
- . , 

INSTITUTE OF PHYSICS PuBLISHIN G INvERSE PROBLEMS 

Inverse Problems 20 (2004) 1- 24 PI! : S0266-5611(04)78 114-9 

Rapid three-dimensional inversion of 
multi-transmitter electromagnetic data using the 
spectral Lanczos decomposition method 

Michael S Zhdanov l and Alexey Chernyavskiy 

Department of Geology and Geophy sics, University of Utah, Salt Lake City, lIT 84112, USA 

E-mail: rnzhdanov@mines .utah.edu 

Received 19 March 2004
 
Published XX August 2004
 
Online at stacks.iop.org/IP /20/1
 
doi:10.1088/0266-5611120101000
 

Abstract 
In this paper, we develop a new method of three-dimensional (3-D) inversion 
of multi-transmitter electromagnetic data. We apply the spectral Lanczos 
decomposition method (SLDM) in the framework of the localized quasi-linear 
inversion introduced by Zhdanov and Tartaras (2002 Geophys. 1. Int. 148 
506-19). The SLDM makes it possible to find the regularized solution of 
the ill-posed inverse problem for all values of the regularization parameter 
a at once. As an illustration, we apply this technique for interpretation 
of the helicopter-borne electro magnetic (HEM) data over inhomogeneous 
geoelectrical structures, typical for mining exploration. This technique helps 
to accelerate HEM data inversion and provides a stable and focused image of 
the geoelectrical target. The new method and the corresponding computer code 
have been tested on synthetic data. The case history includes interpretation of 
HEM data collected by INCO Exploration in the Voisey's Bay area of Canada. 

PACS number: 78A45 

1. Introduction 

The problem of three-dimensional (3-D) inversion of multi-transmitter electromagnetic (EM) 
data arises in different practical applications. One of these applications is the interpretation 
of the helicopter-borne electromagnetic (HEM) surveys which are widely used in mineral 
exploration. The main difficulties in modelling and interpreting multi-transmitter data are 
related to the fact that , for any new observation point, one has to solve the forward problem 
anew for the corresponding position of the moving transmitter. In this situation, even forward 
modelling of multi-transmitter data over inhomogeneous structures requires an enormous 
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number of computations. That is why, until recently, the interpretation of HEM data, for 
example, was restricted to a simple 1-D inversion only. 

Zhdanov and Tartaras [1] developed a new approach to the modelling and inversion 
of multi-source array electromagnetic data based on so-called localized quasi-linear (LQL) 
approximation. In the LQL approximation, the anomalous electric field inside the 
inhomogeneous region is represented as the product of the background (incident) field and 
an electrical reflectivity tensor i L . This tensor is assumed to be source-independent and 
slowly varying and, therefore, can be computed on a much coarser grid than the field itself. 
It was demonstrated by numerous modelling examples that the LQL approximation is easy to 
compute and very accurate [2,3]. For the inverse problem, we use the LQL approximation to 
formulate a linear integral equation for a modified material property tensor m, which is also 
source independent and then is estimated from the data. The recovered values of the tensor 
mare used to find the electrical reflectivity tensor i L and the anomalous conductivity. In the 
framework of this approach, forward modelling and the inversion of multi-source data can be 
computed simultaneously for all different positions of the transmitters. 

The developed method resembles inversion based on the extended Born approximation 
and multi-stage inversion algorithms that could be derived within its respective framework 
[4-9], but there are some important differences which have been carefully discussed in the 
previous publications [2,10, II] . In particular , the extended Born approximation also replaces 
the (unknown) total field inside the scatterer with a product of the incident field and a tensor, 
but this scattering tensor is defined explicitly through a weighted integral of the anomalous 
conductivity. In the LQL approximation, in contrast, the reflectivity tensor itself is determined 
by the solution of the optimization problem. Inaddition, the two-step linear inversion approach 
developed by Torres-Verdin and Habashy [7] is based on an analytical expression for the 
scattering tensor that depends explicitly on the selected model of the anomalous conductivity 
distribution. We do not specify the reflectivity tensor i L before inversion, and we determine i L 

as the result of linear inversion. Hence, our scheme consists of three steps: (i) determination 
of the modified material property tensor lit, (ii) evaluation of the electrical reflectivity tensor 
i L and (iii) determination of the anomalous conductivity from lit and i L • 

The main goal of the present paper is to develop a new technique for fast LQL inversion 
which employs the spectral Lanczos decomposition method [2, 12-1 4]. The LQL inversion is 
an ill-posed problem, and its solution requires application of the corresponding regularization 
methods. One of the most critical elements of any regularizatio n algorithm is a selection 
of the regularization parameter a describing the trade-off between the misfit and stabilizing 
functionals [15, 16]. The traditional approach to the solution of this problem is based 
on multiple inversions with different values of a and a subsequent search for an optimal 
regularization parameter. This approach is extremely time-consuming, especially for a 3-D 
EM inverse problem. We demonstrate in this paper for the LQL inversion that, the SUJM 
makes it possible tofind the regularized solution ofthe ill-posed inverseproblemfor all values 
of the regularization parameter a at once [2]. This technique helps to accelerate HEM data 
inversion significantly and provides a stable and focused image of the geoelectrical target. 

The new method and the corresponding computer code has been tested on synthetic data. 
We applied this technique for interpretation of the HEM data collected by INCO Exploration 
in the Voisey's Bay area of Canada. 

2. Background of the localized quasi-linear inversion 

For completeness, we begin our paper with the formulation of the basic principles of LQL 
inversion. The quasi-linear (QL) approximation [10] is based on the assumption that the 
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anomal ous field EQ inside the inhomogeneous domain is linearly proportional to the background 
field Eb through some tensor i L: 

EQ(r) ~ iL (r) . Eb(r ) . (I ) 

In the framework of the localized quasi-linear (LQL) approximation [1, 2], it is assumed that 
the electrical reflectivity tensor i L is source-independent. 

SUbstituting formula (1) into the corresponding EM integral equations , we obtain integral 
representations for the LQL approximations ofthe anomalous electric, El.QL(rj ) , and magnetic , 
8LQLQ (r j ), fields: 

EfQL(r j) ~ G E(rj I r ) . t.a(r)(i + i L(r» . Eb(r ) dv f f1
=GE[t.a(r)(i + i L(r» . Eb(r)], (2) 

Hf QL(rj ) ~ f f1GH(rj I r ) . t.a(r)(I+ i L(r » . Eb(r ) dv 

= GH[t.a(r ) (i + i dr» . Eb(r)], (3) 

where r j and r are the observation and integration points respectively, i is the identity tensor, 
GE and G H are the corresponding Green's linear operators and GE (rj I r ) and GH(r j I r ) are 
the electric and magnetic Green 's tensors defined for an unbounded conductive medium with 
a background conductivity abo 

Following Zhdanov and Fang [10] and Zhdanov and Tartaras [1], we introduce a new 
tensor function, 

mer) = t.a(r )(I + i dr» , (4) 

which we call a modified material property tensor. 
Equation s (2) and (3) take the form 

EfQL(r j) = GE[m(r) . Eb(r)], (5) 

Hf QL(rj ) = GH[m(r ) . Eb(r )] . (6) 

Following Habashx.et al [4], and Torres-Verdin and Habashy [6], we can take into account 
that the Green's tensor GE(rj I r) exhibits either singularity or a peakatthe point where r j = r . 
Therefore , the dominant contribution to the integral GE[m (r) . Eb(r)] in equation (5) is from 
some vicini ty of point r j = r . Assuming also that the background field Eb(r ) is slowly varying 
within domain D , we can rewrite equation (5) as 

EfQL(r j) ~ GE[m(r)] · Eb(rj ), (7) 

where the tensor Green's operator GE[m(r)] is given by the formula 

GE[m(r)] = GE(rj I r ) . mer) dv . (8) f f1
Comparing equations (1) and (7), we find that 

EfQL (r j) ~ idrj) . Eb(rj) ~ Gdm(r)]. Eb(r). 

Therefore , the electrical reflectivity tensor can be determin ed from the solution of the 
minimization problem, 

lI idrj) . Eb(r j) - GE[m(r)] · Eb(r)IIL2(D) = min. (9) 

Noting that 

lI i d rj) ' Eb(rj) - Gdm(r)]· Eb(rj ) IIL2(D) ~ lI iL(rj) - GE[m (r)] IIL2(D)IIEb(rj ) IIL2(D), 
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we can substitute anoth er problem, 

lIidrj) - GE[m(r)]IIL2 (D ) = min (10) 

for the minimization problem (9). 
The solution of equation (11)gives us a localized electricalreflectivitytensori dr), which 

is obviously source-independ ent. 
Note that , in the framework of the LQL method, we can choose different forms of the 

reflectivity tensor. For example, we can introduce a scalar or diagonal reflectivity tensor. The 
choice of electrical reflectivity tensor is related to the physics of the problem and the accuracy 
and speed required in the computations. The interested reader can find the detailed analy sis of 
the selection of the different types of electrical reflectivity tensor and related accuracy of the 
LQL approximation in Zhdanov and Tartaras [1]. 

We assume now that the anomalous parts of the electric, Ea(rj), and/or magnetic, H" (r j) , 
fields (generated by a transmitter with one or different positions) are measured at a number of 
observation points, rj . Using the LQL approximations (5) and (6) for the observed fields , d, 
we arrive at the following equation: 

d = Gd[m(r) . Eb(r)], (11) 

which is linear with respect to the material property tensor m(r). In the last equation, d stands 
for the electric or magnetic field, E or H, and Gd denotes the Green's operators GE or GH 

respectively. 
We can solve the linear equation (11) with respect to m(r) , which is source-independ ent. 

Now, a reflectivity tensor i dr) is determined, based on the condition (11), which constitutes 
an important step of the LQL inversion. This problem is solved by a standard least-squares 
optimization. 

Knowing i L(r) and m (r), we can find ~a(r) from equation (4) . Note that, in a general 
case, equation (4) should hold for any frequency, because the electrical reflectiv ity and the 
material property tensors are the functi ons offrequency as well : i L = i dr, w), m = m (r, w) . 
In reality, of course, it holds only approximately. Therefore, the conductivity, ~a(r), can be 
found by using the least-squares method of solving equation (4): 

II m(r,w) - ~a(r) (i + i dr, w»IIL2(w) = min. (12) 

Thi s inversion scheme can be used for a multi-source technique, because i L and mare 
source-independent. It reduces the original nonlin ear inverse problem to three linear inverse 
problems: the first (quasi-Born inversion) for tensor m, another for tensor i L, and the third 
(correction of the result of the quasi-Born inversion ) for the conductivity Sa. 

We can rewrite equation (11) using matrix notations: 

d=Gm. (13) 

Here m is the vector-column of the modified material property tensor m, d is the vector-column 
of the field data , and the matrix G is the matrix of the linear operator defined by formula (11). 

The solution of the inverse problem is reduced to the inversion of linear system (13) with 
respect to m and then to computing i L using condition (10). After that , we find ~a as a least
squares solution of the optimization problem (12). Note that in the case of a single -frequency 
observations, we still have to solve the optimization problem (12), if we consider the full 
electrical reflectivity and material property tensors. In a case of single-frequency observations 
and a scalar electrical reflectivity tensor, optimization problem (12) is reduc ed to a simple 
algebraic equation. 
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3. The Tikhonov regularization method 

Zhdanov and Tartaras [I] used the re-weighted regularized conjugate gradient method with 
image focusing [17] for solving the system of the linear equations (13). In this paper, we will 
apply another numerical technique, the spectral Lanczos decompo sition method (SLD M), to 
solve this prob lem. We will demonstrate that the SLDM techniqu e makes it possible to find 
the regularized solution of the ill-posed inverse problem for all values of the regularizatio n 
parameter ex at once, thus providing an effective tool for optimal ex selection. 

Let us consider first the general approach to linear inverse problem solution, based on the 
Tikhonov regularization technique [2]. We introduce the following parametric functional: 

P" (m, d) = II WdGm - Wdd ll 2 + exll Wmm - W mlIlapr II 2 , (14) 

where Wd and Wm are some real weighting matrices of data and model parameters; Dlapr is 
some a p rior i model and II . . . II denotes the Euclidean norm in the spaces of data and models. 
To avoid the numerical imbalance between the consti tuent norms, the proper normalization 
of the functionals of equation (14) is achieved by the appropriate selection of the weighting 
matrices, and/or by the appropriate selection of the regularization parameter ex, which will be 
discussed later. 

In the majority of practical applications, we assume that Wm = I (where I is the identity 
matrix), but it also can be chosen arbitrarily, for example, as a matrix of first- or second-order 
finite-difference differentiation to obtain a smooth solution. In particular , it was demonstrated 
in [2] that the recommended choice of the model parameter weighting matrix Wm is the square 
root of the integrated sensitivity matrix according to 

W m = diag(F 'F)I/4 = diag(G 'G)I/4, (15) 

where F is the Frechet derivative matrix, whic h is equal to matrix G for the linear inverse 
problem, and the asterisk *denotes a transposed complex conjugate matrix. 

Following Zhdanov [2], we will solve our problem in the space of weighted parameters . 
We introduce a vector of weighted model parameters: 

m., =Wmm. 

The original vector of model paramete rs is given by the inverse transformation 

m =W;;;lmw. 

We also introduce a weighted forward operator: 

Gw = GW ;;;I. 

Now we can rewrite the functio nal P" (mw,d) with matrix notations: 

P" (mw,d) = (W~ G: m: - W~d ' )(WdGwmw - W dd) 

+ a( m: - m: ,apr)(m w - mw,apr) ' 

According to the basic principles of the regulari zation method, we have to find a quasi
solution of the inverse problem as the model mw,a minimizing the parametric functional 

P"(m w,a, d) = min. 

The solution of this problem can be found from the correspo nding regularized normal 
equation as [2] (p 75) 

mw,a = [G: W~G w + aIrI[G: W~d + amw,apr]' (16) 



6 

• 

M S Zhdan ov and A Chernyavskiy 

The regularization parameter a describes the trade-off between the best fitting and most 
reasonabl e stabilization. In a case where a is selected to be too small, the minimization of 
the parametric functional P" (m) is equivalent to the minimization of the misfit functional ; 
therefore we have no regularization. which can result in an unstable incorrect solution . When 
a is too large, the minimization of the parametric functional pa(m) is equivalent to the 
minimization of the stabilizing functional s(m) . which will force the solution to be closer to 
the a priori model. Ultimately, we would expect the final model to be exactly like the a priori 
model, while the observed data are totally ignored in the inversion . Thus. the critical question 
in the regularized solution of the inverse problem is the selection of the optimal regularization 
parameter a. The basic principles used for determining the regularization parameter a are 
discussed in Tikhonov and Arsenin [15]. According to the pioneering work of Tikh onov, the 
optimal value of the regularization parameter a is determined from the misfit condition 

IIWdGwmw,a - W ddll = 8. (17) 

where 8 is some a priori estimation of the level of the 'weighted' noise of the data: 

IIWd&i11 = 8. (18) 

A simple numerical method for determining the parameter a is based on a progression of 
numbers : 

k-lak = alq • k=1,2• . ..• n, O<q <l. (19) 

For any number at. we can find the element ilia, minimizing P"' (m w,a,. d) and calculate the 
misfit <p(ak) : 

<p(ak) = IIWdGwmw,a, - W ddll2. 

It is proven in regularization theory that <p(ak) is a monotonic and not increasing function of k 
[2. 15]. The quasi-optimal value of the parameter a is the number ankhonov = a kO . for which. 
with the necessary accuracy. we have the equality (17). 

Hansen [16] introduced an alternative method for determining the parameter a based 
on the L-curve analysis. It represents a simple graphical tool for qualitative selection of 
the quasi-optimal regularization parameter. The L-curve method is based on plotting for all 
possible a. the curve of the stabilizing functional, s(a) versus the misfit functional. <p(a) . 
The L-curve illustrates the trade-off between the best fitting (minimizing a misfit) and most 
reasonable stabilization (minimizing a stabilizer). In a case where a is selected to be too 
small. the minimization of the parametric functional P" is equivalent to the minimization of 
the misfit function al; therefore <p(a) decreases while s(a) increase s. When a is too large, the 
minimization of the parametric functional P" is equivalent to the minimization of the stabilizing 
functional ; therefore s(a) decreases, while <p(a) increases. The distinc t comer. separating the 
vertical and the horizontal branches of this curve, corresponds to the quasi-optimal value of 
the regularization parameter aL- curve 

The advantage of the L-curve method over the TIkhonov criterion is that the former does 
not require any information about the level of noise in the data. while the Tikhonov's misfit 
condition (17) explicitly uses this information. The disadvantage is that there is no rigorous 
proof ofthe existence of the distinct comer in the Lcurve, which sometimes is difficult to find. 

Both methods, however, have a clear practical limitation. because they require a complete 
numerical solution of the inverse problem for multiple values of the regularization parameter 
a. which is extremely time consuming, especially for a 3-D EM inverse problem with multi
transmitt er data . We will demonstrate in the next section that application of the spectral 
Lanczo s decomposition method (SLDM) makes it possible to overcome this limitation, because 
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it delivers the regularized solution of the ill-posed inverse problem for all values of the 
regularization parameter a at once [2]. This is one of the most important advantages of 
the SLDM method over other solvers in regularized inversion. 

4. Application of the SLDM for solving the linear system of equations for the 
LQLmethod 

One can see that expression (16) contains a matrix inversion. The SLDM provides an effective 
tool for matrix inversion. It is especially suitable for the regularized inversion, because it can 
be applied only once for all different values of the regularizatio n parameter a [2] . 

Introducing notations 

c = G~W~ d and B = G~W~Gw ' (20) 

and assuming that m w,apr = 0, we can rewrite equation (16) in the form 

m w,a = (B + a l) -I c. (21) 

Denoting by fa the function 

f a(B) = (B + a l) - I, 

we obtain 

m w,a = f a(B) c. (22) 

Thus, we have arrived at the problem of computing a function of the matrix B. This problem 
can be solved by the SLDM outlined in an appendix. 

First, we apply the Lanczos algorithm (43) for QT decomposition of matrix B 

Po= 1, qo= 0, ql = c/ llcll , (23a) 

while Pj =1= 0, q j+1 = r j / Pj, ajl = qyBqj ' (23b) 

r j = (B - aJIN)qj - {3j-1qj- lo {3j = [ rj], j = 1, 2, . .. , N - 1, (23c) 

where IN is N x N identity matrix and superscript T denotes transposition . 
As the result, we find an orthogonal matrix, QL, and a tri-diago nal matrix , T L, where L 

is an iteration step of the Lanczos algori thm. Finally, we arrive at the following formula for 
regularized solution: 

m w,a = Ilc Il QL!a(TL)e\L) = IIcIl QL(TL + a l) - le\L), (24) 

where elL) is the unit vector of the order L : eiL) = (1,0,0, ... , 0). The advantage is that now 
we have to run the Lanczos algorithm only once for all different values of the regularization 
parameter a . After that we have to invert only a tri-diagonal matrix (TL + aW~ ) for a different 
a , which is a much simpler operation. 

The misfit condition (17) can be rewritten now in the form 

IIWdGwll cIlQL(T L + a l )-leiL) - Wddll = 8. (25) 
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5. Re-weighted linear inversion 

5.1. The 1ikhonovparametric functionalwith a pseudo-quadratic stabilizer 

The parametric functional (14) contains the minimum norm stabilizing function al, which, 
as a rule, provides a smooth solution. The smooth solutions for geoelectrical structures 
have difficulti es, however, in describing the sharp geoelectrical boundaries between different 
geological formations . This problem arises, for example, in inversion for the local resi stive 
or conductive target with sharp boundaries between the resistor/conductor and the host rocks , 
which is a typical model in mining exploration. The mathematical technique for solving this 
problem was described in a monograph by Zhdanov [2]. It is based on introducing a special 
type of stabilizing functi onal , the so-called minimum support or minimum gradient support 
functionals [17]. We call this technique a focusing regularized inversion to distinguish it 
from the traditional smooth regularized inversion. Note that there exists, actually, a family of 
different stabilizing functionals, selecting the classes ofinverse models with different properties 
[2] (p 45). For example, an approach based on the total variation (1V) method for reconstructing 
an image with sharp boundaries has been introduced by Rudin et al [18]. However, it was 
demonstrated in Portniaguine and Zhdanov [17] that in geophysical inversion the minimum 
support and minimum gradient support functionals produce better results than the 1V method. 

In general cases, a stabilizing functional can be represented in the form of the pseudo
quadratic functional: 

s(m) = ( Wem , Wem), (26 ) 

where operator We is a linear operator of multiplication of the model parameters function m(r) 
by the function we(r), which depends on m. For discrete model parameters, using matrix 
notations, operator We can be expressed as the matrix multiplication 

Wem=Wem, (27) 

where diagonal matrix W e is computed differently for different stabilizers. 
In the case of the minimum support functi onal, we have [2] (p 156) 

(28) W e = diag [ (1 m12 ~ e2)! /2 ] , 

where e is a small number. 
Once again , we introduce the vector of the weighted model parameters in the form 

m e,w = WeWmm, 

where matrix W e is the focusing matrix which depends on m, and W m is a conventional model 
parameters weighting matrix . 

Once it is obtained, the initial model param eter will be given by the inverse transformation 

m = W;lW;;;!me,w. 

We also introduce a weighted forward operator,
 

Ge,w = GW;;;!W;!.
 

The corresponding parametric functional can be written as 

P" (me,w, d) = (W~ Ge,w m;,w - Wdd*) (W dG e,wm e,w - Wdd ) 

+ a (m;,w - m~,apr)(m e ,w - m w,apr)' (29) 
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Therefore, the problem of the minimization of the parametric functional introduced by 
equatio n (29) can be treated in a similar way to the minimization of the conventional Tikhonov 
functional. The only difference is that now we introduce some variable weighting matrix W e 
for the model parameters. The minimization problem for the parametric functional introduced 
by equation (29) can be solved using the ideas of the traditional least-sq uares method. 

5.2. The Lanczos algori thm with re-weighting 

The regularized solution of the corresponding normal equation for the minimization problem 
of functional (29) has the form 

me.w.a = [G:.wW~Ge .w + aIrI [G:.wW~d + anlw,apr]. (30) 

Introducing notatio ns 

c = G;.wW~d and B = G :.wW~Ge .w , (31) 

and assuming that m w•apr = 0, we can rewrite this equation in the form 

me.w.a = (B + aI) -l c. (32) 

Applying the Lanczos algorithm, we arrive at the following formula for the regularized solution: 

m e.w.a(L) = Ilc Il QL!a(TL) e~L ) = IlcllQdTL + aI)-le~L ) . (33) 

First, we can apply the truncated Lanczos algorithm with L = L I to obtain an initial truncated 
solution, m e.w.a(I). Using formula (28), we compute the focusing matrix W e(l ) for this initial 
model: 

(34) W (I) = diag [(I 12 1+ e2)1/2] . 
e m W a(l ) 

Then we run the Lanczos algorithm (33) with this matrix. We analyse the misfit behaviour 
for a number of truncated solutions again (with the fixed matrix W e(I» , and terminate the 
process when the misfit has stabilized . For this model IDa(2) we can find a new focusing 
matrix, W;2' and apply the same Lanczos algorithm (28) with the new matrix: 

W e(2) = diag [ (1m1; (12)1+ e2)1/2] . 

This process can be repeated several times, until the required degree of focusing is 
achieved. 

6. 3-D LQL inversion of synthetic HEM data 

One of the most important possible applications of the LQL inversion technique is the 
interpretatio n of frequency-domain helicopter-borne data. This type of airborne survey is used 
extensively in mining exploration. We use the integral equation code SYSEM [19] to simulate 
such a survey over a conductive (200 Q m) cubical body located in a resistive (5000 Q m) 
half-space. Figure 1 depicts a 3-D view of the model. Five lines were flown over the target at 
an altitude of 30 m and at a distance of 25 m from each other. A schematic planview of the 
survey is shown in figure 2. 
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Figure 1. Schematic view of a conductive cubical body located within a resistive half-space. 
Frequencies used for HEM survey are 900 and 7200 Hz. 
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Figure 2. Schematic planview of a model HEM survey comprising of five flight lines. 
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Figure 3. L-curve (upper pane l) and its curvature (lower panel ) for model study . The corner of 
the L-curve is shown by a point. It corresponds to the maximum of the curvature. For compar ison, 
we show by a circle the point on the L-curve corresponding to Tikhonov's quasi-opt imal value of 
"'TJdumou obtained using the misfit condition. 

The moving transmitter-receiver system wasa pair of vertical magnetic dipoles (simulating 
a horizontal coplanar coil pair) and a pair of horizontal magnetic dipoles (simulating a 
vertical coaxial coil pair) with 8 m horizontal separation . The yy (coaxial) and zz (coplanar) 
components of the anomalous magnetic field were measured every 15 m along the lines 
(50 observation points in each line). Two frequencies were used: 900 Hz and 7.2 kHz. 

We added 2% random noise to the anomalous magnetic field and then inverted it using the 
SLDM method . The area of inversion, centred around the body, was 150m x 150 m x 150m 
and was divided into 12 x 12 x 12 cells. 

The advantage of the SLDM method is that we can find the regularized solution for several 
different values of the regularization parameter a with practically no additional computational 
cost. Hence, this method is very well suited for applying the L-curve analysis [16], which 
is based on plotting for all possible a , the curve of the stabilizing functional, s(a) versus 
the misfit functional, lp(et) (see figure 3, upper panel). The distinct comer, separating the 
vertical and the horizontal branches of this curve, corresponds to the quasi-optimal value of 
the regularization parameter etL-curve, which is equal to 1.1 x 10- 9 in this case. This point 
is clearly seen in the L-curve curvature plot by a local maximum (figure 3, lower panel). 
For comparison, we show by a circle the point on the L-curve corresponding to Tikhonov's 
quasi-optimal value of a 1il:honov obtained using the misfit condition . Note that the inversions 
run with a L- curve and a1ikhonov values of the regularization parameter produce practically the 
same results. We present here both techniques for optimal regularizati on parameter selection 
(the Tikhonov approach and the L-curve method) to illustrate the computational power of the 
SLDM method . Indeed, the SLDM allows us to determine the stabilizing functional, s(a) , and 
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Figure 4. Dependence of normalized misfit and stabilizer on the number of Lanczos vectors used 
in inversion. One can see that the misfit converges very fast and becomes less than 2% just after 
30 Lanczos steps . 

the misfit functional, rp(U), for any value of the regularization parameter a practically without 
any additional computational cost! 

Figure 4 shows the behaviour of the normalized misfit and stabilizer as the functions of 
the steps L of the truncated Lanczos algorithm. One can see that the misfit converges very fast 
and becomes less than 2% just after 30 Lanczos steps. 

Figure 5 shows the vertical cross-sections of the 3-D model obtained as the result of 
inversion with Tikhonov' s quasi-optimal value ofthe regularization parameter. We have chosen 
Tikhonov's criterion , because we know the noise level of the synthetic data. The image is 
slightly unfocused because this image is generated with the minimum norm stabilizer. We use 
this smooth model to compute the focusing matrix W et! ) according to formula (34). After that 
we apply the SLDM algorithm again. The new image is shown in figure 6. Both the location 
and the shape of the conductive body are determined very well. These results demonstrate 
the stability of the method in the presence of noise (results of inversion of noise-free data, not 
shown here, are very similar). Moreover, the truncated SLDM algorithm is extremely fast. 
The 3-D inversion for 250 total different transmitter-receiver pairs requires 6 s of CPU time 
on an Athlon 1000 MHz processor. 

7. LQL inversion of HEM data collected in the Voisey's Bay area 

We have used our method to invert real HEM data collected by INCa Exploration in the 
Voisey's Bay area in Canada. This area is characterized by high-conductivity Ni-Cu sulphide 
deposits hosted by resistive troctolite dikes [20]. A geological map of the area with several 
identified deposits is shown in figure 7. We applied the 3-D inversion to the HEM data within 
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Fig ure 5. Cross-sections of the inverse model obtained by the smooth inversion of synthetic data. 

two areas outlined in figure 7. One of these areas (no. 1) corresponds to the location of the 
Ovoid deposit, which is a flat-lying deposit of very high conductance, and comprises 70% 
massive sulphide [21] . Area No. 2 is associated with another prospective mineralization zone, 
adjacent to Area No. I. 

Based on drilling information, incorporated into figure 7, we have assumed a 20 m deep, 
conductive overburden with a resistivity of 10 Q m. We used the coaxia l components from the 
lowest frequency (900 Hz) because they are the least sensi tive to the presence of the conductive 
overburden. The data were first interpolated along a uniform (in each direction) grid and 
then transformed from ppm (part per million of the primary magnetic field in the free air) to 
anomalous field values, assuming a uniform background resistivity beneath the overburden of 
1900 Q m. The data comprise parts of four flight lines, at a distance of 200 m from each other. 
The area of inversion was 700 m x 600 m x 160 m and was divided into 14 x 30 x 8 cells . 
Figure 8 presents the L-curve, computed for the different values ofthe regularization parameter 
ct. We chose the quasi-optimal a = 6.3 X 10- 16 according to the Tikhonov misfit condition, 
because it corresponds to the known level of noise in the observed data (norm square of noise 
is estimated as of3%). Figure 9 describes the behaviour of the normalized misfit and stabilizer 
as the functions of the steps L of the truncated Lanczos algorithm. One can see that both 
functions converge very fast, and misfit becomes less than 3% just after eight Lanczos steps. 
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Figure 10. A volume rendering of a 3-D resistivity image obtained after the inversion of the coaxial 
compo nents measured over Area no. I. The cut-off value for the resistivity is I Qrn. 

Figure 10 shows a 3-D image of the inversion result for the coaxial components. Only 
values of resistivity below a threshold of 1 Q m have been plotted out of the cube-shaped area 
of inversion. Figure II presents the same result in the form of vertical slices through the model 
generated as a result of the inversion. Figure 12 shows the observed and predicted data along 
all four flight lines. The observed data are shown by the dotted curve. The inversion results 
obtained by 'full' SLDM comprised of 200 Lanczos steps, are shown by solid lines, while the 
dashed lines correspond to the truncated SLDM with only 25 Lanczos steps. One can see that 
the agreement between all three curves is very good. 

The results seem reasonable and in good agreement with the existing information about 
the Ovoid deposit, and with the inversion result obtained by Zhdanov and Tartaras [1] using 
the conjugate gradient method. 

LQL inversion based on the SLDM method was also applied to the HEM data collected 
in Area no. 2 (see figure 7). We used the data collected along four flight lines, at a distance 
of 200 m from each other. The area of inversion has the same dimensions as the previous 
one, 700 m x 600 m x 160 m, and is divided into 14 x 30 x 8 cells. Figure 13 presents the 
L-curve, computed for the different values of the regularization parameter ct. In this case, 
we chose the quasi-optimal a = 7 .6 X 10- 17 according to the Tikhonov misfit condition, 
because it corresponds to the known level of noise in the observed data (norm square of noise 
is estimated at 3%). The behaviour of the normalized misfit and stabilizer as the functions of 
the steps L of the truncated Lanczos algorithm is shown in figure 14. This figure illustrates a 
rapid convergence of both functions with the normali zed misfit equal to less than 3% just after 
40 Lanczos steps. 

Figure IS shows a 3-D image of the inversion result for the coaxial components. Figure 16 
presents the same result in the form of vertical slices through the model generated as a result 
of the inversion. Figure 17 shows the observed and predicted data along all four flight lines. 
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Figure 11. Cross -sections of 3-D resistivity distributio n obtained after inversion of HEM data 
from Area no. 1. 

The observed data are shown by the dotted curve . The inversion results obtained by the 'full' 
SLDM algorithm comprised of 200 Lanczos steps are shown by solid lines, while the dashed 
lines correspond to the truncated SLDM method with only 26 Lanczos steps. Once again, the 
agreeme nt between all three curves is very good. 

Note that, for comparison, we obtained an inverse model which corresponds to the 
a = 7.3 X 10- 19 selected based on L-curve criterion (the point of the maximum curvature of 
the L-curve is shown in figure 13, lower panel). The resulting inverse model was practically 
the same as the one shown in figures 15 and 16. 

The successfu l application of the LQL inversion to real HEM data in a complex geological 
environment with large resistivity contrasts shows that the method can be an effective tool for 
fast 3-D inversion of helicopter-borne electromagnetic data (see figure 18). AQ I 

8. Conclus ions 

We have developed a new efficient method of3-D multi-transmitter data inversion based on the 
LQL approximation. We have used the spectral Lanczos decomposition for fast and accurate 
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o 



18 

-2 

M S Zhdanov and A Chernyavskiy 

x 10-8 
2, 

CXQ 
o	 _ _ full SLDM
 

truncated SLDM
 ~ - observed data 

o 100 200 300 400 500 600 700 

f~ , : ~. ~
 
-10 o 100 200 300 400 500 600 700 

~E;;croz •. ~
 
-10 o 100 200 300 400 500 600 700 

:6; ' cx~~: • J
 
-2 

o 100 200 300 400 500 600 700 

Northing (m) 

Figure 12. The magnetic field values along four North -South lines in Area no. 1. The real and 
imaginary components of the observed field (marked by CXI-coaxial inphase and CXQ-coaxial 
quadrature indices) are shown along with the predicted field obtained by the ' full' and truncated 
SLDM. 

inversion of synthetic data simulating a helicopter-borne survey over a conductive body. The 
Lanclos decomposition has demonstrated its special usefulness for inversion with multiple 
regularization parameter values, especially when the noise level is not known implicitly. The 
obtained results demonstrate that this new technique helps to accelerate multi-transmitter data 
inversion and provides a stable and focused image of the geoelectrical target. 

We also inverted a real HEM dataset provided by INCa Exploration . The results 
successfully locate the shallow massive sulphide deposits and show that the LQL and Lanczos 
methods work well together in real, complex geological environments . The numerical 
experiments on synthetic models as well as successful inversion of real data make the LQL 
approximation along with SLDM a prominent technique in multi-source data inversion. 
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Appendix. The spectral Lanczos decomposition method 

The most appropriat e technique for solving a large, symmetric eigenproblem Av = AV is 
delivered by the Lanczos method [13]. This method involves partial tridiagonalization of the 
given matrix. One advantage of the Lanczos method is that the estimation of the extremal 
eigenvalues appears even before the tridiagonalization is complete . This makes the Lanczos 
method extremely usefulin practical applications [12, 14]. We will outline the basic principles 
of the Lanczos method following the monograph of Zhdanov [2]. 

The Lanczos method is based on generating the orthonormal basis in Krylov space 
KL = span{c,Ac, ... , AL-1c} by applying the Gram-Schmidt orthogonalization process. In 
matrix notations, this approach is associated with the reduction of the symmetric matrix A to 
a tridiagonal matrix TL and also with the special properties of TL. This reduction (called also 
QT decomposition) is described by the formula 

QIAQL =TL, (A.l) 
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400 
300 

200 

100 
00 Easting (m) 



21 Rap id three -dimensional inversio n of multi-transmitter electromagnetic data 

log10(P) 

5 

4~ 0 .s 
3.J::. 100 

li. 
(]) 2
0600 

600400 
400 

200 o 
200 

Northing (m) o 0 
Easting (m) 

I0910(P) . 5 o -~:~ · .I 
.J::.l00~~~ £IIIIIII!!'lII! 4li.
 
~ 500 ~~~. .c. r ~ 3
 

2 

1 

0 
::>uu100 ~ 

Northing (m) 0 

Easting (m) 
Fig ure 16. Cross -sections of the res istivity distribution obtai ned after inversio n of the HEM data 
from Area no. 2. 

where TL is the tri-diagonal symmetric matrix 

a l PI 
a2 P2 

T, ~ : ].[ 

fJL- I 
QL is the matrix of the orthogonal basis of Krylov space 

QL = [ql ,q2' " ., qLl, 

and QI is the transpose of QL' Vectors q j of the basis are called Lancl os vectors. All Lanczos 
vectors are N-vectors, consisting of N scalar components. It is assumed also that 

Pj > 0, j = l, 2, ... , L -1. (A.2) 

We consider first the tridiagonalization process using Krylov space of dimension N :KN = 
span{e,Ae, ... , AN- Ie}. In this case, according to the definition, the matrix QN is orthogonal, 
Q1 = QNI. Therefore, the reduction formula (A.1) can be rewritt en as 

AQN = QNTN· (A .3) 
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For example. equating the jth column of each side of (A.3), we obtain a recursive formula 

,Bjq j+l = Aq j - ,Bj-lqj-l - Ct jqj = r j. (A.4) 

which holds for j = 1, .. .• N , if we define ,Boqo = ,BNqN = O. 
The orthogonality of Q N can be written in the form qTqj = Oij, where Oij is Kronecker' s 

delta symbol. Therefore, multiplying (A.4) by qJ . we obtain 

0= qJAqj - CtjIN 

or 

Ct jIN = qJAqj. j = 1.2 •. . .• N - 1. (A.S) 

where IN is the N x N identity matrix . 
Also, using (A.2) and the orthogon ality of QN, we have 

,Bj = lI,Bjqj+lll = II r j ll · (A.6) 

From equation (A.4), we also obtain 
r · 

qj+l = -L , j = 1,2•. . . ,N - I. (A.7) 
,Bj 
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Figur e 18. A comparison of CPU time needed for inversion using conjugate gradients method and 
truncated spectral Lanczos decomposition. The computations were conducted on an AMD Athlon 
1000 MHz processor. 

Thu s, we have form ulated the Lanczos algorithm to determine Cij , f j ,f3j and q j+1 from the 
given values of q j_l , q j and {3j- l , assuming that 

c 
{3oqo = 0, q l = Wand {3j > 0 . (A.S) 

The Lanczos algorithm can be summarized as follows: 

{3o = 1, qo = 0, q l = c/ ll c ll,	 (A .9a) 

while {3j # 0, q j+l = f j / {3j, Cij l = qJAqj ' (A.9b) 

f j = (A - Cij IN)q j - {3j- lq j- l , {3j = [ rj], j = I , 2, . . . , N - 1. (A ge) 

As a result of the LanClOS algorithm we obtai n matrices QN and T N. Note that, in genera l 
cases, we can run the LanClOS algorithm until j = L - 1, where L < N. In this case we obtain 
L x L matrices QL and TL, which can still beeffectively used to evaluate the eigenvalues and 
eigenvectors of the origi nal matrix A [13]. 

In many practical situatio ns, we have to compute a vector 

d = j(A)c,	 (A 10) 

where A is a symmetric square N x N matrix , j is a function defined on a spectral interval 
of A, and c, d are vectors defined in Euclidean space EN. The LanClOS algorithm makes it 
possible to solve this problem using the QT decomposition and the following formul a: 

d = II c Il QN j(TN) e~N),	 (A l l) 

where e ~N) is the unit vector of the order N : 

e ~N) = (1, 0, .. . ,0, .. . , 0) . 

I 
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Thus, we reduce the original problem of calculating the function f of matrix A to a much 
smaller problem of calculating the same function of the tridiagonal matrix TN . In many 
practical cases this problem can be easily solved numerically. 

Note that we can use L steps of the Lanczos method to generate matrices QL and TL , 
L < N , and to introduce a natural approximation to vector d as 

L
dL =	 IIcIlQL!(TL)el ). (A.12) 

References 

[1]	 Zhdanov M and Tartaras E 2002 Inversion of multi-transmitter 3-D electromagnet ic data based on the localized 
quasi-linear approximation Geophys. J. Int. 148 506-1 9 

[2]	 Zhdanov M 2002 Geophysical Inverse Theory and Regularization Problems (Amsterdam: North
Holland/American Elsevier) p 609 

[3]	 Zhdanov M, Tartaras E and Gribenko A 2004 Fast 3D imaging from a single borehole using tensor induction 
logging data Petrophysics 45167-78 

[4] Habashy T M. Groom R W and Spies B R 1993 Beyond the Born and Rytov approximations: a nonlinear 
approach to electromagnetic scattering J. Geophys. Res. 98 1759-75 

[5]	 Habashy T M. Oristaglio M L and de Hoop A T 1994 Simultaneous nonlinear reconstruction of two-dimens ional 
permittivity and conductivity Radio Sci. Fast Forward Inverse Scatterin g Meth. 29 1101-18 

[6] Torres-Verdin C and Habashy T M 1994 Rapid 2.5-dimensional forward modeling and inversion via a new 
scattering approximation Radio Sci. 29 1051-79 

[7] Torres-Verdin C and Habashy T M 1995 A two-step linear inversion of two-dimensional electrical conductivity 
IEEE Trans. Antennas Propagation 43 405- 15 

[8]	 Reis Dos D, Lambert M and Lesselier D 2001 On the modeling and inversion of 3-D inclusions in conductive 
media using extended Born models in the diffusive regime Int. J. Appl. Electromagn. Mech. 14477-81 

[9]	 Reis Dos D, Lambert M and Lesselier D 2002 Extended Born domain integral models of diffusive fields IEEE 
Trans. Magn. 2577-80 

[10]	 Zhdanov M and Fang S 1996 Quasi-linear approximation in 3D EM modeling Geophysics 61 646-65 
Zhda nov M and Fang S 1996 3-D quasi-linear electromagnetic inversion Radio Sci. 31 741-54 

AQ2	 [11] Zhdanov M and Fang S 1999 3D quasi-linear electromagnetic modeling and inversion Three Dimensional 
Electromagn. SEG Monograph 233-55 

[12]	 Druskin V and Knizhnerman L 1994 Spectral approach to solving three-dimensional Maxwell's diffusion 
equations in the time and frequency domains Radio Sci. 29 937-53 

[13]	 Golub G H and Van Loan C F 1996 Matrix Computations 3rd edn (Baltimore: The Johns Hopkins University 
Press) p 694 

[14] Druskin V, Knizhnerrnan L and Lee P 1999 New spectral Lanczos decomposition method for induction modeling 
in arbitrary 3D geometry Geophys ics 64701- 6 

AQ3 [IS] Tikhonov A N and Arsenin V Y 1977 Solution of Ill-posed Problems (V H Winston and Sons) p 258 
[16]	 Hansen C 1998 Rank-deficient and Discrete Ill-posed Problems. Num erical Aspects of Linear Inversion 

(Department of Mathematical Modeling, Technical University of Denmar k, Lyngby) p 247 
[17] Portniaguine 0 and Zhdanov M 1999 Focusing geophysical inversion images Geophysics 64 874-87 
[18]	 Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms Physica D 60 

259-68 
[19] Xiong Z 1992 EM modeling of three-dimensional structures by the method of system iteration using integral 

equations Geophysics 57 1556-.Ql 
[20]	 Naldrett A J. Keats H, Sparkes K and MooreS 1996 Geology of the Voisey's Bay Ni-Cu-Co deposit, Labrador, 

Canada Explor. Mining Geol. 5 169-7 9 
AQ4 [21] Balch S J 2000 Ni-Cu sulphide deposits with examples from Voisey's Bay Geophysics in Mineral Exploration: 

Fundamentals and Case Historie s p 21 
AQ5	 [22] Zhdanov M and Keller G 1994 The Geoelectrical Methods in Geophysical Explorati on (Amsterdam: North

Holland/American Elsevier) p 900 



25 Rapid three-dimens ional inversion of multi-transmitter electromagnetic data 

Autho r Queries:
 

AQI: Please check citation of figure 18.
 
AQ2: Provide volume number for reference [II].
 
AQ3: Provide place of publication for reference [IS ].
 
AQ4: Provide editors name, publisher and place for reference [21].
 
AQ5: Reference [22] is not cited. Please check.
 


