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Abstract 
In this paper we describe a new approach to shar p boundary geophy sical 
inversion. We demon strate that regularized inversion with a minimum 
support stabilizer can be implemented by using a specially designed nonl inear 
parametrization of the mode l parameters . Thi s parametrization plays the 
same role as transformation into the space of the weighted model parameters, 
introd uced in the origi nal papers on focusing inversion . It allows us to transform 
the nonquadrati c minim um support stabilizer into the traditional quadrati c 
minimum norm stabilizer, which simplifies the solution of the inverse problem. 
Thi s transformation automatically ensures that the solution belongs to the class 
of model s with a minimum support. The method is illustrated with synthetic 
examples of 3D magnetotell uric inversion for an earth conductivity structure. 
To simplify the calculations, in the initial stage of the iterative inversion we 
use the quasi-analytical approximation developed by Zhdanov and Hursan 
(2000 Inverse Problems 16 1297- 322). However, to increase the accura cy of 
inversion, we apply rigorou s forward modelling based on the integral equa tion 
method at the final stage of the inversion. To obtain a stable solution of a 
3D inverse problem , we use the Tikhonov regularization method with a new 
nonlinear parametrization . Thi s techn ique leads to the generation of a sharp 
image of anomalous conductiv ity distribution. The inversion is based on the 
regularized conjugate gradient method . 

1. Introduction 

One of the very import ant problems in the inversion of geophysical data is developing a stable 
inverse prob lem solution, which , at the same time, can produce a sharp image of the target. 
Here we consider an ill-posed problem of recon structin g the inhomoge neous conductivity 
distribution of rock formations from the measured scattered electromagnetic (EM) field data. 
The tradi tional inversion methods are usually based on the Tikhonov regularization theory, 
which provides a stable solution of the inverse problem. Usually a maximum smoothness 
stabilizing function al is used to stabilize the inversion process. The obtained solution is a 
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smooth image , which in many practical situations does not describe the examined object 
properly. 

The problem of reco nstructing discontinuous images was most intensively researched in 
papers dedicated to image processi ng, image reconstruction and medical tomography (see, 
for exam ple, Geman and Reynolds 1992, Geman and Yang 1995, Vogel 1997, Lobel et al 
1997). For geophysical applications, this problem was investigated in Last and Kubik 
(\983), Portniaguine and Zhdan ov (\999, 2002), Mehanee and Zhdanov (2002) and Zhd anov 
(2002). It was demonstrated in the cited publications that the images with sharp boundarie s 
can be recovered by regularized inversion algorit hms based on a new family of stabilizing 
functionals. Particularly, minimum suppo rt (MS) and minimum gradient support (MGS) 
funetionals were found extremely effec tive in the solution of a geo physica l inverse problem 
for mineral exploration (Zhdanov and Hursan 2000, Zhdanov 200 2). These new stabilizers 
select inverse models within the class of models with the minimum volume of domain with 
anomalous parame ter distribution (MS stabilizer) or with the minimum volume of area where 
the grad ient of the model parameters is nonzero (MGS stabilizer ). The se classes of models 
describ e compact objec ts (minimum support) or objec ts with sharp boundaries (minimum 
gradient support), which are typical targets in geophys ical mineral exploration, for exa mple. 

Unfortunately, very often, these focusing stabilizing functionals are not convex, which 
complicates the minimization of the Tikhonov parametric functional. The nonconvexity of 
the stabilizing functional means that the functional may have several local extrema, where the 
first variation is equal to zero. The local minima slow down the convergence of the iterative 
schemes , which are usually used in minim ization, and make it more di fficult to find a global 
minimum. 

It was demonstrated in Zhdanov (2002) that the nonq uadratic (nonconvex) stabilizing 
functiona l can be represented in the form of a quadratic (convex) functional by a linear 
transformation of the original model parameters into the space of the weighted model 
parameters. Th is linear transformation is updated from iterat ion to iteration, which is 
equivalent to the re-weight ing of the model parameters. In other words, we apply a set 
of linear transformations with the repeatedly updated weighting matrice s to transform the 
nonq uadra tic functional into the Tikhonov quadratic stabilizer. For examp le, we can solve 
the inverse proble m using the re-weighted conjugate gradient (CG) method with repeate d 
modification of the model parameter weights afte r every few iterations. 

In this paper we sugges t using a nonlinear transformation instead of a set of variable linear 
transform ations. In particular, we transform the nonq uad ratic minimum support stabilizing 
functional into a quad ratic one by using a specially selected nonlinear transform ation of the 
mode l parameters. We call this transformation a minimum support nonlinear parametrization. 
There are several adva ntages of this approach over the earlier approach of re-weighted 
minim um support minim ization. First of all, with nonlinear param etrization , the parametric 
functional continuously decreases with the iteration number, which makes it easier to selec t the 
termination criter ion for the iterative process, while in the framework of the previous approac h 
this functional may increase afte r re-weighting. Second , there is no need to select the optimal 
numb er of re-weighting steps, as was the case with the origina l method. Finally, the convex 
nature of stabilizing functiona ls with the new parametrization ensures fast convergence of 
gradient-type iterative algorithms to the solution of the original inverse problem . 

In geophysical inversion, we usually know a priori some physica lly meaningful bound s 
for the model parameters (the conductivity must be positive, for example). In order to introduce 
physical limits on the model parameters using new variables, it is necessary 10 impose upper 
and lower bounds on these variables durin g the inversion process. For this purpose we emp loy 
a gradient projection technique with a nonlinear projec tion ope ration. 
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We illu strate this new technique wi th synthe tic examples of 3D mag neto telluric (MT) 
inversion for an earth co nductivity struc ture . Th e numerical testing resu lts indicate the 
effectiveness of this ap proach. Th e non linear parame trization can be used , however , for 
the sol utio n of d ifferent geophysical inverse problems . 

2. Principles of re-weighted regularized inversion 

For comple tenes s, we begin o ur paper with a short summary of the bas ic prin ciples of re­
weig hted regul arized inversion wit h the minimu m support stabilizer. Let us con sider a gene ral 
discrete geo physical inverse prob lem , described by the o perator equa tion 

d = A (m ) , (1) 

where, in general, A is a nonlinear vec to r operator, m represent s the model parameters 
and d are ob serv ed geo phys ical data. We ass ume that Nd measur ements are performed in 
some geophys ica l ex periment. Th en we can treat these values as the components of the Nd ­

dimen sional vector d . Similarly, some model parame ters can be represe nted as the components 

of a vector m of orde r N»: 

d = [{h ,dz,d3 , . . . , dNd f , 
m = [111 1, II1Z, 111 3, ... , II1Nm] T , 

where the supers cript T denotes the tran spose o f the two vec tors . Note that we assume that 
the mod el param eters are described by rea l numbers, while the co mponents of vector d ca n be 
complex num bers. 

Th e inverse probl em (1) is usually ill-posed , i.e ., the so lution can be nonunique 
and unstable . We so lve this ill-posed inverse prob lem usin g the regularization theory 
(Tikho nov and Arsenin 1977 ), which is based on the minimization of the Tikh onov param etric 
functio na l: 

P" (m) = cp(m) + as (m ) ----> min , (2) 

where cp(m) is a misfit func tional be twee n the theoret ical values A (m ) and the observed da ta 
d , s(m) is a stabilizing func tional and a is a regul ari zat ion parameter. 

The misfit functional cp(m ) is usuall y se lec ted in the co mplex Euc lidean metri c of da ta 
space as a weig hted norm square o f the di fference betwee n the ob served and predicted da ta 
(erro rs) : 

cp(m) = IIWd (A (m ) - d) lI z = (A( m) - d ) *W~ (A(m) - d ), (3) 

where the aste risk '* ' denotes a tran spo sed complex conjuga te matrix , W d is the data weig hting 
mat rix which allows us to set the variance for eac h da tum to its appropriate level. 

Th e optimal value of a is determined from the misfit condition, 

cp(m) = 0d, (4) 

where Od is the noi se level o f the data. 
Th e stabilizing functional s( m) can be se lec ted, for example, as a nor m square o f the 

difference between the current and a priori models: 

sMN( m) = 11 m - m apr ll 2 = (rn - m apr)T(m - mapr) , (5) 

where the superscript ' 1" denotes a tran spo sed matr ix. Thi s is a min imum norm stabilizer 
whi ch provides, usually, a relat ively smooth image of the inverse model. Sub stituting (3) and 
(5) into (2) , we arrive at the co nventiona l Tikh onov parame tric functiona l
 

P" (m) = (A (m) - d) *W~(A(m) - d ) + a (m - mapr)T(m - mapr) ----> min . (6)
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In order to generate a compact image of the geophysical model with sharp bound aries, 
Zhdanov and Hursan (2000), and Mehanee and Zhdanov (2002) applied a minimum support 
stabilizer, which is a nonq uadratic functional of the form 

sMS(m ) = (m - mapr)T[(iii - mapr)2 + e21t 1( m - mapr) , (7) 

where mand mapr are Nm x Nm diagonal matrices of inverse model para meters (current and 
a priori, respectively): 

m= diag (III I ' 111 2, . . . , IIINJ , mapr = diag (lIIlapr, 111 2apr, . . . , III N"apr) , 

e is the focusing parameter and l is the Nm x Nm identity matrix. It was shown by Portni aguin e 
and Zhd anov (1999) that this functional minimizes an area of nonzero parameter distribution 
(minimizes the support of the inverse model), if e tend s to zero: e -4 O. 

Following Zhdanov (2002) we note that this stabilizing functional can be expressed as a 
pseudo-quadr atic functional of the mod el param eters, 

~ T ~ 

sMS(m ) = [W e(m - mapr)] W e(m - mapr) , (8) 

where Weis a diagonal matri x: 

We= [em- mapr)2 + e21 ]- 1/2. (9) 

Thi s matrix depends on m , that is why we ca ll (8) a ' pseudo-quadratic ' functional. We 
can introd uce a linear transformation of the original mode l paramete rs into the space of the 
weighted model parameters: 

m'" =Wem. ( 10) 

As a result of this transformation, we arrive at the traditional quadratic minimum norm 
functional, sMN(m W ) , for the weighted parameters m": 

sMS(m) = sMN (m 
W

) = (m Ul 
- m~r) T [m" - m~r ) = Ilm w - m~J . 

We also introduce the weighted da ta d" as 

d" = W dd . 

Using these notation, we can rewrite the parametr ic functional (2) as follow s: 

p a(m W ) = II AW (m Ul
) _ d W II 2 +u llm w - m~r ll 2 

= (A W(m W) _ dW)*(AW(m W) - d '") + u (m W- m~r) T (mW - m~r ) -4 min , (I I) 

where A W(m W) = WdA (W ;-lmW
) . 

Note that the unknown parameters now are weighted mode l parameters, m '". In order 
to obtain the original model param eters, we have to apply inverse weightin g to the result of 
minimi zation of the parametric functional (II ) : 

m = W; lm W. . (12) 

Therefor e, the prob lem of minimi zing the param etric functional, given by equation (2) , can be 
trea ted in a similar way to the minimization of the conventional Tikhonov functional (6). The 
only difference is that now we introdu ce some variab le weighting matrix W e for the model 
parameters which depends on the current mod el paramet ers. The minimizat ion prob lem 
(I I) can be solved using any gradient-type technique, say, by the conj ugate gradient method 
(Zhdanov 2002). 

Portniaguine and Zhda nov (1999) have developed a simplified approach to minimizing 
the param etric functional ( I I), using the re-weigh ted regularized conju gate gradient (RRCG) 
method. In the framework of this approach, the variable weight ing matri x ' Ve is precomputed 
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on eac h iteration, W e = W en = W e(m n), based on the values m, ; obtained on the previou s 
ite ration. This linear tran sformation is updated after a fixed num ber of intermediate iterations, 
wh ich is equivale nt to the re-w eighti ng of the model param eters . Th e advantage o f this 
approach lies in its simplicity. Th e disadvant age is related to the fact that due to re-wcighting, 
the mi sfit and stabilizi ng functi onals ca n cha nge , and eve n increase from iteration to iteration 
(Zh danov 2002). In th is paper we con sider a different method of minim um suppon nonlinear 
inver sio n, which doe s not have the problems men tioned above and at the same time does not 
require minimi zation of a non convex functional. T his technique is based on a new non linear 
parametrization , outli ned below. 

3. Minimum support nonlin ear param etrization 

We suggest using a nonl inear tran sformat ion instead of a set of variable linear transfo rmatio ns 
of the model parameters. In particular, we tran sform the nonquadr atic minimum 
support stabilizing functiona l into a quadratic one by usin g a specially se lected nonl inear 
tran sformation of the model param eters, described by the for mula 

mj - mapr, 
111 ; = , (13 ) 

J (mj - lIlapr,) 2+ e2 

where m = {m;}, i = I , . . . , Nm, is the ori ginal vector of the model parameters, and 
iii = (ind, i = I , . . . , Nm is a new vector o f the nonlinear par am eters . Th e following 
inverse tran sform hold s: 

mje 
111; - Jnaprj (14) 

JI - inf' 
A tran sform ation pair, (13) and (14), ca n be written in matrix notation as 

- ,V . ~ ~ )2 I ) -1 /2 (m = ~ e(m - m apr) = [(m - mapr + e2~ m - m apr ), (15 ) 

and 

- [-I ", 2)- 1/2­m - mapr - e - m m , ( 16) 

where ffi is an Nm x Nm diagonal matrix wi th the diagon al formed by nonl inear model 
"" di (- - -)param eters, m = lag m \ , m 2 , ... , IIl N rn • 

Su bstituting ( 16) into the Tikhonov parametric functional (2), we arrive at the conven tional 
param et ric funct ional with a min imum nom] stabilizer 

1P[iii) = II AW(m apr + ell - ffi 2 J- /
2iii ) - d WII 2 + a II iii - inapr ll 2 . (17 ) 

We ca ll the tran sform ation, described by formulae (\ 5) and (16), a minimum support 
nonlinear parametrization because it automa tically ensures that the solution belon gs to the 
cla ss of mod els with minimum support. 

Not e that , in the impl ement~ion of the CG method, we have to calculat e on every iteration 

n the Frechct derivative matrix , F(n), with respect to a new mod el parameter vect or iiin, which 

is eq ua l to 

2"" F(n) = eF(n)[I - ffi ~ r 3
/ , (18) 

where F(n) is a Frechet deriv ativ e of our origin al o perator AW at a point mn . 

We should note , however , that in the case of a new mi nimum suppor t nonl inear 
param et rization, we mu st consid er a con strain ed optimiza tion, wit h the absolute value of 
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iii bein g less than I . In order to keep the true model parameter m within the known bound s, 
we also should impo se additional constraint s on iii and require that 

I'"'<J _ ,..." _ + 
nl,. < m , < In ,. , ( 19) 

where 

lIli - + m] 
.---- and Ill ; = -=-- for i = 1, .. . . N«. (20) 

lIli 2+ e2 JIIl t2+e2' 

where m" = {lIlt\ , and m" = {lIlil are the known upper and lower bound aries for material 
property. 

Therefore. we will use the gradient projection method (Bertsekas 1999). and take the 
projection of the parameters iii onto the compac t set. bound ed by (19). We will perform 
minimization in a space of new parameters m " E (-00; 00) , and then take the projection onto 
this set. using the following function for the projection: 

_ __ mt +ini [2 -I (_p int+in i ) ]
Ill ' = tl l., + - tan Ill · - + I 

I I I2 If 2 . 

Thi s is a one-to-one transformation, which ensures (19) and has the inverse tran sformati on: 

_ p in t + mi (m; - ini )lf 
Ill ; = + tan ( _ _ ) . (2 1) 

2 lilt -ill ; - If / 2 

The expression for the Frechet der ivative F p en) with respect to a new model parameter vector 
m~ at the /lth iteration of the CG method will take the form 

- + - - ]"" ~ ",, 2 - 3/ 2 . IIl n; - IIl n; _ p 2 - I . 
Fp(n)=eF(n)[I- mn] diag If (1 +(111,,;)) ,t =I , .. . • Nm . (22) 

[ 

Finally. we can write the following regul ari zed conjugale gradient (RCG) algor ithm of 
the parametri c functional minimization with two parametrizations: 

f n = A W(m n ) - dW, (23) 

In = Re[F; (n)rn] + a iii ~, (24) 

- - Il ln ll ­
I" = I" + 1,,-1-- , 10 = 10 (25) 

II ln- 1 11 

- . "" - 2 - 2 - 1k; = Inln[II F p(n)ln ll + a ll lnll ] • (26) 

-p - p ­= mn - knln• (27)mn+1 

(2 )_ __ 1( _ + _ _ - I (- P ) 
mn+! = m + 2: m - m ) -; tan mn+1 + I , (28) 

",,2 ] - 1/2_ 
mn+ ! = e [

~ 
1 - mn+! m n+1 + m apr ' (29) 

Note that algor ithm (23)- (29) descr ibes a conventional nonlinear conj ugate gradient 
method applied to the Tikhonov parametric functional minimization (Zhdanov 2002 , p 149). 
Vectors In are the gradient directions , while vectors In represent the conju gate directions. In 

"" the inversion algorithm we use the real part of the Frechet derivative F p (n) , because the model 
param eters are described by rea l numbers. while the obse rved and predicted data can be 
compl ex numbers. The length of a step. kn , is determin ed using a linear line sea rch on every 
iteration . 
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Figure t. The values of the min imum support stabilizer for ma versus parameter e. 

The difficult y with nonlinear parameters is that, in the case of zero initial approx imation 
(m = 0) in the conjuga te gradient algorithm, we will get almost zeros for the Frechet derivative, 
because m " would be too large, and hence, we will not step away from the starting zero point. 
To overcome this difficult y, we use as a starting point for minimum support inversion a solution, 
IDo, obtained with the min imum norm stabilize r. 

Another difficulty is related to the problem of the optimum focusing parameter e 
ca lculation. Obv iously, e sho uld be chose n taking into account variou s aspects of the inverse 
problem . For example. e should not be too small. because it multiplies the Frcchet derivative 
(i8). At the same time it should not be too large, because in this case the image will not 
be focused. In other words. the probl em of selecting the focusing paramet er e is very similar 
to the probl em of choosing the regularization parameter Ct. Here we propose a meth od 
to estimate the op timum value of e. using the starting point IDa of the minimum support 
inversion. 

Figur e I presen ts a plot of the normalized value of the minimum support stabilize r versus 
the vario us values of e. comp uted for the given IDo according to the form ula 

T [ ~2 O ~] - lsMS(m) = mo mo + e: I rnn, 

lt can be proved that this is a monotonically decreasing function. which goes to zero when e 
goes to +00, and to I when e goes to zero . Extreme ly small values of e may result in a singular 
behaviour of this functional (division by zero for zero elements of the diagonal matri x rna). 
while large values of e correspond to the standard minimum norm solution without focusing. 
That is why, by analogy with the L-curv e method for the regularization parameter a (Hansen 
1998), we chose e to be in the vicinity of the maximum convex curvature point. Our num erical 
studies show the effec tiveness of this choice . 

After introducing a trigonom etric parametrization , we can proceed with the minimum 
support nonlinear para metrization and find the minimum of the Tikhonov parametric functional 
using the Re G algorithm (23)- (29). Th is completes the formul ation of a new inversion scheme 
based on the min imum support nonlin ear parametrization. 

4. MT inversion 

In this section, we will consider. as an illustration of the developed method. a solution of the 
geo phys ical magneto telluric inverse problem . The NIT method was introduc ed in geop hysics 
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by Tikhonov (1950) and Cagniar d (1953) . It is based on measurements of the natural EM 
field at the surface of the earth. Thi s field consists of a primary component of external origin 
and a secondary com ponent that arises due to telluric currents induced in conductive regions 
of the earth by the primary field . Th e penetration depth of the primary field, and therefore 
of the telluric currents, increases with the period . The interpret ation of magnetotelluric 
data is based on the ca lculation of the transfer functio ns between the horizontal component s 
of the elect ric and magnetic fields, which form the impedance tensor Z (Zhdanov and Keller 
1994). The components of the impedance tensor de pend primarily on the subsurface resistivity 
distribution over the penetrat ion depth. Impedance measurements as a function of period can 
therefore be inverted for a resistivity model of the earth. 

Following the traditional approach used in practical MT observations , we can calculate 
the apparent resistivities, P, and phases, <p, based on two off-diagonal elements of the MT 
tensor, Z xy and Z yx ' at each observation point: 

1 12 I 12 - - - IZxy , - -- IZ vx , (30) 
Pxy - W/l-o Pyx - W/l-o ­

-1 Im Zxy , _ I 1m Z yx 
(3 I ) <Pxy = tan Re z., <Pyx = tan Re Z yx ' 

where the quant ities Pxy and <Pxy are ass igned to the nomin al transverse magnetic (TM) mode, 
whereas Pyx and <Pyx are assigned to the nomin al transverse electric (TE) mode. Note that this 
2D nomenclature is artificial and approx imate in nature for 3D structures . However, it is used 
in practical MT observations (Wannamaker 1997, Zhdanov et a/ 2000a). Note also that, in the 
inversion algorithm, we actually use the logarithm of apparent resistivity and phase in radians. 

Therefore, the solution of the inverse problem requi res numerical modelling of the 
appa rent resistivities and phases in each step of the iteration process. The components of the 
impedance tensor are determined from the horizontal components of the electric and magnetic 
fields in every obse rvation point. The corre sponding technique of solving this problem is 
outlined, for example, in Zhdanov and Keller (1994) and Berdichevsky and Dmitriev (2002 ). 
Thi s procedure is extremely time consuming , which results in enormous calculations for 
the solution of the inverse problem. In order to overco me these computational di fficulties, 
following Zhdanov and Hursan (2000) we suggest using an approx imate solution based on 
the quasi-analytical (QA) approximation on the initia l stage of the iterative inversion. A 
description of the basic principl es of the QA appro ximatio n can be found in Zhd anov et a/ 
(2000 b) and Zhdanov (2002, pp 248-5 1). 

The approx imate QA forward operators can be used for computing the components of 
the impedance tensor components in (30) and (3 1). These opera tors speed up significantly 
the calculations on each step of the inversion. In a general case, the corresponding formulae 
can be expressed by an operator equation including the data vector d and the vector of model 
parameters m as 

d = A (m) , (32) 

where A is the forward operator symbolizing the governing equations of the MT impedance 
modellin g prob lem, m is the vector of the unknown conduct ivity distribution (model 
parameters) and d is the vector formed by obse rved values of the apparent resistivities and 
phases at the observation points. We can apply now the RCG algorithm (23)- (29) with the 
minimum support nonlinear parametrization to solve the MT inverse problem (32). Note that 
the computation of the Frechet derivative matrix, required by this algorithm, can be made on 
the basis of QA approxi mation as well (Zhdanov and Hursan 2000). 
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App lication of the QA appro ximat ion to forward modelli ng and Frechet derivative 
computations speeds up the calcul ation dramati cally. However, in order to control the accuracy 
of the inversion , our method allows application of rigorous forward modelling in the final steps 
of the inversion procedure. We use an integral equation forwa rd modelling code based on the 
cont rac tion integra l equa tion method , whic h improv es the convergence rate of the iterative 
solvers (Hursan and Zhdanov 2002 ). A few last iteration s with rigorou s forward modell ing 
require much more time than all previous iterations with the QA approximation. However, 
appl ication of the rigorou s solver improves the resolution of the inverse method and helps to 
generate a more correct image of the target. 

5. Nume rical modelling resul ts 

The 3D MT inversion algorithm described above and the corresponding computer code have 
been carefully tested on synthetic models. We present below some numerical exam ples of the 
MT data inversion with this new method. 

5.1. A conductive dike model 

Consider a homogeneous half-space with a background resistivity of Ph = 100 Qm, containing 
a conductive dike. The resistivity of the inhomogeneity is 3 Qm . The top of the dike is at 
a depth of 200 m, and its bottom is at a depth of 600 m beneath the surface. This model is 
exc ited by a plane EM wave source. The x and y com ponents of the anoma lous magnetic 
and electric fields for four diffe rent frequencie s ( I , J0, 100 and 1000 Hz) have been simulated 
at 225 rece iver point s arranged on a homogeneo us grid, using the integral equation forward 
modelling code INTEM3D (Hursan and Zhdanov 2002 ). The coordinate s of the receiver 
grid are the following: x and y from - 700 to 700 every 100 m. The receiv er system is located 
at the surface of the earth. The EM field components were recalculated into MT apparent 
resistivity and phase, using the standard formulae (Berdichevsky and Dmitriev 2002 ). The 
area of inversion is covered by a homogeneous mesh consisting of 16 x 25 x 8 cubic cells 
surrounding the anomalous structure to be inverted. Each cell has a dimension of 100 m in 
the x , y and z directions. We select a foc using param eter based on the corre spondin g L-curve 
ana lysis, described in section 3, as follows: e = 0.016 . The upper and lower bou nds of the 
total resistivity obtained from the inversion are set within an interval of 1-100 Qm . 

Figure 2 shows the true model (panel (a)) , discretization grid and MT station position s for 
this model (panel (b)), inversion results after 15 iteration s with the minimum norm stabilizer 
(panel (c)), intermediate result after 60 iterations with the minimum support stabilizer and 
QA forward modellin g (panel (d)) and the final result after 5 addi tional iteration s of the RCG 
method with minim um support invers ion and rigorous full forward modell ing (panel (e)). In 
figure 2, we present three-di mensional images of the resistivity dis tribution with the volume 
rendering. The cut-off level of the resistivity for these images is shown in the corre spond ing 
panels. For example, the cut-off level P < 20 Qm means that only the cells with a value of 
resistivity less than 20 Qm are displayed. Figure 3 presents the inversion curves, parame tric 
functional, P[a], stabilizer, S[m ] , misfit, .p[m] , and elapsed time versus iteration numb er. 

Note that, at iteration numb er 16, we observe a sudden decrease in S[m] because at this 
iteration the code switches from the minimum norm to the minimum support stabilizer. The 
transition at the 76th iteration from the appro xima te forward mode lling opera tor to the full 
integral equation solver results in a notable increase in the misfit and param etr ic functional 
at this iteration. Also , due to the high conductivity contrast, the predicted conductivity is 
slightly smaller than the true conductivity. Nevertheless, the inversion with the minimum 
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Figure 2. Conductive dike model. (a) True model; (b) d iscretization grid and MT station positions; 
(c) inversion results after 15 iterations with the minimum norm stabilizer; (d) intermediate result 
after 60 iterations with the minimu m support stabili zer and QA forward modellin g; (e) final result 
after 5 iterations of the RCG method with the minimum support inversion and rigorous full forward 
modellin g. 

support stabilizer help s us to obt ain an image with much greater contrast, than minimum norm 
inversion, as on e can see from figure 2, where the cut-off valu e for the image in panel (c) is 
four time s greater than for panels (d) and (e) . The shape and position of the recovered body 
are predicted qu ite well. 

For comparison , we present in figure 4 the verti ca l cross -sections of the true model 
(pane l (a» , the inversion resul t with the m inimum norm stabilizer (panel (bj) , the intermediate 
result with the minimum support stabilizer and QA forward modelling (pan el (c) and the fina l 
sharp inversion result (panel (dj) . One can see that the minimum norm result underestim ates 
the true conductivity, while the sharp inversion reconstructs an image very clo se to the true 
mod el. 

5 .2. Model ofall L-shaped conductive structure 

Th e next mod el we considered was an L-shaped conductive structure . The top of the structure 
is 250 m below the earth 's surface, and the bottom is 500 m below. The resistivity of the 
anoma lous zone is 50 Qm , and it was embedd ed in a 100 Qm homogeneous half-space. The 
mod el is exc ited by the plan e wave source (0.1.. I .. 10 and 100 Hz). Receiver s are placed every 
200 m along the x and y directions from -1600 to 1600 m . We inverted the synthetic MT data 

http:homogeneoushalf-space.The
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Figu re 3. Inversion curves for the dike model: parametric functional, 1' [0'], stabilize r, S[IIl], 
misfit, <p[m], and e lapsed time versus iteration number. 

(a)	 p IOhm- ml (b) p IOhm-m] 
0, i _ 3 

20: [	 20 0I I ~
 
. . . . . . 

N 40 0 1 1 " 17 N 4 0 0 1	 1 I ~ 17 

6 0 0	 6 00 I I 142\.. 
800 1	 800 ,1r; L..J I 0 0 

- 5 0 0 a 500 -500 0 50 0 
x x 

( e) p IOhm-m] ( d) p IOhm-m] 
0 , i _ 3 

2 J .•..... II: 2 0 0 1 

...~ N 400 f	 j I h 7 N 4 0 0 f ] It 17 

. . .. .. .. ..60 0f ..- i I 142 600 I I I 142 ~ 
8 0 0 ·800 f i U 1 00 I !........! 1 0 0 

-500 0 5 00 -500 0 500 
x x 

Figu re 4. Dike model: vertical cross-sec tions of the true mode l (panel (a)) , the inversion result 
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Figure S. Lvshaped conductive structure: (a) true mode l; (b) inversion results after 20 iterations 
with the minimum norm stabilizer; (c) intermediate result after 63 iterations with the minimum 
support stabilizer and QA forward modell ing; and (d) final result after 5 itera tions of the ReG 
method with the minimum support inversion and rigorous full forwa rd modellin g. 

computed for this model using the full integral equation solver at the final stage of inversion . 
The area of inversion was covered by a rect angular grid consisting of 18 x 18 x 8 cell s, and 
every cell was 200 x 200 x 100 m3. The selected focusing param eter is equal to e = 0.004. 
The upper and lower bounds of the total resistivity obtained from the inversion are set within 
an interval of IO-JOO Qm . 

Figure 5 presents the true model (panel (a» , inversion result s after 20 iterations with 
the minimum norm stabili zer (panel (b», an intermediate result after 63 iterations with 
the minimum support stabilizer and QA forward modelling (panel (cj) and the final result 
after 5 additional iterations of the ReG method with the minimum support inversion and 
rigorou s forward modelling (panel (dj) , Figure 6 shows the inversion curves, param etric 
functional, P[a], stabilizer, S[m], misfit, ¢ [mJ, and elapsed time versus the iteration numb er. 
Figure 7 shows the vertical cross-sections of the true model (panel (a», the inversion result 
with the minimum norm stabilizer (panel (bl), the intermediate result with the minimum 
support stabilizer and QA forward modelling (panel (c» and the final sharp inversion result 
(panel (dj) . The recovered image reconstruct s well the original model. 

5.3. 'Open box' conductive structure 

We present a similar result for the 'open box' model , simulating a conductive syncline structure. 
The resistivity of the anomalous zone is 50 Qm , while for the surrounding medium it is equal 
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Figure 6. Inver sion curves fo r the L-shaped model , parametric functional, P [a ] , stabilizer, S[m ], 

misfit, ¢> [m], and elapsed time versus iteration num ber. 
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Figure 7. L-shaped model : vertica l cro ss-sectio ns of the true mode l (panel (a)), the inver sion 
result with the minimum norm stabilizer (panel (b) , the interm ediat e result with the minimum 
support stabilizer and QA forwa rd mod elling (panel (c) and the final sharp inversion result 
(panel (dj) . 

to 100 Qm. The model is exci ted by the plane wave source (0.1, I , 10 and 100 Hz). We use 
the same MT observation system, the same grid and the same parameters for inversion as for 
a model shown in figure 5. 

Figure 8 presents the true model (panel (a», inversion results after 20 iterat ions with 
the minimum norm stabilizer (panel (bj), an intermediate result after 63 iteratio ns with the 
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Figu re 8. 'Open box' conductive structure; (a) true model ; (b) inversion results after 20 iterations 
with the minimum norm stabilizer; (c) intermediate result after 50 iteration s with the minimum 
support stabilizer and QA forward modellin g and (d) final result after 5 iterations of the ReG 
method with mini mum support inversion and rigorou s fu ll forward modelling. 
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Fig ure 9. 'Open box model' ; inversion curves, parametric functional, P[ a ], stab ilizer, S[m J, 
misfit, </> [m] , and elapsed time versus iterat ion number. 
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Figure 10. 'Open box' mode l: vertical cross-sections of the true model (panel (a)), the inversion 
result with the minimum norm stabilizer (panel (b)), the intermediate result with the minimum 
support stabilizer and QA forward modelling (panel (c)) , and the final sharp inversion result 
(panel (d)) . 

minimum support stabilizer and QA forward modellin g (panel (c) and the final result after 
5 additional iterations of the RCG method with the minimum support inversion and rigorous 
forward modell ing (panel (dl) , Figure 9 shows the inversion curves, parametri c functional , 
P[ a J, stabilizer, S[mJ, misfit, 4> [m], and elapsed time versus iteration numb er. Figure 10 shows 
the vertical cross-sections of the true model (panel (a», the inversion result with the minimum 
norm stabilizer (panel (bl), an intermediate result with the minimum support stabilizer and QA 
forward modelling (panel (c) and the final sharp inversion result (panel (dj) . The recovered 
image reconstruc ts well the original model. One can observe, however, that some artefacts 
appeared beneath the inhomogene ity. These artefacts can be explained by a simple fact that 
the sensitivity of the data to the bottom of the model is smaller than the sensitivity to the top 
part of the condu ctive body. 

6. Conclusion 

We have demonstrated in this paper that regularized inversion with a minimum support 
stabilizer can be implemented by using a specially designed nonlin ear parametrization of 
the model parameters. This parametrization plays the same role as the transformation into 
the space of the weighted model param eters, introduced in the original papers on focusing 
inversion. It allows transforming the nonquadratic minimum support stabilizer into the 
trad itional quadratic minimum norm stabilizer, which simplifies the solution of the inverse 
problem . Also, using this transformation and gradient projection method, we impose the 
upper and lower bounds on the model parameter distribution , and automatica lly ensure that 
the solution belongs to the class of models with the minim um support. 
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Based on this new parametrization, we developed a new algorithm of the rapid MT 
inversion and investigated the effectivenes s of the new approach on synthetic models. The 
model study shows a good perfo rmance of the method with the new nonl inear parametrization. 
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