximation for forward modeling solut ion. Appli cat ion 
of the QA approximation to forward model ing and Frechet deriva­
t ive computat ions speeds up the calcu lati on dr amatically. However , 
in order to cont rol the accuracy of the invers ion, our method allows 
applicat ion of th e rigorous forward mod eling in the intermediate steps 
of the inversion procedure and for the final inverse model. The 3-D 
magneto telluri c inversion code QAI NV3D based on QA approxima­
t ion, has been tested on synthet ic models and applied to the practical 
MT dat a collecte d in an area with complex geology. T he inversion of 
3-D MT data can be done within a few minutes on a PC to gener­
ate a 3-D image of subsur face formations on a large grid with tens of 
t housands of cells. 

Introduction 

Three-dimensional int erpretation of array magnetotelluric data is an act ive 
area of the resear ch and development conducted by t he Consortium for Elec­
t romagnetic Modeling and Inversion (CEMI) at the University of Utah. In 
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recent years we have developed a new method of solving this problem using 
fast but accurate quasi-linear (QL) and quasi-analyti cal (QA) approxima­
t ions for forward modeling solut ion (Zhdanov et . al., 2000a,b; Zhdanov and 
Hursan, 2000; Hursan and Zhdanov, 2001). The QA and QA approximations 
provide a fast and accurate tool for forward modeling t hat can be successfully 
used in inversion algorithms. At the final stage of the inversion we app ly the 
rigorous forward modeling method to confirm the accuracy of our inversion 
result. T his approach ensures the speed and efficiency of 3-D magnetotellur ic 
inversion. However , the MT inversion technique developed in the previous 
publications was based on linearized expressions of the T E and TM mode 
impedances of the observed magnetotelluric field. In the cur rent paper we 
present the results of the further development of this method. We introduce 
a method of 3-D inversion which does not use a linearized approach to con­
structing the forward modeling operator for MT data. The method is based 
on full nonlinear inversion using the re-weighted regulari zed conjugate gradi­
ent method developed by Zhdanov and Hursan (2000) and Zhdanov (2002). 
The main distinguishing feature of this algorithm is application of the special 
stabilization functionals which allow construction of both smooth images of 
the underground geoelectrical st ruct ures and models with sharp geoelect ri­
cal boundaries (Zhdanov, 2002). This approach to NIT data inversion was 
first realized for 2-D inversion by Mehanee and Zhdanov (2002). We now 
extend it for full 3-D MT inversion . We also consider the full impedance 
tensor inversion of the MT data. The new fast 3-D MT inversion technique 
is applied to three-dimensional MT data collected by the INCa Exploration 
in Canada. 

Inversion of the principal magnetotelluric im­
pedances 

The interpretation of magnetotelluric (MT ) data is based on the calculation 
of the transfer functions between the horizontal components of the elect ric 
and magnetic fields according to the following formulae (Zhdanov and Keller , 
1994; Berdichevsky and Dmitriev, 2002) 

E x ZxxHx + ZxyHy, (1) 

E y ZyxHx + ZyyHy, (2) 
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where {Zxx, Zyy, Zxy , Zyx} are the components of the impedance tensor in 
some Cartesian coordinate system 

~ [Zxx Zxy ].
Z = Zyx Zyy 

In the general case , the solut ion of a 3-D magnetotelluric inverse problem 
has to be based on the simultaneous inversion of all four components of the 
impedance tensor. However , we consider first a simpler problem where only 
the principal impedances Zxy and Zyx are used for the inversion. The case of 
full impedance tensor inversion will be examined in the following sect ions. 

The matrix form of the quasi-analytical (QA) approxi­
mation 

In the framework of t he QA approximation the anomalous electromagnetic 
field is expressed using the following integral representations (Zhdanov et al., 
2000b) 

a 6.(J (r) b1­E" (rj) ~ EQ A (rj) = G E (rj I r ) ( \ E (r) dv, (3) 
D 1- 9 r 

Ha (rj) ~ HQA (r j) = kG Il (rj I r ) 16.(} _(~~ \ Eb (r) dv. (4) 

Here G E (rj I r ) and GIl (rj I r ) are the elect ric and magnet ic Green 's tensors 
defined for an unb ounded conductive medium with the background conduc­
tivi ty ai ; and function 9 (rj) is t he norm alized dot product of the Born 
approximation, E B , and the background field, Eb : 

r . _ E B (rj ) . Eb* (rj ) . b b 
9 ( J) - Eb(rj ) . Eb* (rj) , assummg E (rj) . E * (rj ) i= 0, (5) 

where "*,, means complex conjugate vector. 
The Born approximat ion is computed by the formula 

E B (rj) = kGE (rj I r ) 6.(J (r) E b (r) dv. (6) 

In practice we usually solve forward and inverse probl ems in the space 
of discrete data and model parameters. Suppose t hat L measurements of 
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an electric or magnet ic field are performed in some electromagnetic experi­
ment. Then we can consider these values as the components of electric, e , or 
magnetic, h , vectors of a length 3L: 

[E 1 E2 E L E1 E2 EL E 1 E2 EL ]T e= x ' X" " z : y ' y" " y' z : z,'" z , 

h = [H; ,H; , ...H; ,H~ , H; , ...H; ,H; ,H; ,...H; ]T, 

where the upper subscript "T" denotes a t ranspose operation of a vector row 
into a vector column. 

Similarly, anomalous conductivity distribution, 6.0- (r ) , on some grid can 
be represented as the components of a vector m of the length N : 

m = [m l ,m2, ..., mN]T = [6.0-1 , 6.0-2, ..., 6.o-N]T. 

Using these notations, we can write the discret e analogs of the quasi­
analyt ical approximations (3) and (4), and the Born approximation (6), as 
(Zhdanov and Hursan , 2000): 

eQA=A E [d iag (IN - Cm)r 
1
m=AEB(m) m, 

hQA = A H [d iag (IN - Cm)r 
1 
m = AH B (m ) m , (7) 

where A E and A H are the 3L x N matrices 

- - ~b - - ~bA E = G E e D ' A H = G H e D , (8) 

and B(m ) is the N x N diagonal matrix 

B(m) = [d iag (IN- Cm)r 
1

, (9) 

where C is the N x N square matrix 

~ (~b ~b* ) - 1 ~b*G ~bC = e DeD e D D e D · (10) 

We used the following notations in the last formulae. The vectors eb, ea , 

and h" represent the discrete Born and quasi-analytical approximations of 
the anomalous elect ric field at the observat ion points. Matrix fib is a sparse 
t ri-diagonal 3N x N matrix containing the x , y and z components of the pri­
mary (background) elect ric field at the centers of the cells of the anomalous 
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domain D . Matrices G E and G H are discrete analogs of the corresponding 
Green 's tensors. These matrices consist of the elements of eit her the elec­
t ric or the magnetic Green 's tensor acting from t he anomalous body to the 
receivers. L is the number of receivers, and N is the number of cells in the 
anomalous body. Vector I is a column vector of the length N formed by units. 
Matrix G D is a discrete analog of the corresponding elect ric Green's tensor 
acting inside the domain D (so-called domain scattering matrix ). App endix 
A contains the detailed explanation of these notations. 

Let us introduce a notation d for an elect ric or magnetic vector of the 
anomalous part of the observed data. This vector contains the components 
of the anomalous elect ric and /or magnetic fields at t he receivers . Using these 
notations, the forward modeling problem for the electromagnetic field can be 
expressed by the following matrix operation: 

d = A [d ia g «-Cm) r 
1 

m =AB(m) m, (11) 

bwhere A st ands for t he elect ric or magnetic matrices, A E = G E e or AH = 
G Heb, respectively. 

TE and TM mode impedances in a 3-D magnetotelluric 
problem 

In practice, the results of magnetotelluric measurements are usually presented 
as the apparent resistivity and phase calculated on the basis of the principal 
imp edances, which are expressed as the ratio of the mutually orthogonal 
electri c and magnet ic field components (so-called nominal , TE and TM mod e 
impedances, Zhdanov and Keller, 1994): 

ZJxE = Ey/ n; Z;yM = Ex/ n; (12) 

Note that this 2-D nomenclature is ar tificial and approximat e in nat ure for 
3-D st ructures, because the TE and TM mode imp edances, Z~E and ZIvM, 
are not necessarily equal to the principal component of the full impedance 
tensors , Zyx and Zxy . However, it is widely used in practical MT observations. 
The model st udy shows that in many cases the difference between the nominal 
TE and TM mode impedances, Z~E , Z;yM, and the principal components of 
the full impedance tensor, Zyx , Zxy, is negligibly small and does not affect t he 
inversion result. The following numerical modelings illustrate this prop erty 
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Figure 1: Model of conductive bo dy. Resist ivity of halfspace is 100 Ohmm. 
Resistivity of the anomaly is 10 Ohmm. 

of the pr incipal impedances. F igure 2 presents t he Zyx principal components 
of t he full impedance tensor for t he model of a conductive body shown in 
Figure 1. Fi gure 3 presents t he difference between pr incipal component Zyx 

and t he TE mode impe dance Z~xE for yx polarizati on . The amplit ude of t he 
difference is less t han 1% of t he amplit ude of t he component. 

F igure 5 presents t he same component for a more complex model of an 
elongated conductor oriented at an ang le of 45 degrees wit h respect to the 
field polarizat ion axes (F igure 4) . The difference between t hese impedances 
is shown in F igure 6. The difference again is less than 1% of the component 
value . 
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Figure 2: Principal component Z yx of the full imp edance tensor. 
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Figure 3: T he difference between the principal component Z yx and the T E 
mode imp edance Z~xE for yx polarization. 
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Figure 4: Model of diagonal conductive body. 
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Figure 5: P rincipal component Z yx of t he full impedance tensor. 
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Figure 6: T he difference between the principal component Zyx and the TE 
mode impedance Z~xE for yx polarization. 
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QA approximation of the TE and TM mode apparent 
resistivities and phases 

Let us denote an arbit rary horizontal elect ric field component by E and define 
H as the magnetic field component perp endicular to the direction of E at a 
par ticular receiver site. Note that both E and H are complex numbers. The 
TE or TM mode magnetotelluric impedance is defined as the ratio of E and 
H: 

E 
Z = if" (13) 

The magnetotelluric apparent resistivity is calculat ed from Z , using 

p = _1_ IZ12. (14) 
w/-lo 

Formula (14) gives a nominal TE mode apparent resistivi ty if we use the 
TE mode impedance Z'{;E, and it produces a nominal TM mode apparent 
resist ivity if we use the TM mode impedance Z;yM. If the incident field is a 
plane-wave and the model is a homogeneous half-space, p is equal to the t rue 
resistivity, making it indicative of the resistivity structure of the subsurface. 

Another commonly measured parameter is the phase angle of the im­
pedance: 

- 1 ImZ 
¢ = tan ReZ ' (15) 

This quantity is less sensit ive to the effect of shallow subsurface anomalies, 
so it is particularly useful for the detection of deep st ructures . 

To obtain a simple relationship between the anomalous field components 
and the MT parameters, let us express the logarithm of Z by writing E = 
E b + E" and H = H b + H" : 

b bE
b+ Ea ( E 

b+ E a H E ) (16) In Z = In H b+ Ha = In Eb . Hb+ Ha . f{b . 

Thus, 
In Z = In (1 + Ea/ Eb) - In (1 + Ha/ Hb) + In Z b, (17) 

where Z b = Eb/ fIb is the background impedance. 
From equation (14) we obtain 

1/2] 1 1In IZI = In [(W /-lo p) = "2 In (W /-lo) + "2 ln p. (18) 
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The same relationship holds for t he background imp edance as well. Consid­
ering the identities In Z = In IZI + i<p and In Zb = In IZbl + i<Pb we find 

~lnpa + i<Pa = In (1 + EajEb) - In (1 + HajHb) , (19) 

where In P« = In P - In Pb is t he log anomalous apparent resistivity, and 
<Pa = <P - <Pb is the anomalous phase. Knowing the background cross-section, 
t hese quantities can be easily obtained from the measured total apparent 
resistivities and phases . 

We introduce a vector of t he data d MT, which combines t he values of log­
anomalous apparent resisti vity at the receivers for all frequencies. In matrix 
notation, formula (19) is cast as 

d M T = ~ In(pa) + i c/>a = In [I+ (eb)- le a] - In [I+ ( flb)-lha] , (20) 

where vecto r I is a N x 1 column vecto r whose elements are all uni ty; eb and 
flbare diagonal mat rices containing t he background elect ric and magnetic 
fields at the receivers, 

eb 
Eb,l 1 rHb,l 1 

= , flb= '. , (21) 
Eb,N H b,N r 

and it is assumed that In is applied to each element of t he corresponding 
vector. 

Subs ti tuting the QA approximations (7) into t he anomalous field compo­
nents in (20), we obtain t he QA approximation for t he data containing t he 
log anomalous apparent resistivities and phases: 

dM T = In [I+ (eb)-l AEB(m)m] - In [I + (flb)-lAHB(m)m] , (22) 

where AE = GEeb and AH = GHeb
, respectively and 

B(m) = [diag (I - Cm)r 1
. (23) 

Thus, the MT inverse problem is reduced to t he solut ion of t he nonlinear 
matrix inverse problem (22). 
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Frechet derivative (sensitivity) matrix for log anomalous 
apparent resistivity and phase 

Now let us consider t he derivation of the Frechet derivative matrix of t he 
forward operator (22). Noting t hat t he model par ameters are t he ano malous 
conduct ivity values in t he cells of t he anomalous body and that matrices 
C, A E and A H are indep endent of the model parameters, one can express 
the perturbat ion of the forward operator (22) with respect to the model 
parameters in the form 

8d MT = {(eb)- lAEdiag- 1 [I + (eb)- lAEB(m)m] 

- (fi.b)-lAHdiag- 1 [I+ (fi.b )- lAHB(m)m]) 8 [B (m)m] , (24) 

where diag [...] means a diagonal matrix formed by the element s of the vector 
[.. .]. 

Since
 
8 [B(m)] = 8 [diag (I- Cm)r 

1
 

= [diag (I- Cm)r 
2 

C 8m = B2(m) C 8m, 

we obtain 

8 [B(m) m] = {B (m) + diag(m)B2(m) C} 8m = D(m) 8m, (25) 

where 
D (m) = B (m) + diag(m)B2(m) C (26) 

is a diagonal matrix. 
Substit uting expression (25) into (24), we find 

8d MT = {(eb)- lAEdiag - 1 [I+ (eb)-l AEB(m)m] 

- (fi.b)-lAHdiag- 1 [I+ (fi.b)- lAHB(m)m]} D (m) 8m. 

From the last formula we find the MT Frechet derivative matrix 

y MT(m) = AMT(m) D (m), (27) 

where 
AMT(m) = (eb)- lAEdiag - 1 [I + (eb)-lAEB(m)m] 

14 



- (hb)-lA Hdiag- 1 [r+ (hb)-lA HB (m )m ] . (28) 

ote that the terms depending on the model parameters are diagonal matri­
ces. The full matrices, AE and A H , depend only on the background conduc­
t ivity distribution. Therefore, after precomputing the full matrices A E and 
A H for the background model, the iterative upd ating of FMT(m ) is relatively 
inexpensive during the inversion process. 

Inversion of the full magnetotelluric impedance 
tensor 

Calculating the components of the full impedance ten­
sor 

In the general case, solut ion of the inverse problem requires numerical mod­
eling of the components of the full impedance tensor in each step of the 
iteration process. The simplest technique of solving this problem is out lined 
in Zhdanov and Keller (1994) and Berdichevsky and Dmit riev, 2002, and can 
be described as follows. We can write equation (1) for two polarizat ions of 
the background field, 

E (l ) = Z H (1) + Z H (l ) x xx x xy y , 

(29) 
E (2) = Z H (2) + Z H (2) 

x xxx xyy, 

where the first case corresponds to the TM mode of the background field, 

Eb(l )= (Eb(l ) 0 0) Hb(l )= (0 H b(l ) 0) 
x '" , y , , 

and the second case corresponds to the TE mode of the background field 

E b(2)= (0 E b(2) 0) H b(2)= ( H b(2) 0 0) 
, y " x " . 

Solving equations (29) with respect to the impedance tensor components Z x y 

and Z x x , we find 

E(1 )H (2) - E (2)H (1) E (1)H (2) - E (2)H (1) 
Z - x x x x Z _ x y x y ( 3 0) 

xy - H~ l ) H £2) _ H~ 2 ) H £l ) , xx - H £l )H~2) _ H £2)H~ l ) . 
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In order to find t he impedances Z yx and Z yy , we can write equation (2) 
for two polarizations of the background field as well and solve the resulting 
system of equations with respect to the imp edance tensor components Z yy 

and Z yx : 

E (1)H (2) - E (2)n '» E (1)H (2) - E (2)H (1) 
Z = y x y x Z x = y y y y 

yy H~l ) H 12) _ H~2 ) H 1l ) , y H 1l )1I~2 ) _ H 12)H~l ) . 

We can introduce the normalized imp edances 

Z :y = Zxy/Z~y , Z : x = Zxx /Z~y , Z ; y = Zyy /Z~x, and Z ; x = Zyx /Z~x , (31) 

where 
Eb(l ) Eb(2) 

Z b x Zb y (32) x y = H t (l ) , yx = H~ (2)' 

In particular , 
Z Hb(l ) E (l )H (2) - E (2)1I(1) zn = ---..!'J£ = _ y _ x x x x (33) 

xy Z b E b(l ) j:T(1)H (2) _ H (2)H (1) . 
xy x - v x Y x 

To obtain a simple relationship between the anomalous field components and 
the imp edance tensor components, let us express the logarit hm of Z by taking 
into account that 

E (l ) = (E(1) E a(l ) E a(l )) H (l ) = (Ha(l ) H (1) H a(l )) 
x' y' z ' X'y' z ' 

E (2) = (Ea(2) E (2) E a(2)) H (2) = ( H (2) H a(2) H a(2)) 
x' y' z ' X'y ' z' 

E (l ) = E a(l ) + Eb(l ) H (1) = H a(l ) + H b(l ) 
x x x' y y y' 

E (l ) = Ea(l) H (1) = H a(l ) E (2) = E a(2) H (2) = H a(2) 
y y' x x ' x x' y y' 

and 
E (2) = E a(2) + E b(2) H (2) = H a(2) + H b(2) 

y y y ' x x x · 

As a result , we can write 

E a(l ) ] [Ha(2) ] E a(2) H a(1) } 
in Z : y = in Z x y - in Z~y = in { [ ~(l ) + 1 ~(2 ) + 1 - ~(2) ~(l ) 

E x u: tt; E x 

H a(l ) ] [Ha(2) ] H a(2) ne» } 
- in { [ ~(l ) + 1 ~(2 ) + 1 - ~(2 ) ~(l ) . (34) 

tt; H; H; u; . 
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We can obtain similar expression for the log normalized imp edance Z;x: 

Ea(l) Ha(2) [Ea(2) ] [Ha(l) ] } 
in Z;x = in Zyx - in Z~x = in { ~(l ) ~(2) - ~(2 ) + 1 ~ ( l ) + 1n; e; E y n; 

H~( l ) H~ (2 ) [H~(2) ] [H~(l ) ] } 
- in ~~- ~+ l ~ + l . (35) { tt; tt; n: tt; 

In a similar way, we can derive the normalized imp edances Z;:x = Zxx jZ~y 

and Z;y = Zyyjztx. 

Matrix representation of the impedance data 

Let us organize the imp edances into a data vector . For example, we int roduce 
a vector dxy formed by the values of t he log imp edance component in Z;:y at 
L receivers 

d xy = in {diag [(eb(1))-l e~(l ) +h] [(hb(2)) - 1h~(2 ) + h] 

-diag [(hb(2))-le~ (2 ) ] (eb(l))- l h~(l ) } 

- In {di ag [(hb ( l ) )-l h~(l ) + h] [ (hb(2 ) )- l h~(2 ) +h] 
- d iag [(hb(2 ) )-lh~(2 ) ] (hb(l))- l h~(l ) }, (36) 

where h is a column vector of t he order L formed by units; eb and hb are di­
agonal matrices containing the corresponding components of the background 
electric and magnetic fields at t he receivers: 

Eb,l H b,l
 

~b ( l) x
 , h b(l) = Ye =
 
[ ] [
E b,L 

x H;,L 1· 
H b,l 

hb(2) = x (37) 
[ H~L 1' 

ex = [E;, E; , ...E;f, 
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ey = [E~ , E; , E~f , 

h, = [H~ , If; , If;;J T , 

hy = [H~ , H;, H~f , 

diag [...] means a diagonal matrix formed by t he element s of the vector [...], 
and it is assumed that in is applied to each element of the corr esponding 
vector. 

We express now the vectors e~, e~ , h~ , h~ using the QA approximat ions 
(7): 

e~ =A Ex [d iag (IN- Cm) r 
1 

m =AE)3(m) m , 

h~ = A Hx [diag (IN- Cm)]- 1 m =AH)3 (m ) m , (38) 

e~ =AEy [diag (IN- Cm) r 
1 
m =A E) 3(m) m, 

h~ = A Hy [diag (IN- Cm) r 
1

m =A Hy B (m ) m, (39) 

where A EX 
and A Hx are formed by t he first L rows of matrices A E and A H, 

while A Ey and A Hy are formed by t he second L rows of matrices A E and 

A H , respectively. In order to simplify t he notations, we int roduce a vector 
P(m) 

P (m) = B (m) m , (40) 

and denote matrices AE and A H by symbols E and H as follows: 

A Ex,y = Ex,y, AHx,y = Hx,y, (41) 

Using these notations, we can express t he vectors of t he anomalous elect ric 
and magnetic fields in (38) and (39) as 

e~ ,y=Ex ,yP(m) , h~ ,y = Hx,yP(m ), (42) 

where Ex,y and H x,y are Lx N matrices independ ent of the model parameters 
m, and P(m) is the column vector of the order N dependent on m. 

Substituting the QA approximations (42) into the anomalous field com­
ponent s in (36) , we obtain t he QA forward approximat ion for t he data con­
taining the log impedance Zxy: 

d xy = in {diag ~~(l)p(l ) (m) + IL ] ~~ ( 2)p (2 ) (m) + h ] 
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- d iag ~~(2)p (2 ) (m)]H~( 1 )p (1 ) (m) } 

- In {d iag ~;(1 )p ( l ) (m) + h] ~~(2 )p (2 ) (m) + h] 
- d iag ~; (2 )p (2 ) (m)JH~(1 ) p (1 ) (m)} , (43) 

where indices (1) or (2) correspond to the TM or TE modes of the background 
field, and we use the notation 

( ~b) - l~ _ ~ e - l- -h 
e Ex,y - Ex,y, ( h 

~b) 
H x,y = H x,y, 

(~ b) - l~ ~ h (~b)-l- - e
h Ex,y = Ex,y, e H x,y = H x,y' (44) 

Using similar matrix representat ions for the anomalous elect ric and mag­
netic fields, we can writ e the corresponding expressions for vector d yx, dxx " and 
d yy, formed by the values of the log impedance components In Z;x' ln Z~x , and 
In Z;y, at L receivers, respectively. 

For example, 

d yx = In {d iag ~;(1 ) p (1 ) (m)]H~(2)p(2) (m) 

- d iag ~~(2)p (2 ) (m) + h] ~;(1 ) p (1 ) (m) + h]} 
- In {d iag ~;(2)p (2 ) (m)] H~(1 )p (1 ) (m) 

- diag ~;(1 ) p (1 ) (m) + h] ~~(2)p (2 ) (m) + h]}, (45) 

Thus, the MT inverse problem is reduced to the solution of the nonlinear 
matrix inverse problem, described by equat ions (43) - (45). 

Note that express ions (43) - (45) can be used for calculat ing the Frechet 
derivative (sensitivity) matrix for the data formed by the full magnetotelluric 
(MT) impedance as well. The corresponding Frechet derivative matrix can 
be found similar to Frechet derivative calculat ion for apparent resist ivity and 
phase, out lined above. 

Regularized smooth and focusing inversion of 
MT data 

The MT inverse problems described by the matrix nonlinear equations (22) 
and (43) - (45) are ill-posed problems. The solut ion of these problems re­
quires the appl ication of the corresponding regularization met hods (Tikhonov 
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and Arsenin , 1977; Zhdanov, 2002). The t radit ional way to implement regu­
lar ization in the solut ion of t he inverse problem is based on a consideration 
of the class of inverse models with a smooth distribution of t he model pa­
rameters. Within the framework of classical Tikhonov regularization, one 
can select a smooth solution by introducing the corresponding minimum 
norm, or "smoot hing" stabilizing functionals. This approach is widely used 
in geophysics and has proven to be a powerful tool for stable inversion of 
geophysical data. 

The tradit ional inversion algorithms providing smoo th solutions for geo­
elect rical st ructures have difficult ies, however, in describing the sharp geo­
elect rical boundaries between different geological formations. This problem 
arises, for example, in inversion for the local conduct ive target with sharp 
boundaries between the conductor and the resist ive host rocks, which is a 
typical model in mining exploration. In these sit uations, it can be useful 
to search for a stable solution wit hin the class of inverse models with sharp 
geoelectrical boundaries. The mathemat ical t echnique for solving this prob ­
lem was described in Zhdanov and Hursan (2000) and Zhdanov (2002). It 
is based on introducing a special ty pe of stabilizing functional , the so-called 
minimum support or minimum gradient support functionals (Portniaguine 
and Zhdanov, 1999; Mehanee and Zhdanov, 2002). We call this technique a 
focusing regularized inversion to disti nguish it from the t radit ional smoot h 
regularized inversion. 

We can use the re-weighted regularized conjugate gradient (RRCG) method 
to solve the nonlinear inverse problems (22) and (43) - (45). T he basic prin­
ciples of the RRCG method are outlined in Zhdanov (2002). This method 
can incorporate both the smoo th regularized inversion, which generates a 
smooth image of the inverted conduct ivity, and a focusing regularized inver­
sion, producing a sharp focused image of the geoelectrical t arget . 

Note that the total conduct ivity must always be posit ive in the predicted 
model. That is why we use the logarit hm of the total conduct ivity as a model 
par ameter ensur ing realisti c inverse models: 

m= In((Jb+ m). (46) 

Obviously, t his model parameter can never produce negative conduct ivity. 
The inverse t ra nsform is 

m = exp(m ) - (Jb. (47) 
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Figure 7: A model of a dipping dike (left panel) and inversion results obtained 
by the QA inversion method with focusing (right panel). 

Model study 

T he synthetic MT data set is generated by the forward modeling code IN­
T EM3D (Hursan and Zhdanov, 2002), based on the cont raction integral equa­
tion method, for a model of a dipping dike (Figure 7, left panel) of resist ivity 
10 ohm-rn, submerged in a half-space of 100 ohm-m, The top of the dike is 
at depth 200 m, and its bottom is at depth 700 m beneath the sur face. The 
dike consists of two separated parts. 

This model is excited by plane EM waves with four different frequencies: 
1, 10, 100 and 1000 Hz. The MT impedances were calculated in 195 receivers 
placed on the nodes of a square grid on the surface. The distance between 
the observation points is 100 m in the x and y directions. 

The volume of inversion is covered by a homogeneous mesh consist ing 
of 15X 13x 8 cubic cells surrounding the anomalous st ructure to be inverted. 
Each cell has a dimension of 100 m in the x, y and z directions. The region 
of inversion is also shown in Figure 7 (left and right panels). 

The synthet ic data set , generated by a full integral equat ion method, has 
been contaminated by 3 percent random noise. The model parameters are 
the unknown anomalous conduct ivity values of each cell in the volume over 
which the inversion is carried out . 

It has been demonstrated by Wannamaker (1999) t hat the best results 

21 

90 

60 

30 

70 

80 

20 

60 

100 

10 



for elongated anomalies are obtained with TM mode. The anomalous body 
has a st rike along the y axis, so the TM mode corresponds to xy polarization 
(Ex and Hy ) . In the case of the T E mod e, the primary elect ric field is polar­
ized along the st rike direction , and therefore, it is less sensit ive to the dike 
boundaries parallel to the st rike. In the case of the TM mode, the primary 
elect ric field is directed across the st rike, and it becomes more sensit ive to 
the dike boundaries. 

Figure 7 presents the result of inversion for an T M mode impedance 
Z x y using the quasi-analyti cal (QA) inversion method, with focusing. Note 
that inversion of theoretical MT data takes just few minutes on a personal 
compute r. A remarkab le fact is t hat it is possible for this polarization to 
separate the upper and lower parts of the dike. The position , shape , and 
ther resist ivity of the dike are also reconstructed quite well. 

The next model represents in a schematic way a conduct ive syncline ty pe 
formation (Figure 8). We call this model an "open box" model. The con­
ductive syncline has a resistivity of 10 Ohm-m, and the resistivity of the 
background is of 100 Ohm-m. The top of the conductor is at a depth of 
200 m, and its bottom is at a depth of 1,100 m beneath the surface. The 
horizontal size of the conductor is 3,200 m by 2,000 m. The thickness of the 
"bottom" and the sides of the conductor is of 100 m. The horizontal cross­
sect ions of the model at the different depths are shown in Figure 9. This 
model is excited by plane EM waves with four different frequencies: 0.1, 1, 
10 and 100 Hz. The volume of inversion is covered by a homogeneous mesh 
consist ing of 61x41x 9 cubic cells sur rounding the anomalous st ructure to 
be inverted. Each cell has a dimension of 100 m in the x , y , and in the 
z directions. The synthetic dat a set is generated by the IE modeling code 
INTEM3D. 

Figure 10 presents the result of inversion for the Z xy impedance data using 
the quasi-analytical inversion with image focusing. The inversion result for 
the Z yx impedance data is shown in Figure 11. One can see t hat, by using 
the different off-diagonal imp edances, we can see better the different sides 
of the syncline. Figure 12 presents the result of the joint inversion of the 
off-diagonal impedances, Z x y and Z yx . This image reconstructs all sides of 
the conductor, however , t he "open box" like model is slight ly distorted in 
this case. One can see that a simple superposit ion of two models obtained 
for different off-diagonal impedances, produces better result then the joint 
inversion in this case. 

T he model st udy illustrates that in the case of a complex geological struc­
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Figure 8: Volume image of the model of a conduct ive syncline type formation 
(an "open box" model) . The color represents the depth of the corresponding 
cells: the shallow cells ar e marked by red , while the deep cells are painted in 
blue, for bet ter visualization purpose. 
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Figure 9: Hor izontal slices of the model of a conduct ive syncline type forma­
tion at the different depths. The black&white scale represents t he resistivity 
in Ohm-m. 
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Predicted model 

.. . 
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Figure 10: A volume rendering of the resist ivity model obtained as result of 
the tensor component Z x y quasi-analytical inversion (Model 3). The cut-off 
level for this image is equal to 15 Ohm-m. This means that only the cells with 
a value ofresistivity less than 15 Ohm-m are displayed. The color represents 
the depth of the corresponding cells: the shallow cells are marked by red, 
while the deep cells are painted in blue. 

t ure, t he joint inversion may be preferable, however, the individual inversion 
of a different impedance tensor component may contain complimentary in­
formation abo ut the complex geological st ructure . 

Inversion of the Voisey's Bay M T data 

INCO Exploration conducted a three-dimensional MT survey. The goal of 
this survey was to st udy the app licat ion of the MT method to typical Ni-Cu­
Fe sulphide mineralization zone exploration in complex geological st ruc tures . 
An array magnetotelluric survey consists of eleven profiles covering an area 
of abo ut 28 km", collected by INCO Exploration at the Voisey's Bay area, 
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Figure 11: A volume rendering of the resistivity model obtained as a result of 
the tensor component Z yx quasi-analyti cal inversion (Model 3). The cut-off 
level for this image is equa l to 15 Ohm-m. The color represents the depth of 
the corresponding cells: the shallow cells are marked by red, while the deep 
cells are painted in blue. 
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2000 Y. meters 

Figure 12: A volume rendering of the resistivity model obtained as a result 
of the joint inversion of off-diagonal te nsor components Z x y and Z yx using 
the quasi-analytical inversion method with image focusing (Model 3). The 
cut-off level for this image is equal to 15 Ohm-m, The color represents the 
depth of the corresponding cells: the shallow cells are marked by red, while 
the deep cells are painted in blue. 
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where massive sulfide deposits were discovered (Naldrett et al., 1996; Balch, 
2000). The frequency range of MT data is from 10 Hz to 350 Hz. We use for 
inversion two off-diagonal elements of the impedance tensor, Zxy and Zyx, 
at five different frequencies between 32 Hz and 288 Hz (288 Hz, 166 Hz, 95 
Hz, 55 Hz, and 32 Hz). The diagonal components of the impedance tensor, 
Zxx and Zyy, were not used in the inversion because they were typically 
much smaller and noisier than the off-diagonal components (similar to the 
model case discussed above). The simple analysis of the MT data showed 
the presence of an anomaly zone between profiles numb er six and eleven. 
The MT profiles are numb ered from the left to the right in Figure 13. For 
example, Figure 13 presents the maps of Zyx apparent resistivity (top panel) 
and phase (bottom panel) for a frequency of 96 Hz. We can see clearly the 
locat ion of the anomalous zone in these maps. 

For detailed investigation we used data from the six profiles in the eastern 
part crossing the anomalous zone. The background geoelectrical cross-sect ion 
in this area, according to the MT data, was represented by a seven-layer 
model with the following resistiv ity-sequence: Pl = 305, P2 = 283, P3 = 452, 
P4 = 461, Ps = 607, P6 = 452, P7 = 556 Ohm-m; h1 = 100, h2 = 200, h3 
= 200, h4 = 100, hs = 100, h6 = 200 m. This cross-section has been found 
using the parameter-estimation code developed by Portniaguine and Zhdanov 
(1995). The area of inversion consists of 33600 (56 x 50 x 12) cells. Figure 
14 presents the 3-D view of the area of inversion and its discretization. The 
structure of the MT station locations is a little bit irregular. T he MT data 
were interp olated in the six profiles shown in Figure 14. 

The rapid 3-D MT inversion method was applied to the off-diagonal MT 
impedances for the 276 interpo lated MT soundings at five frequencies. 

As a result of the inversion, we obtained a volume dist ribution of electri­
cal resistivity under the area of about 28 km2 to a depth of 1 km. In Figure 
15a we can see the vert ical cross-sections of the inverse results below the ob­
servat ion profiles. Figure 15b presents the general 3-D view of the predicted 
model. Figure 16 upper panel shows 3-D conduct ive bodies with resistivity 
below 25 ohm-m, while Figure 16 bottom panel presents the domains with 
resistivity below 50 ohm-m. One can see a conduct ive anomaly with a com­
plex shape in Figure 16, reaching a depth of several hund red meters. We 
have plot ted also the horizontal map at the different depths of the resistivity 
obtained as the result of the inversion. These maps are generated using the 
Geosoft package. An example of this map at a depth of 550 m is shown in 
Figure 17. 
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Figure 13: Maps of the observed Z yz apparent resistivities and phases at f 
= 95 Hz over the Voisey's Bay area . The dots mark t he observation sites . 
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Figure 14: Three-dimensional sketch of the inverted area and its discret iza­
t ion for the inversion of the Voisey's Bay area data. The locat ions of the MT 
profiles are mar ked by thick black lines. 
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Figure 15: a) Vertical cross-sections and b) volume image of the predicted 
inverse resist ivity model obtained by QA inversion of the Voisey's Bay area 
data set. 
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Figure 16: The volume image of the inversion results with resistiv ity below 
25 Ohm-m (upper panel) and below 50 Ohm-m (bottom panel). The color 
represents the depth of the corresponding cells: the shallow cells are marked 
by red, while the deep cells are painted in blue. 
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by inversion of t he MT data collected in t he Voisey's Bay area. 
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Figur e 18: A comp arison of the observed and predicted apparent resistivities 
and phases, computed for the Z xy imp edance using the rigorous IE forward 
modeling code INTEM3D. 

It is important to note that, in order to cont rol t he accuracy of the in­
version , our method allows application of rigorous forward modeling in t he 
int ermediate st eps of the inversion procedure and for the final inverse model. 
In particular, we have computed the theoretical predicted MT data for the 
model shown in Figure 15, using t he rigorous forward modeling code IN­
TEM3D. A comparison of the observed and predicted apparent resistivities 
and phases, computed for the Z xy imp edance, is shown in Figure 18a-d. Gen­
erally, the apparent resistivities show better agreement t han the phases. 

Note that the rapid 3-D MT inversion code runs for just about 14 minutes, 
and t he inversion resu lt has been achieved at approximate ly 30 iterations. 
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Conclusions 

We have developed a new 3-D MT inversion method and computer code based 
on full nonlinear conjugate gradient inversion and quasi-analytical approxi­
mation for the forward modeling solut ion. Application of the QA approxi­
mation for forward mod eling and Frechet derivative computat ions speeds up 
the calculation dramatically. However, in order to cont rol the accuracy of t he 
inversion, our method allows application of rigorous forward modeling in the 
intermediate steps of the inversion procedure and for the final inverse mod el. 
This modeling is based on the Contraction Integral Equation method de­
veloped by Hursan and Zhdanov (2001). The 3-D magnetotelluric inversion 
code QAINV3D based on QA approximation, developed by CEMI, has been 
test ed on synthetic models and applied to the pr actical MT data collected in 
an area with complex geology. This code is based on the re-weighted regular­
ized conjugate gradient method and can produce both smooth and focused 
images of the geoelect rical st ructures. The 3-D MT inversion code works 
extremely fast and produces the reasonable images of subsurface geological 
formations. The rapid inversion of the array magnetotelluric data (observed 
with hundreds of mult i-frequency observation stations) can be done within a 
few minutes on a PC to generate t he full 3-D image of subsurface format ions 
on a large grid with tens of thousands of cells. 
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Appendix A: The matrix form of quasi-analytical 
approximation 

The quasi-analytical approximations (3) and (4) of the anomalous elect ric 
and magnet ic fields in a discrete form can be writ ten as (Zhdanov, 2002) 

eQA = G Ee~ [d iag (I - g(lT))r 1 IT , (48) 

and 
hQA = G H e~ [d iag (I - g (lT ) )r 

1lT
. (49) 

We used the following notations in the last formulae. The vectors eQAand 
hQA represent the discrete quasi-analytical approximations of the anomalous 
electric and magnetic fields at the observation points. Vector 1 is a N x l 
column vector whose elements are all unity. The N x 1 column vector g (IT ) 
represents the function 9 (r) (equation (5)) at t he center of each cell: 

E b'h . E B ,1 E b,2* . E B ,2 E b,N * . E B 'N ] T 
(50) g(lT) = [ E b,h . E b,l ' E b,2* . E b,2 , . .. .. , E b,N * . E b,N ' 

where E B ,j and E b,j (j = 1, 2, ...N) denote the Born approximation and the 
background elect ric field in each cell within the anomalous domain. 

Direct calculations show that vector g (IT ) can be expressed by matrix 
multiplication: 

~b* ) - 1 ~b* Bg(lT) = (~ b (51) eDe D eDeD, 

where the vector of the Born approximation inside the anomalous domain, 
e~ , can be expressed by the formula: 

B - -xb 
eD = G De DlT . (52) 

Subst itut ing (52) into (51), we obtain 

(~b ~b* )-l -z-b» B (~b ~b* ) - l ~b*- ~b ~ g(lT) = eDe D eDeD = eDeD eDGDeDlT = C lT, (53) 

where 
~ ( ~b * )-1 - ~b-z-b ~b*GC = eDe D eD DeD· (54) 

Thus, we can represent equations (52), (48) and (49) in the form 

B - ~b ­e = G EeDlT = AElT, 
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eOA= A E [d iag (I- Cu)r l 
a = AE B(u ) a , 

hOA = A H [d iag (I- Cu)r l 
a = AH B (u ) a , (55) 

where 
- - ~b - - -z-bA E = G EeD' A H = GHeD , (56) 

and the diagonal matrix is expressed as 

B (u ) = [d iag (I - Cu)r l
. (57) 

Let us int roduce a notation d for an elect ric or magnetic vector of t he 
anomalous part of t he observed data. This vector contains t he components of 
t he anomalous electric and/or magnetic fields at t he receivers. The discrete 
forward modeling problem for the elect romagnetic field based on t he QA 
approximation can be expressed by the following matrix operations: 

d = A [d iag (I- Cu)r l 
a = A B (u ) a , (58) 

where Astands for the electric or magnetic matrices, A E = GE e~ or A H = 
~b . 1G HeD , respect ive y. 
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