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Three-dimensional regularized focusing inversion of gravity

gradient tensor component data
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ABSTRACT

We develop a new method for interpretation of tensor
gravity field component data, based on regularized fo-
cusing inversion. The focusing inversion makes its possi-
ble to reconstruct a sharper image of the geological target
than conventional maximum smoothness inversion. This
new technique can be efficiently applied for the interpre-
tation of gravity gradiometer data, which are sensitive to
local density anomalies. The numerical modeling and in-
version results show that the resolution of the gravity
method can be improved significantly if we use tensor
gravity datafor interpretation. We also apply our method
for inversion of the gradient gravity data collected by
BHP Billiton over the Cannington Ag-Pb-Zn orebody in
Queensland, Australia. The comparison with the drilling
results demonstrates a remarkable correlation between
the density anomaly reconstructed by the gravity gra-
dient data and the true structure of the orebody. This
result indicates that the emerging new geophysical tech-
nology of the airborne gravity gradient observations can
improve significantly the practical effectiveness of the
gravity method in mineral exploration.

INTRODUCTION

Gravity gradiometry involves measuring the gradient of a
gravity field in different directions. We can consider three dif-
ferent components of a gravity field in some Cartesian coordi-
nate system g, 8, and g,. The set of the x-, y-, and z-derivatives
of each of these components forms the gravity gradient
tensor.

The first practical instrument for measuring the horizon-
tal derivative of the horizontal component of the gravity field
and the derivative of the vertical component was designed in
1886 by the Hungarian physicist Baron von E6tvos. This in-
strument is known as the torsion balance gradiometer (Shaw

and Lancaster-Jones, 1923, 1927). The E6tvds balance instru-
ment signaled the advent of gravity gradiometry as an early
geophysical method used successfully in resource exploration
(Belland Hansen, 1998; Pawlowski, 1998). During World War I,
this instrument mapped salt domes associated with oil deposits
in Germany, Hungary, and Czechoslavakia. Following World
War 1, word of E6tvos success rapidly reached the United
States, and by 1922 E6tvés balances were imported by Shell
and Amerada. The first discovery made by the torsion balance
was the Nash Dome deposit in 1924. During the next 10 years
or so, the discovery of more than 1 billion bbl oil and at least 79
producing structures was attributed to the application of this
instrument (Bell and Hansen, 1998).

However, use of this instrument was both laborious and time
consuming, involving leveling terrain in eight directions, often
out to 100 m, and requiring a large tent in which the instrument
was kept. Moreover, while early identification of salt domes
and cap rocks was strikingly simple, with arrows resulting from
the data pointing toward the salt dome, the arrow became more
difficult to interpret over more complex structures. This, cou-
pled with the absence of efficient interpretation tools involv-
ing modern-day modeling and inversion techniques, led to the
demise of the static gradiometer as an investigative tool by the
1930s. Growing importance was attached to the simple pendu-
lum gravitmeter, which, though significantly less accurate, was
much faster and yielded data that most geologists found easier
to interpret.

The modern era of gradiometry was born in the 1970s when
Bell Aerospace (now Lockheed Martin) explored the feasibil-
ity of developing a moving base gravity gradiometer instru-
ment (GGI). This work was originally stimulated by the per-
sonnel from Navoceano, who were using the Bell gradiometer
to form the gravity field database for correction of ballistic mis-
sile submarine navigation systems (Metzger, 1977, 1982). The
GGI design was based on four pendulous force rebalance ac-
celerometers mounted on a slowly rotated fixture (Figure 1).
These accelerometers measure the horizontal derivatives of the
horizontal gravity field components.
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With the introduction of the moving base gravity gradiome-
ter, the great potential of the old technology for the mining and
petroleum industry has come to realization again. In the 1990s
BHP Billiton built the Falcon™ airborne gravity gradiometer
(AGG), aderivative of the Bell GGI system. Routine airborne
survey operations with the Falcon™ AGG system began in
1999 and 2000 (van Leeuwen, 2000; Lee, 2001). BHP Billiton
reports that this instrument provides sufficient resolution and
sensitivity for detecting the local gravity anomalies associated
with mineral deposits (Christensen et al., 2001).

The development of the interpretive tools for gradiometer
data still remains a challenge of the modern-day gradiometry.
Some new techniques for gravity gradiometer data process-
ing and interpretation have been reported, such as Condi and
Talwani (1999), Jorgensen and Kisabeth (2000), Li (2001a,b),
and Routh et al. (2001). However, most of the published meth-
ods are based on the traditional maximum smoothness inver-
sion algorithms. Portniaguine and Zhdanov (1999, 2002) and
Zhdanov (2002) have developed a focusing method for 3D
gravity and magnetic data inversion based on the implemen-
tation of a new focusing stabilizer for regularized inversion of
potential field data. Focusing inversion makes it possible to
reconstruct a sharper image of the geological target than con-
ventional maximum smoothness inversion. This new technique
seems to be well suited for the interpretation of gravity gra-
diometer data, which are sensitive to local density anomalies
(Zhdanov et al., 2002).

In the present paper, we extend this method for gravity
gradiometer data inversion and for joint inversions of grav-
ity and tensor gravity data. We also apply our new method
for inversion of the gradient gravity data collected by BHP
Billiton in the area of the Cannington Ag-Pb-Zn orebody in
Queensland, Australia. The comparison of the inversion result
with the drilling data shows remarkable resolving power of
the new airborne technology in detecting the small, localized
density anomaly and reconstructing the deep structure of the
mineral deposit.

% re 1. A moving base GGI is based on four pendulous force
alance accelerometers mounted on a slowly rotated fixture
so they are equispaced on a circle, with their sensitive axes tan-
gential to the circle with the same sense. The fixture rotates at
a constant speed, typically Q2 =0.25 rad/s, providing a further
ability for common mode rejection. The four acceferometers
forma complement, and their outputs are combined (summed)
so that orthogonal accelerometers have opposite sense and op-
posed accelerometers have the same sense (after Lee, 2001).

SECOND DERIVATIVES OF THE GRAVITY POTENTIAL
Gravity gradient tensor

For completeness, we begin with a brief description of the
gravity gradient tensor. The gravity field g, satisfies the equa-
tions (Zhdanov, 1988)

Vag=~4QK, Vr~g=0, )

where Q is the universal gravitational constant and Q is the
anomalous density distribution within a domain D.
The solution of these equations is given by

e =2 [|] o) T 2av, @

where r is an observation point and integration is conducted
over the variable r'. The gravity field can be expressed by the
gravity potential U (r),

g = VU(), ©)

oo =a fff e @

The second spatial derivatives of U(r),

2
aalt) = 52U ),

where

QQ=x,y,z ®)
form a gravity gradient tensor,
8xx  8xy 8xz
=gy 8yy 8yz |+ ©6)
gu gl)’ gll
where
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The expressions for the gravity gradient tensor components
can be calculated based on formulas (4) and (5):

geald) = 2 // A wﬁma' ~0d, ()

where the kernels K, are equal to

(SZ~ Q)(Q~ )
% %r|2
Ka(r' ~r1) =
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©

We also define the component

1
A= E(gxx ~ gyy), (10)

which can be measured using the Falcon AGG instrument, as
discussed below.
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Computing the gravity gradient tensor components

To derive numerical expressions for the 3D gravity field and
gravity tensor, we divide the domain D, filled with the masses
of a density ¥), into Ny, cells Dy, D= U}_; Dy, and assume
that density is constant within each cell, Qr') =Q, ¥ € Di:

8. () = SZNZMS&/// ﬁdv’. (11)
k=1 Dy |1./ A l.|3

The analytical formulas for computation of gravity field and
gravity gradient fields from a rectangular prism are found in
Forsberg (1984) and Li and Chouteau (1997). For example,
Forsberg (1984) derives the equation for the vertical gravity
gradient component of a cubic body:

2 2 .
8= S?SZZZZ Qi arctan 2L (12)

i=1 j=1 k=1 Zx ljk
Qe = (R (M) (M), x=x~Q,
=yRQ, n=I™,

where g,, is the vertical gradient of g,; Qis the density of the
cube; x, y, z are the observation points; and €2, <, ¢k are the
coordinates of the opposing vertices of the cube.

In our implementation of the inversion code, to speed up
the computations, we use the simplified expressions for 3D
gravity field and gravity tensor, based on the formulas de-
rived for a point mass. We denote the coordinates of the cell
center as v’ = (x;, ¥, 2;), k=1,..., N, and the cell sides as
dx,dy,dz. Also, we have a discrete number of observation
points 1, = (X, ¥s, 0),n=1, ..., Na. Using discrete model pa-
rameters and discrete data, we can present the forward mod-
eling operator for the gravity field [equation (11)] as

Nm
gt~ ) A5Q,m=1,..., N, (13
k=1

where the gravity field kernel A%, according to equation (11)
is expressed as

(14)

and

e =/ M)+ Of R+ @R (19)

We can apply the same technique to compute the gravity tensor
components gxz, 8yz, 8u» 8xy, and ga:

Nm
8n(Tn) %ZAZ?S},n =1,...,

k=1

Np; Q Q=1x, Y, 2
(16)
where

dxdyd
Ank_gxyz

Kn,c ) an

3GEDED) o
Tnk
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~ Q)
" (18)

The differential curvature component g, is expressed as
N
8at) ~ Y0 459, (19
k=1

where
( "’xn) ~ (yk i yn)

= 3Q 373

dxdydz. (20)

Thus, the discrete forward modeling operators for the gravity
field and gravity tensor can be expressed in general matrix
notations as

d=Am. (1)

Here, m is a vector of the model parameters (densities,
) of the order N,; d is a vector of the observed data
81) 8xz» 8yz» 81z» 8xy» and g, of the order Ny; and A is a rect-
angular matrix of a size Ny & N,,, formed by the corresponding
gravity field kernels A%;, A5, or A%

Note that in the framework of this approach, we actually
represent the subsurface model as a superposition of multi-
ple point masses or of multiple small homogeneous balls with
the volume equal to dxdydz. Application of these formulas
for inversion means that we use these small balls as the build-
ing blocks for our inverse model instead of using rectangu-
lar prisms to describe the subsurface. The volume of the ball
is equal to the volume of the corresponding rectangular cell.
Thus, the choice of an appropriate formula for forward model-
ing, based on the analytical solutions for the rectangular prism
or for the ball, determines the type of inverse model parame-
terization. Using the small ball parameterization speeds up all
calculations dramatically.

At the same time, our numerical modeling and inversion
results show that there is practically no difference in which
parameterization to use if one considers a fine discretization
of the area of inversion. Our method is based on dividing the
subsurface region into many (up to hundreds of thousands) el-
ementary cells (or equivalent elementary balls) and searching
the physical properties of these cells using regularized inver-
sion. This approach allows the most realistic interpretation of
3D potential field data in complex geological structures and at
the same time generates an extremely fast and powerful com-
puter code. Numeric examples, presented below, demonstrate
that inversion of the practical gravity gradient data on a grid
with about 100 000 cells can be done within 10 minutes on a
PC with 1 GHz CPU. Note that the version of the code based
on exact formula (12) for the elementary cubic cell produces
practically the same result as the code based on simplified ex-
pressions (17), but the computations require more time.

Gravity curvature

The components g,, and g,, represent the horizontal gra-
dients of the gravity field g,, while the component g,, is its
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vertical gradient. The components g, and g, are called the
differential curvature components because they determine the
curvature of the equipotential surface of the gravity potential.
The geometric properties of these components were investi-
gated many decades ago in papers on torsion balance mea-
surements (e.g., Rybar, 1923; Slotnick, 1932; Heiland, 1946;
Jakosky, 1950). However, we feel it is important to review some
of these properties and the physical interpretation of the dif-
ferential curvature components, as they can now be measured
by the Falcon AGG. In our explanation we mainly follow the
work of Slotnick (1932).

To understand better the relationship between the gradi-
ents of the gravity field and the geometrical properties of the
equipotential surface, we use a special coordinate system in
this section. The origin of this system is located in the observa-
tion point, the z-axis is directed along the normal vector to the
equipotential surface, and the x- and y-axes are located in the
tangential plane to the equipotential surface.

In this coordinate system, the curvature C of the normal sec-
tion of the equipotential surface is determined by the equation

1 . .
C=C(p) = Né——)gxx cos? @ + gry Sin 29 + g,y sin’ (p)2
zZ
(22)

where g is an angle between the vertical plane xz and the given
normal section. The principal normal sections are character-
ized by maximal or minimal curvature. We can find the angles
of the principal normal sections from the condition

aC(p)

Differentiating equation (22), we obtain the following equation
for the angle g, of the principal normal section:

8A tan 2(/70 = &xy- (24)

Note that equation (24) has two solutions, ¢, and g1 = o +$3/2,
which correspond to two principal normal sections of the
equipotential surface. We denote by Rumin and Rumax the radii
of the adjusting circles to the corresponding normal sections
(Figure 2).

Let ¢y be an angle corresponding to the normal section
with the maximum curvature C(g) = Cmax = 1/ Rmin. The sec-

Figure 2. Two principal normal sections of the equipotential
surface. The gravity curvature is proportional to the difference,
AC = Caax ™ Cuin = (1/ Rinin) = (1/ Rina)-

ond principal normal section has the minimum curvature
C(¢1) = C (9o + Y2) = Cmin. Let us calculate the difference AC
of the maximum and minimum curvatures:

AC = Cuix'™ Ciita
- wé(ng cos2p0 + 28,y sin2g0).  (25)
Now we introduce the notation
G=ACg,

where G is the so-called gravity curvature. Substituting equa-
tion (24) into equation (25) and with some rearrangements,
we can obtain the result that the differential curvature com-
ponents g, and g, are proportional to the gravity curvature
G

G G\ .
gA = %) E) Ccos 2(00, 8xy = %> 5) sz‘ﬁo (26)

and
G2
i t+8h =7 @7)
For a spherical surface, AC is equal to zero for any point on
the surface. Therefore, G can be treated as the measure of the
deviation of the equipotential surface at a given point from a
spherical surface, which is typical for a gravity potential of a
point mass. Thus, the gravity gradient tensor components g
and g, which are proportional to G, reflect the deviation of the
density distribution from the elementary point source, located
under the point of observation. Note that these components
are measured by the Falcon AGG.

PRINCIPLES OF REGULARIZED INVERSION OF GRAVITY
AND GRAVITY GRADIENT TENSOR DATA

Gravity gradient tensor component data inversion is reduced
to the solution of the linear matrix equation (21). This inverse
problem is ill posed, i.e., the solution can be nonunique and
unstable. Therefore, we have to use the methods of regular-
ization theory to solve this problem (Tikhonov and Arsenin,
1977; Zhdanov, 2002). In the conventional way, we substitute
the solution of the linear inverse problem [equation (21)] with
the minimization of the Tikhonov parametric functional

P(m) = Q(m) + ©s(m) = min, (28)
where the misfit functional is specified as
Qm) = [Wa(Am ~ d)|”. (29)

Here, Qis a regularization parameter, Wy is the data weighting
matrix, and m is a vector of anomalous density distribution.
There are different ways of introducing a stabilizing func-
tional. The traditional inversion algorithms are usually based
on the minimum norm, or smoothing stabilizing functionals
(e.g., Li and Oldenburg, 1996). These algorithms have difficul-
ties, however, in describing the sharp geological boundaries
between different geological formations. This problem arises,
for example, in inversion for the local target with sharp bound-
aries between the ore zone and the host rocks, which is a typical
model in mining exploration. In these situations, it is useful to
search for a stable solution within the class of inverse models
with sharp geological boundaries. The solution of this problem
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is based on introducing a special type of stabilizing functional,
the so-called minimum support or minimum gradient support
functionals (Portniaguine and Zhdanov, 1999, 2002; Zhdanov,
2002). We select a stabilizer equal to the minimum support
functional:

Nm m2
s(m) =s)n1,In2,...,mN,,,>= Zm2 -,;-e’ e>0,
=1 "™
(30)

where e is a focusing parameter determining the sharpness of
the produced image (Zhdanov, 2002).

The minimization problem (28) is solved using the
reweighted regularized conjugate gradient (RRCG) method,
outlined in previous publications (Portniaguine and Zhdanov,
1999, 2002). The reader can find a detail explanation of this
algorithm in Zhdanov (2002, 155-165).

Using the gradient data jointly with the gravity data re-
duces the ambiguity and increases the resolution of inversion
(Jorgensen and Kisabeth, 2000; Routh et al., 2001). It is not
so difficult to construct the method of joint gravity and grav-
ity tensor data inversion by combining in the data vector d
the different components of the gravity field and its tensor.
For example, one can run the joint inversion of the differen-
tial curvature components g,, and g, by constructing &”* of
the order 2N, as a combination of the gy, and ga values at the
observation points,

= )&xy(l‘l)v --ngy)N,,) ga(®), ..., gA)Nd)D;D

and introducing rectangular 2N, ~ N,, matrix A formed by the
corresponding gravity field kernels A}) and A%:

aeh [:A’} , (32)

where N; ~ N,, matrices A* and A are

A™Y =)A:l)c> AA =rﬁk),
n=1,./,Ng; k=17..,Np. (33)

The joint inversion is reduced now to the solution of the matrix
equation

a8 = A% Am, (34)

In a similar way, we can introduce a matrix equation for the
joint inversion of any combination of the gravity and grav-
ity gradiometer data. The stable solution of these equations is
based on the same RRCG method (Zhdanov, 2002).

NUMERICAL MODELING RESULTS AND DISCUSSION

The forward modeling and the inversion code have been de-
veloped using Matlab. To check for the validity of the code and
the inversion method, we used for inversion the data gener-
ated for a simple model. Figure 3 shows two cubic bodies, each
150~ 150 & 150 m and with a density contrast of 10> kg/m® over
the background. The top of the bodies is located 150 m below
the surface. The gravity field g, and gravity tensor components
812, 8xy» and g, were generated by the forward modeling code

with 525 =21~ 25 observation points of the rectangular grid
located at the earth’s surface. The sampling interval is 25 m in
the x- and y-directions. The synthetic observed data were con-
taminated with 3% noise and were used for inversion. As an
example, the left panels in Figure 4 show the differential curva-
ture tensor components g,, and g, respectively. One can see
that, even for this simple model, the maps of the tensor com-
ponents of the gravity field have rather complicated structures,
which makes it difficult to provide a qualitative interpretation
of these maps.

The area of inversion was discretized into 11~13~
10=1430 cubic cells in the x-, y-, and z-directions, respec-
tively. The size of a cubic cell is 50 m along the x-, y-, and
z-directions. Our inversion code, as pointed out earlier, has
options of smooth and focusing inversion. The models gener-
ated by the smooth inversion of the gravity field g, and gravity
tensor components g;;, &y, and ga are shown in Figure 5;
the models obtained by the focusing inversion are shown in
Figure 6. All inversions were run until the misfit between the
predicted and observed data reached 3% (the noise level in
the data). In the case of focusing inversion, a priori informa-
tion about the density distribution, which is used as bounding
values in inversion, is important. In obtaining the results shown
in this section, we applied a lower bound for anomalous density
of 0.1~ 103 kg/m* and an upper bound of 10* kg/m?.

As an example, the corresponding predicted data for the
models generated by the focusing inversion are shown in the
right panels of Figure 4. For all components, the focusing in-
version result can resolve the sharp boundary structures of the
anomalous bodies over the background, while the smooth in-
version cannot resolve two bodies. This is in spite of the fact
that the predicted data for the smooth models fit the observed
data with the same accuracy as for the focused models. Also,
it is evident from the figures that the gravity field g, provides
a poorer recovery of the original model, whereas g4, 8xy, and
8:; and the joint inversion of g, and g, represent the bodies
practically at the original position and with the correct density
contrast.

ariginal model

N
' )
g

. NS

R | o
x [m] g yIm] x 16° Kg/m®

Figure 3. Vertical slice of a model with two cubic bodies, each
150 ~ 150 ~ 150 m, and a density contrast of 10 kg/m? over the
background, The distance between two bodies is 150 m.
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Y [m]

0
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Figure 4. (left) Maps of the g,, and g, component contaminated by 3% Gaussian noise, used
as observed data for inversion. (right) Predicted data, computed for the model obtained with

the focusing inversion.
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Figure 5. The models generated by (a) the smooth inversion of gravity field g,, (b) gravity
tensor components g;; (€) gy, (d) ga, and (e), joint inversion of the differential curvature
components g,,Iv and g, with the misfit between the predicted and observed data equal to 3%

(the noise leve

in the data). The bodies are not resolved clearly in these images.
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INTERPRETATION OF GRADIENT GRAVITY DATA
IN THE CANNINGTON AG-PB-ZN OREBODY
IN QUEENSLAND, AUSTRALIA

Geological background

The Cannington deposit is located within the eastern
succession of the Proterozoic Mount Isa inlier, northwest
Queensland, as shown in Figure 7. The deposit is concealed
beneath 10 to 60 m of Cretaceous and Recent sediments
and was discovered by BHP Minerals in 1990 as a result of
drill testing regional magnetic targets. The Cannington de-
posit is hosted by a sequence of magmatic, biotite-sillimanite-
garnet-bearing quartzofeldspathic gneisses with minor amphi-
bolites. A distinctive sequence of biotite-sillimanite schists
and feldspathic psammites with layers and disseminations
of fine-grained manganese (Mn) almandine garnets extends
for up to 250 m as an envelope around the main mineral-
ized zone. Economic Ag-Pb-Zn mineralization at Canning-
ton is associated with a remarkably diverse range of siliceous
and iron/calcium/manganese/fluorine lithologies characterized
by coarse-grained equigranular textures (Walters and Bailey,
1998). The strong zonations between silver/lead- and zinc-rich
mineralization types are a feature of the deposit. The highsilver
grades that are characteristic of the deposit are largely related
to argentiferous galena with abundant inclusions of freibergite.

(a)

200
x10°Kg/ m

-200 -
x [m] ( c)zoé’[m]

z[m]

500

200
o 0
X (rfa(])o ( ;)209 (m] x 10° Kg/ m®

1

200
~200 ~209) g A
x [m] [m] x 10° Kg/ m

The overall geometry of the deposit appears to be controlled
by a tight to isoclinal synform that strikes north-south, dips
from 40770 to the east, and plunges to the south. A large
amphibolite body, called the Core Amphibolite, occurs within
the axial trace of this interpreted synform and is used to define
footwall versus hanging-wall orebody zones (Figure 7). The de-
posit is divided by faulting into a shallow, low-grade northern
zone and a deeper, higher grade, and more extensive southern
zone. The density of the host gneiss is 2.6-2.7 ~ 10* kg/m?, and
local amphibolites attain a density of 3.0 ~ 10° kg/m?. The min-
eralized orebody zones have a density of 3.5~ 103 kg/m?, which
means the anomalous density over the background should not
be higher than 10° kg/m?.

The AGG instrument

BHP Billiton’s Falcon™ AGG is a result of a feasibility study
and development program carried out by BHP and Lockheed
Martin between 1991 and 2000. The AGG accelerometers are
of the force rebalance type. In these accelerometers the po-
sition of a proof mass pendulum is sensed by a capacitance
bridge circuit, and a force is applied to maintain the pendulum
at a position to null the bridge (Metzger, 1982).

The exact design of the Falcon AGG is proprietary; however,
schematically inan AGG the four accelerometers are mounted

(b)

200
-200 ol
x[m] (d) 9 [m]

z[m]

200
-200 o
x [m] 9 [m]

0
x 10° Kg/ m®

Figure 6. The models generated by (z? the focusing inversion of gravity field g,, (b) gravity tensor
components gy, (¢) gy, (d) ga, and (e) joint inversion of the differential curvature components
8xy and g, with the misfit between the predicted and observed data equal to 3% (the noise level
in'the data). We can see the reasonable images of the model in this case.
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to a rotor so they are equispaced on a circle, with their sensi-
tive axes tangential to the circle with the same sense. The rotor
rotates at a constant speed, typically = 0.25 rad/s, providing
a further ability for common mode rejection. The four AGG
accelerometers form a complement, and their outputs are com-
bined (summed) so that orthogonal accelerometers have op-
posite sense and opposed accelerometers have the same sense
as shown in Figure 2. Linear accelerations perpendicular to
the spin axis are modulated at the rotation frequency. Grav-
ity gradient accelerations are modulated at twice the rotation
frequency because the radius arm and the in/out axes are each
modulated at rotation frequency with respect to the fixed coor-

[r::5] Westem
CANNINGTON E-W Sections
Lode  Mineralization Types

T
Hongng Wat 2n LU e
Glorhowme Breccia GHE  Glanhoime Breccia
GH  Glenholme
Footwalt 2n CW  Colwesd
X Cukodoo
NS POk
ronann (16 Worenao

D) VERNER

R

i
[ Sl ml Eltton

dinate system (Metzger, 1982). Ideally (noise free), the output
of this accelerometer complement is )

4R[sin(21)g.y + cos(2R1)ga], (35)

where R is the radius of the complement,  is the rotation
rate (rad/s), ¢ is the time, and g;, and g, are the corresponding
differential curvature components of the gravity tensor. These
components are therefore separated in the frequency domain
from the instrument bias and linear accelerations, which allows
the demodulation technique to detect extremely small gravity
gradient signals, required for exploration (Lee, 2001).

* PbZnAg
© Cu. Cu-Au, Au
[C] Central Belt = Major structures

Figure 7. A geological maf showing (top) the location of the Cannington deposit in the northwestern

corner of Queensland and

bottom) the geological structure of the Cannington deposit, interpreted from

drilling and magnetic survey data (after Walters and Bailey, 1998).
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Bell Aerospace originally developed the tensor system, not
the two-component system. The tensor system is now com-
mercially used by Bell Geospace in both marine and airborne
surveys (see www.bellgeo.com for details). Therefore, all com-
ponents of the gravity gradient tensor can be measured by the
airborne survey. At the same time, our interpretation technique
can be applied to all tensor components as well. However, in
this section we consider interpretation of the Falcon™ AGG
data only.

AGG survey and data interpretation

In April 2000, BHP Billiton conducted an AGG test sur-
vey over the Cannington Ag-Pb-Zn orebody. To test the in-
version, a 4~ 4-km section of processed data was extracted
from the complete survey data set. The observed data along
41 survey lines within this area were inverted. The processed
data, in this case, corresponded to an effective sensor height of
120 m above mean ground level with sampling approximately
every 20 m along survey lines. The separation between the sur-
vey lines was 100 m. All together, the number of data points
was 7814. The survey aircraft included a stinger magnetometer,
global positioning system (GPS) positioning, a laser scanner,
and optionally radiometric crystals, eliminating the need for
extra surveys for necessary or complementary data. Acquisi-
tion of the laser scanner data was essential to generate a digital
terrain model used to remove the topographic contribution to
the gravity gradient data. The observed AGG data were cor-
rected for residual aircraft acceleration effects as well as de-
modulation and filtering of the modulated tensor components.
Following the demodulation process, a number of determin-
istic corrections were applied to the observed data; these in-
cluded corrections for the gravitational effects of the aircraft
frame and platform masses as well as terrain corrections. In
addition, the differential curvature tensor components were
transformed to the vertical gravity gradient g,, and the vertical
gravity component g,.

The area of inversion was discretized into 80~ 86~
15=103200 rectangular cells in the x-, y-, and z-directions,
respectively. The size of a rectangular cell was 50 m along the
x- and y-directions (north-south and east-west, respectively)
and 40 m in the z-direction. Therefore, the total depth of inver-
sion was 600 m from the surface.

The gravity tensor inversion code included options for in-
verting g, 8xy, and g, in addition to g,, as well as joint inver-
sion of the different gravity gradient tensor components. To
check for the noise in the data, g,y and ga were inverted and
the resulting models were then used to predict fields g, and g;,.
These were then compared with the original fields obtained
by the numerical transformation of fields g;y and g observed
from the AGG survey. Furthermore, the same procedure was
carried out for a joint inversion of g, and ga. The data were
made to reach a misfit of under 3%. For reasons discussed
in the section on geologic background, the material property
constraints were set between ~0.12 10° kg/m?® and 10° kg/m>.
The results are shown in Figures 8 and 9. The comparisons im-
mediately show that the predicted fields fit the observed data
extremely accurately. Note that it took only about 10 minutes
on a PC with a 1-GHz CPU to invert one component of the
gravity gradient tensor.

Figure 8a presents the original field g, obtained by numer-
ically transforming the observed tensor components g, and
8a. There exists an approximately linear regional southeast—
northwest trend of increasing density that corresponds to the
existence of the Trepell fault, which is about 100 m wide, char-
acterized by a low-density clay chlorite gouge. Just north of
the fault is a sudden high-density anomaly that corresponds to
the orebody. To accentuate the presence of this orebody fur-
ther, this linear trend is removed from the data using a linear
least-squares fit for the data and subtracting the best-fit plane
from the observed field. The resultant observed field is shown
in Figure 8b. One can see a strong anomaly around the central
part of the surveyed area. We then invert this processed data
using regularized focusing inversion code. Figure 10 presents
the vertical slices of the model constructed by our inversion
method, showing the depth and the extent of the orebody. The
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Figure 8. (a) The original field g; obtained by numerically trans-
forming the observed tensor components g, and ga. (yb) The
same data with the removed linear trend. (¢) ’Izhe predicted data
. for the model obtained by inversion of the data shown in (b).
e letters A, B, C, D, and F denote the profiles used to con-
struct the vertical slices of the inversion results. The crooked
heavy dashed line in (a) shows the position of the Trepell fault.
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anomalous body tapers and thins out progressively southward.
The sections through CC and DD apparently show the exis-
tence of another anomalous body about 2 km away from the
former, which is found to be buried at greater depth. Walters
and Bailey (1998) mention the existence of multiple bodies on
the southern side of the fault. This seems to be confirmed by
our inversion results. Also, the orebody has an envelope of low-
density material around it. This seems to be the distinctive se-
quence of biotite-sillimanite schists and feldspathic psammites
with layers and disseminations of fine-grained manganese al-
mandine garnets extending for up to 250 m as an envelope
around the main mineralization zone.

The tensor component g,, suggests a similar finding but
seems to constrain and focus the anomaly over a narrower
region, as shown in Figure 9a. The regional linear trend is not
present, and the central anomaly is readily visible. The Trepell
fault is delineated significantly better here than in the g, map.
The vertical slices of Figure 11 represent the results of the g;,
component inversion, and the extent of the anomalous body
is more sharply defined. The presence of the orebody on the
southern side of the fault shows up at a greater depth, as is
expected from the local geology (Christensen et al., 2001). The
other geological features mentioned while describing the im-
ages for g, are all shown here. The theoretical predicted data
8., for this model are shown in Figure 9b. The observed differ-

40
3060
p— 20
E
E 2000 .
1000 o
E
10
3000
_g. 5
£ 2000 0
5 s
1000
-10
E
10
3000
5 5
£ 2000 0
S :
1000 e -5
IS =t
0 2000 4000 E

East [m]

ential curvature components g, and g, are shown in Figures 9¢
and 9e, respectively. The Trepell fault is very clearly delineated
in the map of g;,.

Figure 12 presents the slices obtained as a result of the joint
inversion of g, and g. The sections as indicated in Figure 12
show the orebody at more or less the same location as for g,,.
However, in the more southern sections, as the fault zone is
reached, the density contrast against the background is more
pronounced compared to the results obtained from the g,, data.
Figure 13 shows the horizontal slices of the model obtained by
the joint focusing inversion of g, and g, components ata depth
of 100, 200, and 300 m, respectively. Based on our experience
of numerical modeling and also because of the sensitivity of
the gravity curvature components to lateral density variations
as discussed earlier, the positions of the anomalies as shown
in these figures are considered to be the closest to the true
subsurface density variations. The theoretical predicted data
for this model are shown in Figures 9d and 9f, respectively.
The predicted data fit the observed data with the misfit less
than 3%.

Comparison with drilling results

We have compared the model obtained by the regularized
focusing inversion of the differential curvature components

(b}

A

4000

Figure 9. (a) Map of the original tensor component g,,, obtained by numericaoléy transforming

the observed tensor components g, and ga. (b) Predicted data g,, for the m

el obtained by

inversion of the data shown (a). The maps of the observed tensor component gy, and g, are
shown in panels (c) and (e), respectively. (d), (f) The predicted data g,, and g, for the models
obtained by inversion of the data shown in (c) and (), respectively.
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with the drilling data. As an example, we present profiles EE
and FF of Figure 8 (top panel), which are indicative of true
subsurface conditions as inferred from drilling data, provided
by BHP Billiton after the numerical inversion was completed.
Figure 14 shows the vertical sections along these profiles of the
model obtained by the joint focusing inversion of g;y and ga
components. We also compare in this figure the gravity gra-
dient tensor inversion result with the geological model con-
structed by BHP Billiton based on the known geology and the
drilling results. While in Figure 14a the orebody is linear and
dipping (lead load is shown by the dashed red zones), the focus-
ing inversion result on the background is capable of picking a

Figure 10. The vertical slices along profiles A, B, C,and D of the
model obtained by inversion of component g,. The inversion
image picks up the density anomalies on either side of the fault
but places them at shallower depth.

blocky density anomaly up to 150 m depth only. Note, however,
that profile EE crosses the orebody at the very southern edge,
which makes it difficult for inversion to pick up a true deep
structure of the body along this section. On the other hand,
profile FF passes just above the center of the body. As a result,
the blocky orebody and the anomalous density coincide almost
completely in the vertical section passing through this profile
(Figure 14b). This is to be expected since focusing inversion
works on minimizing the area in which the anomaly is present,
and whenever there is a concentration of anomalous mass, such
inversion technique will definitely be able to localize it. One
can see excellent matching between the inversion and the true

Figure 11. The vertical slices along profiles A, B, C,and D of the
model obtained by inversion of component g,,. The location of
the top of the anomalies is nearer to correct depth. The base,
however, is not well resolved.
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geological data in Figure 14b, where the known mineralization
is shown by the dashed red zone.

CONCLUSIONS

We have developed a method of gravity gradient tensor in-
terpretation based on the focusing inversion technique intro-
duced by Portniaguine and Zhdanov (1999) for vertical gravity
component data inversion. The numerical modeling and inver-
sion results show that the resolution of the gravity method can
be improved significantly if we use the tensor gravity data for
interpretation. The differential curvature tensor components
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Figure 12. The vertical slices along profiles A, B, C,_and D _of
the model obtained by the joint inversion of the differential
curvature components g, and g,. The position of the density
anomalies is considered to be the closest to the true subsurface
density variations.

8a and g, have better lateral and vertical resolution than the
vertical component of the gravity field g,, which is measured in
conventional gravity surveys. This conclusion seems to be ob-
vious based on the fact that gradients represent shorter spatial
wavelengths caused by shallower and narrower sources. Never-
theless, it is important to see the practical confirmation of this
theoretical fact in the results of inversion of the gravity gra-
diometer data. We should note also that the better resolution
can be obtained only when we are able to measure the gradient
data with the appropriate accuracy, as discussed by Li (2001c).

We have also applied our new method for inversion of the
gradient gravity data collected by BHP Billiton over the Can-
nington Ag-Pb-Zn orebody in Queensland, Australia. The
comparison with the drilling results demonstrates a remark-
able correlation between the density anomaly reconstructed by
the gravity gradient data and the true structure of the orebody.
This result indicates that the emerging new geophysical tech-
nology of the airborne gravity gradient tensor observations can
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Figure 13. The Horizontal slices of the model obtained by the
joint focusing inversion of components g,, and g, at a depth
of (a) 100 m, (b) 200 m, and (c) 300 m.
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Figure 14, Comparison of the gravity gradient tensor inversion result with the geological model constructed by BHP Billiton based
on the known geology and the drilling results for vertical sections along (a) profile EE and (b) profile FF.

significantly improve the practical effectiveness of the gravity
method in mineral exploration.

ACKNOWLEDGMENTS

The authors acknowledge the support of the Univer-
sity of Utah Consortium for Electromagnetic Modeling and
Inversion (CEMI), which includes Baker Atlas Logging
Services, BHP Billiton, Electromagnetic Instruments Inc.,
ExxonMobil Upstream Research Company, INCO Explo-
ration, International Energy Services, Japan National Oil Cor-
poration, MINDECO, Naval Research Laboratory, Rio Tinto-
Kennecott, Schlumberger Oilfield Services, Shell International
Exploration and Production Inc., and Sumitomo Metal Mining
Company. We are thankful to BHP Billiton for providing the
real gravity gradiometer data and permission to publish the
results. We would also like to thank Xiong Li for many useful
comments and suggestions, which helped to improve the final
version of the manuscript.

REFERENCES

Bell, R. E., and Hansen, R. O., 1998, The rise and fall of early oil field
technology: The torsion balance gradiometer: The Leading Edge,
17, 81-83.

Christensen, N. A., Mahanta, A., Boggs, D. B., and Dransfield, M. H.,
2001, Falcon airborne gravity gradiometer survey results over the
Cannington Ag-Pb-Zn deposit: Presented at the 15th Geophysi-
cal Conference and Exhibition, Australian Society of Exploration
Geophysicists.

Condi, F,, and Talwani, M., 1999, Resolution and efficient inversion of
gravity gradiometry: 69th Annual International Meeting, Society of
Exploration Geophysicists, Expanded Abstracts, 358-361.

Forsberg, R., 1984, A study of terrain corrections, density anomalies,
and geophysical inversion methods in gravity field modeling: Rgport
355, Department of Geodetic Science and Surveying, The Chio State
University.

Heiland, C. A., 1940, Geophysical exploration: Prentice-Hall, Inc.

Jakosky, J. J., 1950, Exploration geophysics, 2nd ed.: Trija Publishing
Company.

Jorgens%n, }C’i J., and Kisabeth, J. L., 2000, Joint 3-D inversion of gravity,
magnetic and tensor gravity fields for imaging salt formations in
the deep water Gulf of Mexico: 70th Annual International Meeting,
Society of Exploration Geophysicists, Expanded Abstracts, 424-426.

Lee, 1. B.,2001, lgALCON gravity gradiometertechnology: Exploration
Geophysics, 32, 247-250.

Li, Y., 200la, Processing gravity gradiometer data using an
equivalent source technique: 7Ist Annual International Meet-
ilng, Sf“cégty of Exploration Geophysicists, Expanded Abstracts,

2001b, 3-D inversion of gravity gradiometer data: 71st Annual
International Meeting, Society of Exploration Geophysicists, Ex-
panded Abstracts, 1470-1473.

Li, X., and Chouteau, M., 1997, Three-dimensional gravity modeling
in all space: Surveys in Geophysics, 19, 339-368.

2001c, Vertical resolution: Gravity versus vertical gravity gra-
dient: The Leading Edge, 8, 901-904.

Li, Y., and Oldenb%%, D, 1996, 3-D inversion of magnetic data: Geo-
physics, 61, 394-408,

Metzger, E. H., 1977, Recent gravity gradiometer developments: Pre-
sented at Guidance and Control Specialist Conference, American
Institute of Astronauts and Aeronautics.

1982, Development experience of gravity gradiometer system:
IEEE Plans, 323-332.

Pawlowski, B., 1998, Gravity gradiometry in resource exploration: The
Leading Edge, 17, 51-52.

Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical in-
version images: Geophysics, 64, 874-887.

2002, 3-D magnetic inversion with data compression and image
focusing: Geophysics, 67, 1532-1541.

Routh, P, Jorgensen, G. J., and Kisabeth, J. L., 2001, Base of the salt
imaging using gravity and tensor gravity data: 70th Annual Inter-
national Meeting, Society of Exploration Geophysicists, Expanded
Abstracts, 1482-1484.

Rybir, S., 1923, The Eotvds torsion balance and its application to the
finding of mineral deposits: Economic Geology, 18, 639-662.

Shaw, H., and Lancaster-Jones, E., 1923, EStvds torsion balance: Pro-
ceedinggs of the Physical Society of London.

————1927, The theory and practical use of the E6tvs torsion bal-
ance: Mining Magazine, 35, 151-166.

Slotnick, M. M., 1932, Curvature of equipotential surfaces: AAPG
Bulletin, 16, 1250-1259.

Tikhonov, A. N., and Arsenin, V. Y., 1977, Solution of ill-posed prob-
lems: V. H. Winston and Sons.

van Leeuwen, E. H.,2000, BHP develops airborne gravity gradiometer
for mineral ex%loration: The Leading Edge, 19, 1296-1297.

Walters, S., and Bailey, A., 1998, Geology and mineralization of the
Cannington Ag-Pb-Zn deposit: An example of Broken Hill-type
mineralization in the Eastern Succession, Mount Isainlier, Australia:
Economic Geology, 93, 1307-1329.

Zh‘c;axiov‘ M. S., 1988, Integral transforms in geophysics: Springer-

erlag.
fOOZ, Geoplgfical inverse theory and regularization problems:
Elsevier Science Publishing Co., Inc.

Zhdanov, M. S,, Ellis, R. G., Mukherjee, S., and Pavlov, D. A., 2002,
Regularized focusing inversion of 3-D gravity tensor data: 72nd An-
nual International Meeting, Society of Exploration Geophysicists,
Expanded Abstracts, 751-754.




