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[I] Numerical modeling of the quasi -static electromagnetic (EM) field in the frequency 
domain in a three-dimensional (3-0) inhomogeneous medium is a very challenging 
problem in computational physics. We present a new approach to the finite difference (FD) 
solution of this problem. The FD discretization of the EM field equation is based on the 
balance method. To compute the boundary values of the anomalous electric field we 
solve for, we suggest using the fast and accurate quasi-analy tical (QA) approx imation, 
which is a special fonn of the extended Born approxi mation . We call this new cond ition a 
quasi-analytica l boundary condition (QA BC). This approach helps to reduce the size of 
the modeling dom ain without losing the accuracy of calculation. As a result, a larger 
number of grid cells can be used to descr ibe the anomalous conductivity distribution 
within the mode ling doma in. The deve loped numerical technique allows application of a 
very fine discretization to the area with anoma lous conductivity only because there is no 
need to move the boundaries too far from the inhomogeneous region, as required by the 
traditional Dirichlet or Neumann conditions for anomalous field with boundary values 
equal to zero. Therefore this approac h increases the efficiency of FD model ing of the EM 
field in a medium with complex structure. We apply the QA BC and the tradition al FD 
(with large grid and zero BC) methods to comp licated models with high resistivity 
contrast. The numerical modeling demonstrates that the QA BC results in 5 times matrix 
size reduction and 2-3 times decrease in computational time. INDEX TERMS: 0644 

Electromagnet ics: Numerical methods; 0639 Electromagne tics: Nonlinear electromagnetics; 092 5 Exploration 
Geo physics: Magnetic and electrical metho ds; KEYWORDS: finite differen ce, electromagnetic modeling, 
bound ary conditions 

Cita tio n: Mehanee. S.. and ~1. Zhdanov (2004), A quasi-analytical boundary conditi on for three-d imensional finit e difference 
electrom agnetic mode ling. Radio Sci.. 39, RS60l4, doi:10.1 029/2004RS003029. 

Maxwe ll's equations written in differential form [Weaver, 1. Introduction 
1994; Zhdanov et al., 1997; Zhdanov, 2002 ]. The FD 

[2] In most geophysical applications of electromag­ method provides a simple but effective tool for numeri­
netic (EM) methods. it is necessary to model geo­ cally solving the EM forward mode ling problem [Weaver 
electrical structures of quite arbitrary shape and size, and Brewitt-Taylor, 1978; Zhdanov et al., 1982; Zhdanov 
with anomalous conductivity varying in an arbitrary and Spichak, 1992; Weaver, 1994; Mackie et al., 1993, 
manner. The most widely used approaches to EM 1994; Newman and Alumbaugh, 1995; Smith , 1996; 
forward modeling are finite difference (FD) and finite Zhdan ov et al ., 1997; Spichak, 1999 ; Haber et al. , 
element (FE) methods to find numeri cal solutions to	 2000]. One common technique of field discretization is 

based on a staggered- grid scheme [fee, 1966; Wang and 
Hohmann, 1993; Wang and Fang, 200 I; Davydycheva et 
al., 2003] , which is effective in solving the coupled first­' Now at Geophysics Departme nt, Facul ty of Science, Cai ro 

University, Giza, Egypt. order Maxwell's equ ations. Another approach to the 
discretization of the EM field equations is based on the 

Copyright 2004 by the American Geophysical Union. balance method [Zhdanov et al., 1982; Samarsky, 1984; 
0048-6604/04/200-lRSOO3029S11.00 Zhdanov and Spichak , 1989, 1992; Zhdanov and Keller, 
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Figure 1. The model region is discretized into a number of prisms . The indices i , k, and I are used 
to number the grid point in the x, y, and z directions, respectively. Electrical conductivity (0') is 
assumed to be constant within each elementary prism. 

1994 ; Sp ichak, 1999; Mehanee and Zhdanov, 200 I ; 
Zhdanov, 2002 ; Mehanee, 2003]. This method involves 
integrating the original different ial equations over each 
cell of the FD grid and discretizing the corresponding 
system of integra l equations. The advantage of this 
approach is that it preserves the current balance in the 
volume and the corresponding charge conservation 
law. 

[3] An important problem in FD implementation for 
the quasi-static EM field modeling in the frequency 
domain (which is typically used in geoph ysical appli­
cations) is selecting the proper boundary conditions for 
the field comp onents. Usually, the boundaries of the 
modeling volume are set so far from the conductivity 
anomaly that it is possible to neglect the anomalous 
field there . In this case, the simplest Dirichlet bound ary 
conditions of the first order can be implemented by 
choosing, e.g. , zero boundary values when solving for 
the anomalous field. One can also use the simplest 
Neumann boundary conditions, which requires the 
normal gradient of the field to be zero at the boundary. 
Note, howe ver, that application of the aforementioned 
simple cond itions requires the size of the model ing 
region to exceed the size of the inhomogeneous region 
many times over, in order to be able to neglect the 
effect of the anomalous fields at the boundaries. To 
overcome this limitat ion , one can use asy mptotic 
boundary conditions, developed for two-dimensio nal 
(2-D) models by Weaver and Brewitt-Taylor [1978], 
and extended to three-dimensional (3-D) models by 
Zhdanov et al. [1982] and Berdichevsky and Zhdanov 
[1984]. These condi tions are based on the analysis of 
the asymptotic behavior of the EM field far away from 

the geoelectrical anomalies. We should notice, however, 
that the majority of papers on 3-D quasi-static EM field 
modeling still use a simple Dirichlet boundary condi­
tion of the first order with zero values at the boundaries 
[e.g., Newman and Alumbaugh, 1995 ; Fomenko and 
Mogi, 2002]. 

[4] We should mention also the Perfect Matched 
Laye r (PML) absorbing boundary conditio n (ABC) 
[Berenger, 1994]. The PML ABC was introduce d 
mainly for FD time domain EM modeling. It is used 
for terminating the computation domain in order to 
abso rb the out going EM waves [Turkel and Yefet , 
1998]. However, in the case of the quasi-static EM 
field, which is the subject of our research, it is difficult 
to use the model of EM waves and their reflection from 
the boundaries because the field propagates according 
to the diffusion law. That is why the origin al PML 
ABC, developed for the FD time domain EM field, has 
found little application in modeling the quasi -static EM 
field used in geophysical applications. 

[5] In this paper, we propo se a different approach to 
the solution of this problem. To compute the boundary 
values of the anomalous electric field, we suggest using 
the fast and accurat e quasi-analytical (QA) approxima­
tion [Zhdanov et al., 2000], which is a spec ial form of the 
extended Born approxi mation [Habas hy et al., 1993]. 
These precomputed values are then used as boundary 
conditions for the FD modeling based on the balance 
method. We will demonstrate that this approach allows 
significant reduction in the size of the FD grid in both air 
and earth without losing the accuracy of the calculations. 
As a result one can apply a very fine discret ization to the 
area with anomalous conductivity because there is no 
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Figure 2. Model I : COMMEMI model 3d2 [after Zhdano v et al., 1997]. 

need to move the boundaries too far from the inhomo­ magnetic (H) fields into background (normal) and 
geneous region. anomalo us parts, 

E = Eb + Ea
, H = Hb + W , ( I) 

2.	 Finite Difference Approximation of the 
where the background (normal) fields (Eb

, H b
) areAnomalous Electric Field Using the Balance 

generated by a given source for a model with a layered­
Method earth (normal) conductivity distributi on (Ob), and the 

[6] Consider a 3-D geoe lectrica l model with a back­ anomalous fie lds (E '', H") are pr od uced by the 
ground conductivity r:Jb and a local inhomogeneity D anomalous conductivity distribution (Ao = 0 Ob).-
with an arbitrarily varying conductivity 0 = 0b + Ao, Note also that this approach usually provides more stable 

where Ao is the anomalous conductivity. We will confine and accurate numerical solution than the total EM field 
ourse lves to consideration of nonma~netic media and, formulation [Fomenko and Mogi, 2002]. The second­
hence, assume that \-L = flo = 41\ X 10- Him, where !l{) is order partial differential equation for the anomalous 
the free-space magnetic permeability. The model is electric field E" can be written as [Zhdanov, 2002]:
 

excite d by an electromagnetic field generated by an
 
arbitrary source with extraneous current distribution y.


i	 \7 x (\7 x E"] - iW\-Lo r:JEa = iW\-LAr:JEb. (2) 
This field is time harmon ic as e- "" , where w is the 
frequency (Hz). 

[7] In geophysical applications, it is important to Using the known vector identity, we can re-write 
incorporate different type s of excitation sources in equation (2) as: 
electromagnetic model ing. The most convenient way 
to do that is to separate the total electric (E) and \7(\7 . E") - \72Ea = iWflooEa + iW\-LAoEb. (3) 
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Figu re 3. Mod ell . Electric field Ex compon ent at Earth 's surface obtained by finite difference (FD) 
and integral equation (IE) modeling: (a and b) real and imag inary parts obtained from FD; (c and d) 
real and imaginary parts obtained from IE; (e and f) profil es in the x direction at y = -2 1.5 km of the 
real and imaginary parts obtained from FD (solid line) and IE (das hed line). The electric field results 
show n are total electric field normalized by the correspo nding inc ident norm al (bac kground) field 
computed at Earth's surface. 
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Figure 4. This figure shows an x-z sketch (at y = 0, Figure 2) of both the untrun cated (GRID-A) 
and truncated (GRID-B) FD grids used in model I forward mode lings in order to verify the quasi­
analytical (QA)-based boundary conditions (BC) . GRID-A and GRID-B , respectively, utilize the 
zero and QA-based Be. The detailed model description is shown in Figure 2. The y-z section has 
distances identical to those shown above . 

The anomalous magnetic field H a is expressed in tenus 
of E" as : 

H" =	 _ 1_ \7 x Ea. (4) 
iu:flv 

By taking the divergence of the first Maxwell's equation 
for the anomalous electric field, we obtain: 

- \7(Ea . \7ln cr ) - \72Ea - iw ~ocr Ea = iWflv~ cr Eb 

+ \7 (Eb 
. \7 In:J.	 (5) 

Let us assume that the region of modeling, V, is bounded 
by a surface ()V. We discretize the model region into a 
number of prisms as shown in Figure 1. A Cartesian 
coordinate system is defined with the z axis directed 
downward and the x axis directed to the right. The indices 
i, k, and I are used to numb er the grid point in the X,Y,and z 
directions, respectively. We denote this grid by L:: 

,Xi+l: Xi+ .iXi , i.= 1,2 , ..,1 - 1 } 

H +I -	 Yk+ .iYk.k= I , 2, .., K - I .L ~ { (x"y", ) 

Z /-!_I = Zt + .iZt , l= 1, 2, .., L - I 

The electrical conductivity is assumed to be constant 
within each elementary prism. In the balance method 

[Zhdanov, 2002] , the conducti vity is Aiscretized on a 
rectangular, uneven 3-D dual grid L: consisting of 
nodal point s located at the centers of each cell of the 
original mesh L:: 

Xi+!=X; + t!.X;/ 2, i =I , ..,I- I ) 
Yk + t!.yk/2, k 1L ~ { (xH" Y"" ,,,,) YkI,= = I, .., K - . 

zf.r ! =ZI+ & 1/ 2, 1= I , ..,L - I 

We introduce the discretized vector function Efk I = 

Ea(x;, Yk, za on the grid L:, and the discret ized sc~ lar 

function cr;+l k+11+1 = cr (Xi+l,Yk+l ,ZI+l) on the dual grid L:o 2' 2'	 2 2 2 2 

[8] In constructing a proper FD scheme for solution of 
this problem by the balance metho d, we do not use 
equation (5), but rather an integral identity obtained by 
integrating equation (5) over an elementary cell V;kl of 
the dual mesh L: based on the vector statements of the 
Gauss theorem [Zhdanov, 1988]: 

-J{ (Ea . \7ln cr )nds - J{ (n \7 )Eads i:	 i: 
- iu:flv JJ{cr Eadv = J{( Eb. \7 In:) nds i ; i s'kJ b 

+ iu:flv Jf lu~ crE bdv ,	 (6) 
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where Sik/ is the rectangular boundary of the cell Vik/, 
formed by six sides Si±l k I ' S, k±l/' and S, k /±l : 

2' 1 1 2' " 2 

Sik/ = S i+t k,! U S i- V ,! U S i,k+!J U S i,k- ! ,! U S i,k,!+! U S i,k,!- ! ' 

and n is a unit vector norm al to S ikl and directed out of 
the volume. We can approximately evaluate the volume 
and surface integ rals in equatio n (6) in terms of the 
discretized electric field vector Ef k 1 and scalar functio ns 
c i+1 k+11+1. In particular, we can u ~~ a simple relations hip 

2' 2' '"}
to approximate the following integral as: 

iwp·o JJr crEodv ~ iW!J.OEf,k,! II / o dv . 
J Vik/ ' . , J V,kJ 

The surface integrals are computed using a simple 
difference form, For example: 

Jr (n · V )EOds = Jr ~E " ds , (7) JS t; onlkI 

and the derivative fJE"/an is approximated as: 

fJEOI ~ Ef+l,k,! - E ~~k ,! (8)ax S LUi 
i+-1,k,l 

The surface integral 

J1 (EO . V In cr )nds , (9) 
S,kl 

can be evaluated in a similar way. The derivatives of In c 
are calculated using a three-point FD scheme [Zhdanov 
and Spichak, 1992; Kin caid and Cheney, 1996]. The 
values of the electric field on the sides Si±l, SH 1, and 
S/±l of the cell V;kl are approxi mated by the borrespond­
ing' average field values computed at the nodes of the 
grid ~: 

01 I ( " ° )E Si±! = "2 E i± l ,k,1 + Ei,k,! , 

E" = ~ ( EO + E" )ISk±1 2 I,H I ,! I,k ,! ' 

EO = ~ (E" + E" ) (10) IS/±1 2 l,k,!± l I,k,! ' 

The surface integra ls are calculated using the rectangular 
rule [Zhdanov, 2002]. The resulting stencil for the 

electric field E" has seven points located at the nodal 
points of the grid ~. 

[9] The result ing system of linear algebraic equations 
and the acc ompany ing boundary condi tions can be 
expressed in matrix notation as: 

(fj + iWf1.oG) e" = iWIJ.oLicreb + f (;&,;;:,/) + b, ( I I ) 

where eOand eb are column vectors of length 3N of the 
unkn own values of the anomalous electric field anQ 
known values of the background electric field; Gand !lcr 
are 3N x 3N diagonal matrices of the i!1!Ygrated total and 
anomalous conductivities over the grid ~; fj is a 3N x 3N 
matrix of coefficients which is independent of frequency 

- b 
w; f(!lcr , e ) is a column vector oflength 3N dependin g on 
the anomalous conductivities and the background field ; 
and b is a column vector of length 3N determined by the 
bound ary value conditions. 

[10] The structure of the matrix fj essentia lly depends 
on the method used to order the vector eOand on the choice 
of boundary cond itions. In the simplest case, the nodes of 
the mesh are numb ered consecutively along the horizontal 
and vertica l directions. Note that for the given numb ering 
of the nodes, n = 1, 2, 3.., N, (N= IKL) one can establish a 
simple one-to-one relationship between the index n and 
the triple numb er (i, k, l): 

11 = i + (k - I) 1 + (1- I )IK . (12) 

[ll] In this case, matr ix fj has a septa-block-diagonal 
structure: 

~(O) 

d , a\+x) 0.. a\+y) o. d\+Z) 0.. .0 

~(O)a(-x) a~+x ) a~+y) a~+z )0.. 0.. .0 2 d2 

~(O ) X 
)0 ai-x) d3 

al+ .a;:!)K 

~ a (-Y ) o. .0 
D = I 1+ 1 

o. .a;:!) 
a(-z) 0.. .0 IK+! 

o. . a;:~~ 

~(O )
.0 .0 a~-z ) .0 a);y) .0 a~-x ) .dN 

and the vector eOhas the structure: 

eO= [Ex.1 EV•I E" I Ex.2 EV•2 E,,2 E"N Ev,N EZ,N f 

The pr econdition ed ge ne raliz ed minimal res idua l 
(GMRES) method [Saad and Schultz, 1986; Zhda nov, 
200 2], from the Portabl e, Extensi b le Too lkit for 
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Scientific Computation (PETSC) [Sa lay et al., 1997 , 
2000] (see also http ://www.mcs.anl.gov/petsc), is used 
here to solve the system (I I) (see Appendix A). 

3. Boundary Value Conditions Based on the 
Quasi-Analytical Approximation 

[12] In th is section we discu ss a new technique for 
determining the boundary conditions of the EM field for 
3-D FD modeling. The traditional statements of boundary 
value problems are based on applying Dirich let boundary 
value conditions of the first , second, or third order, formed 
by means oflinear combinations of the field itself and its 
derivative normal to the boundary. Dirich let boundary 
con ditions of the first order fix the values of the field at the 
boundary. Dirichlet boundary condit ions of the second 
order, or Neumann bou ndary conditions, fix the field 
normal gradient va lue to the boundary; and Dirichlet 
boundary conditions of the third order, or Ca uchy bound­
my condit ions, fix bot h value and the nonnal gradient of 
the field at the bou ndary [Morse and Feshbach, 1953]. 

[13J Usually, the boundaries of the modeling domain 
are set very far from the anomalous domain such that it is 
possible to neglect the anomalous field there . In this 
case, the simplest Dirichlet boundary conditions of the 
first order can be implemented by setting the anomalous 
field to zero at the boundaries [Fomenko and Mogi , 
2002J. Another approach is based on the simplest 
Neumann boundary conditions which set the normal 
gradient of the field to zero at the boundaries. 

[1 4J In a general case, the appropriate boundary dis­
tance depends on the size of the anomalous domain, the 
backgrou nd conductivity, the frequency, and the type of 
source. In the present paper we solve the FD equations 
for the anomalous field , which reduces the effect of the 
type of source on the boundary distance selection. The 
most significant effect is attributed to the wavelength Ab 
(or skin depth Ob) of the EM field in the background 
medium , where Ob = Ab1211 and Ab = 211/(WI-LO<Tb/2)1/2. In 
practical computations, one can use zero bou ndary con­
dition s if the distance, db, from the anomalous domain to 
the boundary of the modeling grid is at least three to five 
skin depths. No te that the simple bou ndary conditions 
outlined above could require a modeling grid that is too 
large if we consider a low frequency (below I Hz) and a 
resistive background (100 Ohm-m or more), which is a 

typical case for many geophysical app lications. Other­
wise the anomalous field can be inaccurate if it is not 
actually equa l to zero at the boundaries. 

[ISJ To overcome this problem we suggest using, as a 
Dirichlet boundary condition, the values of the anoma­
lous electric field computed by the quasi-analytical (QA) 
approximation [Zhdanov et al. , 2000]. The QA approx­
imation represents a special form of the extended Born 
approximation introduced by Habashy et al. [1993]. In 
the framework of the QA approximation, the anomalous 
electric field is computed at the boundaries of the 
modeling domain using a simple integration [Zhdanov 
et al., 2000J as : 

EQA(rj) = E (rj) - Eb (rj) 

= JJLGd rj I r ) . [I ~~~~ ) Eb(r)] dv , 

( 13) 

where GE(rjl r) is the electric Green's tensors defined for 
an unbounded conductive medium with a background 
conductivity <Tb' The nume rical methods for co mputing the 
Green's tensors are very well develope d. The interested 
reader may find more information about these methods in 
the work of Anderson [1979J and Wannamaker et al. 
[1984J . The function g (r ) is the normalized dot 
product of the Born approximation EB and the 
background field Eb, 

EB(r ) . Eb*(r) * 
g (r ) = b b*( )' assuming Eb(r ) . Eb (r ) f= 0, 

E (r) . E r 

(14) 

where the asterisk means complex conjugate vector. 
Note that the condition give n by equation ( 14) can be 
relaxed. In fact , 

Eb(r ) . Eb*(r ) 

I - g (r ) Eb(r) . Eb*(r ) - EB(r ) . Eb(r) , 

which causes no probl em unless 

Eb(r) . Eb*(r ) = EB(r ) . Eb*(r) . 

The values EQA are used subsequently as boundary 
conditions for the FD modeling scheme. 

Figure 5. Model I . Electric field Ex component at Earth 's surface obtained by FD modeling using different grid 
sizes and boundary conditions: (a and b) real and imaginary part s obtained from un truncated grid supplemented with 
zero BC (shown in solid line in Figures 5g and 5h ; (c and d) real and imaginary parts obtained from truncated grid 
supplemented with QA BC (shown in dashed line in Figures 5g and 5h); (e and f) real and imaginary parts obtained 
from truncated grid supplemented with zero BC (shown in dash-dot line Figures 5g and 5h); (g and h) profiles in the x 
direction at y = - 21.5 km of the real and imaginary parts, respectively. The electric field results shown are total 
electric field normalized by the corresponding incident normal (background) field computed at Earth 's surface. 
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[1 6] In order to numerically evaluate (13), the anom­
alous dom ain (D) is discreti zed into N cells , each having 
a constant anomalous conductivity ~ cr and electric field 
values. The anomalous electric field is expressed using 
the full integral equation as : 

EO(rj) = Gd~ cr (r)(Eb (r) + EO(r))), (15) 

which can be written in a discrete form [Hursan and 
Zhdanov, 2002] as: 

e" = GDSO(eO+ eb) , (16) 

where GD is a 3N x 3N matrix containing the electric 
Green 's tensor integrals 

r l N r l N I' ll r l N I' l l I'll 
xx r.r .l) ' xy xz .rz 

rN I rNN rN I NN rN I NN . . . r r 
xx xx xy xy .rz xz 

r l N r l N r l N I' l l I' ll I' ll . . . 
yx yx >y >J' yz yz 

GD = 

rN I rNN f'VI rNN rN I . . . f'VN 
yx )"X J:I' >Y yz yz 

I' l l r l N I' l l . . . I' ll .. . 
z.r zx zy r~: zz r~: 

r N I ... p vN r N I . .. r NN r N I . . . r NN 
n n ~ ry a uJJrcjk -- £ ()I rk dv, X,Y , z , I Qj3 JDkGQj3 f j 0.,0 -­

eb and e'' are 3N x 1 vector columns of the background 
and anomalous fields, 

b e = [E~, l ' ..E~.N ' E;.I ' ..E;,N,E~,l ' ..E~,N ] T , 

eO= [E~, p " E~.N' E; ,p ..E; .N' E~,l ' "E~,N r, 
and Sois a 3N x 3N diagon al matrix with the anomalous 
conductivities, 

SO= diag ([~(J l , .., ~(JN , ~(J I , .. , ~(JN , ~(JI , .. , ~ (JN ])' 

We can also define the matrix with background 
conductivity values inside each cell as: 

~ di - b - b - b -b ~b))Sb ( [~b = lag cr I' .. , crN' cr l ' .. , crN, cr I ' .. , crN ' 

Equation (16) is then solved iteratively [Saad and 
Schultz, 1986; Golub and Van Loan, 1996; Hursan and 
Zhdanov, 2002; Zhdanov, 2002]. 

[17] However, Zhdanov [2002] showed that the quasi­
analytical approximation of the anomalous electric field 
(13) at the observation points can be written in a discrete 
form as: 

eQA= G£e ~ [diag (I - g(cr))f' o , 

where I is an N x 1 column vector whose elements are 
all unity, and g(cr) is an N x 1 column vector which 
represents the function g(r) at the center of each cell of 
the anomalous domain, and is defined as: 

TEb,l * . EB,l Eb,2* , EB.2 Eb,N* , EB,N 

g(o) = [ Eb,1* , Eb,1 ' Eb,2* , Eb,2 ' ' , , , Eb,N* , Eb,N ] ' 

where EB
) and Eb

) U = 1, 2, ..N), respectively, denote 
the Born approximation and the background electric 
field in each cell within the anom alous domain. cr is an 
N x 1 column vector whose elements are the 
anomalous conductivity of the cells of the anomalous 
domain. 

[1 8] The vector g(c) can be expressed in matrix mul­
tiplication [Zhdanov, 2002] as: 

g(cr ) - (e be b*)' - Je b*eB (17) - D D D D' 

where the Born awroximation vector inside the 
anomalous domain, eD, can be expressed as 

B ~ -zb 
eD = GDe D cr, ( 18) 

Substituting (18) into (17), we obtain 

g(cr) = (e~e~* r l c~* cg = (c~e~* rl e~* GDe~ cr = Ccr , 

where C is a matrix independent of the anomalous 
conductivity distribution, and is defined as: 

~ (~ b ~~ b*) -I ~ b*G -zbC = eDeD eD DeD· 

Thus we can represent equation (13) for the anomalous 
electric field as: 

eQA= A£[diag(I - ccr)r1
o = A£B(cr ) o , 

where A£ = G£et and B(cr) = [diag(1 - ccr)-: 
[1 9] These QA values are precomputed at the nodal 

points of the boundaries of the truncated FD domain, 
which are then multiplied by the corresponding FD 
coefficients. These multiplication results are represented 
as the term b ofthe right-hand side ofequation (11). Using 
the QA approximation (or even QA series [Zhdanov et al., 
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Table I. Model 1a 

CPU Time, s 

Method Matrix Size 

FD 
CPU 
Time 

BC 
CPU 
Time 

(FD + BC) 
CPU 
Time 

FD with GR ID-A 
supplemented 
with zero BC 

FD with GRID-B 
supplemented 
with QA BC 

156333 x 156333 

71 928 x 71928 

3025 

\067 

0 

\37 

3025 

1204 

"Matrix size and CPU times (in seconds) comp arisons of the FD 
solutions obtained using GRID-A (Figure 4) with zero BC, and GRID­
B (Figure 4) with QA Be. 

2000]) as a boundary condition for the FD solution helps 
to significantly reduce the size of the modeling grid, and 
corresponding ly the size of the matrix (D + iWfLoU) arising 
from equation (I I). We will illustrate this point by some 
numeric al model ing results with CPU time and matrix size 
reduction comp arisons (Section 4). 

[20] The advantages of the QA boundary conditions 
over tradition al Dirichle t or Neumann boundary condi­
tions with boundary values equal to zero are obvious. The 
QA approximation/series provides an accurate estimation 
of the true boundary value of the field. As a result, it is not 
necessary to move the boundaries far away from the 
inhomogeneous domain, which may be the actual model­
ing area of interest. At the same time the computation of 
the QA bound ary values is a relative ly simple numerical 
operation because it does not require a solution of any 
system ofequations. Note also that the accuracy of the QA 
approximation can be increased, ifnecessary, by using just 
a few first terms of the QA series . 

4. Numerical Modeling Results 

[21] In this section we examine the effectiveness of the 
develo ped FD algorithm and the new QA-based bound­
ary condit ions (BC) on typica l 3-D models with high 
resistivity contrast. In order to examine the accuracy of 
numeric al mode ling, we make a comparison between the 
modeling results obtained by our FD code and the full 

integral equation (IE) code of Xiong [1992]. The electric 
field results to be shown are total electric field normal­
ized by the corresponding incident normal (background) 
field computed at Earth's surface (z = 0). These calcu­
lations were performed on a 1.8 GHz Pc. 

4.1. Modell 

[22] This model is 3D COMMEMI model 2 [Zhdallov 
et al ., 1997]. It consists of two anomalous bodies 
adjacent in the y directio n. The first body has a resistiv ity 
of I Ohm-m and dimensions of 20 x 40 x 10 km in the 
x, y, and z directions, respect ively. The second body has 
a resist ivity of 100 Ohrn-m, and the same dimensions as 
the first body. The normal (background) section of this 
model consists of three layers with resistivitie s, from top 
to bottom, of 10, 100, and 0.1 Ohrn-m, respectively. The 
first and secon d layers have thicknesses of 10 and 20 km, 
respectively (Figure 2). The model is excited by a plane 
wave of 0.0 I Hz frequency and an incident electric field 
oriented in the y directio n (Et polarization). The domain 
is discretized in the x, y, andz directions into 42 x 32 x 
42 cells (including 10 layers in the air extending to 75 krn 
above Earth 's surface), respectively. This discret ization 
was supplemented with zero BC and resulted in a linear 
system of equations with a matrix size of 156333 x 
156333, which was solved iterat ively using the precondi­
tioned genera lized minimal residua l (GMRES) method 
[Saad and Schultz , 1986; Zhdanov, 2002] (see Appen­
dix A). Iterations were performed until the L2 norm of 

5the relative residuals dropped below 10- . 

[23] Figures 3a and 3b show the maps of the real and 
imaginary parts of the E. component at Earth 's surface 
computed using the FD method. The corresponding 
respo nses computed usi ng the IE method [Xiollg , 
1992] are shown in Figure s 3c and 3d. Figures 3e 
and 3f, respectively, show compari sons of the real and 
imaginary parts of the Ex component computed at 
Earth's surface by FD and IE methods for a profile 
taken in the x direct ion. 

[24] The FD gri d describ ed above (G RID-A in 
Figure 4) was truncated in both earth and air and 
produced the new grid, labeled GRlD-B (Figure 4). 
The truncated GRID-B has a discretization of 38 x 28 x 
25 cells (including 6 air layers ) in the x, y, and z 
directions , respecti vely, with air layers extending to 5 km 
abo ve Earth 's surface . Note that the size of the 

Figure 6. Model I . Electric field E.vcomponent at Earth's surface obtained by FD modeling using different grid 
sizes and boundary conditions: (a and b) real and imaginary parts obtained from untruncated grid supplemented with 
zero BC (shown in solid line in Figures 6g and 6h); (c and d) real and imaginary parts obtained from truncated grid 
supplemented with QA BC (shown in dashed line in Figures 6g and 6h); (e and f) real and imaginary parts obtained 
from truncated grid supplemented with zero BC (shown in dash-dot line in Figures 6g and 6h); (g and h) profiles in 
the x direction at y = 0 km of the real and imaginary parts. The electric field results shown are tota l electric field 
normalized by the corresponding incident normal (background) field computed at Earth 's surface. 
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Figure 7. 

the structure of the 
the anom alous field 

requires that the truncated grid (GRID-B) include the 
entire anomalous doma in. This GRID-B was supple­
mented with QA BC, and its discretization resulted in 
a 71928 x 71928 linear system of equations which 
was solved using the same solver and accuracy men­
tioned above . 

[25] Figures 5a, 5c, and 5e present a comparison of the 
real part of the Ex com ponent computed at Earth 's 
surface , respect ively, using GRID-A with zero BC 
(shown as a solid line in Figure 5g), GRID-B with QA 
BC (shown in dashed line in Figure 5g), and GRID-B 
with zero BC (shown as a dash-dot line in Figure 5g). 
The corresponding profiles of the computed data (taken 
in the x direction) are shown in Figure 5g. The compar­
ison of the imaginary part of the Ex component at Earth's 
surface is shown in Figures 5b, 5d, 5f, and 5h. Figure 6 
presents the corresponding compariso ns for the E.vcom­

~m~ 
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Model 2. 

ponent. These comparisons demonstrate that the QA BC 
success fully results in an accurate FD solution without 
demanding many discretizations from the anomalous 
domain. 

[26] Table I shows the correspon ding matrix size and 
CPU time of the FD solutions obtained using GRID-A 
with zero BC and GRID-B with QA Be. Column 2 of 
this table compares the matrix size of each method. One 
can clearly see that the proposed FD method with QA 
BC leads to a 4.7 reduction in matrix size. Columns 3, 
4 and 5 present a comparison of the FD, BC and total 
(FD + BC) CPU times in seconds for both FD sol­
utions. This CPU 
prop osed method 
method with zero 

time 
is 2.5 

Be. 

comparison 
times faster 

shows 
than 

that 
the 

the 
FD 

4.2. Model2 

[27] This model consists of two anomalous bod ies 
with a resistivity of 10 Ohm-m, The two bodies have 
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Figure 8. Model 2. Electric field E; component at Earth's surface obtained by FD modeling and 
IE modeling : (a and b) real and imaginary parts obtained from FD; (c and d) real and imaginary 
parts obtained from IE; (e and f) profiles in the x direction at y = -25.5 km of the real and 
imaginary parts obtained from FD (solid) and IE (dashed). The electric field results shown are total 
electric field normalized by the corresponding normal (background) field computed at Earth 's 
surface . 
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Figure 9. This figure shows a y-z sketch (at x = 0, Figure 7) of both the untruncated (GRID-A) 
and truncated (GRID-B) FD grids used in model 2 forward modelings in order to verify the QA­
based Be. GRID-A and GRID -B, respectively, utilize the zero and QA-based Be. The detai led 
model description is shown in Figure 7. The x-z section has distances identical to those shown 
above . 

dimensions of 50 x 50 x 10 km, and lO x 50 x 25 km in in Figures 8c and 8d. Figures 8e and 8f, respectively, 
the x, y, and z directions, respectively. The background present the corresponding profile comparisons computed 
section of this model consists of a two-layer model with at Earth 's surface by FD and in the x direction. 
resistivities from top to bottom of I00 and 10,000 Ohm-m, [29] We have truncated the FD grid described above 
respectively. The first layer has a thickness of 10 km (GRID -A in Figure 9) in both earth and air. The reduced 
(Figure 7). The model is excited by a plane wave of grid (GRID-B in Figure 9) has a discretization of 40 x 
E~ polarization and a frequency of 0.1 Hz. The domain 25 x 35 cells (including 7 layers in air) in the x, y, and 
is discretize d in the x, y, and z directions into 50 x 35 x z directions , respectively, with air layers extending to 
44 cells (including 10 layers in air), respectively, with 7.5 km above Earth's surface . This FD reduced grid 
air layers extending to 75 km above Earth's surface . was supplemented with QA BC, and its correspondi ng 
This discretization was supplemented with zero BC, discretization resul ted in a 95472 x 95472 linear 
and resulted in a 2 14914 x 2 14914 linear system system of equations which was relaxed using same 
which was solved using the same solver and accuracy solver and accuracy of the FD solution obtained from 
above . GRID-A with zero Be. 

[28] Figures 8a and 8b show the maps of the real [30] The map compariso ns for the real part of the Ex 
and imaginary parts of the E; component at Earth's component computed at Earth's surface using GRID-A 
surface obtained from FD. the corresponding IE with zero BC (shown as a so lid line in Figure 109), 
[Xiong , 1992] responses at Earth's surface are shown GRID-B with QA BC (shown as a dashed line in 

Figure 10. Model 2. Electric field Ex component at Earth's surface obtained by FD modeling using different grid 
sizes and boundary conditions: (a and b) real and imaginary parts obtaine d from untruncated grid supplemented with 
zero BC (shown in solid line in Figures 109 and IOh); (c and d) real and imaginary parts obtained from truncated grid 
supplemented with QA-based BC (shown in dashed line in Figures 109 and IOh); (e and f) real and imaginary parts 
obtained from truncated grid supplemented with zero BC (shown in dash-dot line in Figures 109 and 10h); (g and h) 
profiles in the x direction at y = 0 km of the real and imaginary parts. The electric field results shown are total electric 
field normalized by the corresponding incident normal (background) field computed at Earth's surface . 
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Table 2. Model 2"	 reduce the size of the mode ling grid significantly without 
losing the accuracy of calculation. As a result, a larger

CPU Time, s 
numb er of fine grid cells can be used to describe the 
anoma lous conductivity distri bution within the modelingFD BC (FD + BC) 

CPU CPU CPU domain.
 
Method Matrix Size Time Time Time
 

FD with GRlD-A 2 14914 x 2 14914 4647 0 4647 Appendix A: Solut ion of the Linear System 
supplemented 
with zero BC	 of Finite Difference Equations 

FD with GRlD-B 954 72 x 95472 1645 226 1871 
supplemented [33] The resulting system of linear algebraic FD equa­
with QA BC tions and the accompanying boundary conditions (II ) 

"Matrix size and CPU times (in seconds) comparisons of the FD 
solutions obtained using GRlD-A (Figure 20) with zero BC, and GRID-B 
(Figure 20) with QA Be. 

Figure 109), and GRID-B with zero BC (shown in 
dash-dot line in Figure 109) are shown in Figures l Oa, 
10c, and 10e, respectively. The corresponding profile 
comparisons made in the x direct ion are shown in 
Figure 109. The imaginary part comparisons of the Ex 
component computed at Earth's surface are shown in 
Figures l Ob, 10d, 10f, and 10h. Figure II presents the 
corresponding comp arisons of the real and imaginary 
parts of the E" componen t at Earth's surface. 

[31] Table 2 shows a comparison of the corresponding 
matrix size and CPU time of the FD solutions obtained 
using GRlD-A with zero BC and GRID-B with QA Be. 
Column 2 of this table presen ts the matrix size of each 
method. One can see that the proposed FD method with 
QA BC leads to a five times reduction in matrix size. A 
comp arison of the FD, BC and total (FD + BC) CPU 
times in seconds for both FD solutions is presented in 
columns 3, 4 and 5. This CPU time comparison shows 
that the proposed method is abo ut 2.5 times faster than 
the FD method with zero Be. 

5. Conclusions ..
[32] In this paper we have presented a new approach 

for three-dimensional finite difference electromag netic 
modeling in the frequency domain based on the balance 
method and the quasi-analytical boundary condition for 
truncation of the modeling area. This approach helps 

can be expressed in matrix notat ion as: 

AeG = b,	 (A I) 

where A = fi + iWILoa, and equation (A I) is a 3N x 3N 
linear system with respect to the anomalous electric 
field. We solve this system using the Genera lized 
Minimal Residual (GMRES) method. The basic idea of 
the GMRES method [Saad and Schultz, 1986; Zhdanov, 
2002] is to find the solution along an orthonormal 
basis: 

{ Ag7, Ag~ , . . . , Ag~ } 

in the Kry lov subspace 

~ ~2 ~k }JC = span { A rll , A r'I> " ' , A r, . 

At the n-th step of the iterative process 

s 
- ~k (II)

XII+ ] - XII - L II/gl , s :::; n, 
/= 1 

where r, = AXil - b. The more orthonormal basis 
functions are calculated (the larger s is), the smoother 
the convergence becomes, requiring a fewer number of 
iterations with smaller amplification of the roundoff 
errors dur ing the iterative process. However, at each 
iteration , the ortho gon alization process perfo rmed 
require s 2s matrix multipli cations, and the numb er of 
vectors to be stored is also proportional to s . The 
converge nce rate of the GM RES iterative algorithm can 
be increased dramatically by using the corresponding 
preconditioners [Golub and Van Loan, 1996]. 

Figure 11. Model 2. Electric field E; component at Earth's surface obtained by FD model ing using different grid 
sizes and boundary conditions: (a and h ) real and imaginary parts obtained from untruncated grid supplemented with 
zero BC (shown in solid line in Figures Ilg and I l h); (c and d) real and imaginary parts obta ined from truncated grid 
supplemented with QA-ba sed BC (shown in dashed line in Figures Il g and I l h); (e and f) real and imaginary parts 
obtained from truncated grid supplemented with zero BC (shown in dash-dot line in Figures Ilg and Ilh); (g and h) 
profiles in the x direction at y = -29.5 krn of the real and imaginary parts. The electric field result s shown are total 
electric field normalized by the corresponding incident normal (backgro und) field computed at Earth 's surface. 
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