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[1] Numerical modeling of the quasi-static electromagnetic (EM) field in the frequency
domain in a three-dimensional (3-D) inhomogeneous medium is a very challenging
problem in computational physics. We present a new approach to the finite difference (FD)
solution of this problem. The FD discretization of the EM field equation is based on the
balance method. To compute the boundary values of the anomalous electric field we
solve for, we suggest using the fast and accurate quasi-analytical (QA) approximation,
which is a special form of the extended Born approximation. We call this new condition a
quasi-analytical boundary condition (QA BC). This approach helps to reduce the size of
the modeling domain without losing the accuracy of calculation. As a result, a larger
number of grid cells can be used to describe the anomalous conductivity distribution
within the modeling domain. The developed numerical technique allows application of a
very fine discretization to the area with anomalous conductivity only because there is no
need to move the boundaries too far from the inhomogeneous region, as required by the
traditional Dirichlet or Neumann conditions for anomalous field with boundary values
equal to zero. Therefore this approach increases the efficiency of FD modeling of the EM
field in a medium with complex structure. We apply the QA BC and the traditional FD
(with large grid and zero BC) methods to complicated models with high resistivity
contrast. The numerical modeling demonstrates that the QA BC results in 5 times matrix
size reduction and 2—3 times decrease in computational time.  INDEX TERMS: 0644
Electromagnetics: Numerical methods: 0639 Electromagnetics: Nonlinear electromagnetics; 0925 Exploration

Geophysics: Magnetic and electrical methods; KEYWORDS: finite difference, electromagnetic modeling,

boundary conditions
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1. Introduction

[2] In most geophysical applications of electromag-
netic (EM) methods, it is necessary to model geo-
electrical structures of quite arbitrary shape and size,
with anomalous conductivity varying in an arbitrary
manner. The most widely used approaches to EM
forward modeling are finite difference (FD) and finite
element (FE) methods to find numerical solutions to

"Now at Geophysics Department, Faculty of Science, Cairo
University, Giza, Egypt.

Copyright 2004 by the American Geophysical Union.
0048-6604/04/2004RS003029511.00

Maxwell’s equations written in differential form [Weaver,
1994; Zhdanov et al., 1997; Zhdanov, 2002]. The FD
method provides a simple but effective tool for numeri-
cally solving the EM forward modeling problem [Weaver
and Brewitt-Taylor, 1978; Zhdanov et al., 1982; Zhdanov
and Spichak, 1992; Weaver, 1994; Mackie et al., 1993,
1994; Newman and Alumbaugh, 1995; Smith, 1996;
Zhdanov et al., 1997; Spichak, 1999; Haber et al.,
2000]. One common technique of field discretization is
based on a staggered-grid scheme [Yee, 1966; Wang and
Hohmann, 1993; Wang and Fang, 2001; Davydycheva et
al., 2003], which is effective in solving the coupled first-
order Maxwell’s equations. Another approach to the
discretization of the EM field equations is based on the
balance method [Zhdanov et al., 1982; Samarsky, 1984;
Zhdanov and Spichak, 1989, 1992; Zhdanov and Keller,
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Figure 1. The model region is discretized into a number of prisms. The indices 7, k, and / are used
to number the grid point in the x, y, and z directions, respectively. Electrical conductivity (o) is
assumed to be constant within each elementary prism.

1994; Spichak, 1999; Mehanee and Zhdanov, 2001;
Zhdanov, 2002; Mehanee, 2003]. This method involves
integrating the original differential equations over each
cell of the FD grid and discretizing the corresponding
system of integral equations. The advantage of this
approach is that it preserves the current balance in the
volume and the corresponding charge conservation
law.

[3] An important problem in FD implementation for
the quasi-static EM field modeling in the frequency
domain (which is typically used in geophysical appli-
cations) is selecting the proper boundary conditions for
the field components. Usually, the boundaries of the
modeling volume are set so far from the conductivity
anomaly that it is possible to neglect the anomalous
field there. In this case, the simplest Dirichlet boundary
conditions of the first order can be implemented by
choosing, e.g., zero boundary values when solving for
the anomalous field. One can also use the simplest
Neumann boundary conditions, which requires the
normal gradient of the field to be zero at the boundary.
Note, however, that application of the aforementioned
simple conditions requires the size of the modeling
region to exceed the size of the inhomogeneous region
many times over, in order to be able to neglect the
effect of the anomalous fields at the boundaries. To
overcome this limitation, one can use asymptotic
boundary conditions, developed for two-dimensional
(2-D) models by Weaver and Brewitt-Taylor [1978],
and extended to three-dimensional (3-D) models by
Zhdanov et al. [1982] and Berdichevsky and Zhdanov
[1984]. These conditions are based on the analysis of
the asymptotic behavior of the EM field far away from

the geoelectrical anomalies. We should notice, however,
that the majority of papers on 3-D quasi-static EM field
modeling still use a simple Dirichlet boundary condi-
tion of the first order with zero values at the boundaries
[e.g., Newman and Alumbaugh, 1995; Fomenko and
Mogi, 2002].

[4] We should mention also the Perfect Matched
Layer (PML) absorbing boundary condition (ABC)
[Berenger, 1994]. The PML ABC was introduced
mainly for FD time domain EM modeling. It is used
for terminating the computation domain in order to
absorb the outgoing EM waves [Turkel and Yefet,
1998]. However, in the case of the quasi-static EM
field, which is the subject of our research, it is difficult
to use the model of EM waves and their reflection from
the boundaries because the field propagates according
to the diffusion law. That is why the original PML
ABC, developed for the FD time domain EM field, has
found little application in modeling the quasi-static EM
field used in geophysical applications.

[s] In this paper, we propose a different approach to
the solution of this problem. To compute the boundary
values of the anomalous electric field, we suggest using
the fast and accurate quasi-analytical (QA) approxima-
tion [Zhdanov et al., 2000], which is a special form of the
extended Born approximation [Habashy et al., 1993].
These precomputed values are then used as boundary
conditions for the FD modeling based on the balance
method. We will demonstrate that this approach allows
significant reduction in the size of the FD grid in both air
and earth without losing the accuracy of the calculations.
As a result one can apply a very fine discretization to the
area with anomalous conductivity because there is no
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Figure 2. Model 1: COMMEMI model 3d2 [after Zhdanov et al., 1997).

need to move the boundaries too far from the inhomo-
geneous region.

2. Finite Difference Approximation of the
Anomalous Electric Field Using the Balance
Method

[6] Consider a 3-D geoelectrical model with a back-
ground conductivity o, and a local inhomogeneity D
with an arbitrarily varying conductivity ¢ = o, + Ao,
where Ao is the anomalous conductivity. We will confine
ourselves to consideration of nonmagnetic media and,
hence, assume that pu = j1g = 41 x 10~ 'H/m, where jig is
the free-space magnetic permeability. The model is
excited by an electromagnetic field generated by an
arbitrary source with extraneous current distribution j°.
This field is time harmonic as e ™, where w is the
frequency (Hz).

[7] In geophysical applications, it is important to
incorporate different types of excitation sources in
electromagnetic modeling. The most convenient way
to do that is to separate the total electric (E) and

magnetic (H) fields into background (normal) and
anomalous parts,

E=E’+E H=H’+H, (1)
where the background (normal) fields (E°, H®) are
generated by a given source for a model with a layered-
earth (normal) conductivity distribution (o,), and the
anomalous fields (E“, H?) are produced by the
anomalous conductivity distribution (Ao = o — o).
Note also that this approach usually provides more stable
and accurate numerical solution than the total EM field
formulation [Fomenko and Mogi, 2002]. The second-
order partial differential equation for the anomalous
electric field E“ can be written as [Zhdanov, 2002]:

V x (V x E%) — iwpgoE* = iwpAcE?. (2)

Using the known vector identity, we can re-write
equation (2) as:

V(V -E%) — V?E* = i 0B + iwpAcE?.  (3)
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Figure 3. Model 1. Electric field £, component at Earth’s surface obtained by finite difference (FD)
and integral equation (IE) modeling: (a and b) real and imaginary parts obtained from FD; (c and d)
real and imaginary parts obtained from IE; (e and f) profiles in the x direction at y = —21.5 km of the
real and imaginary parts obtained from FD (solid line) and IE (dashed line). The electric field results
shown are total electric field normalized by the corresponding incident normal (background) field
computed at Earth’s surface.
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Figure 4. This figure shows an x-z sketch (at y = 0, Figure 2) of both the untruncated (GRID-A)
and truncated (GRID-B) FD grids used in model 1 forward modelings in order to verify the quasi-
analytical (QA)-based boundary conditions (BC). GRID-A and GRID-B, respectively, utilize the
zero and QA-based BC. The detailed model description is shown in Figure 2. The y-z section has
distances identical to those shown above.

The anomalous magnetic field H is expressed in terms  [Zhdanov, 2002], the conductivity is discretized on a

of E“ as: rectangular, uneven 3-D dual grid ) consisting of
| nodal points located at the centers of each cell of the
H = —V x E°. (4) original mesh }:
iwy
o X=X+ Ax/2,i=1,.,1-1
By taking the divergence of the first Maxwell’s equation ___ L
for the anomalous electric field, we obtain: > =< g Vers2a) Ve =Yk +80/2, k=1,..K~1
— V(E°-VIno) — VZE — iwpgoE? = iwpyAcE? Zy=z+48z/2,1=1,.,L-1
o We introduce the discretized vector function EY., =
+V(E" VIh—). 5 s . Lo k]
< 01;) () E“(x;, vk z7) on the grid ", and the discretized scalar

. . . function o1, =o(x; : i
Let us assume that the region of modeling, ¥, is bounded <= kb = 0 i+p VirpZ144) on the dual grid

by a surface V. We discretize the model region into a
number of prisms as shown in Figure 1. A Cartesian
coordinate system is defined with the z axis directed
downward and the x axis directed to the right. The indices
i, k, and [ are used to number the grid point in the x, y, and z
directions, respectively. We denote this grid by »

[8] In constructing a proper FD scheme for solution of
this problem by the balance method, we do not use
equation (5), but rather an integral identity obtained by
integrating equation (5) over an elementary cell Vj; of
the dual mesh ) based on the vector statements of the
Gauss theorem [Zhdanov, 1988]:

Xip) =X+ Ax;,i=1,2,..,1 -1
- // (E*-Vino)nds — // (n-V)Eds
Z = (xi,px-21) Vil =+ Ay, k=1,2, ., K—1 3. St Sit
zi =z+4Az,1=1,2,..,.L—1 ~iwuo/// UE"dv:// (Eb-Vlni>nds
/ Vi Sikt Op
The electrical conductivity. is assumed to be constant + iwplg / / / AGE?P dv, (6)
within each elementary prism. In the balance method J IV
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where S, is the rectangular boundary of the cell Vi,
formed by six sides Sy Sipslys and Sy 11t

Sitt = Siips U Sictas Y Sinsss U Sin-11 Y Siksry U Siki-t

and n is a unit vector normal to Sy; and directed out of
the volume. We can approximately evaluate the volume
and surface integrals in equation (6) in terms of the
discretized electric field vector Ef; and scalar functions

Oyl kit it I0 particular, we can use a simple relationship
to approximate the following integral as:

iwuo/// oE"dvziwpoEf’yk’,/// o dv.
Vi : Vik

The surface integrals are computed using a simple
difference form. For example:

a
V)E‘ds = / (7)
/ /1/11 Sikt 8
and the derivative OE“/On is approximated as:
OE* CE e — Bl (8)
Ox S,—»—‘kl Ax,-
The surface integral
// (E? - VIno)nds, 9)
Sikt

can be evaluated in a similar way. The derivatives of In o
are calculated using a three-point FD scheme [Zhdanov
and Spichak, 1992; Kincaid and Cheney, 1996]. The
values of the electric field on the sides Sj.1, Sput, and
S,+1 of the cell ¥, are approximated by the correspond-
ing average field values computed at the nodes of the

grid >

a 1 a
Ekgzi( &MJ+EﬂOv
Ea\ _l E¢ —|—Ea )
Sl 2 ik+1,l ikl )
p 1
Eg e (E:I\/:H +E,A1) (10)

The surface integrals are calculated using the rectangular
rule [Zhdanov, 2002]. The resulting stencil for the
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electric field E“ has seven points located at the nodal
points of the grid 3.

[9] The resulting system of linear algebraic equations
and the accompanying boundary conditions can be
expressed in matrix notation as:

(D + iongd )¢ = icpghoe’ + £(Aa,e ) +b, (11)
where e and e” are column vectors of length 3N of the
unknown values of the anomalous electric field and
known values of the background electric field; ¢ and Ao
are 3N x 3N diagonal matrices of the integrated total and

anomalous conductivities over the grid Y ; Disa 3N x 3N
matrix of coefficients which is independent of frequency

w; f(Ao, e ) is a column vector of length 3N depending on
the anomalous conductivities and the background field;
and b is a column vector of length 3N determined by the
boundary value conditions.

[10] The structure of the matrix D essentlally depends
on the method used to order the vector e” and on the choice
of boundary conditions. In the simplest case, the nodes of
the mesh are numbered consecutively along the horizontal
and vertical directions. Note that for the given numbering
ofthenodes, n=1, 2, 3.., N, (N =IKL) one can establish a
simple one-to-one relationship between the index »n and
the triple number (i, £, /):

n:i+w—nf+0—nm‘ (12)

[11] In this case, matrix D has a septa-block-diagonal
structure:

d” a™ o. d™ o 4™ o. 0 ]
aoa? am oL d” oo, a0
0 a ar a P
_ (4R o 0
D=
0 a7
a0 0
0 ay
Lo o &7 o 4 o a4 a? |
and the vector e has the structure:
¢=[Ei E, En En Ep Ea . Exy Ewn Eal

The preconditioned generalized minimal residual
(GMRES) method [Saad and Schultz, 1986; Zhdanov,
2002], from the Portable, Extensible Toolkit for
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Scientific Computation (PETSC) [Balay et al., 1997,
2000] (see also http://www.mcs.anl.gov/petsc), is used
here to solve the system (11) (see Appendix A).

3. Boundary Value Conditions Based on the
Quasi-Analytical Approximation

[12] In this section we discuss a new technique for
determining the boundary conditions of the EM field for
3-D FD modeling. The traditional statements of boundary
value problems are based on applying Dirichlet boundary
value conditions of the first, second, or third order, formed
by means of linear combinations of the field itself and its
derivative normal to the boundary. Dirichlet boundary
conditions of'the first order fix the values of the field at the
boundary. Dirichlet boundary conditions of the second
order, or Neumann boundary conditions, fix the field
normal gradient value to the boundary; and Dirichlet
boundary conditions of the third order, or Cauchy bound-
ary conditions, fix both value and the normal gradient of
the field at the boundary [Morse and Feshbach, 1953].

[13] Usually, the boundaries of the modeling domain
are set very far from the anomalous domain such that it is
possible to neglect the anomalous field there. In this
case, the simplest Dirichlet boundary conditions of the
first order can be implemented by setting the anomalous
field to zero at the boundaries [Fomenko and Mogi,
2002]. Another approach is based on the simplest
Neumann boundary conditions which set the normal
gradient of the field to zero at the boundaries.

[14] In a general case, the appropriate boundary dis-
tance depends on the size of the anomalous domain, the
background conductivity, the frequency, and the type of
source. In the present paper we solve the FD equations
for the anomalous field, which reduces the effect of the
type of source on the boundary distance selection. The
most significant effect is attributed to the wavelength X\,
(or skin depth 6,) of the EM field in the background
medium, where 8, = 2\y/27 and N, = 27/(wiie0,/2)"%. In
practical computations, one can use zero boundary con-
ditions if the distance, d,, from the anomalous domain to
the boundary of the modeling grid is at least three to five
skin depths. Note that the simple boundary conditions
outlined above could require a modeling grid that is too
large if we consider a low frequency (below 1 Hz) and a
resistive background (100 Ohm-m or more), which is a

typical case for many geophysical applications. Other-
wise the anomalous field can be inaccurate if it is not
actually equal to zero at the boundaries.

[15s] To overcome this problem we suggest using, as a
Dirichlet boundary condition, the values of the anoma-
lous electric field computed by the quasi-analytical (QA)
approximation [Zhdanov et al., 2000]. The QA approx-
imation represents a special form of the extended Born
approximation introduced by Habashy et al. [1993]. In
the framework of the QA approximation, the anomalous
electric field is computed at the boundaries of the
modeling domain using a simple integration [Zhdanov
et al., 2000] as:

Eb. (r;) =

- E' (1))

/ / feetoin- [FEee)a
(13)

where GE( ;|r) is the electric Green’s tensors defined for
an unbounded conductive medium with a background
conductivity 6. The numerical methods for computing the
Green’s tensors are very well developed. The interested
reader may find more information about these methods in
the work of Anderson [1979] and Wannamaker et al.
[1984]. The function g(r) is the normahzed dot
product of the Born approximation E? and the
background field E?,

E3(r) - EP*(r)
E’(r) - EP*(r)’

g(r) = assuming E®(r) - E?*(r) # 0,

(14)
where the asterisk means complex conjugate vector.
Note that the condition given by equation (14) can be
relaxed. In fact,

1 E’(r) - EP*(r)

I—g(r)  Eb(r). EV*(r) — EP(r) - EP(r)’

which causes no problem unless

E°(r) - EP*(r) = E5(r) - EP*(r).

The values Ej, are used subsequently as boundary
conditions for the FD modeling scheme.

Figure 5. Model 1. Electric field £, component at Earth’s surface obtained by FD modeling using different grid
sizes and boundary conditions: (a and b) real and imaginary parts obtained from untruncated grid supplemented with
zero BC (shown in solid line in Figures 5g and 5h; (c and d) real and imaginary parts obtained from truncated grid
supplemented with QA BC (shown in dashed line in Figures 5g and 5h); (e and f) real and imaginary parts obtained
from truncated grid supplemented with zero BC (shown in dash-dot line Figures 5g and 5h); (g and h) profiles in the x
direction at y = —21.5 km of the real and imaginary parts, respectively. The electric field results shown are total
electric field normalized by the corresponding incident normal (background) field computed at Earth’s surface.
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[16] In order to numerically evaluate (13), the anom-
alous domain (D) is discretized into N cells, each having
a constant anomalous conductivity Ac and electric field
values. The anomalous electric field is expressed using
the full integral equation as:

E“(r;)

= Gg[Ao(r)(E°(r) + E(r))],  (15)

which can be written in a discrete form [Hursan and
Zhdanov, 2002] as:
¢ = GpS?(e” +e), (16)

where (A}D is a 3N x 3N matrix containing the electric
Green'’s tensor integrals

rll IN 11 IN 11 IN 7
r.\'.\' e F\'r r\'y r Xy Fx: rx:
N1 NN NI NN pNT W
r oo F.r.\‘ rry wion [ X sz rx:
1 vl IV pll I
F_\'r o F_rx r\j' T F)[v F_vz Fy:
GD = )
N1 NN NI NN N1 .. MN
er e F)'x r,\i\' T l—‘yy F.vz ryz
/ N
SR = TR R R
N N NN N1 NN
L FZI FV 1“/ b F:y F:z Fzz J
A’ —
Flmj - / / / r] ‘ l'/\ OLaB =Xz,

e’ and e® are 3N x 1 vector columns of the background
and anomalous fields,

T
b b b b
E.\'.N’ 'y, 19 EvN’Ez]“Ez,N} )

X1

a
b2 bl

and S§%is a 3N x 3N diagonal matrix with the anomalous
conductivities,

- [Eb

T
a a a a
EvN’ y,1re EyN7Ezl’ E"N} ’

¢ = diag([AGy, .., AGy, AG), .., Ay, AG ), .., AGy)).

We can also define the matrix with background
conductivity values inside each cell as:

St = a’zag([o{’,. ,Of\,,ol{,., f\’,,otf, ,Gf’v})
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Equation (16) is then solved iteratively [Saad and
Schultz, 1986; Golub and Van Loan, 1996; Hursan and
Zhdanov, 2002; Zhdanov, 2002].

[17) However, Zhdanov [2002] showed that the quasi-
analytical approximation of the anomalous electric field
(13) at the observation points can be written in a discrete
form as:

€ps = Gre pldiag(1 —g(0))] " o,

where I is an NV x 1 column vector whose elements are
all unity, and g(o) is an N x 1 column vector which
represents the function g(r) at the center of each cell of
the anomalous domain, and is defined as:

gLk BB gb2k . EB2 EbN* . BB T

EbL* . EDD go2x (Eb2TTT

g(0> = EbyN* ‘Eb’N b

where E?/ and E% (j = 1, 2, ..N), respectively, denote
the Born approximation and the background electric
field in each cell within the anomalous domain. ¢ is an
N x 1 column vector whose elements are the
anomalous conductivity of the cells of the anomalous
domain.

[18] The vector g(o) can be expressed in matrix mul-
tiplication [Zhdanov, 2002] as:

~babx\"l~bx B
(€52)

g(o) = (epep’) epep, (17)

where the Born a%proximation vector inside the
anomalous domain, ep, can be expressed as

B _  ab
e, = Gpe 0.

(18)
Substituting (18) into (17), we obtain

. i 1
g(0) = (€pely) eprel = (eher’) €p'Goepo = Co,
where C is a matrix independent of the anomalous
conductivity distribution, and is defined as:

C- (€ g/e\b*) lAb*GDeD

Thus we can represent equation (13) for the anomalous
electric field as:

~ ~ -1 Pt

e = Ag [diag(l - Co)} o = AzB(0) o
= - = ~ -1
where Ax = Gge? and B(0) = |diag(I — Co

[19] These QA values are precomputed at the nodal
points of the boundaries of the truncated FD domain,
which are then multiplied by the corresponding FD
coefficients. These multiplication results are represented
as the term b of the right-hand side of equation (11). Using
the QA approximation (or even QA series [Zhdanov et al.,
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Table 1. Model 1*

CPU Time, s
FD BC (FD + BC)

CPU CPU CPU

Method Matrix Size Time Time Time

FD with GRID-A 156333 x 156333 3025 0 3025
supplemented
with zero BC

FD with GRID-B 71928 x 71928 1067 137 1204

supplemented
with QA BC

*Matrix size and CPU times (in seconds) comparisons of the FD
solutions obtained using GRID-A (Figure 4) with zero BC, and GRID-
B (Figure 4) with QA BC.

2000]) as a boundary condition for the FD solution helps
to significantly reduce the size of the modeling grid, and
correspondingly the size of the matrix (D + iwjio0) arising
from equation (11). We will illustrate this point by some
numerical modeling results with CPU time and matrix size
reduction comparisons (Section 4).

[20] The advantages of the QA boundary conditions
over traditional Dirichlet or Neumann boundary condi-
tions with boundary values equal to zero are obvious. The
QA approximation/series provides an accurate estimation
of the true boundary value of the field. As a result, it is not
necessary to move the boundaries far away from the
inhomogeneous domain, which may be the actual model-
ing area of interest. At the same time the computation of
the QA boundary values is a relatively simple numerical
operation because it does not require a solution of any
system of equations. Note also that the accuracy of the QA
approximation can be increased, if necessary, by using just
a few first terms of the QA series.

4. Numerical Modeling Results

[21] In this section we examine the effectiveness of the
developed FD algorithm and the new QA-based bound-
ary conditions (BC) on typical 3-D models with high
resistivity contrast. In order to examine the accuracy of
numerical modeling, we make a comparison between the
modeling results obtained by our FD code and the full
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integral equation (IE) code of Xiong [1992]. The electric
field results to be shown are total electric field normal-
ized by the corresponding incident normal (background)
field computed at Earth’s surface (z = 0). These calcu-
lations were performed on a 1.8 GHz PC.

4.1. Model 1

[22] This model is 3D COMMEMI model 2 [Zhdanov
et al., 1997]. It consists of two anomalous bodies
adjacent in the y direction. The first body has a resistivity
of 1 Ohm-m and dimensions of 20 x 40 x 10 km in the
X, y, and z directions, respectively. The second body has
a resistivity of 100 Ohm-m, and the same dimensions as
the first body. The normal (background) section of this
model consists of three layers with resistivities, from top
to bottom, of 10, 100, and 0.1 Ohm-m, respectively. The
first and second layers have thicknesses of 10 and 20 km,
respectively (Figure 2). The model is excited by a plane
wave of 0.01 Hz frequency and an incident electric field
oriented in the y direction (E% polarization). The domain
is discretized in the x, y, and z directions into 42 x 32 x
42 cells (including 10 layers in the air extending to 75 km
above Earth’s surface), respectively. This discretization
was supplemented with zero BC and resulted in a linear
system of equations with a matrix size of 156333 x
156333, which was solved iteratively using the precondi-
tioned generalized minimal residual (GMRES) method
[Saad and Schultz, 1986; Zhdanov, 2002] (see Appen-
dix A). Iterations were performed until the L, norm of
the relative residuals dropped below 107°.

[23] Figures 3a and 3b show the maps of the real and
imaginary parts of the £, component at Earth’s surface
computed using the FD method. The corresponding
responses computed using the IE method [Xiong,
1992] are shown in Figures 3¢ and 3d. Figures 3e
and 3f, respectively, show comparisons of the real and
imaginary parts of the E, component computed at
Earth’s surface by FD and IE methods for a profile
taken in the x direction.

[24] The FD grid described above (GRID-A in
Figure 4) was truncated in both earth and air and
produced the new grid, labeled GRID-B (Figure 4).
The truncated GRID-B has a discretization of 38 x 28 x
25 cells (including 6 air layers) in the x, y, and z
directions, respectively, with air layers extending to 5 km
above Earth’s surface. Note that the size of the

Figure 6. Model 1. Electric field E, component at Earth’s surface obtained by FD modeling using different grid
sizes and boundary conditions: (a and b) real and imaginary parts obtained from untruncated grid supplemented with
zero BC (shown in solid line in Figures 6g and 6h); (c and d) real and imaginary parts obtained from truncated grid
supplemented with QA BC (shown in dashed line in Figures 6g and 6h); (e and f) real and imaginary parts obtained
from truncated grid supplemented with zero BC (shown in dash-dot line in Figures 6g and 6h); (g and h) profiles in
the x direction at y = 0 km of the real and imaginary parts. The electric field results shown are total electric field
normalized by the corresponding incident normal (background) field computed at Earth’s surface.
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Figure 7. Model 2.

truncated grid is determined by the structure of the
model. The FD algorithm for the anomalous field
requires that the truncated grid (GRID-B) include the
entire anomalous domain. This GRID-B was supple-
mented with QA BC, and its discretization resulted in
a 71928 x 71928 linear system of equations which
was solved using the same solver and accuracy men-
tioned above.

[25] Figures 5a, 5¢c, and Se present a comparison of the
real part of the E, component computed at Earth’s
surface, respectively, using GRID-A with zero BC
(shown as a solid line in Figure 5g), GRID-B with QA
BC (shown in dashed line in Figure 5g), and GRID-B
with zero BC (shown as a dash-dot line in Figure 5g).
The corresponding profiles of the computed data (taken
in the x direction) are shown in Figure 5g. The compar-
ison of the imaginary part of the £, component at Earth’s
surface is shown in Figures 5b, 5d, 5f, and Sh. Figure 6
presents the corresponding comparisons for the £, com-

ponent. These comparisons demonstrate that the QA BC
successfully results in an accurate FD solution without
demanding many discretizations from the anomalous
domain.

[26] Table 1 shows the corresponding matrix size and
CPU time of the FD solutions obtained using GRID-A
with zero BC and GRID-B with QA BC. Column 2 of
this table compares the matrix size of each method. One
can clearly see that the proposed FD method with QA
BC leads to a 4.7 reduction in matrix size. Columns 3,
4 and 5 present a comparison of the FD, BC and total
(FD + BC) CPU times in seconds for both FD sol-
utions. This CPU time comparison shows that the
proposed method is 2.5 times faster than the FD
method with zero BC.

4.2. Model 2

[27] This model consists of two anomalous bodies
with a resistivity of 10 Ohm-m. The two bodies have
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Figure 8. Model 2. Electric field E, component at Earth’s surface obtained by FD modeling and
IE modeling: (a and b) real and imaginary parts obtained from FD; (c and d) real and imaginary
parts obtained from IE; (e and f) profiles in the x direction at y = —25.5 km of the real and
imaginary parts obtained from FD (solid) and IE (dashed). The electric field results shown are total

electric field normalized by the corresponding normal (background) field computed at Earth’s
surface.
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Figure 9. This figure shows a y-z sketch (at x = 0, Figure 7) of both the untruncated (GRID-A)
and truncated (GRID-B) FD grids used in model 2 forward modelings in order to verify the QA-
based BC. GRID-A and GRID-B, respectively, utilize the zero and QA-based BC. The detailed
model description is shown in Figure 7. The x-z section has distances identical to those shown

above.

dimensions of 50 x 50 x 10 km, and 10 x 50 x 25 km in
the x, y, and z directions, respectively. The background
section of this model consists of a two-layer model with
resistivities from top to bottom of 100 and 10,000 Ohm-m,
respectively. The first layer has a thickness of 10 km
(Figure 7). The model is excited by a plane wave of
E? polarization and a frequency of 0.1 Hz. The domain
is discretized in the x, y, and z directions into 50 x 35 x
44 cells (including 10 layers in air), respectively, with
air layers extending to 75 km above Earth’s surface.
This discretization was supplemented with zero BC,
and resulted in a 214914 x 214914 linear system
which was solved using the same solver and accuracy
above.

[28] Figures 8a and 8b show the maps of the real
and imaginary parts of the E, component at Earth’s
surface obtained from FD. The corresponding IE
[Xiong, 1992] responses at Earth’s surface are shown

in Figures 8c and 8d. Figures 8¢ and 8f, respectively,
present the corresponding profile comparisons computed
at Earth’s surface by FD and in the x direction.

[29] We have truncated the FD grid described above
(GRID-A in Figure 9) in both earth and air. The reduced
grid (GRID-B in Figure 9) has a discretization of 40 x
25 x 35 cells (including 7 layers in air) in the x, y, and
z directions, respectively, with air layers extending to
7.5 km above Earth’s surface. This FD reduced grid
was supplemented with QA BC, and its corresponding
discretization resulted in a 95472 x 95472 linear
system of equations which was relaxed using same
solver and accuracy of the FD solution obtained from
GRID-A with zero BC.

[30] The map comparisons for the real part of the E,
component computed at Earth’s surface using GRID-A
with zero BC (shown as a solid line in Figure 10g),
GRID-B with QA BC (shown as a dashed line in

Figure 10. Model 2. Electric field £, component at Earth’s surface obtained by FD modeling using different grid
sizes and boundary conditions: (a and b) real and imaginary parts obtained from untruncated grid supplemented with
zero BC (shown in solid line in Figures 10g and 10h); (¢ and d) real and imaginary parts obtained from truncated grid
supplemented with QA-based BC (shown in dashed line in Figures 10g and 10h); (e and f) real and imaginary parts
obtained from truncated grid supplemented with zero BC (shown in dash-dot line in Figures 10g and 10h); (g and h)
profiles in the x direction at y = 0 km of the real and imaginary parts. The electric field results shown are total electric
field normalized by the corresponding incident normal (background) field computed at Earth’s surface.
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Table 2. Model 2*

CPU Time, s
FD BC (FD + BQ)

CPU CPU CPU

Method Matrix Size Time Time Time

FD with GRID-A 214914 x 214914 4647 0 4647
supplemented
with zero BC

FD with GRID-B 95472 x 95472 1645 226 1871
supplemented
with QA BC

*Matrix size and CPU times (in seconds) comparisons of the FD
solutions obtained using GRID-A (Figure 20) with zero BC, and GRID-B
(Figure 20) with QA BC.

Figure 10g), and GRID-B with zero BC (shown in
dash-dot line in Figure 10g) are shown in Figures 10a,
10c, and 10e, respectively. The corresponding profile
comparisons made in the x direction are shown in
Figure 10g. The imaginary part comparisons of the £,
component computed at Earth’s surface are shown in
Figures 10b, 10d, 10f, and 10h. Figure 11 presents the
corresponding comparisons of the real and imaginary
parts of the E, component at Earth’s surface.

[31] Table 2 shows a comparison of the corresponding
matrix size and CPU time of the FD solutions obtained
using GRID-A with zero BC and GRID-B with QA BC.
Column 2 of this table presents the matrix size of each
method. One can see that the proposed FD method with
QA BC leads to a five times reduction in matrix size. A
comparison of the FD, BC and total (FD + BC) CPU
times in seconds for both FD solutions is presented in
columns 3, 4 and 5. This CPU time comparison shows
that the proposed method is about 2.5 times faster than
the FD method with zero BC.

5. Conclusions

[32] In this paper we have presented a new approach
for three-dimensional finite difference electromagnetic
modeling in the frequency domain based on the balance
method and the quasi-analytical boundary condition for
truncation of the modeling area. This approach helps

MEHANEE AND ZHDANOV: FINITE DIFFERENCE ELECTROMAGNETIC MODELING
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reduce the size of the modeling grid significantly without
losing the accuracy of calculation. As a result, a larger
number of fine grid cells can be used to describe the
anomalous conductivity distribution within the modeling
domain.

Appendix A: Solution of the Linear System
of Finite Difference Equations

[33] The resulting system of linear algebraic FD equa-
tions and the accompanying boundary conditions (11)
can be expressed in matrix notation as:

Ae’ = b, (A1)
where A = D + w10, and equation (Al) is a 3N x 3N
linear system with respect to the anomalous electric
field. We solve this system using the Generalized
Minimal Residual (GMRES) method. The basic idea of
the GMRES method [Saad and Schultz, 1986; Zhdanov,
2002] is to find the solution along an orthonormal
basis:

{Ag Agy, - ,Agi’}
in the Krylov subspace
K= span{gr,,. Kzr,,, e ,X"’r,,}.

At the n-th step of the iterative process

kn/g;"), s < n,

s
Xn41 = Xy —

=1
where r, = Ax, — b. The more orthonormal basis
functions are calculated (the larger s is), the smoother
the convergence becomes, requiring a fewer number of
iterations with smaller amplification of the roundoff
errors during the iterative process. However, at each
iteration, the orthogonalization process performed
requires 2s matrix multiplications, and the number of
vectors to be stored is also proportional to s. The
convergence rate of the GMRES iterative algorithm can

be increased dramatically by using the corresponding
preconditioners [Golub and Van Loan, 1996].

Figure 11. Model 2. Electric field £, component at Earth’s surface obtained by FD modeling using different grid
sizes and boundary conditions: (a and b) real and imaginary parts obtained from untruncated grid supplemented with
zero BC (shown in solid line in Figures 11g and 11h); (¢ and d) real and imaginary parts obtained from truncated grid
supplemented with QA-based BC (shown in dashed line in Figures 11g and 11h); (e and f) real and imaginary parts
obtained from truncated grid supplemented with zero BC (shown in dash-dot line in Figures 11g and 11h); (g and h)
profiles in the x direction at y = —29.5 km of the real and imaginary parts. The electric field results shown are total
electric field normalized by the corresponding incident normal (background) field computed at Earth’s surface.
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