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Abstract

Interpretation of magnetotelluric data over inhomogeneous geolog-
ical structures is still a challenging problem in geophysical exploration.
We have developed a new 3-D MT inversion method and a computer
code based on full nonlinear conjugate gradient inversion and quasi-
analytical approximation for forward modeling solution. Application
of the QA approximation to forward modeling and Frechet deriva-
tive computations speeds up the calculation dramatically. However,
in order to control the accuracy of the inversion, our method allows
application of the rigorous forward modeling in the intermediate steps
of the inversion procedure and for the final inverse model. The 3-D
magnetotelluric inversion code QAINV3D based on QA approxima-
tion, has been tested on synthetic models and applied to the practical
MT data collected in an area with complex geology. The inversion of
3-D MT data can be done within a few minutes on a PC to gener-
ate a 3-D image of subsurface formations on a large grid with tens of
thousands of cells.

Introduction

Three-dimensional interpretation of array magnetotelluric data is an active
area of the research and development conducted by the Consortium for Elec-
tromagnetic Modeling and Inversion (CEMI) at the University of Utah. In



recent years we have developed a new method of solving this problem using
fast but accurate quasi-linear (QL) and quasi-analytical (QA) approxima-
tions for forward modeling solution (Zhdanov et. al., 2000a,b; Zhdanov and
Hursan, 2000; Hursan and Zhdanov, 2001). The QA and QA approximations
provide a fast and accurate tool for forward modeling that can be successfully
used in inversion algorithms. At the final stage of the inversion we apply the
rigorous forward modeling method to confirm the accuracy of our inversion
result. This approach ensures the speed and efficiency of 3-D magnetotelluric
inversion. However, the MT inversion technique developed in the previous
publications was based on linearized expressions of the TE and TM mode
impedances of the observed magnetotelluric field. In the current paper we
present the results of the further development of this method. We introduce
a method of 3-D inversion which does not use a linearized approach to con-
structing the forward modeling operator for MT data. The method is based
on full nonlinear inversion using the re-weighted regularized conjugate gradi-
ent method developed by Zhdanov and Hursan (2000) and Zhdanov (2002).
The main distinguishing feature of this algorithm is application of the special
stabilization functionals which allow construction of both smooth images of
the underground geoelectrical structures and models with sharp geoelectri-
cal boundaries (Zhdanov, 2002). This approach to MT data inversion was
first realized for 2-D inversion by Mehanee and Zhdanov (2002). We now
extend it for full 3-D MT inversion. We also consider the full impedance
tensor inversion of the MT data. The new fast 3-D MT inversion technique
is applied to three-dimensional MT data collected by the INCO Exploration
in Canada.

Inversion of the principal magnetotelluric im-
pedances

The interpretation of magnetotelluric (MT) data is based on the calculation
of the transfer functions between the horizontal components of the electric
and magnetic fields according to the following formulae (Zhdanov and Keller,
1994; Berdichevsky and Dmitriev, 2002)

E, = ZeoH,+ ZoH,, (1)

By = ZyH;+Z,H,, (2)
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where {Zz, Zyy, Zay, Zys} are the components of the impedance tensor in
some Cartesian coordinate system

5 /A
7= oL Ty } )
[ Zyx Zyy

In the general case, the solution of a 3-D magnetotelluric inverse problem
has to be based on the simultaneous inversion of all four components of the
impedance tensor. However, we consider first a simpler problem where only
the principal impedances Z,, and Z,, are used for the inversion. The case of
full impedance tensor inversion will be examined in the following sections.

The matrix form of the quasi-analytical (QA) approxi-
mation

In the framework of the QA approximation the anomalous electromagnetic
field is expressed using the following integral representations (Zhdanov et al.,
2000b)

Ao (r)

B (1) ~ Boa (1)) = [ Gy 1)1, (5B 0o, (3
HY (1) ~ Hou ) = [ Gurloy [ 1) BB (o (@

Here G g (rj | r)and Gz (r; | r) are the electric and magnetic Green’s tensors
defined for an unbounded conductive medium with the background conduc-
tivity o4, and function g (r;) is the normalized dot product of the Born
approximation, EZ, and the background field, E? :

E® (r;) - E” (1))

g(r;) = E? (r;) - E¥ (r;) assuming E’ (r;) - E™ (r;) #0, (5)

where “*” means complex conjugate vector.
The Born approximation is computed by the formula

EP (r;) = /D G (r; | ) Ao (r) EP (1) do. (6)

In practice we usually solve forward and inverse problems in the space
of discrete data and model parameters. Suppose that L measurements of
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an electric or magnetic field are performed in some electromagnetic experi-
ment. Then we can consider these values as the components of electric, e, or
magnetic, h, vectors of a length 3L:

e=|E}, E% . .ELE, E., .E. E. E, .E-,

h=[H} H?,..HE, H H2,  HE HY B2, HYT,

where the upper subscript "7 denotes a transpose operation of a vector row
into a vector column.
Similarly, anomalous conductivity distribution, Ao (r), on some grid can

be represented as the components of a vector m of the length N:
m = [my, my,...,my|7 = [Acy, Ady, ..., Aoy]T.

Using these notations, we can write the discrete analogs of the quasi-
analytical approximations (3) and (4), and the Born approximation (6), as
(Zhdanov and Hursan, 2000):

e“QA:KE [diag (IN — (Al‘m)]_l m =A:B(m) m,

— ~ —1 ~ o~
h, = Ay [diag (Iy — Cm)|  m =A;B(m) m, (7)
where XE and /A\H are the 3L x N matrices
Ap = aEébp, Ay = aHélb, (8)

and B(m) is the N x N diagonal matrix

~

) . -1
B(m) = [dlag (IN — Cm)} , 9)
where C is the N x N square matrix
= ~bx -1 * N
C= (é%e%) e Gpel. (10)
We used the following notations in the last formulae. The vectors e®, e?,
and h? represent the discrete Born and quasi-analytical approximations of
the anomalous electric field at the observation points. Matrix &° is a sparse

tri-diagonal 3N x N matrix containing the z, y and z components of the pri-
mary (background) electric field at the centers of the cells of the anomalous
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domain D. Matrices G g and G g are discrete analogs of the corresponding
Green’s tensors. These matrices consist of the elements of either the elec-
tric or the magnetic Green’s tensor acting from the anomalous body to the
receivers. L is the number of receivers, and N is the number of cells in the
anomalous body. Vector I is a column vector of the length N formed by units.
Matrix G p is a discrete analog of the corresponding electric Green’s tensor
acting inside the domain D (so-called domain scattering matriz). Appendix
A contains the detailed explanation of these notations.

Let us introduce a notation d for an electric or magnetic vector of the
anomalous part of the observed data. This vector contains the components
of the anomalous electric and /or magnetic fields at the receivers. Using these
notations, the forward modeling problem for the electromagnetic field can be
expressed by the following matrix operation:

d=A [diag (I - @m)] “'m —AB(m) m, (11)

where A stands for the electric or magnetic matrices, Ap = Ggeb or KH =
G y€®, respectively.

TE and TM mode impedances in a 3-D magnetotelluric
problem

In practice, the results of magnetotelluric measurements are usually presented
as the apparent resistivity and phase calculated on the basis of the principal
impedances, which are expressed as the ratio of the mutually orthogonal
electric and magnetic field components (so-called nominal, TE and TM mode
impedances, Zhdanov and Keller, 1994):

ZLF = Ey/H,, Z,)' = E,/H,,. (12)

Note that this 2-D nomenclature is artificial and approximate in nature for
3-D structures, because the TE and TM mode impedances, Z©.” and Z2e,
are not necessarily equal to the principal component of the full impedance
tensors, Z,, and Z,,. However, it is widely used in practical MT observations.
The model study shows that in many cases the difference between the nominal
TE and TM mode impedances, ZLE, ZZ;!M , and the principal components of
the full impedance tensor, Z,, , Zy, is negligibly small and does not affect the

inversion result. The following numerical modelings illustrate this property
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Figure 1: Model of conductive body. Resistivity of halfspace is 100 Ohmm.
Resistivity of the anomaly is 10 Ohmm.

of the principal impedances. Figure 2 presents the Z,, principal components
of the full impedance tensor for the model of a conductive body shown in
Figure 1. Figure 3 presents the difference between principal component Z,,
and the TE mode impedance Z[F for yx polarization. The amplitude of the
difference is less than 1% of the amplitude of the component.

Figure 5 presents the same component for a more complex model of an
elongated conductor oriented at an angle of 45 degrees with respect to the
field polarization axes (Figure 4). The difference between these impedances
is shown in Figure 6. The difference again is less than 1% of the component
value.
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Figure 2: Principal component Z,, of the full impedance tensor.
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Figure 3: The difference between the principal component Z,, and the TE
mode impedance Z.” for yx polarization.
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Figure 4: Model of diagonal conductive body.
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Figure 5: Principal component Z,, of the full impedance tensor.
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Figure 6: The difference between the principal component Z,, and the TE
mode impedance ZZ;E for yx polarization.
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QA approximation of the TE and TM mode apparent
resistivities and phases

Let us denote an arbitrary horizontal electric field component by E and define
H as the magnetic field component perpendicular to the direction of E at a
particular receiver site. Note that both £ and H are complex numbers. The
TE or TM mode magnetotelluric impedance is defined as the ratio of E and
H:

E

Z==.
- (13)
The magnetotelluric apparent resistivity is calculated from Z, using
1 2
p=——|2P2 (14)
Who

Formula (14) gives a nominal TE mode apparent resistivity if we use the
TE mode impedance Z;‘FzE, and it produces a nominal TM mode apparent
resistivity if we use the TM mode impedance Z M. If the incident field is a
plane-wave and the model is a homogeneous half-space, p is equal to the true
resistivity, making it indicative of the resistivity structure of the subsurface.

Another commonly measured parameter is the phase angle of the im-
pedance:

_ImZ

ReZ’
This quantity is less sensitive to the effect of shallow subsurface anomalies,
so it is particularly useful for the detection of deep structures.

To obtain a simple relationship between the anomalous field components
and the MT parameters, let us express the logarithm of Z by writing £ =
Eb+ E®and H = H*+ H*

¢ = tan (15)

E®+ E° E'+E* H* E
an;lnm—n< Eb 'Hb_i_Ha'F; . (16)
Thus,

nZ=1n(1+E/E") —In(1+H*/H") +In 2", (17)

where Z° = E°/H?® is the background impedance.

From equation (14) we obtain
1 1

In|Z| =1n {(w,uop)lﬂ] =3 In(wug) + 3 In p. (18)
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The same relationship holds for the background impedance as well. Consid-
ering the identities In Z = In |Z| + i¢ and In Z° = In|Z°| + i¢, we find

%m Po+id, =In(1+E*/E") —In(1+ H/H), (19)
where Inp, = Inp — Inp, is the log anomalous apparent resistivity, and
¢, = ¢ — ¢y is the anomalous phase. Knowing the background cross-section,
these quantities can be easily obtained from the measured total apparent
resistivities and phases.

We introduce a vector of the data , which combines the values of log-
anomalous apparent resistivity at the receivers for all frequencies. In matrix
notation, formula (19) is cast as

dMT

aMT = %m(pa) +i¢® =In [T+ (&) e —In [T+ (b")"'h],  (20)

where vector I is a N x1 column vector whose elements are all unity; & and
h? are diagonal matrices containing the background electric and magnetic
fields at the receivers,

Eb,l Hb,l
. ; (21)
EbN HYN
and it is assumed that In is applied to ecach element of the corresponding
vector.
Substituting the QA approximations (7) into the anomalous field compo-

nents in (20), we obtain the QA approximation for the data containing the
log anomalous apparent resistivities and phases:

dMT =1n [I + (’éb)_lfA\EB(m)m} —In [I + (ﬁb)_lxgﬁ(m)m} , o (22)
where KE -G g6 and KH = aHéb, respectively and
1

B(m) = [diag (I — @m)}_ . (23)

Thus, the MT inverse problem is reduced to the solution of the nonlinear
matrix inverse problem (22).
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Frechet derivative (sensitivity) matrix for log anomalous
apparent resistivity and phase

Now let us consider the derivation of the Fréchet derivative matrix of the
forward operator (22). Noting that the model parameters are the anomalous
conductivity values in the cells of the anomalous body and that matrices
C, Ay and Ay are independent of the model parameters, one can express
the perturbation of the forward operator (22) with respect to the model
parameters in the form

6dM” = { (") ' Apdiag ™" [T+ (&")"ApB(m)m]
— (ﬁb)*KHdiag_l [I+ (ﬁb>*17A\H]§(m)m} } ) [ﬁ(m)m} : (24)
where diag [...] means a diagonal matrix formed by the elements of the vector

il

Since

we obtain
§ [B(m) m| = {B(m) + diag(m)B*(m) C}ém =D(m) ém,  (25)

where

is a diagonal matrix.
Substituting expression (25) into (24), we find

§aMT = { (&) " Apdiag ™ [I+ (€")"ApB(m)m|

— (ﬁb)_lz‘IHdiag_l [I + (ﬁb>_1KH1§(m)m}}ﬁ(m) dm.

From the last formula we find the MT Fréchet derivative matrix
FMT(m) = A" (m) D(m), (27)

where

—~

AMT (m) = (éb>_1KEdiag_1 [I + <éb)_1KEB(m)m}
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- (ﬁb>_1KHdiag_1 [I + (ﬁb)_lelAB(m)m] . (28)

Note that the terms depending on the model parameters are diagonal matri-
ces. The full matrices, Ag and Ay, depend only on the background conduc-
tivity distribution. Therefore, after precomputing the full matrices KE and
Ay for the background model, the iterative updating of FM7(m) is relatively
inexpensive during the inversion process.

Inversion of the full magnetotelluric impedance
tensor

Calculating the components of the full impedance ten-
sor

In the general case, solution of the inverse problem requires numerical mod-
eling of the components of the full impedance tensor in each step of the
iteration process. The simplest technique of solving this problem is outlined
in Zhdanov and Keller (1994) and Berdichevsky and Dmitriev, 2002, and can
be described as follows. We can write equation (1) for two polarizations of
the background field,

EY = Z, HP +Z,HP,
(29)
E® = Z, H® + Z,,H?,

where the first case corresponds to the TM mode of the background field,
EW= (B!, 0,0), H'W= (0, H}™,0),

and the second case corresponds to the TE mode of the background field
E'@= (0, EX®,0), H'®=(H®,0,0).

Solving equations (29) with respect to the impedance tensor components Z,,
and Z,,, we find

ES)Hf) _ Ea(v2)H:$:l) Eél)Hé?) _ E;(E)Hél)
Ty — Hg(jl)Ha(,?) _ H}gz)HQ)’ T H;l)Hf.) _ HJ(E-z)Hél)'

(30)
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In order to find the impedances Z,, and Zyy, we can write equation (2)
for two polarizations of the background field as well and solve the resulting
system of equations with respect to the impedance tensor components Z,,
and Zy,:

EOH® — E®HY E®H® — EOHY
I U T T Ty ik

vy —

We can introduce the normalized impedances

Zn = zy/ zy? xac_ MC/ zy) ;ly yy/ Yy a‘ndZn = yw/ Yy ( )
where b )
E
b b
Zgy = Hb(l) ) # (32)
In particular,
7 ) O HE) — E@ M)

Zn =0 = Lt L (33)
VT2, B RS~ B D

To obtain a simple relationship between the anomalous field components and

the impedance tensor components, let us express the logarithm of Z by taking
into account that

ED— (Ea(,-l): EZ(I)’ E;l(l)) , HO= (Hg(l), Hél), Hj(l)) ’

E®@— (E;(Q),Eéz), Eg@)) 7 H®= (Hf), H§(2), Hg@)) ’

EW = g 4 EPD, Hél) = Hg(l) e H;’(l),

Eél) — EZ(I)’ HY = g g®) = e, H§2) = H;@),
and
Ef) = EZ@) A Ez(2), H® = H*® 4 g
As a result, we can write

Ea(l) Ha(Z) Ea(2) Ha(l)
n o _ - bo_ z Ha e Hg
In ny = In Zp — 11 Zzy In { [Eb(l) + 1] [be@) + 1] be@) Eﬁm }

T

{ [ Ha(l) } [ H? ] H;j@) Ha) } (

—In +1 +1| - L2t 34)
b b b

i o 2 P o |
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We can obtain similar expression for the log normalized impedance 20

Ea(l) Ha(2) Ea(2) Ha(l
an;lenZyx—anglen{ Lo Y —[ y)#—l}{ )+1}}

Hg(l) E2(2) E§(2 Hb(l
Ha(1 Ha Hg(2> Ha(l
i {Hm i - {Hw " 1} {Hb(l " 1}} (35)
In a similar Way, we can derive the normalized impedances Z7, = Z,,/Z°

and 7 = yy/ b

Matrix representation of the impedance data

Let us organize the impedances into a data vector. For example, we introduce
a vector d,, formed by the values of the log impedance component In Zg, at
L receivers

dyy = I {diag [(éb(l))_le;(l) + IL} [(ﬁ”(2>)‘1h;(2) + IL}

- (1)) ) 1)
it () 0 1] () 1 1)
—diag [(ﬁb(z))ﬂhZ@)J (ﬁb(1)>—1h;(1)} ’ (36)

where I is a column vector of the order L formed by units; € and h® are di-
agonal matrices containing the corresponding components of the background
electric and magnetic fields at the receivers:

Eb,l Hb,l
z Y
/éb(l) — 7 ﬁb(l) —

b,L b,L
Eb H

Hb,l
¥ = , (37)

Hb,L

x

= [EL E2,..EX)7,
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w [ By B |

h, = [H}, HZ,..H.",

h, = [H;,Hyz, ...Hzf]T,
diag|...] means a diagonal matrix formed by the elements of the vector [...],
and it is assumed that In is applied to each element of the corresponding

vector.
We express now the vectors €2, e? h? h? using the QA approximations

Ty Tyt Tty
(7):
e’=Ap, [diag (IN - @m)]_l m =Ag B(m) m,

he = Ay, [dlag (IN—Cmﬂ m =A; B(m) m, (38)

e —AEy [dlag (IN = Cm)] 1m AE B(m) m,

hy = KH [diag (IN — @m)]_l m :KH B(m) m, (39)

where A Ap, and A Ap, are formed by the first L rows of matrices Ag and A H,
while A g, and AH are formed by the second L rows of matrices A g and
AH, respectively. In order to simplify the notations, we introduce a vector
P(m) _

P(m) = B(m) m (40)
and denote matrices XE and KH by symbols E and H as follows:

—

KEE»Q = Exvy’ /A\Hz.y B szy’ (41)

Using these notations, we can express the vectors of the anomalous electric
and magnetic fields in (38) and (39) as

e ,=E,,P(m), h! =H, P(m), (42)
where Ez,y and ﬁac,y are L x N matrices independent of the model parameters
m, and P(m) is the column vector of the order N dependent on m.

Substituting the QA approximations (42) into the anomalous field com-

ponents in (36), we obtain the QA forward approximation for the data con-
taining the log impedance Z,:

dey = In {diag [BLVPD (m) + L] [HXOP® (m) + I,
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—diag EEZ@)P@)(m)]ﬁ;(DP(D (m)}
—In{diag [H;VP(m) + L] [H:2P® (m) + I,
— diag [H,®P® (m)[H: VPO (m)}, (43)

where indices (1) or (2) correspond to the TM or TE modes of the background
field, and we use the notation

-1~

(@) Eu, =E:,, (b)) H,, =H:

T,y z,y?
(B) E., =B, (&) Ho, =T, (44)

Using similar matrix representations for the anomalous electric and mag-
netic fields, we can write the corresponding expressions for vector d, d; , and
dy,, formed by the values of the log impedance components In Z},, In Z7,, and
InZy, , at L receivers, respectively.

For example,

dy=1n {diag [}A?,Z(I)P(l)(m)}ﬁZ@)P(Q)(m)

—diag [ﬁ;z&)p@)(m) + IL] [ﬁz(l)P(U(m) + IL]}
— In { diag [P (m)[H:VP® (m)

— diag HZ(I)P(l)(m) 2% IL} ?Z(Z)P@) (m) + IL}} i (45)

Thus, the MT inverse problem is reduced to the solution of the nonlinear
matrix inverse problem, described by equations (43) - (45).

Note that expressions (43) - (45) can be used for calculating the Frechet
derivative (sensitivity) matrix for the data formed by the full magnetotelluric
(MT) impedance as well. The corresponding Frechet derivative matrix can
be found similar to Frechet derivative calculation for apparent resistivity and
phase, outlined above.

Regularized smooth and focusing inversion of
MT data

The MT inverse problems described by the matrix nonlinear equations (22)
and (43) - (45) are ill-posed problems. The solution of these problems re-
quires the application of the corresponding regularization methods (Tikhonov
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and Arsenin, 1977; Zhdanov, 2002). The traditional way to implement regu-
larization in the solution of the inverse problem is based on a consideration
of the class of inverse models with a smooth distribution of the model pa-
rameters. Within the framework of classical Tikhonov regularization, one
can select a smooth solution by introducing the corresponding minimum
norm, or “smoothing” stabilizing functionals. This approach is widely used
in geophysics and has proven to be a powerful tool for stable inversion of
geophysical data.

The traditional inversion algorithms providing smooth solutions for geo-
electrical structures have difficulties, however, in describing the sharp geo-
electrical boundaries between different geological formations. This problem
arises, for example, in inversion for the local conductive target with sharp
boundaries between the conductor and the resistive host rocks, which is a
typical model in mining exploration. In these situations, it can be useful
to search for a stable solution within the class of inverse models with sharp
geoelectrical boundaries. The mathematical technique for solving this prob-
lem was described in Zhdanov and Hursan (2000) and Zhdanov (2002). It
is based on introducing a special type of stabilizing functional, the so-called
minimum support or minimum gradient support functionals (Portniaguine
and Zhdanov, 1999; Mehanee and Zhdanov, 2002). We call this technique a
focusing regularized inversion to distinguish it from the traditional smooth
regularized inversion.

We can use the re-weighted regularized conjugate gradient (RRCG) method
to solve the nonlinear inverse problems (22) and (43) - (45). The basic prin-
ciples of the RRCG method are outlined in Zhdanov (2002). This method
can incorporate both the smooth regularized inversion, which generates a
smooth image of the inverted conductivity, and a focusing regularized inver-
sion, producing a sharp focused image of the geoelectrical target.

Note that the total conductivity must always be positive in the predicted
model. That is why we use the logarithm of the total conductivity as a model
parameter ensuring realistic inverse models:

m = [n(o, + m). (46)

Obviously, this model parameter can never produce negative conductivity.
The inverse transform is

m = exp(m) — op. (47)
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Figure 7: A model of a dipping dike (left panel) and inversion results obtained
by the QA inversion method with focusing (right panel).

Model study

The synthetic MT data set is generated by the forward modeling code IN-
TEM3D (Hursén and Zhdanov, 2002), based on the contraction integral equa-
tion method, for a model of a dipping dike (Figure 7, left panel) of resistivity
10 ohm-m, submerged in a half-space of 100 ohm-m. The top of the dike is
at depth 200 m, and its bottom is at depth 700 m beneath the surface. The
dike consists of two separated parts.

This model is excited by plane EM waves with four different frequencies:
1, 10, 100 and 1000 Hz. The MT impedances were calculated in 195 receivers
placed on the nodes of a square grid on the surface. The distance between
the observation points is 100 m in the z and y directions.

The volume of inversion is covered by a homogeneous mesh consisting
of 15x13x8 cubic cells surrounding the anomalous structure to be inverted.
Each cell has a dimension of 100 m in the z, y and z directions. The region
of inversion is also shown in Figure 7 (left and right panels).

The synthetic data set, generated by a full integral equation method, has
been contaminated by 3 percent random noise. The model parameters are
the unknown anomalous conductivity values of each cell in the volume over
which the inversion is carried out.

It has been demonstrated by Wannamaker (1999) that the best results
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for elongated anomalies are obtained with TM mode. The anomalous body
has a strike along the y axis, so the TM mode corresponds to xy polarization
(E; and Hy). In the case of the TE mode, the primary electric field is polar-
ized along the strike direction, and therefore, it is less sensitive to the dike
boundaries parallel to the strike. In the case of the TM mode, the primary
electric field is directed across the strike, and it becomes more sensitive to
the dike boundaries.

Figure 7 presents the result of inversion for an TM mode impedance
Zy, using the quasi-analytical (QA) inversion method, with focusing. Note
that inversion of theoretical MT data takes just few minutes on a personal
computer. A remarkable fact is that it is possible for this polarization to
separate the upper and lower parts of the dike. The position, shape, and
ther resistivity of the dike are also reconstructed quite well.

The next model represents in a schematic way a conductive syncline type
formation (Figure 8). We call this model an “open box” model. The con-
ductive syncline has a resistivity of 10 Ohm-m, and the resistivity of the
background is of 100 Ohm-m. The top of the conductor is at a depth of
200 m, and its bottom is at a depth of 1,100 m beneath the surface. The
horizontal size of the conductor is 3,200 m by 2,000 m. The thickness of the
“bottom” and the sides of the conductor is of 100 m. The horizontal cross-
sections of the model at the different depths are shown in Figure 9. This
model is excited by plane EM waves with four different frequencies: 0.1, 1,
10 and 100 Hz. The volume of inversion is covered by a homogeneous mesh
consisting of 61x41x9 cubic cells surrounding the anomalous structure to
be inverted. Each cell has a dimension of 100 m in the z, y, and in the
z directions. The synthetic data set is generated by the IE modeling code
INTEM3D.

Figure 10 presents the result of inversion for the Z,, impedance data using
the quasi-analytical inversion with image focusing. The inversion result for
the Z,, impedance data is shown in Figure 11. One can see that, by using
the different off-diagonal impedances, we can see better the different sides
of the syncline. Figure 12 presents the result of the joint inversion of the
off-diagonal impedances, Z,, and Z,,. This image reconstructs all sides of
the conductor, however, the “open box” like model is slightly distorted in
this case. One can see that a simple superposition of two models obtained
for different off-diagonal impedances, produces better result then the joint
inversion in this case.

The model study illustrates that in the case of a complex geological struc-
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Figure 8: Volume image of the model of a conductive syncline type formation
(an “open box” model). The color represents the depth of the corresponding
cells: the shallow cells are marked by red, while the deep cells are painted in
blue, for better visualization purpose.

23



Resistivity at z =250  Resistivity atz=350  Resistivity at z = 450
000 —————— 150200 502000 —— 50

1000 401000 401000 40
0 30 30 30
20
-1000 -1000 21009 20
1020 10 10
E -200 -2000
200 2000 0 2000 C-200,0 0 2000 -2000 0 2000
Resistivity at z =550  Resistivity atz=650  Resistivity at z = 750
2000 50200 50200¢ 50
1000 40100q 401000 40
0 30 0 30 0 30
20
-1000 21000 1000 -
10 1020 10
: -200! -2000
2000~200_0 .0 2000 2000 0 2000 2000 0 2000
Resistivity at z = 850 Resistivity at z= 950  Resistivity at z =
2000 502000 502000
1000 40100q 40100¢
0 30 30
2 20
-1000 %1000 -1000
10 10
-2000! -200 -2001
2000 0 2000 2000 0 2000 2000 0 2000

Figure 9: Horizontal slices of the model of a conductive syncline type forma-
tion at the different depths. The black&white scale represents the resistivity
in Ohm-m.
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Y, meters

Figure 10: A volume rendering of the resistivity model obtained as result of
the tensor component Z,, quasi-analytical inversion (Model 3). The cut-off
level for this image is equal to 15 Ohm-m. This means that only the cells with
a value of resistivity less than 15 Ohm-m are displayed. The color represents
the depth of the corresponding cells: the shallow cells are marked by red,
while the deep cells are painted in blue.

ture, the joint inversion may be preferable, however, the individual inversion
of a different impedance tensor component may contain complimentary in-
formation about the complex geological structure.

Inversion of the Voisey’s Bay MT data

INCO Exploration conducted a three-dimensional MT survey. The goal of
this survey was to study the application of the MT method to typical Ni-Cu-
Fe sulphide mineralization zone exploration in complex geological structures.
An array magnetotelluric survey consists of eleven profiles covering an area
of about 28 km?, collected by INCO Exploration at the Voisey’s Bay area,
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Figure 11: A volume rendering of the resistivity model obtained as a result of
the tensor component Z,, quasi-analytical inversion (Model 3). The cut-off
level for this image is equal to 15 Ohm-m. The color represents the depth of
the corresponding cells: the shallow cells are marked by red, while the deep
cells are painted in blue.
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Figure 12: A volume rendering of the resistivity model obtained as a result
of the joint inversion of off-diagonal tensor components Z,, and Z,, using
the quasi-analytical inversion method with image focusing (Model 3). The
cut-off level for this image is equal to 15 Ohm-m. The color represents the
depth of the corresponding cells: the shallow cells are marked by red, while
the deep cells are painted in blue.

27



where massive sulfide deposits were discovered (Naldrett et al., 1996; Balch,
2000). The frequency range of MT data is from 10 Hz to 350 Hz. We use for
inversion two off-diagonal elements of the impedance tensor, Z;, and Z,,
at five different frequencies between 32 Hz and 288 Hz (288 Hz, 166 Hz, 95
Hz, 55 Hz, and 32 Hz). The diagonal components of the impedance tensor,
Zye and Z,,,, were not used in the inversion because they were typically
much smaller and noisier than the off-diagonal components (similar to the
model case discussed above). The simple analysis of the MT data showed
the presence of an anomaly zone between profiles number six and eleven.
The MT profiles are numbered from the left to the right in Figure 13. For
example, Figure 13 presents the maps of Z,, apparent resistivity (top panel)
and phase (bottom panel) for a frequency of 96 Hz. We can see clearly the
location of the anomalous zone in these maps.

For detailed investigation we used data from the six profiles in the eastern
part crossing the anomalous zone. The background geoelectrical cross-section
in this area, according to the MT data, was represented by a seven-layer
model with the following resistivity-sequence: p, = 305, p, = 283, p; = 452,
py = 461, ps = 607, pg = 452, p; = 556 Ohm-m; h; = 100, he = 200, hg
= 200, hy = 100, hs = 100, hg = 200 m. This cross-section has been found
using the parameter-estimation code developed by Portniaguine and Zhdanov
(1995). The area of inversion consists of 33600 (56 x 50 x 12) cells. Figure
14 presents the 3-D view of the area of inversion and its discretization. The
structure of the MT station locations is a little bit irregular. The MT data
were interpolated in the six profiles shown in Figure 14.

The rapid 3-D MT inversion method was applied to the off-diagonal MT
impedances for the 276 interpolated MT soundings at five frequencies.

As a result of the inversion, we obtained a volume distribution of electri-
cal resistivity under the area of about 28 km? to a depth of 1 km. In Figure
15a we can see the vertical cross-sections of the inverse results below the ob-
servation profiles. Figure 15b presents the general 3-D view of the predicted
model. Figure 16 upper panel shows 3-D conductive bodies with resistivity
below 25 ohm-m, while Figure 16 bottom panel presents the domains with
resistivity below 50 ohm-m. One can see a conductive anomaly with a com-
plex shape in Figure 16, reaching a depth of several hundred meters. We
have plotted also the horizontal map at the different depths of the resistivity
obtained as the result of the inversion. These maps are generated using the
Geosoft package. An example of this map at a depth of 550 m is shown in
Figure 17.
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Figure 13: Maps of the observed Z,, apparent resistivities and phases at f
= 95 Hz over the Voisey’s Bay area. The dots mark the observation sites.

29



_MT profiles

ey,

LIS IS
ZAL Q..’.... - -
B R RS

LA .
PR LR

RRL2Y

22
255
ey, 2
.0...:: LY RIS AL
e
e,

Figure 14: Three-dimensional sketch of the inverted area and its discretiza-
tion for the inversion of the Voisey’s Bay area data. The locations of the MT
profiles are marked by thick black lines.
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Figure 16: The volume image of the inversion results with resistivity below
25 Ohm-m (upper panel) and below 50 Ohm-m (bottom panel). The color
represents the depth of the corresponding cells: the shallow cells are marked
by red, while the deep cells are painted in blue.
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Figure 17: A map of the resistivity distribution at a depth of 550 m, obtained
by inversion of the MT data collected in the Voisey’s Bay area.
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Figure 18: A comparison of the observed and predicted apparent resistivities
and phases, computed for the Z, impedance using the rigorous IE forward

modeling code INTEM3D.

It is important to note that, in order to control the accuracy of the in-
version, our method allows application of rigorous forward modeling in the
intermediate steps of the inversion procedure and for the final inverse model.
In particular, we have computed the theoretical predicted MT data for the
model shown in Figure 15, using the rigorous forward modeling code IN-
TEMS3D. A comparison of the observed and predicted apparent resistivities
and phases, computed for the Z,, impedance, is shown in Figure 18a-d. Gen-
erally, the apparent resistivities show better agreement than the phases.

Note that the rapid 3-D MT inversion code runs for just about 14 minutes,
and the inversion result has been achieved at approximately 30 iterations.
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Conclusions

We have developed a new 3-D MT inversion method and computer code based
on full nonlinear conjugate gradient inversion and quasi-analytical approxi-
mation for the forward modeling solution. Application of the QA approxi-
mation for forward modeling and Frechet derivative computations speeds up
the calculation dramatically. However, in order to control the accuracy of the
inversion, our method allows application of rigorous forward modeling in the
intermediate steps of the inversion procedure and for the final inverse model.
This modeling is based on the Contraction Integral Equation method de-
veloped by Hursan and Zhdanov (2001). The 3-D magnetotelluric inversion
code QAINV3D based on QA approximation, developed by CEMI, has been
tested on synthetic models and applied to the practical MT data collected in
an area with complex geology. This code is based on the re-weighted regular-
ized conjugate gradient method and can produce both smooth and focused
images of the geoelectrical structures. The 3-D MT inversion code works
extremely fast and produces the reasonable images of subsurface geological
formations. The rapid inversion of the array magnetotelluric data (observed
with hundreds of multi-frequency observation stations) can be done within a
few minutes on a PC to generate the full 3-D image of subsurface formations
on a large grid with tens of thousands of cells.
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Appendix A: The matrix form of quasi-analytical
approximation

The quasi-analytical approximations (3) and (4) of the anomalous electric
and magnetic fields in a discrete form can be written as (Zhdanov, 2002)

b = Gpe, [diag (I - g(0))] " o, (48)

and .
h{,, = Gyé), [diag (I - glo)) o (49)

We used the following notations in the last formulae. The vectors ef, , and

G represent the discrete quasi-analytical approximations of the anomalous

electric and magnetic fields at the observation points. Vector I is a N x1

column vector whose elements are all unity. The N x1 column vector g (o)
represents the function g (r) (equation (5)) at the center of each cell:

T
Eb,l* A EB,I Eb,2* . EB,2 Eb,N* . EB,N
80) = | gm0 B B BN BV |

(50)

where E®Y and E* (j = 1,2,...N) denote the Born approximation and the
background electric field in each cell within the anomalous domain.

Direct calculations show that vector g(o) can be expressed by matrix
multiplication:

b ~bx) "1 ~bx
glo) = (e%e%) anel, (51)

where the vector of the Born approximation inside the anomalous domain,

eB, can be expressed by the formula:

el = Gpého. (52)
Substituting (52) into (51), we obtain
b kx| "L bk b bk L Abk A A ~
g(o) = (eheh) ehel = (ehely) &3Gpeho =Co,  (53)

where R R
C=(eheh) &5Goe),. (54)

Thus, we can represent equations (52), (48) and (49) in the form

ef = GEé%o =Aro,
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e‘éA=KE [diag (I - éa)] o =KE]§(U) o,

hg, = Ag [diag (I — C‘a‘)}_l o =AyB(0) o, (55)

where . 25 e =
Ap =Ggé), Ay =Gpyél, (56)

and the diagonal matrix is expressed as
B(o) = [diag (1 Co)| . (57)

Let us introduce a notation d for an electric or magnetic vector of the
anomalous part of the observed data. This vector contains the components of
the anomalous electric and /or magnetic fields at the receivers. The discrete
forward modeling problem for the electromagnetic field based on the QA
approximation can be expressed by the following matrix operations:

d=A [diag (I - aa)] o =AB(o) o, (58)

where A stands for the electric or magnetic matrices, Ap = Ggeé}, or Ay =
Gyél,, respectively.
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