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Abs tract 
The reconstruction of seismic images of the medium from cross we ll travel-time data is a 
typic al examp le of the ill-posed inverse prob lem. In order to obt ain a stable so lution and to 
rep lace an ill-posed problem by a well-posed one, a stabilizing functiona l (stabilizer) has to be 
introduced. The ro le of this functional is to select the desired stable so lution from a class of 
solutions with spec ific physical and/or geo metrica l properti es. One of these properties is the 
ex istence of sharp bound aries separa ting rocks with different pet rophysical parameters, e.g., 
oil - and water -saturated reservoirs. In this paper, we develop a new tomographic meth od based 
on application of a minimum sup port stabilizer to the crosswell trave l-time inverse problem . 
Thi s stabilizer makes it possible to produ ce clear and focused images of geo logical targets 
with sharp boundaries . We demonstrate that the minimum support stabilizer allows a correc t 
recovery of not only the shape but also the velocity value of the target. We also point ou t that 
this stabilize r provides good resu lts even with a low ray density, when the traditional minimum 
norm stabilizer fails. 

Keywor ds: inversion, focusing, crosswell, travel-time tomography 

1. Introduction 

Cro sswell tom ography is one of the most widely used 
techniques in geo science and geoe nginecring . The crosswc ll 
meth ods are used in petroleum reservoir characterization (Lee 
et al 1995, Willi ams et al 1997), geotechnica l appli cat ions 
(Wright et a11988, Yamamoto et a1 1994, Rechtien et a11995, 
Hyndm an and Harr is et a11996)and mining explorations (Pratt 
et a11993, Wong 2000) where adjac ent boreholes are available. 
In these situations, it is often desirable to have a high-re sol ution 
description of the rock form ations between the boreholes . In 
a crosswell seismic survey, a seismic source is placed in one 
borehole and receivers arc located in another borehole. The 
so urce is fired and the result ing energy prop agates throu gh the 
rock and is received in the other boreho le . The source and 
receivers are then moved to another position and the firing 
and receiving process is repeated. Th is surveying procedure 
is continued until the reg ion of interest has bee n adequately 
traversed by the propagating energy. 

There are several advantages of crosswell geometry 
over surface reflection imag ing. Because the propagation 
of the se ismic signa l in the near surface layers is often 
highly attenuated, the high frequenc ies are degraded upon 
passage through them. The high-frequenc y loss in the surface 
struc tures redu ces the resolution that ca n be achieved in the 
final image. For example, the travel-time pickin g error is 
inversely dependent on the frequ ency of the seism ic wave . 
Therefore, the lowered frequ enci es cause gr eater pick ing 
erro rs, which resu lts in the crea tion of the veloc ity errors. 

The recon stru ction of the se ismic image of the mediu m 
from cross we ll tomographic data is a typical exa mple of 
an ill-posed inverse problem . Modern inversion metho ds 
are usually based on the Tikh onov regularization theory and 
provide a stable solution of inverse problems. Thi s goal is 
reached by introducin g the approp riate stabi lizing functionals 
in the inverse probl em solution. The mai n application of 
the stabilizing functionals (the stabilizers) is in bringing 
a priori information abo ut the desirable prope rties of the 
so lution into the inversion algorithm. 
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Over the last decade several different stabilizers have been 
introdu ced (Geman and Reynold s 1992, Geman and Yang 
1995, Vogel 1997, Lobel et al 1997, Portn iaguine and Zhd anov 
1999, Zhd anov 2002 , pp 45-52). These new stabilizers make 
it possible to produ ce clearer and more focused images of 
the inverse model than the traditional maximum smoo thness 
stabilizers. For example, the minim um support (MS) 
functional was found useful in the solution of geophysical 
inverse problems (Portniag uine and Zhdanov 1999, Zhdanov 
2002, pp 45-52). Th is functional helps to se lect the desired 
stable solution from the class of solutions with specific 
physical and/or geometrical propert ies. In geophys ical 
app lications, one of these properties is the existence of sharp 
boundaries separating geo logical forma tions with different 
physical parameters, e.g., oi l- and water-saturated reservoirs. 
The practical problem of sharp boundary inversion with the 
MS stabilizer is that this functional is non -quadratic, which 
complicates the mini mization of the Tikhonov parametric 
functional. In the original implementation of the regularized 
focusing inversion , this proble m was overcome by a linear 
transformation of the model parameters into the space 
of the weig hted model parameters. As a result of this 
transformation, the MS stabilizer becomes quadratic. This 
linear transformation is updated from iteration to iteration , 
which is equivalent to the re-weightin g of the mode l 
parameters. For example, one can so lve the inverse problem 
using the re-weighted regularized conjugate gradient (RRCG) 
method with repeated modificat ion of the model parameter 
weights after every few iterations. The adva ntage of this 
approac h is in its simplicity. The disadvantage is that, due to 
rc-wcighting, the misfit and stabilizing func tionals can change 
and even increase from iteration to iteration (Zhdanov 2002 , 
p 159). 

There are different ways to overcome this difficulty. 
One approach was introduced in the paper by Zhdanov and 
Tolstaya (2004), where the non-quadratic min imum suppor t 
stab ilizing funct ional was transformed into a quadratic one 
by using a specia lly selected nonlinear transfo rmat ion of 
the model parameters based on minimum support nonlinear 
parametrizations. This technique was successfully tested 
on the synthetic three-dimensional (3D) magnetotelluric data 
inversion for an ear th conductivity structure. 

In the current paper, we consider another approac h which 
so lves the same problem using the direct minimization of the 
Tikhonov parametric functional with the mini mum support 
stabilizer. The advantage of this technique is that it excludes 
the addi tional steps of nonlinear transformation from the 
auxiliary model parameters to the true parameters, which 
simplifies and speeds up the inversion algor ithm. We apply this 
new technique to the crosswell seismic tomography problem . 
We compare the result s of travel-time invers ion obtained using 
two different types of stabilizing functionals: minimum norm 
and minimum support stabilizers . We also investigate the 
sensitivity to noise and the effec t of model parameter weights 
on inversion efficiency. 

We should note, however, that the developed algorithm 
can be app lied for a wide range of imaging problems, including 
electromagnetic imaging and medical imaging. 

2, The travel-time inverse problem 

For completeness, we begin our paper with a brief overview 
of the basic principles of travel-time tomography. In the 
framework of the 'geometri c optics' approac h to seismic 
problems, the travel time T (r ' , r j ) of the seismic ray can be 
related to the local seis mic velocity c(r ) by the relationshi p 

T(r ' , r j ) = s( r) dl , (1)f
 
L (r' .fj ) 

where r is the radius-vec tor of the obse rvation point in some 
Cartes ian system of coordinates, L(r', r j ) denotes the raypath 
between the source r ' and the receiver r i - and the slowness 
s( r) is equal to I / c (r). 

This equation is, in general, not linear because the ray path 
L(r' , r j ) depends on the slowness s( r) . However, we can 
calculate the variation of the travel time using Fermat's 
principle, which states that the travel time is stationary with 
respect to a varia tion of the raypath L (r', r j ) : 

oT( r ' , r j ) = os( r) dl . (2)f
 
L (r' .f j ) 

Let us suppose that we know some background mode l 
sb(r) of the slowness distrib ution and that the currentmodel 
s(r) is obtained by a small perturbation of sb(r) : 

s( r) = sb(r) + D.s(r). (3) 

In this case 

T(Sb + D.s) = f (Sb + D.s) dl ::::: f (Sb + D.s) dl , (4) 
L (Sb+6 s ) L (Sb) 

where T(Sb + D.s) is the travel-tim e stationary along the 
actual raypath, and L (Sb) is the raypath in a homogeneous 
background mediu m which is a stra ight line betwee n the source 
and the receiver. In this way, the problem becomes linear. 

It is possible to discretize the groun d with a regular grid 
with a constant veloci ty in the L cells. Thus we can introduce 
a vector m of the model parameters as a vector of slowness 
within each cell of the grid: 

m = (SIS2 . . . sLJ, (5) 

and a vector d of the data as a vector formed by the travel 
times: 

d =(T) T2 .. . TN) , (6) 

where Ti is the first arrival travel time of the ith ray. 
As a result, we obtain a linear system of equ ations for 

slowness distributi on over the grid: 

d = Am, (7) 

where A= [A ij], and component Ai j is the distance that the 
ith ray travels within the j th cell. 

3. Tikhonov regularization and stabilizing 
functionals 

The syste m of linear equations (7) represents a spec ial case of 
a general linear inverse problem 

d = A (m ) , (8) 

where A is the linear forwa rd modelling ope rator, m = m(r) 

is a function of a point r E V desc ribing the model parameter 
distr ibution in some volume V in the earth (m E M, where 
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M is a Hilbert space of models with L2 norm ), and d denotes 
a geophys ical dat a se t (d E D , where D is a Hilb ert space of 
data). 

The conventiona l way to find a uniqu e and stable so lution 
of the problem (8) is usually based on the minimization of the 
Tikh onov parametric functional (Tikhonov and Arsenin 1977 ): 

P " (m) = </! (m ) + as(m) , (9) 

where </! is the misfit functional defined as the nor m of the 
difference between the obse rved and predi cted dat a: 

</! (m) = IIA (m) - dilL , (10) 

and func tional s (m) is the stabilizing functional, whose 
function is to se lect a co rrec tnes s subset Me from the space 
of all possible models M . In this wayan ill-po sed problem 
becomes well posed . 

There are several different possible choi ces for the 
stabilizer (Zhdanov 2002). In thi s paper, we analyse ju st two 
of them . 

(I ) The minimum norm stabilizer (SMN) , which is equ al to the 
differenc e between the current model m and an appropriate 
a priori model mapr: 

sMN(m) = 11m - maprllL; 

(2)	 The min imum support stabilizer (SMS), which is 
prop ortional to the area (support) of the nonzero values 
of the di fference between the current model m and an 
appropriate a priori model mapr : 

f (m - mapr)2 
sMs(m) = 2 2 du, (II ) 

v (m - map, ) + e 

where e is the foc using par ameter. It was show n by 
Portni aguin e and Zhdanov ( 1999) tha t this functional 
minimizes the area of non zero parameter distribution 
(minimizes the support of the inverse model ), if e tend s 
to zero : e ---> O. Th e focusing parameter charac terizes 
the degree of sharpness of the bound ary between the 
dom ains with the different slowness (Zhdanov 2002 ). If e 
is sma ll (e2 « (m - mapr)2), we generate an ima ge with 
very sharp boundaries; otherwise an image may have a 
relatively smooth boundary. The principl es of the optimal 
focusing parameter selection are formulated in Zhd anov 
and Tolstaya (2004) . 

4. Parametric functional minimization scheme 

The so lution of invers e problem s is based on minimization of 
the parametric functional 

p a (m ) = (A(m) - d , A (m) - d ) o + as(m), (12) 

where (. . . , . . .)0 denotes the inner product in the Hilb ert 
space D of the data . 

Zhd anov (2002, p 50) demonstr ated that the stabilizing 
functionals we considered above can be written in the 
following way : 

stm) = ( We(m - map, ) , We(m - m apr)) M , (13) 

where (. .. , . . .)M denotes the inner produ ct in the Hilbert 
space M of the mod el parameter s, We is an operator of 

multipl ication of the mod el parameters function mer) by the 
aux iliary func tion w eer) . 

In the case of the minimum norm stabilizer, W e is equal 
to I . In the case of the minimum support sta bilizer, 

I 
weer) =	 . (14)

[(m er) - mapr(r ))2 + e2J1 /2 

For discrete model parameter s, we can write , usin g the matrix 
notation , 

~ T ~ 

sCm) = [We(m - map,)] W e(m - mapr) , (I S) 

where the upper supersc ript 'T' denotes a transpo sed matr ix, 
and Weis a d iagon al ma trix defined , in the nontrivi al case of 
the minimum support stabilizer, as 

We= diag [ I 2 21/2] = diag[ wel (16)
[em - mapr) + e ] 

In the abo ve formula, diag[W e] is a diagonal matrix form ed by 
the values of functio n W e determined by the di screte valu es of 
the function m er) descr ibing the mod el parameters. It is worth 
notin g that, in thi s case, Wedepends on m! 

According to the regul arization theory, the goa l is findin g 
a quasi -soluti on of the inverse problem , ma, such that 

p a (ma , d ) = min . (17) 

Portniaguin e and Zhdanov ( 1999) have developed a 
simplified approach to minimizing the parametric fun ctional 
( 17) with the minimum suppor t stabilizer, using the so-ca lled 
re-w eighted regul arized conjuga te gradien t (RRCG) meth od. 
In the framewo rk of this approach, the var iable weighting 
matri x W e is precomputed on eac h iteration, W e = W en = 
W e(m n) , based on the values m, obtained on the previous 
iteration. Thi s line ar transform ation is updated after a fixed 
number of interm ediate iterations, which is equivalent to the 
re-weighting of the mod el parameters. The advantage of this 
approach is in its simplicity. The disadvantage is due to re­
weighting; the misfit and stabilizing functionals can change 
and even increase from iteration to iteration (Zhdanov 2002 ). 
In the present paper, we follow the appr oach developed by 
Veda and Zhd anov (200 3) and so lve the same problem using 
the direct minimization of the Tikh onov parametri c functional 
with the minimum support stabi lizer. 

In the genera l case , the so lution of the minimization 
problem ( 17) can be obt ained iteratively using a gradient-type 
method, which requires calculation of the gradie nt (or the first 
variation, 8p al of the parametri c functional on eac h iteration 
step. In a simple case of the minimum norm stab ilizer, the 
corresponding equation for 8P~N can be obt ained by direct 
ca lculation: 

8 P~N = 8[(A m - d, Am - d)o + a(m - mapr, m - m ap,)M ] 

= 2(8m , A *(A m - d ) + a(m - m apr) ) M, (18) 

where 8m is the perturbation of the model , and A * is the adjo int 
ope rator determined by the form ula 

(A m , dr o = (m. A *d)M . 

In the case of the minimum support stabilizer, one ca n deri ve 

8 P~s = 2(8m , A *(A m - d )) M 

+ 2a(8 (we(m - map,» , we(m - m ap, ) M, (19) 

124 



Sharp boundary inversion in crosswell travel-time tomography 

20 

I 40 

~	 ~ 

(a) 
N 60 

80 

100 
o 20 40 60 80 100 120 140 160 180 200 ; 10- 4 

, (m) 
r 

I 40 .2~ r'"...	 (b)
60 . . ' ~<.<c. "'t.' . 

80 .. 

1100 
o 20 40 60 80 100 120 140 160 180 200 ~ 10- 4 

' (m) slowness(Sim) 
. . . . . . . .20 . . , . . , . . , - - " , . " ,' . 

g 40 , .or (e)
60 . r ••• ••••••.••• ••••·. L••••••••••• .................... .i80 .. i. . . . .. . . 

1100 
o	 20 40 60 80 100 120 140 160 180 200 i 10- 4 

x Im) 

Figure I. Model l. A comp arative study of the minimu m norm inversion (b) and the minimum support inversion (c) for a crosswe ll 
tomography model 1 (panel (a) consisting of a dipping slab with 4 kin S- 1 seismic wave velocity embedded within a homogeneous 
background with 2 km S- 1 velocity. The noise level is 1%. The parameters used for inversion are as follows. In the minim um norm inversion. 
q = 0.85. and a is modified every seven iterat ions. In the min imum support inversion. e = 0.003. q = 0.99. and a is modified every 
five iterations. Note that parameter q repre sents how much a changes from iteration to iteration accord ing to equation (36) . 
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Figure 2. Panels (a) and (b) present the behaviour of the normalized misfits and param etr ic functionals versus iteration numbe r during the 
inversion of the model shown in figure I . The solid line describes the inversion process with the minimu m norm stabilizer. while the dotted 
line describes the behaviour of the misfit and parame tric functional for the minim um support minimization. The dash-dotted line in panel 
(a) shows the noise level. 

where and 
(m - m apr) w'= (2 1)e 

o(we(m - m ap,) ) = weom + w~(m - m apr)om (20)	 « m - m ap, )2 + e2) ~ . 

51	 i _ . .I 
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Figure 3. Model 2. A comparative study of the minimum norm inversion (b) and the minimum support inversion (e) for a crosswell 
tomography model (a) consisting of two bodies with 4 km S- I and 3 km S-1 seismic wave velocity embedded within a homogeneous 
background with 2 km S-I velocity. The noise level is 1%. The parameters used for inversion are as follows. In the minimum norm inversion. 
q = 0.85, and a is modified every seven iterations. In the minimum support inversion, e = 0.003, q = 0.99, and a is modified every 
five iterations. 
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Figure 4. Model 2. A comparative study of the minimum norm inversion (b) and the minimum support inversion (e) for a crosswell 
tomography model (a) consisting of two bodies with 4 km S- I and 3 km S-I seismic wave velocity embedded within a homogeneous 
background with 2 km S- I velocity. The noise level is 5%. The parameters used for inversion are as follows. In the minimum norm inversion, 
q = 0.85, and Cl is modified every seven iterations. In the minimum support inversion, e = 0.003, q = 0.99, and Cl is modified every 
five iterations. 

Us ing the matr ix notation, we writ e expressions (i 8) and ( 19) Following the ge nera l scheme of the gr ad ient-type 

as a T ~T ~ methods (Zhdanov 2(02), in order to obt ain 0 P" :;;;; 0, we 
[A (Am - d )+ a(m- mapr)] (22)oPMN=2o m se lec t 

and om= _ka(a(m ) , (24) 
a T ~T ~ 

oPMS = 20m [A (Am - d ) whe re k" is a positive real number, and (a is the co lumn vector 
+a(We+ Wedi ag(m - mapr» We(m - m apr)] , (23) defining the direction of the stee pes t ascent of the parametri c 

wi th We= di ag(we) and We= diag (w~ ) . functional. 
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Figure 5. Model 3. A comparative study using the minimum support inversion of the crosswell seismic tomographic data simulated for the 
complex model presented in panel (a) . Panel (b) presents the inversion result without the model parameter weights. and panel (e) shows the 
same result with the model parameter weights. The parameters used for inversion are as follows. In inversion without Wm • e = 0.003, 
q = 0.99. and a is modified every iteration. In inversion with Wm, e = 0.003, q = 0.99. and o is modified every five iterations. 

the fo llowing algor ithm (Zhdanov 2002) of the regularized
* source• • • receiver conj ugat e gradient inversio n (Re G): .. •• • r, = Amn - d . (27)

10'1 • • • • I ~' = I~N (mn ) = ATrn + o (m , - m apr) (minim um norm) ...• • : • (28)" 20'1 ..... 
or./ ... 

30 

•• 
I ~' = I~s (mn ) = (29) 

600 \ . ATr, + a (W e+ Wedi ag (m - mapr))W , (m - m apr) , (30)
\

(minimum support) (3 1)400\ 
\ 

fJa, _ II I ~' f~ . (3 2) 
200 L~ --------- n - 111~:' t f 

.- \ \ 
500 

o ' 0 100 200 
300 400 

T~II = I~ N + fi~IIT~:'I ' T~' = I ~' , (33) 

TaTla, 
- a n n

Figure 6. Model 4 consists of a dipping slab with 4 km S-I seismic (34)k , - 2 i1a I12 ' 
wave velocity embedded within a homogeneous background n - II A I~' II + a n IIIn' 
(2 km S- I) . 

mn+l = m, - k~ I ~" . (35) 

In the last fO!:l}1ulae vectors I ~" arc the gradient direct ions. 
In the case of the min im um norm stabilizer. whi le vectors I ~' are the conjuga te direct ions. The len gth of 

a step k~' is de termi ned us ing a linear line search on every
la = AT(Am - d ) + o (m - m apr) ' (25) iter ation. 

Th e regul ar iza tio n parameter a de scribes a trade -offThe direction of the steepes t asce nt for the parametric 
betwee n the best fitt ing and the most reason able stabilization.functiona l with the m inimum support sta bilize r is 
If a is se lec ted too sma ll. the min imi zatio n of p a(m ) is
 

(a = AT(Am- d) eq uiva lent to the m inimization of the misfit functiona l ,p(m).
 
thus we do not have regular ization. Wh en a is too big.
+ a(W e+ Wediag(m - m apr)) W e(m - m ap,) . (26) 
minimi zation of p a(m ) is equiva lent to the min imi zation of 

Using the appro pr ia te expression amo ngst (25) and (26) in the stabil izer functio nal scm ). which will force the so lution to 
the form ulae for the conj ugate gra dient method . we have be closer to the a priori model. 
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Figure 7. A comparative study of minimum support (b) and minimum norm (c) inversion of travel times from model 4 (figure I). Panel (a) 
shows the same plots for the true model. 

In our algorithm, the regulari zation parameter a is selected Note that the regularization parameter a can be modified 
using the adaptive regulari zation (Zhdanov 2002 , p 154). Thi s not on every iteration , but after every Nth iterat ion , where N 
means that a is updated durin g the process of iterative inversion is usually selected from I to 10. The minimization process is 
in the following manner. The init ial iteration is run with terminated when the misfit condition is reached: 

ao = O. In the following iterations II Amn - d ] = 8, (38) 

a n = ajq n- I, n = 1, 2, . .. , o < q < I , (36) where 8 is the noise level in the observed data. 

where a n are the subsequent values of the regularization 
S. Model parameter weights parameter, and a l is determ ined , after the first iteration, as 

the ratio 
It was demonstrated in the monograph by Zhdanov (200 2) that 

II A(mIl - dll 2 
it is import ant to use the appropriate we ights for the model a j= (37) 

s(m j ) parameters in order to have an efficient inversion algorithm. 

and m l is the model obtained after the first iterat ion. The model we ighting matrix Wm is usually se lected based 
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Figure 8. A comparative study of minimum support (b) and minimum norm (e) inversion of travel times from model I (figure I). Panel (a) 
shows the same plots for the true model. 
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Figure 9. Model 5 consists of two anomalies with, respect ively, 
6 km S- I and 5 km S- I seismic wave velocity embedded within a 
homogeneous background (5.5 km 5- 1) . Transmitter- receiver 
configuration is the same as in model 4 (figure 9) (6). 

on the sensitivity analysis of the geophysica l method. In 
part icular, the weighting matrix Wm se lected as the square 
roo t of the sensitivity matrix provides the uniform sensitivity 
of the data to the di fferent model parameters (Zhdanov 2(02): 

Wm = diag(ATA) ~ = diag ( j~ (A ij)2 ) . (39) 

The physical meaning of this choice is evident if we take into 
acco unt that LiAij is the sum of the distances that eve ry 
ray travels in the pixel jth. These weights really make the 
sens itivity of the travel time uniform to the effect of every ce ll 
of the grid. 

In order to incl ude the mode l parameter weights in the 
Re G algorithm described above , we introdu ce the weighted 
model parameters rn'" according to the formula 

m" = Wmm. (40) 

Now we solve the problem of the parametric functional 
minimization in the space of the weighted parameters m '". 
In this situation, the forw ard opera tor is modified as 

A wm w = AW,;; lmw. (4 1) 
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Figure 10. A comparative study of minimum support (b) and minimum norm (e) inversion of travel times from model 5 (figure 9). Panel (a) 
shows the same plots for the true model. 

To obt ain the o riginal model parameters, we have to apply 
inverse weighting to the result of the parametric func tional 
minimizat ion in the space of the weighted parameters: 

m = W;;; lmW 
• (42) 

6, 2D crosswell seismic tomography problems 

Let us consider synthetic mod el I of the cross we ll travel-t ime 
tomography, shown in figure I . The sources and the receivers 
are equally space d and placed in two wells at the left and right 
boundaries of the model (I I sources and 11 receivers in every 
well). Synth et ic 'observed ' data forthis model were comp uted 
using the Ferm at principl e discussed above (equations (4) 
and (7 )). In order to simulate a practical situa tio n with the 
noisy observed data, the syntheti c data were contaminated 
by normally distributed random noi se, 8d , according to the 

formulae 

d = Am true + od, (43) 

and 

od =p (Am'fUe)n, (44) 

(Am true) is thewhere mtrue is the true model, mean value 
of Am true , p is the percentage of noise, and n is a d iagonal 
matr ix of norm ally distributed random numbers with the mean 
valu e equal to zero and standa rd deviation equ al to one. Thi s 
cho ice for noise distribution makes the 'o bserved' sy nthetic 
data more rea listic and harder to invert than in the case of 
uniforml y d istr ibuted noise. 

Panel (a) in figure I shows the true model of the slow ness 
distribution . Panel (b) presents the inversion resul t obta ined 
with the minimum norm stabi lizer. The grid spaci ng used 
for inversion is 10 m x 10 m. The image is unfo cused and 
diffused because the minimum norm solution is characteri zed 
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Figure 11. A comparativestudy of minimumsupport (b) and minimumnorm (c) inversion of traveltimes from model5 (figure 9). Panel (a) 

(c ) 

shows the same plots for the true model. 
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Figure 12. Model 6 consists of a quite complex target with 6 km s" 
seismic velocity embedded within a homogeneous background 
(5 km s" ). 

by relatively smoo th distribution of the model parameters. 
Panel (c) shows the inversion result obtained with the minimum 

support stabilizer. In figure 2, panels (a) and (b) present the 
behaviour of the norm alized misfits and parametric functionals 
versus iteration number for model shown in figure I . The solid 
lines describe the inversion process with the minimum norm 
stabilizer, while the dotted lines describe the behaviour of 
the misfit and parametric functional for the minimu m support 
minimiza tion. Both iteration processes are terminated when 
the misfit reaches the level of noise, p , which is 1% for 
this numerical exam ple, It is clear that using a minimum 
support stabilizer improves the image resolut ion dramatically 
(figure l(c» . Note that the synthetic noise that we used in 
this and other expe riments was not white random noise, but 
normally d istributed random noise. 

Figures 3 and 4 show the inversion results for the same 
model 2 consisting of two blocks with different seismic wave 
slowness, but for data contaminated by differe nt noise levels, 
I% and 5%, respectively. What is interesting is that the 
minimum support inversion applied to data with 5% noise 
(figure 4(c» still provides a better result than the minimum 
norm inversion of data with I % noise (figure 3(b» . The 
last numerical test illustrates the importance of the model 
parameter weights. Figure 5 presents the seismic tomography 
results obtained for model 3 with a quite complicated shape 
and slowness distr ibution. We apply the minimum support 
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Figure 13. A comparative study of minimum support and minimum norm inversion of data from model 6 (figure 12). Panel (a) shows the 
true model: in panels (b), (d), it is possible to see minimum support results obtained using, respectively, 20 and only 12 transmitters; panels 
(e), (e) show minimum norm results obtained from the same two data sets (20 and 12 transmitters). 

inversio n without the model parameter weig hts (figure 5(b)) the z constan t planes obta ined usin g, respectively, SMS and 
and with the model parameter we ights (figure 5(c»). Thi s test SMN , while panel (a) in this figure prese nts the horizontal 
shows that model parameter weights based on the se nsitivities sec tions of a true model. The grid spac ing used for inversion is 
prov ide a better resoluti on of the bodies. Note that the grid 31.6 m x 34.2 m x 3.4 m in the x , y, and z direc tions, 
spac ing used for inversion for models 2 and 3 is the same : respectively. 
10 m x 10m. If we compare these images with the true model 

(figure 7(a)), we can see that the minimum norm result is 
unfocused and diffused because this stabilizer generates a7. 3D crosswell seismic tomography problems 
solution characterized by relatively smoot h distribution of the 

In this sec tion, we use the same algorithm as above , but apply model parameters . Figure 8 shows the slices of the same 

it to 3D data. We compare the results of reg ularized inversion results alon g y constant planes. 

performed with the two stabilizing funct iona ls introduced Let us analyse the inversion result s for mod el 5 

above : the minimum norm , SMN , and the minimum support, (figures 9-1 I ). It is a quite complicated mode l: the source ­

SMS, stabi lizers. Let us consider a synthetic 3D model 4 rece iver configuration is the same as in the former exampl e; 

of the travel-time tomography, show n in figure 6. Fiftee n there are two anomalies with different velocities (5 km S- I and 

sources are located in three boreho les that are not vertica l 6 km s") enclosed in a background with 5.5 km S- I . The grid 

and not stra ight while forty receivers are at the ground level; spacing used for this model is the same as for mode l 4. 
this model consists of a dipping slab with 4 km S- I seismic Detect ing the small low-ve locity anomaly is partic ularly 
wave velocity em bedded within a backgro und with 2 km S- 1 d ifficult; in fact , it is shielded by the bigger high- velocity 
veloci ty. Figures 7(b) and (c) show the invers ion result s along ano ma ly. We would like to point out that SMS can reco nstruct 
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Figure 14. Ray distributions for model 6. Left panels show the vertical and horizontal projections of the rays for the case with 20 sources, 
while the right panels present the sanle pictures for the case with only 12 sources. 

properly not only the shape but also the velocity value of 
both of the bodies (figures lO(b) and II (b)) . Thi s would be 
even clearer if we analyse the two inversion result s using two 
different colour scales that fit better the two sets of model 
parameter values. In fact, in order to plot all figures with the 
same colour sca le, we use the colour range of the minimum 
norm case beca use it is the widest. 

In model 6 (figures 12 and 13), the parameter value range 
for the minimum norm is much wider but, in these figures , 
we plot the data using a colour scale that goes from 1.562 x 
10- 4 s m- t (6.4 km s-t) to 2.173 X 10- 4 s m" ! (4.6 km s- t) 

and we clamp the values outside this interval to the two limit 
co lours. The goa l of this last exampl e is to illustra te that SMS 

can help to reconstru ct targets properly even in those situations 
where ray coverage is far from optimal. The grid spac ing used 

for inversion for model 6 is 20 m x 28 m x 15 m in the 
x , y, and z directi ons, respec tively. In figures l3 (b) and (c) , 
we can see the result s of minimum support and minimum 
norm inversion if we use data from all 20 transmitters; in 
this case, even SM N provides a good result. If we use a 
transmitt er borehol e that is not so deep (thus we use only 
the first 12 sources) we can see (figure I3(d) that SM S still 
provides good resolution of the body while this is not true for 
SMN inversion (figure 13(e)). The ray distri butions for model 6 
are displayed in figure 14. Left panels show the vertical and 
hori zontal projections of the rays for the case with 20 sources, 
while the right panels present the same pictures for the case 
with only 12 sources . One can see that we have poorer ray 
coverage for the model with 12 sources in comparison with the 
model where we have 20 sources. Thu s, we can conc lude that 
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the method works well even under the condition of re latively 
poor ray coverage. 

8. Conclusions 

In this paper , we have developed a new tomographic method 
based on application of a minimum support (MS) stabilizer 
to the cross well travel-time inverse problem. We have 
investiga ted different methods of regularized inversion in 
interp retation of travel-time tomography data. The resu lts 
of this work demonstrate that minimum support inversion 
improves resolu tion of the tomographic imaging and prov ides 
a clear and focused image of targets with sharp boundar ies 
between areas with different se ismic wave veloci ties. 

It is also shown that this kind of inversion is quit e robust 
to noise. It allows us to recover an accurate image even in the 
presence of a relatively high level of noise in the data. We also 
show the import ance of using the appropriate mode l param eter 
weights in order to obtain a good image of anomalous structure. 

Finally, this work demonstrates that the new tomographic 
inversion with the MS stabi lizer provid es good resu lts even 
with a poor ray coverage, when the traditional methods with the 
maximum smoothness stabilizing functional fails. In practice, 
this result means that with the new inversion me thod one ca n 
use a transmitter bore hole that is not as deep as is required by 
conventional travel-time tomograph y. 
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