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Three-dimensional regularized focusing inversion of gravity 
gradient tensor component data 

Michael S. Zhdanov"; Robert Ellis+, and Souvik MUkherjee~ 

ABSlRACT 

We develop a new method for interpretation of tensor 
gravity field component data , based on regularized fo
cusing inversion. The focusing inversion makes its possi
ble to reconstruct a sharper image oft he geo logical target 
than conventional maximum smoo thness inversion .Th is 
new techn ique can be efficiently applied for the interpre
tat ion of gravity gradiometer da ta, which a re sensitive to 
local density anomalies. The numerical modelin g and in
version results show tha t the reso lution of the gravity 
method can be improved significantly if we use tensor 
gravi ty data for interpretation. We also applyour method 
for inversion of the gradien t gravity data collec ted by 
BHP Billiton over the Cannington Ag-Pb-Zn orebody in 
Queensland , Austra lia.The comparison with the drilling 
resul ts dem onstr ates a remarkable corre lation between 
the density anomaly reco nstructed by the gravity gra 
dient dat a and the tru e structure of the orebod y. This 
result indicates that the emerging new geo physical tech
nolo gy of the airborne gravi ty gradient observations can 
improve significantly the practical effectiveness of the 
gravity meth od in mineral explora tio n. 

INTRODUCTION 

Gravity gradiomet ry involves measuring the gradient of a 
gra vity field in different directions. We can consider three dif 
ferent component s of a gravity field in some Cartesian coordi
nate system g.. gy, and g,.The set ofthe x-, yo, and z-de rivatives 
of each of these components form s the gravity gradient 
ten sor. 

The first practical instrument for measurin g the horizon
tal derivative of the horizont al component of the gravity field 
and the der ivative of the vertica l component was designed in 
1886 by the Hungarian physicist Baron von Eo tvos, Th is in
strument is known as the tor sion balance gradiometer (Shaw 

and Lancaster-Jones, 1923, 1927). The Eotvos balan ce instru
ment signaled the advent of gravity gradiometry as an early 
geophysical method used successfully in resource exploration 
(Bell and Hansen, 1998;Pawlowski, 1998). DuringWorld WarI , 
this instrument mapped salt dom es associated with oil deposits 
in Germany, Hungary, and Czechoslavakia. Following World 
War I, word of Eotvos success rapidly reached the United 
Stat es, and by 1922 Eotvos balances were imported by Shell 
and Amerada. The first discovery made by the tors ion balan ce 
was the Nash Dome deposit in 1924. Du ring the next 10 yea rs 
or so, the discovery of more than 1 billion bbl oil and at least 79 
producing structures was attri buted to the application of this 
instrument (Bell and Hansen, 1998). 

Howeve r, use ofthis instrument was both laborious and time 
consuming, involving leveling terr ain in eight directions, often 
out to 100 m, and requi ring a large tent in which the instrument 
was kept. Moreover, while early ident ification of salt domes 
and cap rocks was strikingly simple, with arrows resulting from 
the data po inting toward the sa lt dome, the arrow beca me more 
difficult to interpret ove r more complex struct ures. This, cou 
pled with the abse nce of efficient interpreta tion tools involv
ing mod em-day modeling and inversion techniques, led to the 
demise of the sta tic gradiometer as an investigat ive tool by the 
1930s. Growing impo rtance was attac hed to the simple pendu
lum gravi tmete r, which, thou gh significantly less accurate, was 
much faster and yielded data that most geologists found easier 
to interpret. 

The mod em era of gradiometry was born in the 1970s when 
Bell A erospace (now Lockheed Martin) explored the feasibil
ity of developing a moving base gravi ty gradiome ter instru
ment (GGI). This work was originally stimulated by the per
sonnel from Navocea no, who were using the Bell gradiomete r 
to form the gravity field database for correction of ballistic mis
sile submarine navigation systems (Metzger, 1977, 1982). The 
GGI design was based on four pendulous force rebalance ac 
celerometers mounted on a slowly rotated fixture (Figure 1). 
These accelerome ters measure the hor izon tal derivat ives of the 
horizon tal gravity field components. 
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With the introduction of the moving base gravity gradiome
ter , the great potent ial of the old technology for the mining and 
pe troleum industry has come to realization again. In the 1990s 
BHP Billiton built the FalconP' airborne gravity gradiometer 
(AGG) , a derivative of the Bell GGI syste m. Routine airbo rne 
survey ope ratio ns with the Falcon'P' AG G system began in 
1999 and 2000 (van Lee uwen, 2000; Lee, 2001). BHP Billiton 
reports that this instrument provides sufficient resolut ion and 
sensitivity for detecting the local gravity anomalies associated 
with mineral deposits (Christense n et al., 2001). 

The development of the interpretive tools for gradiometer 
data still remains a challenge of the modern-day gradiometry. 
Some new techniqu es for gravity gradiometer data process
ing and interpretat ion have bee n reported, such as Condi and 
Talwani (1999), Jorgensen and Kisabeth (2000), Li (2001a,b), 
and Routh et al. (2001). Howeve r, most ofthe published meth
ods are based on the traditi onal maximum smoothness inver
sion algorithms. Portniaguine and Zhd anov (1999, 2002) and 
Zhd anov (2002) have developed a focusing method for 3D 
gravity and magnetic data inversion based on the implemen
tation of a new focusing sta bilizer for regular ized invers ion of 
potent ial field data. Focusing inversion makes it possible to 
reconst ruct a sharper image of the geological target than con
ventional maximum smoothness inversion.This new technique 
see ms to be well suited for the inter pretation of gravity gra
diometer data, which are sensitive to local density anomalies 
(Zhdanov et aI., 2002). 

In the present paper, we exte nd this method for gravity 
gradiometer data inversion and for joint inversions of grav
ity and tensor gravity data. We also apply our new method 
for inversion of the gradient gravity dat a collected by BHP 
Billiton in the area of the Cannington Ag-Pb-Zn ore body in 
Queensland , Australia. The compariso n of the inversion result 
with the drilling data shows remarkable resolving power of 
the new airborne technology in detecting the small, localized 
density anomaly and reconstructing the deep structure of the 
mineral deposit. 

Figure 1. A moving base GGI is based on four pendulous force 
rebalance acceleromete rs mounted on a slowly rotated fixture 
so they are eq uispaced on a circle, with their sensitive axes tan
gential to the circle with the same sense. The fixture rotates at 
a constant speed, typically Q = 0.25 rad/s, providing a further 
ability for common mode rejection . The four accelerometers 
form a complement, and the ir outputs are combined (summed) 
so that orthogonal accelerometers have opposite sense and op
posed acce lerometers have the same sense (after Lee, 2001). 

SECOND DERIVATIVES OF THE GRAVIlY POTENTIAL 

Gravity gradient tensor 

For completeness, we begin with a brief description of the 
gravity gradient tensor. The gravity field g, satisfies the equa
tions (Zhdanov, 1988) 

v ~ = ~ 4Qa2, V ~ g=O, (1) 

where Q is the universal gravitational constant and Q is the 
anomalous density distribut ion within a domain D . 

The solution of these equations is given by 

r/ ~r 

g(r) = Q ~r/)----=:"-13d V " (2)
D Ir/ ~rh~~ 

where r is an observation point and integration is conducted 
over the variab le s', The gravity field can be expressed by the 
gravity potent ial U(r), 

g(r) = VU(r) , (3) 

where 

U(r) = Q fff ~r/) d v' . (4) 
JJJDIr/ ~rl 

The second spat ial derivatives of U(r), 

a2 
gm(r ) = arnQ U(r) , Q Q= x , y, Z, (5) 

form a gravity gradient tensor, 

gXX gxy Z
gX ]g= gyx gyy gyZ ' (6)

[ 
gzx gZy gzz 

where 

agn, QQ =x,y,Z. (7) gm= aQ' 

The expressions for the gravi ty gradient tensor components 
can be calculated based on formulas (4) and (5): 

gm(r) = 3 Km(r' ~ r)d v', Q fff ~r')_1_ (8) JJJD Ir' ~ r l 

where the kernels Km are equal to 

( Q ~ Q')(Q~ Q')
3 ,QiQ

Ir' ~ r 1 2 

Km(r / ~r) = Q Q= x, y, z, 

3 (Q~ Q'~2 ~ 1, Q= Q 
I r/~ rl1 

(9) 
We also define the component 

1 
g" = '2(gxx ~ gyy ), (10) 

which can be measured using the Falcon AGG instrument, as 
discussed below. 



927 Focusing Inversion of Gravity Gradient Tensor 

Computing the gravity gradient tensor components 

To derive numerica l expressions for the 3D gravity field and 
gravity tensor, we divide the domain D, filled with the masses 
of a density ~r') , into N« cells Dk , D = Uf=l Dk , and assume 
that density is constant within each cell, ~r') = ~ , r' E Dk : 

g z(r)=QI:~ ff [ ~':Z 3dV " (11) 
k=1 JDk Ir ~ r] 

The analytical formulas for computation of gravity field and 
gravity gradient fields from a recta ngular prism are found in 
Forsberg (1984) and Li and Chouteau (1997). For example, 
Forsberg (1984) derives the equation for the ver tical gravity 
gradient component of a cubic body: 

222 
gzz= QQL L L~jkarctan Xi Yj , (12) 

i=1 j = 1 k=1 ZkTijk 

~jk = (R:lY(R:l )j ( R:l)k , Xi = X R:~, 

Yj = YR:q , Zk = Z R: ;k> 

where gzz is the vertical gradien t of gz; Q is the density of the 
cube; x , y, z are the observation points; and ~, ~ ,';k are the 
coordinates of the opposing vertices of the cube. 

In our implementation of the inversion code, to speed up 
the computations, we use the simplified expressions for 3D 
gravity field and gravity tensor, based on the formulas de
rived for a point mass. We denote the coordinates of the cell 
center as r' =(Xt ,Yt,zA) , k =1, .. . , Nm, and the cell sides as 
dx , dy , dz. Also, we have a discret e number of observatio n 
points r. = (x., y., 0), n = 1, ... , Nd. Using discrete model pa
rameters and discrete data , we can present the forward mod
eling operator for the gravity field [equation (11)] as 

Nm 

gz(rn ) R:L A~k Sl , n = 1, . . . , Na, (13) 
k=1 

where the gravity field kernel A~k according to equation (11) 
is expressed as 

A~ = QZkdx dydz (14)
3Tnk: 

and 

Tnk = J(x£ R:xnF + (y£ R:YnF + (z£)2 . (15) 

We can apply the same technique to compute the gravity tensor 
components gu, gyz, gu , g.y, and g,,: 

Nm 

gm(rn ) R:L A~Sl , n = 1, ... , Nm ; Q Q = X, y, Z, 

k=1 
(16) 

where 

m dxd ydz m 
Ank = Q - -3- Knk ' (17) 

Tnk 

(S{ R:~)(S{ R:~~.) , Q;f Q, 
3 Tnk 2 

m _ Q,Q = x,y,Z. 

1
Knk - 2 

3 (S{ R:~) R:1, Q = Q, 
Tnk 2 

(18) 

The differen tial curvature component g" is expressed as 
Nm 

gA(rn ) R: L A~~ , (19) 
k=1 

where 

A~ = 
(X ' ~ X )2 ~ (y' ~ Y )2 

3Q k ~ n 2 ~ < k ~ n dx dy dz; (20) 
Tnk 

Thus,the discrete forward modelingoperators for the gravity 
field and gravity tensor can be expressed in general matri x 
notations as 

d =Am. (21) 

Here, m is a vector of the model parameters (densities, 
~) of the order N«; d is a vector of the observed data 
gz, g. z, gyz, gzz, g. y, and g" of the order N«: and A is a rect
angular matrix of a size Nd "" Nm , formed by the corresponding 
gravity field kernels A~, A~, or A~. 

Note that in the framewor k of this approach, we actually 
represe nt the subsurface model as a superposition of multi
ple point masses or of multiple small homogeneous balls with 
the volume equa l to dxdydz : Application of these formulas 
for inversion means that we use these small balls as the build
ing blocks for our inverse model instead of using rectangu
lar prisms to describe the subsurface. The volume of the ball 
is equal to the volume of the corresponding rectangular cell. 
Thus, the choice of an appro priate formula for forward model
ing, based on the analytical solutions for the recta ngular prism 
or for the ball, determin es the type of inverse model parame
terization. Using the small ball parameteriza tion speeds up all 
calculations dramatically. 

At the same time, our numerical modeling and inversion 
results show that there is practically no difference in which 
param eterization to use if one considers a fine discretization 
of the area of inversion. Our method is based on dividing the 
subsurface region into many (up to hundreds ofthousands) el
ementary cells (or equivalent elementary balls) and searching 
the physical propert ies of these cells using regularized inver
sion. This approach allows the most rea listic inter pretation of 
3D potent ial field data in complex geological structures and at 
the same time genera tes an extremely fast and powerful com
puter code. Numeric examples, presented below, demonstrate 
that inversion of the practical gravity gradient data on a grid 
with abo ut 100000 cells can be done within 10 minutes on a 
PC with 1 GHz CPU. Note that the version of the code based 
on exact formula (12) for the elementary cubic cell produces 
practically the same result as the code based on simplified ex
pressions (17), but the computat ions requ ire more time. 

Gravity curvature 

The components gu and gzy represent the horizontal gra
dients of the gravity field gz, while the component gu is its 
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vertical gradient. The components gxy and glJ. are called the 
differential curvature components because they determine the 
curvature of the equipotential surface of the gravity potential. 
The geometric properties of these components were investi
gated many decad es ago in papers on torsion balance mea
surem ents (e.g., Rybar , 1923; Slotnick, 1932; Heiland , 1946; 
lakosky,1950). However, we feel it is important to review some 
of these properties and the physical interpretation of the dif
ferential curvature components, as they can now be measured 
by the Falcon AGG. In our explanation we mainly follow the 
work of Slotnick (1932). 

To understand better the relationship between the gradi
ent s of the gravity field and the geometrical properties of the 
equipotential surface , we use a special coordinate system in 
this section . The origin of this system is located in the observa
tion point, the z-axis is directed along the normal vector to the 
equipotential surface, and the x- and y-axes are located in the 
tangential plane to the equipotential surface. 

In this coordinate system, the curvature C of the normal sec
tion of the equipotential surface is determined by the equation 

C = C(ip) = ~ 1, \gxx COS
2 

ip + gxysin Zo + gyysin2 
ip\ 

g ) en) 
where e is an angle between the vertical plane xzand the given 
normal section . The principal normal sections are character
ized by maximal or minimal curvature. We can find the angles 
of the principal normal sections from the condition 

oC(ip) = O. (23) 
oip 

Differentiating equation (22),we obtain the following equation 
for the angle 'Po of the principal normal section : 

g" tan21fiO = gxy' (24) 

Note that equation (24) has two solut ions, 'Poand 'PI = 'Po+Q/2, 
which correspond to two principal normal sections of the 
equipotential surface . We denote by Rmin and Rmax the radii 
of the adjust ing circles to the corresponding normal sections 
(Figure 2). 

Let 'Po be an angle corresponding to the normal section 
with the maximum curvature C('Po) =Cmax =1/ Rmin . The sec

i ii 
...._._-_. _.. _-.~: ~:.:: : - .... 

Figure 2. Two principal normal sections of the equipotential 
sun:ce.Th:.,gravi~ curvature~ proportional to the difference, 
1:£ - Cmex ~ Cmm - (1/ Rmin) ~ (1/ Rmax) . 

ond principal normal section has the minimum curvature 
C('P1 ) =C('Po +Q/2) =Cmin . Let uscalculate the difference t1.C 
of the maximum and minimum curvatures: 

t1.C = Cmax ~ Crnin 

= ~ 2. (2g " cos 2ipo+2gxysin 2ipo). (25)
g, 

Now we introduce the notation 

G=t1.C g" 

where G is the so-called gravity curvature. Substituting equa
tion (24) into equation (25) and with some rearrangements , 
we can obtain the result that the differential curvature com
ponents glJ. and gxy are proportional to the gravity curvature 
G: 

s« = ~) ~) cos2ipo, gxy = ~)~) sin21fiO (26) 

and 
G2 

2 + 2 __
g" gxy - 4 . (27) 

For a spherical surface, t1.C is equal to zero for any point on 
the surface . Therefore, G can be treated as the measure of the 
deviation of the equipotential surface at a given point from a 
spherical surface, which is typical for a gravity potential of a 
point mass. Thus, the gravity gradient tensor components glJ. 
andgxy , which are proportional to G, reflect the deviation ofthe 
density distribution from the elementary point source , located 
under the point of observation. Note that these components 
are measured by the Falcon AGG. 

PRINCIPLES OF REGULARIZED INVERSION OF GRAVIlY 
AND GRAVIlY GRADIENT TENSOR DATA 

Gravity gradient tensor component data inver sion is reduced 
to the solution of the linear matrix equation (21). This inverse 
problem is ill posed, i.e., the solution can be nonunique and 
unstable. Therefore, we have to use the methods of regular
ization theory to solve this problem (Tikhonov and Arsenin, 
1977; Zhdanov, 2002). In the conventional way, we substitute 
the solution of the linear inverse problem [equation (21)] with 
the minimization of the Tikhonov parametric functional 

pn(m) = ~m) + Ql-(m) = min, (28) 

where the misfit functional is specified as 

~m) = IIWd(Am ~ d))llz. (29) 

Here, Qis a regularization parameter, Wd is the data weighting 
matrix, and m is a vector of anomalous density distribution. 

There are different ways of introducing a stabilizing func
tional. The traditional inversion algorithms are usually based 
on the minimum norm, or smoothing stabilizing functionals 
(e.g., Li and Oldenburg, 1996). These algorithms have difficul
ties, however , in describing the sharp geological bound aries 
between different geological formations. This problem arises, 
for example, in inversion for the local target with sharp bound 
aries between the ore zone and the host rocks, which isa typical 
model in mining exploration. In these situations, it is useful to 
search for a stable solution within the class of inverse models 
with sharp geological boundaries. The solution of this problem 
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is based on int roducing a specia l type of stab ilizing functiona l, 
the so-called minimum support or minimum grad ient suppor t 
functionals (Portniaguine and Zhdanov, 1999, 2002; Zhda nov, 
2002). We select a stabilize r equal to the minimum suppo rt 
functional: 

Nm mr 
sCm) = sYnI,m2, . . . ,mNm ) = 2:::-2-' e > 0, 

) k= l mk + e 
(30) 

where e is a focusing para meter determ ining the sharpness of 
the produced image (Zhda nov, 2002). 

The minimization prob lem (28) is solved using the 
reweighted regularized conjugate gradient (RRCG) method , 
outlined in previous publicat ions (Portniaguine and Zhdanov, 
1999, 2002). The reader can find a detail explanation of this 
algorithm in Zhdanov (2002, 155-1 65). 

Using the gradient data jointly with the gravity data re
duces the ambiguity and increases the resolution of inversion 
(Jorgensen and Kisabeth , 2000; Routh et aI., 2001). It is not 
so difficult to construct the method of joint gravity and grav
ity tensor data inversion by combining in the data vector d 
the different components of the gravity field and its tensor. 
For example, one can run the joint inversion of the differen
tial curvature components gxy and gt>. by constructing IfY't>. of 
the order 2Nd as a combination of the gxyand gt>. values at the 
observation points , 

XY d'''' = r":,."gxyJNd) g", (r-), ... , s« JNd)Jl) 
and introducing rectangular 2Nd :::::N« matrix A formed by the 
corresponding gravity field kern els A:i and A~: 

[ 
AXY] (32)AXY'''' = A'" ' 

where Nd ::::: Nm mat rices A XY and A t>. are 

n :x: ,~,r;) ::~ r~t. (33) 

The joint inversion is reduced now to the solution of the matrix 
equation 

dXY'''' = AXY''''m . (34) 

In a similar way, we can introduce a matrix equ at ion for the 
joint inversion of any combination of the gravity and gra v
ity gradiometer data. The stable solution of these equ ations is 
based on the same RR CG method (Zhda nov, 2002), 

NUMERICAL MODELING RESULTS AND DISCUSSION 

The forward modeling and the inversion code have been de
veloped using Matlab. To check for the validity of the code and 
the inversion method , we used for inversio n the data gener
ated for a simple model. Figure 3 shows two cubic bod ies, eac h 
150::::: 150 ::::: 150 m and with a density contrast of 1cP kg/m! ove r 
the background. The top of the bodies is locate d 150 m below 
the surface. The gravity field g, and gravity tensor components 
g", gxy, and gt>. were generated by the forward mode ling code 

with 525= 21 ::::: 25 observation points of the rectangular grid 
locat ed at the ea rth's surface. The sampling interval is 25 m in 
the x- and y-directions.The synthetic observed data were con
tamin ated with 3% noise and were used for inversion. As an 
example, the left panels in Figure 4 show the differen tial curva
ture tensor components gxy and gt>., respec tively. One can see 
that , even for this simple model, the maps of the tensor com
ponents of the gravity field have ra ther complicated structures, 
which makes it difficult to provide a qua litat ive interpre tation 
of these maps. 

The area of inversion was discret ized into 11::::: 13 ::::: 
10 =1430 cubic cells in the X-, y-, and z-direc tions, respec
tively. The size of a cubic cell is 50 m along the X- , y-, and 
z-directions, Our inversion code, as pointed out ea rlier, has 
options of smooth and focusing inversion. The models gener
ated by the smooth inversion of the gravity field g, and gravity 
tensor components g" , 8xy, and gt>. are shown in Figure 5; 
the models obtained by the focusing inversion are shown in 
Figure 6. All inversions were run until the misfit between the 
predict ed and observed data reached 3% (the noise level in 
the data). In the case of focusing inversion, a priori informa
tion about the density distribution, which is used as bounding 
values in inversion, is important. In obtaining the result s shown 
in this section, we applied a lower bound for anomalous density 
of :::::0.1::::: 103 kg/m! and an upp er bound of 103 kg/m", 

As an exampl e, the corre sponding predicted data for the 
models generated by the focusing inversion are shown in the 
right panels of Figure 4. For all components, the focusing in
version result can resolve the sharp bounda ry structures of the 
anomalous bodies over the background, while the smooth in
version cannot resolve two bodies. This is in spite of the fact 
that the predicted data for the smooth models fit the observed 
data with the same accuracy as for the focused models. Also, 
it is evident from the figures that the gravity field g, provides 
a poorer recovery of the original model, whereas gt>. , 8xy, and 
g" and the joint inversion of gxy and gt>. represent the bodies 
practically at the or iginal position and with the correc t density 
contrast. 

original model 

c, 

' :~ j 
2lJ(), 

E I 
-;; 300 ~ ., os 

c., 

.~ 

• I 

• 
x 103 Kglm3 

Figure 3. Vertica l slice of a model with two cubic bod ies, each 
150 ::::: 150::::: 150 m,and a density contras t of 103 kg/m" over the 
background, The distance between two bodies is 150 m. 
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Figure 4. (left) Maps of the gzy and gl1 component contam inated by 3% Gaussian noise, used 
as observed data for inversion. (right) Predicted data, computed for the model obtained with 
the focusing inversion. 
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INlERPRETATION OF GRADIENT GRAVIlY DATA
 
IN THE CANNINGTON AG·PB-ZN OREBODY
 

IN QUEENSLAND, AUSTRALIA
 

Geological background 

The Canningto n deposit is loca ted within the eas te rn 
success ion of the Prot erozoic Mount Isa inlie r, northwest 
Qu eensl and , as shown in Figure 7. The deposit is concealed 
benea th 10 to 60 m of Cretaceous and Recent sedim ents 
and was discovered by BHP Minerals in 1990 as a result of 
drill testin g regional magnet ic tar gets. Th e Cannington de
posit is hosted by a seq uence of magmat ic, biotite-sillimanite
garne t-bea ring quartzofeldspathic gneisses with minor amphi
bolites. A distincti ve seq uence of biot ite-sillimanite schists 
and feldspa thic psammites with layers and disseminations 
of fine-grained man gan ese (Mn) almandine garne ts extends 
for up to 250 m as an envelope around the main miner al
ized zone. Economic A g-Pb-Zn mineralizat ion at Canning
ton is assoc iated with a remark ably diverse ran ge of siliceou s 
and ironlcalciumlmanganese/fluorine lithologies characterized 
by coarse-grained equ igranular textures (Walte rs and Bailey, 
1998). The strong zonations between silver/lead- and zinc-rich 
mineralization types are a feature of the deposit. The high silver 
grades that are char acteristic of the deposit are lar gely re lated 
to argentiferous galena with abunda nt inclusions offreibergite. 

(a) 

I 
N 

I 
N 

o 
3x 103 Kg! m

1 

I 
N 

The overall geo metry of the deposit appears to be cont rolled 
by a tight to isoclinal synfor m that strikes north-south, dips 
from 40"-70" to the east, and plun ges to the south. A large 
amphiboli te bod y, called the Core Amphibolite, occurs with in 
the axia l trace of th is inte rp reted synform and is used to define 
foo twall versus hanging-wall orebody zones (Figure 7). The de
posit is divided by faulting into a shallow, low-grade northern 
zone and a deeper , higher grade , and more extensive southern 
zone. The density of the host gneis s is 2.6-2.7 ""103 kg/m", and 
local amphibolites attain a density of 3.0 "" 103 kg/m", The min
eralized orebody zones have a density of 3.5 "" 103kg/m", which 
means the anomalous density over the background shou ld not 
be higher than 103 kg/rn", 

The AGG instrument 

BHP Billit on 's Falcon" AGG isa result of a feas ibility study 
and development program carrie d out by BHP and Lockheed 
Martin between 1991 and 2000. The AGG accel erometers are 
of the force rebalance type. In these acce lero me ters the po
sition of a proof mass pendulum is sensed by a capacitance 
bridge circuit, and a for ce is applied to maintain the pendulum 
at a position to null the bridge (Metzger, 1982). 

The exact design of the Falcon AGG is proprietary; however , 
schematica lly in a n AGG the fo ur acce lerometers are mounted 

(b) 

I 
N 

o 
3x 103 Kg! m

I 
N 

Figure 6.The models generated by (a) the focusing inversion of gravi ty field g" (b) gravity tensor 
components gu , (c) g.y, (d) gil, and (e) joint inversion of the differ en tial curvature components 
8zyand gil with the misfit be twee n the pred icted and observed data equal to 3% (the noise level 
in the data). We can see the reasonable images of the mod el in th is case. 
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to a ro tor so they are equispaced on a circle, with their sensi dinate system (Me tzger, 1982). Ideally (noise free), th e output 
tive axes tan gential to the circle with the sa me sense. The rotor of this acce lerometer complement is 
rotates at a con sta nt speed, typically Q = 0.25 radls, providing 
a further ability for common mode rejectio n. The four AGG 4R[sin(2Qr)gxy + cos(2Qt)g,,1 , (35) 
acce lero meters for m a comp lement, and their outputs are com
bined (summe d) so that orthogona l accelerome ters have op where R is the radius of the complement , Q is the rotation 
posite se nse and opposed accelerome ters have th e same sense rate (rad/s) , I is the time, and gzy and gAare the corresponding 
as shown in Figure 2. Linear acce lera tions perpendicular to differential curvature compone nts of the gravity ten sor. Th ese 
th e spin axis are modulat ed at the rot ation frequen cy. Grav compone nts are th erefore separa ted in the frequen cy domain 
ity gradient accelera tions are modulated at twice the rotation fro m the instrument bias and linea r acce lera tions, wh ich allows 
frequency because the radius ar m and the inlo ut axes are each the demodulat ion technique to detect ext re me ly small gravi ty 
modulat ed at rotation frequency with respect to th e fixed coer- gradien t signa ls, requ ired for exploratio n (Lee, 2001) . 
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drilling and ma gnet ic surve y data (after Walters and Bailey, 1998). 
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Bell Aerospace originally developed the tensor system, not 
the two-component system. The tensor syste m is now com
mercially used by Bell Geospace in both marin e and airborne 
surveys (see www.bellgeo.com for details). Therefore, all com
ponents of the gravity gradient tensor can be measured by the 
airborne sur vey.A t the same time ,our interpretation techn ique 
can be applied to all tensor components as well. However, in 
this section we consider inter pretation of the Falcon" AGG 
data only. 

AGG survey and data interpretation 

In Ap ril 2000, BHP Billiton conducted an AGG tes t sur
vey over the Cannington Ag-Pb-Zn ore body. To tes t the in
version, a 4 "" 4-km section of processed data was extrac ted 
from the complete survey data set. The observe d data along 
41 survey lines within this area were inverted. The processed 
data, in this case, corres ponded to an effective sensor height of 
120 m above mean ground level with sampling approximately 
every 20 m along survey lines.The separation between the sur
vey lines was 100 m. All together , the numb er of data points 
was 7814.The survey aircraf t included a stinger magnetometer , 
global positioning system (GPS) position ing, a laser scanner, 
and optionally rad iomet ric crysta ls, e liminating the need for 
extra surveys for necessary or complementary data. Acquisi
tion of the laser scanner data was essentia l to generate a digital 
terrain model used to remove the topograph ic contri bution to 
the gravity gradient data. The observed AGG data were cor
recte d for residual aircraft acce leratio n effects as well as de
modulation and filteri ng of the modul ated tensor components. 
Following the demodu lation process, a number of determin
istic corrections were applied to the observed data ; these in
cluded correc tions for the gravitational effects of the aircraft 
frame and platfo rm masses as well as terr ain corrections. In 
addition, the different ial curvat ure tensor componen ts were 
transformed to the vert ical gravity gradient gu and the ver tical 
gravity component g, . 

The area of inversion was discret ized into 80 ""86 "" 
15 = 103 200 rectangular cells in the X- , yo, and z-directio ns, 
respectively. The size of a rectangular cell was 50 m along the 
x- and y-direc tions (nor th-south and eas t- west, respectively) 
and 40 m in the z-direction. Therefore, the total depth of inver
sion was 600 m from the surface. 

The gravity tensor inversion code included opt ions for in
verting gu, g.y , and gAin addition to g" as well as joint inver
sion of the different gravity gradient tensor components. To 
check for the noise in the data, g.y and gAwere invert ed and 
the result ing models were then used to predict fields g, and gu . 
These were then compared with the or iginal fields obt ained 
by the num erical transformation of fields g.y and gAobse rved 
from the AG G survey. Furthermore, the same procedu re was 
carried out for a join t inversion of g. y and gAo The data were 
made to reach a misfit of under 3%. For reasons discussed 
in the section on geologic backgro und, the material property 
constrai nts were set between ""0.1"" llP kg/m! and llP kg/m", 
The results are shown in Figures 8 and 9. The comparisons im
med iately show that the pred icted fields fit the observed data 
extre mely accurat ely. Note that it took only about 10 minutes 
on a PC with a 1-GHz CPU to invert one component of the 
gravity gradient tensor. 

Figure 8a presen ts the original field g, obtained by num er
ically transform ing the observed tensor components 8>y and 
gAoThere exists an approximately linea r regional southeas t
northwest trend of increasing density that corresponds to the 
existence of the Trepe ll fault, which is abo ut 100 m wide, char
acterized by a low-density clay chlorite gouge. Just north of 
the fault is a sudden high-density anomaly that corresponds to 
the ore body. To accentuate the presence of this orebody fur
ther, this linea r trend is remo ved from the data using a linear 
least-squares fit for the data and subtracti ng the best-fit plane 
from the observed field . The resultant observe d field is shown 
in Figure 8b. One can see a strong anomaly around the central 
part of the surveyed area . We then invert this processed data 
using regular ized focusing inversion code. Figure 10 presents 
the vertical slices of the model constructed by our inversion 
method, showing the depth and the extent of the orebody. The 
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Figure 8. (a) The or iginal field g, obtained by numerically'trans
forming the observed tensor components g. and gAo(b) The 
same data with the removed linear trend. (c) The pred icted data 
g, for the model obtained by inversio n ofthe data shown in (b). 
The letters A, B, C, D, and F denote the profiles used to con
struct the vertical slices of the inversion results. The croo ked 
heavy dashed line in (a) shows the position of the Trepell fault. 
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anomalous body tape rs and thins out progressively southward. 
The sectio ns through CC and DD app arentl y show the exis
ten ce of another anomalous body about 2 km away from the 
form er, which is found to be bur ied at grea te r depth. Walters 
and Bailey (1998) menti on the existence of mult iple bodies on 
the southern side of the fault. Thi s seems to be confirmed by 
our inversion results. Also, the orebody has an envelope of low
density material around it. Th is seems to be the distinctive se
quence of biot ite-silliman ite schists and feldsp ath ic psamrnites 
with layers and disseminations of fine-grained manganese al
mandin e garnets exte nding for up to 250 m as an envelope 
aro und the main mineralizat ion zone. 

The tensor compo nent gzz suggests a similar finding but 
see ms to constrain and focus the anomaly over a narrower 
region, as shown in Figure 9a. The regional linear trend is not 
present, and the central anomaly is readily visible. The Trepell 
fault is delineated significantly better her e than in the g, map. 
The vertical slices of Figure 11 represe nt the results of the gzz 
component inversion, and the extent of the anomalous body 
is more sharply defined . The presence of the orebod y on the 
southern side of the fault shows up at a greate r depth, as is 
expected from the local geology (Christensen et a!., 2001). The 
other geological features mentioned while describing the im
ages for g, are all shown here. The theoretical predicted data 
gzz for this model are shown in Figure 9b. The observed differ
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ential curvature component s g. y and g" are shown in Figures 9c 
and ge, respectively.The Trepell fault is very clearly delineat ed 
in the map of g.y

Figure 12 presents the slices obtained as a result of the jo int 
invers ion of g.y and g". The sections as indicated in Figur e 12 
show the orebody at more or less the same loca tion as for gzz . 
However, in the more southern sections, as the fault zon e is 
reached , the density contras t aga inst the background is more 
pronounced compared to the results obta ined from the gzz data . 
Figure 13 shows the hor izontal slices of the mod el obtai ned by 
the joint focusing invers ion of & y and g" com pon ents at a depth 
of 100, 200, and 300 m, respec tively. Based on our experience 
of numerical modeling and also beca use of the sensitivity of 
the gravity curva ture components to lateral density variations 
as discussed earl ier, the positions of the anomalies as shown 
in these figures are conside red to be the closes t to the true 
subsurface density var iat ions. The theoretical predicted data 
for this model are shown in Figures 9d and 9f, respectively. 
The predicted data fit the observed data with the misfit less 
than 3%. 

Comparison with dri lling results 

We have compared the model obtained by the regularized 
focusing inversion of the differenti al curvature components 
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Figure 9. (a) Map of the original tensor compo nent gzz, obta ined by numerically transforming 
the observed tensor components g. y and g" . (b) Predicted data gzz for the model obtai ned by 
inversio n of the data shown (a). The maps of the observed ten sor component g. y and g" are 
shown in panels (c) and (e) , respectively. (d), (f) The pred icted data g.y and g" for the models 
obta ined by inversion ofthe dat a shown in (c) and (e), respectively. 
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with the drilling data. As an example, we present profiles EE 
and FF of Figure 8 (to p panel), which are indicat ive of true 
subsurface conditions as inferred from drilling data, provided 
by BHP Billiton after the numerical inversion was completed. 
Figure 14 shows the vertical sections along these profiles of the 
model ob tained by the joint focusing inversion of &y and gA 
components. We also compare in this figure the gravity gra 
dient tensor inversion result with the geological model con
structed by BHP Billiton based on the known geology and the 
drilling results. While in Figure 14a the orebody is linear and 
dipping (lead load is shown by the dashed red zones), the focus
ing inversion result on the background is capable of picking a 

Profile A 

100 

[	 200 
~ 300 

~ 400 

500 

100 

soc 100{) 1500 2000 

Prof,lo 8 

' ! ' 

2500 3000 3500 4000 

[ 200 

R 300 
~ .tOO 

500 

500 lDC<) 1500 2000 2500 3000 35( 0 4000 

Profile C 

100 
y -:'F" 

~~ 

[ 200 

~ 300 

~ 400 

500 

500 1000 1500 2000 2500 3000 3&0 4000 

Profile D 

100 ~l 
,~, 

[ 200 

R300 

~ 400 

500 

500 1000 , 500 2000 2500 3000 3!iCO ..000 
East [mj 

02 

0.15 

0.1 

0 06 

o 
-O.OS 

-0 .1 
.. 1c3 Kgl m3 

Figure 10.The vert icalslices along profiles A, B, C,and D of the 
model obtained by inversion of component g, . The inversion 
image picks up the density anomalies on either side of the fault 
but places them at shallower depth. 

blocky density anomaly up to 150 m depth only. Note , however, 
that profile EE crosses the orebody at the very southern edge, 
which makes it difficult for inversion to pick up a true deep 
structure of the body along this section. On the other hand , 
profile FF passes just above the center of the body.As a result, 
the blocky orebody and the anomalous density coincide almost 
completely in the vertical section passing through this profile 
(Figure 14b). This is to be expected since focusing inversion 
works on minimizing the area in which the anomaly is present, 
and wheneve r there isa concentration of anomalous mass, such 
invers ion technique will definitely be able to localize it. On e 
can see excellent matching between the inversion and the true 
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Figure 11.The verticalslicesalong profiles A, B , C,and D of the 
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the top of the anomalies is near er to correct depth. The base, 
however, is not well resolved. 
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g" and g.y have better lateral and vert ical resolution than the 
vertical component of the gravity field g" which is measured in 
conventiona l gravity surveys. This conclusion seems to be ob
vious based on the fact that gradients represent shor ter spatial 
wavelengths caused by shallower and narrower sources. Never 
theless, it is impor tant to see the practical confirmation of this 
theoretical fact in the results of inversion of the gravity gra 
diometer data. We should note also that the better resolut ion 
can be obtained onlywhen we are able to measure the gradient 
data with the appropria te accuracy, as discussed by Li (2001c). 

We have also applied our new method for inversion of the 
gradient gravity data collected by BHP Billiton over the Can
nington Ag-Pb-Zn ore body in Queensland , Australia. The 
comparison with the drilling results demonstrates a remark
able corre lation between the density anomaly reconstructed by 
the gravity gradien t data and the true structure of the orebody. 
This result indicates that the emerging new geophysical tech
nology of the airborne gravity gradient tensor observations can 

(a) 

o 

- 0.05 

-o.t 
2000 4000 x 103 Kg! rn3 

I 

•€2 ooo	 o 
o 
Z 

1 000 ~, -0 .05 •
 
- 0.1 

2000 4 QQQ 3 x 103 Kg! m 

£ 
0.1 4000 

~
 
~,
 

0.05 3000 

I 
€ 2000 o 
o 
Z • 

1000 -0.05, ... 
- 0.1 

2000 4000 
X 103 Kg! m3 

East (rn) 

Figure 13. The Horizo ntal slices of the model obtained by the 
joint focusing inversion of components g.y and g" at a depth 
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geological data in Figure 14b, where the known mineral ization 
is shown by the dashed red zone. 

CO NCLUSIONS 

We have developed a method of gravity gradient tensor in
terpretati on based on the focusing inversion technique intro
duced by Portni aguine and Z hdanov (1999) for vertical gravity 
component data inversion. The numerical modeling and inver
sion results show that the resolut ion of the gravity method can 
be improved significantly if we use the tensor gravity data for 
inter pretation. The different ial curvature tensor components 
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significantly improve the practical effectiveness of the gravity 
method in mineral e xplora tio n. 

ACKNOWLEDGMENTS 

The authors acknowledge the support of the Univer
sity of Utah Consortium for Electromagnetic Modeling and 
Inversion (CEMI), which includes Baker Atlas Logging 
Services, BHP Billiton, Electromagnetic Instruments In c., 
ExxonMobil Upstream Research Company, INCa Explo
ration, International Energy Services, Japan National Oil Cor
poration, MINDECO, Naval Research Laboratory, Rio Tinto
Kennecott, SeWumberger Oilfield Services, Shell International 
Exploration and Production Inc., and Surnitomo Metal Mining 
Company. We are thankful to BHP Billiton for providing the 
real gravity gradiometer data and permission to publish the 
re sults. We would also like to thank X iong Li for many useful 
comments and suggestio ns, which helped to improve the final 
version of the manuscript. 

REFERENCES 

Bell, R. E., and Hansen , R. 0., 1998, The rise and fall of early oil field 
technology: The torsion balance gradiometer: The Leading Edge, 
17,81-83. 

Christensen , N. A., Mahanta, A., Boggs, D. B., and Dransfield, M. H., 
2001, Falcon airborne gravity gradiom eter survey results over the 
Cannington Ag-Pb-Zn deposit: Presented at the 15th Geophysi
cal Conference and Exhibition , Australian Society of Exploration 
Geophysicists. 

Condi, F., and Talwani, M., 1999, Resolution and efficient inversion of 
gravity gradiometry:69th Annual International Meeting, Society of 
Explorati on Geophysicists, Expanded Abstracts, 358-361. 

Forsberg, R., 1984, A study of terrain corrections, density anomalies, 
and geophysical inversion methods in gravity field modeling: Report 
355, Department of GeodeticScience and Surveying,The Ohio State 
University. 

Heiland , C. A., 1940, Geophysical exploration: Prentice-Hall, Inc, 
Jakosky, J. J., 1950, Exploration geophysics, 2nd ed.: Trija Publishing 

Company. 
Jorgensen, G. J., and Kisabeth, J.L.,2000,Joint 3-D inversion of gravity, 

magnetic and tensor gravity fields for imaging salt formations in 
the deep water Gulf of Mexico:70th Annuallnternational Meeting, 
Societyof Exploration Geophysicists, ExpandedAbstracts, 424-426. 

Lee, J.B.,2001,FALCONgravity gradiometertechnology:Exploration 
Geophysics, 32, 247-250. 

U, Y: 2001a, Processing gravity gradiometer data using an 
eqnivalent source technique: 71st Annual International Meet
ing, Society of Exploration Geophysicists, Expanded Abstracts, 
1466-1469. 

- - 2001b, 3-D inversion of gravity gradiometer data : 71st Annual 
International Meeting, Society of Exploration Geophysicists, Ex
panded Abstracts, 1470-1473. 

U , x., and Chouteau, M., 1997, Three-dimensional gravity modeling 
in all space: Surveys in Geophysics, 19,339-368. 
--2001c, Vertical resolution : Gravity versus vertical gravity gra

dient : The Leading Edge, 8, 901-904. 
U , Y., and Oldenburg, D., 1996, 3-D inversion of magnetic data: Geo

physics, 61, 394-408. 
Metzger, E. H., 1977, Recent gravity gradiometer developments: Pre

sented at Guidance and Control Specialist Conference, American 
Institute of Astronauts and Aeronautics. 

- -1982, Development experience of gravity gradiometer system: 
IEEE Plans, 323-332. 

Pawlowski, B., 1998, Gravity gradiometry in resource exploration :The 
Leading Edge, 17,51-52 . 

Portniagwne, 0 ., and Zhdanov, M. S., 1999, Focusing geophysical in
version images: Geophysics, 64, 1574-8157. 

--2002, 3-D magnetic inversion with data compression and image 
focusing: Geophysics, 67, 1532-1541. 

Routh, P., Jorgensen , G. J., and Kisabeth, J. L., 2001, Base of the salt 
imaging using gravity and tensor gravity data : 70th Annual Int er
national Meeting, Society of Exploration Geophysicists, Expanded 
Abstracts, 1482-1484. 

Rybar , S., 1923, The Eotvos torsion balance and its application to the 
finding of mineral deposits : Economic Geology, 18, 639-{i62. 

Shaw, H., and Lancaster-Jones, E., 1923, Eotvos torsion balance : Pro
ceedings of the Physical Society of London . 

- -1'127, The theory and practical use of the Eotvos torsion bal
ance: Mining Magazine, 35,151-166. 

Slotnick, M. M., 1'132, Curvature of eqnipotential surfaces: AAPG 
Bulletin , 16, 1250-1259. 

TIkhonov, A. N., and Arsenio, V. Y., 1977, Solution of ill-posed prob
lems: V.H. Winston and Sons. 

van Leeuwen , E. H.,2000, BHP develops airborne gravity gradiometer 
for mineral exploration : The Leading Edge, 19,1296-1297. 

Walters, S., and Bailey, A., 1998, Geology and mineral ization of the 
Cannin~on Ag-Ph-Zn deposit : An example of Broken HiII-ty'pe 
mineralization in the Eastern Succession,Mount Isa inlier ,Australia: 
Economic Geology, 93, 1307-1329. 

Zhdanov, M. S., 1'188, Integral transforms in geophysics: Springer
Verlag. 
--2002, Geophysical inverse theory and regularization problems: 

Elsevier Science Publishing Co., Inc, 
Zhdanov, M. S., Ellis, R. G., Mukherjee, S., and Pavlov, D. A., 2002, 

Regularized focusing inversion of3-D gravity tensor data : nnd An
nual International Meeting, Society of Explorati on Geophysicists, 
Expanded Abstracts,751- 754. 


