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Abstract

The reconstruction of seismic images of the medium from crosswell travel-time data is a
typical example of the ill-posed inverse problem. In order to obtain a stable solution and to

replace an ill-posed problem by a well-posed one, a stabilizing functional (stabilizer) has to be
introduced. The role of this functional is to select the desired stable solution from a class of
solutions with specific physical and/or geometrical properties. One of these properties is the
existence of sharp boundaries separating rocks with different petrophysical parameters, e.g.,
oil- and water-saturated reservoirs. In this paper, we develop a new tomographic method based
on application of a minimum support stabilizer to the crosswell travel-time inverse problem.
This stabilizer makes it possible to produce clear and focused images of geological targets
with sharp boundaries. We demonstrate that the minimum support stabilizer allows a correct
recovery of not only the shape but also the velocity value of the target. We also point out that
this stabilizer provides good results even with a low ray density, when the traditional minimum

norm stabilizer fails.
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1. Introduction

Crosswell tomography is one of the most widely used
techniques in geoscience and geoengineering. The crosswell
methods are used in petroleum reservoir characterization (Lee
et al 1995, Williams et al 1997), geotechnical applications
(Wright ez al 1988, Yamamoto et al 1994, Rechtien ef al 1995,
Hyndman and Harris et a/ 1996) and mining explorations (Pratt
etal 1993, Wong 2000) where adjacent boreholes are available.
In these situations, it is often desirable to have a high-resolution
description of the rock formations between the boreholes. In
a crosswell seismic survey, a seismic source is placed in one
borehole and receivers are located in another borehole. The
source is fired and the resulting energy propagates through the
rock and is received in the other borehole. The source and
receivers are then moved to another position and the firing
and receiving process is repeated. This surveying procedure
is continued until the region of interest has been adequately
traversed by the propagating energy.
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There are several advantages of crosswell geometry
over surface reflection imaging. Because the propagation
of the seismic signal in the near surface layers is often
highly attenuated, the high frequencies are degraded upon
passage through them. The high-frequency loss in the surface
structures reduces the resolution that can be achieved in the
final image. For example, the travel-time picking error is
inversely dependent on the frequency of the seismic wave.
Therefore, the lowered frequencies cause greater picking
errors, which results in the creation of the velocity errors.

The reconstruction of the seismic image of the medium
from crosswell tomographic data is a typical example of
an ill-posed inverse problem. Modern inversion methods
are usually based on the Tikhonov regularization theory and
provide a stable solution of inverse problems. This goal is
reached by introducing the appropriate stabilizing functionals
in the inverse problem solution. The main application of
the stabilizing functionals (the stabilizers) is in bringing
a priori information about the desirable properties of the
solution into the inversion algorithm.
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Over the last decade several different stabilizers have been
introduced (Geman and Reynolds 1992, Geman and Yang
1995, Vogel 1997, Lobel et al 1997, Portniaguine and Zhdanov
1999, Zhdanov 2002, pp 45-52). These new stabilizers make
it possible to produce clearer and more focused images of
the inverse model than the traditional maximum smoothness
stabilizers.  For example, the minimum support (MS)
functional was found useful in the solution of geophysical
inverse problems (Portniaguine and Zhdanov 1999, Zhdanov
2002, pp 45-52). This functional helps to select the desired
stable solution from the class of solutions with specific
physical and/or geometrical properties. In geophysical
applications, one of these properties is the existence of sharp
boundaries separating geological formations with different
physical parameters, e.g., oil- and water-saturated reservoirs.
The practical problem of sharp boundary inversion with the
MS stabilizer is that this functional is non-quadratic, which
complicates the minimization of the Tikhonov parametric
functional. In the original implementation of the regularized
focusing inversion, this problem was overcome by a linear
transformation of the model parameters into the space
of the weighted model parameters. As a result of this
transformation, the MS stabilizer becomes quadratic. This
linear transformation is updated from iteration to iteration,
which is equivalent to the re-weighting of the model
parameters. For example, one can solve the inverse problem
using the re-weighted regularized conjugate gradient (RRCG)
method with repeated modification of the model parameter
weights after every few iterations. The advantage of this
approach is in its simplicity. The disadvantage is that, due to
re-weighting, the misfit and stabilizing functionals can change
and even increase from iteration to iteration (Zhdanov 2002,
p 159).

There are different ways to overcome this difficulty.
One approach was introduced in the paper by Zhdanov and
Tolstaya (2004), where the non-quadratic minimum support
stabilizing functional was transformed into a quadratic one
by using a specially selected nonlinear transformation of
the model parameters based on minimum support nonlinear
parametrizations. This technique was successfully tested
on the synthetic three-dimensional (3D) magnetotelluric data
inversion for an earth conductivity structure.

In the current paper, we consider another approach which
solves the same problem using the direct minimization of the
Tikhonov parametric functional with the minimum support
stabilizer. The advantage of this technique is that it excludes
the additional steps of nonlinear transformation from the
auxiliary model parameters to the true parameters, which
simplifies and speeds up the inversion algorithm. We apply this
new technique to the crosswell seismic tomography problem.
We compare the results of travel-time inversion obtained using
two different types of stabilizing functionals: minimum norm
and minimum support stabilizers. We also investigate the
sensitivity to noise and the effect of model parameter weights
on inversion efficiency.

We should note, however, that the developed algorithm
can be applied for a wide range of imaging problems, including
electromagnetic imaging and medical imaging.

2. The travel-time inverse problem

For completeness, we begin our paper with a brief overview
of the basic principles of travel-time tomography. In the
framework of the ‘geometric optics’ approach to seismic
problems, the travel time t(r’, r ;) of the seismic ray can be
related to the local seismic velocity c¢(r) by the relationship

(r', 1)) :/LW s(r)dl, (1)
Tj)

where r is the radius-vector of the observation point in some
Cartesian system of coordinates, L(r’, r;) denotes the raypath
between the source r’ and the receiver r;, and the slowness
s(r) is equal to 1/c(r).

This equation is, in general, not linear because the raypath
L(r',r;) depends on the slowness s(r). However, we can
calculate the variation of the travel time using Fermat’s
principle, which states that the travel time is stationary with
respect to a variation of the raypath L(r', r;):

dt(r',rj) :/ Ss(r)dl. 2)
L.r))

Let us suppose that we know some background model
sp(r) of the slowness distribution and that the current model
s(r) is obtained by a small perturbation of s, (r):

s(r) = sp(r) + As(r). 3)
In this case
r(s;,+As)=/ (sm-As)dl:/

L(sp+As) L(sp)

where (s, + As) is the travel-time stationary along the
actual raypath, and L(s,) is the raypath in a homogeneous
background medium which is a straight line between the source
and the receiver. In this way, the problem becomes linear.

It is possible to discretize the ground with a regular grid
with a constant velocity in the L cells. Thus we can introduce
a vector m of the model parameters as a vector of slowness
within each cell of the grid:

(sp+ As)dl, (4)

m:(S]S?_...SL), (5)
and a vector d of the data as a vector formed by the travel
times:

d=(t112...1n), (6)
where 7; is the first arrival travel time of the ith ray.

As a result, we obtain a linear system of equations for
slowness distribution over the grid:
d=Am, (O]
where A = [A;;], and component A;; is the distance that the
ith ray travels within the jth cell.

3. Tikhonov regularization and stabilizing
functionals

The system of linear equations (7) represents a special case of
a general linear inverse problem

d = A(m), ®)
where A is the linear forward modelling operator, m = m(r)
is a function of a point r € V describing the model parameter
distribution in some volume V' in the earth (m € M, where
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M is a Hilbert space of models with L, norm), and d denotes
a geophysical data set (d € D, where D is a Hilbert space of
data).

The conventional way to find a unique and stable solution
of the problem (8) is usually based on the minimization of the
Tikhonov parametric functional (Tikhonov and Arsenin 1977):

P%(m) = ¢(m) +as(m), 9

where ¢ is the misfit functional defined as the norm of the
difference between the observed and predicted data:
d(m) = ||A(m) —d||} .,

and functional s(m) is the stabilizing functional, whose
function is to select a correctness subset M, from the space
of all possible models M. In this way an ill-posed problem
becomes well posed.

There are several different possible choices for the
stabilizer (Zhdanov 2002). In this paper, we analyse just two
of them.

10)

(1) The minimum norm stabilizer (syn), which is equal to the
difference between the current model m and an appropriate
a priori model mp,:
sun(m) = [lm — mapel7,;
(2) The minimum support stabilizer (sms), which is
proportional to the area (support) of the nonzero values

of the difference between the current model m and an
appropriate a priori model mp; :

(m — mapr)2

sms(m) = y Ti— g+ &2 dv, (11)
where e is the focusing parameter. It was shown by
Portniaguine and Zhdanov (1999) that this functional
minimizes the area of nonzero parameter distribution
(minimizes the support of the inverse model), if e tends
to zero: e — 0. The focusing parameter characterizes
the degree of sharpness of the boundary between the
domains with the different slowness (Zhdanov 2002). If e
is small (¢* <« (m — map,)z), we generate an image with
very sharp boundaries; otherwise an image may have a
relatively smooth boundary. The principles of the optimal
focusing parameter selection are formulated in Zhdanov
and Tolstaya (2004).

4. Parametric functional minimization scheme

The solution of inverse problems is based on minimization of
the parametric functional

P%(m) = (A(m) —d, A(m) —d)p + as(m), (12)

where (...,...)p denotes the inner product in the Hilbert
space D of the data.

Zhdanov (2002, p 50) demonstrated that the stabilizing
functionals we considered above can be written in the
following way:

(13)

where (...,...)y denotes the inner product in the Hilbert
space M of the model parameters, W, is an operator of

s(m) = (We(m — map), We(m — mapr))Mv
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multiplication of the model parameters function m(r) by the
auxiliary function w,(r).

In the case of the minimum norm stabilizer, w, is equal
to 1. In the case of the minimum support stabilizer,

1
[(m(r) — mape(1))% + €2]1/2
For discrete model parameters, we can write, using the matrix
notation,
s(m) = [We(m — myp)]" W (m — myy), (15)

where the upper superscript ‘7" denotes a transposed matrix,
and W, is a diagonal matrix defined, in the nontrivial case of
the minimum support stabilizer, as

w,(r) = (14)

. 1
In the above formula, diag[w,] is a diagonal matrix formed by
the values of function w, determined by the discrete values of
the function m(r) describing the model parameters. It is worth
noting that, in this case, W, depends on m!

According to the regularization theory, the goal is finding
a quasi-solution of the inverse problem, m,, such that

P%*(mg, d) = min. (17)

Portniaguine and Zhdanov (1999) have developed a
simplified approach to minimizing the parametric functional
(17) with the minimum support stabilizer, using the so-called
re-weighted regularized conjugate gradient (RRCG) method.
In the framework of this approach, the variable weighting
matrix W, is precomputed on each iteration, W, = W,, =
W, (m,), based on the values m, obtained on the previous
iteration. This linear transformation is updated after a fixed
number of intermediate iterations, which is equivalent to the
re-weighting of the model parameters. The advantage of this
approach is in its simplicity. The disadvantage is due to re-
weighting; the misfit and stabilizing functionals can change
and even increase from iteration to iteration (Zhdanov 2002).
In the present paper, we follow the approach developed by
Ueda and Zhdanov (2003) and solve the same problem using
the direct minimization of the Tikhonov parametric functional
with the minimum support stabilizer.

In the general case, the solution of the minimization
problem (17) can be obtained iteratively using a gradient-type
method, which requires calculation of the gradient (or the first
variation, § P%) of the parametric functional on each iteration
step. In a simple case of the minimum norm stabilizer, the
corresponding equation for § P{j can be obtained by direct
calculation:

SPyx = 8[(Am —d, Am — d)p + a(m — mapr, m — Mapr) ]
=2(dm, A"(Am —d) + a(m — map)) m, (18)

where ém is the perturbation of the model, and A* is the adjoint
operator determined by the formula

(Am,d)p = (m, A*d)um.
In the case of the minimum support stabilizer, one can derive
8Pys =2(8m, A*(Am — d))u

+2a(8(we(m — mapr)), we(m — Mape)) M
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Figure 1. Model 1. A comparative study of the minimum norm inversion (b) and the minimum support inversion (c) for a crosswell
tomography model 1 (panel (a) consisting of a dipping slab with 4 km s~! seismic wave velocity embedded within a homogeneous
background with 2 km s~ velocity. The noise level is 1%. The parameters used for inversion are as follows. In the minimum norm inversion,
g = 0.85, and « is modified every seven iterations. In the minimum support inversion, e = 0.003, g = 0.99, and « is modified every

five iterations. Note that parameter ¢ represents how much « changes from iteration to iteration according to equation (36).
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Figure 2. Panels (a) and (b) present the behaviour of the normalized misfits and parametric functionals versus iteration number during the
inversion of the model shown in figure 1. The solid line describes the inversion process with the minimum norm stabilizer, while the dotted
line describes the behaviour of the misfit and parametric functional for the minimum support minimization. The dash-dotted line in panel
(a) shows the noise level.

where and

/ (m — mapr)
) Wy = —————————., (21)
S(we(m — mapr)) = w.0m + wg(m - mapr)am (20) ((m — mapr)2 + 62)5

125



M S Zhdanov ez al

slowness (s/m)

0 . T T T T T T v T
20 5
E 400 4 (a)
N B0G
3
80 ¢
100 i i i i i i i i i 2 .
20 40 60 80 100 120 140 160 180 200 x 10
x (m) slowness (s/m)
5
4 (b
3
100 1 L 1 i i | L i K 2 .,
20 40 60 80 100 120 140 160 180 200 x 10"
é x (m) slowness (s/m)
20 5
:é: 40 - 4 (C)
N B0
3
80|
100 2 4
20 40 60 80 100 120 140 160 180 200 x 10
x(m)

Figure 3. Model 2. A comparative study of the minimum norm inversion (b) and the minimum support inversion (c) for a crosswell
tomography model (a) consisting of two bodies with 4 km s~' and 3 km s™! seismic wave velocity embedded within a homogeneous
background with 2 km s~! velocity. The noise level is 1%. The parameters used for inversion are as follows. In the minimum norm inversion,
g = 0.85, and « is modified every seven iterations. In the minimum support inversion, e = 0.003, ¢ = 0.99, and « is modified every

five iterations.

slowness (s/m)

204 - 5
£ 400 {,
N 60G - (a)
3
80Q -
100 2,
0 20 40 60 80 100 120 140 160 180 200 x10
x (m) slowness (s/m)
5
E 4
N (b)
3
2
x107*
0 x (m) slowness (s/m)
20 Pt : 5
g “F .,
N 60 (o)
3
80 :
100 ; 2 4
0 20 40 60 80 100 120 140 160 180 200 x 10
x (m)

Figure 4. Model 2. A comparative study of the minimum norm inversion (b) and the minimum support inversion (c) for a crosswell
tomography model (@) consisting of two bodies with 4 km s~! and 3 km s~! seismic wave velocity embedded within a homogeneous
background with 2 km s~! velocity. The noise level is 5%. The parameters used for inversion are as follows. In the minimum norm inversion,
g = 0.85, and « is modified every seven iterations. In the minimum support inversion, e = 0.003, ¢ = 0.99, and « is modified every

five iterations.

Using the matrix notation, we write expressions (18) and (19) Following the general scheme of the gradient-type

as i methods (Zhdanov 2002), in order to obtain § P% < 0, we
SPy =26m" [AT(Am — d) + a(m — myy)] (22)  select

and o sm = —k%1%(m), (24)

d Pyis = %fm [ﬁ (Am —d) R where k% is a positive real number, and 1* is the column vector

+a(W, + W, diag(m — map))W(m —myy)],  (23)  defining the direction of the steepest ascent of the parametric

with We = diag(w,) and VV’E = diag(w)). functional.
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Figure 5. Model 3. A comparative study using the minimum support inversion of the crosswell seismic tomographic data simulated for the
complex model presented in panel (a). Panel (b) presents the inversion result without the model parameter weights, and panel (c) shows the
same result with the model parameter weights. The parameters used for inversion are as follows. In inversion without W,,, ¢ = 0.003,

q = 0.99, and « is modified every iteration. In inversion with W,,, e = 0.003, g = 0.99, and « is modified every five iterations.
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Figure 6. Model 4 consists of a dipping slab with 4 km s~! seismic
wave velocity embedded within a homogeneous background
(2kms™).

In the case of the minimum norm stabilizer,

1 = A7 (Am — d) + a(m — myy). (25)

The direction of the steepest ascent for the parametric
functional with the minimum support stabilizer is
I =AT(Am — d)

+a(W, + W, diag(m — map,))VAVe (m — myy,). (26)

Using the appropriate expression amongst (25) and (26) in
the formulae for the conjugate gradient method, we have

the following algorithm (Zhdanov 2002) of the regularized

conjugate gradient inversion (RCG):
r, =Am, —d, 27)

I =1y (m,) = A'r, + a(m, —my,) (minimum norm)

(28)
or

I = Ijjs(m,,) = (29)
ATr, + a(W, + W, diag(m — myy))W,(m — my,), (30)
(minimum support) 3D

w _ 5]
By =———m, (32)

e )
Bopepd,,  Teg o

Yo, _ T(:Tlg"
AR o
m,.; =m, — Eﬁ’ﬁ". (35)

In the last formulae vectors I are the gradient directions,
while vectors 1% are the conjugate directions. The length of
a step k" is determined using a linear line search on every
iteration.

The regularization parameter « describes a trade-off
between the best fitting and the most reasonable stabilization.
If « is selected too small, the minimization of P%(m) is
equivalent to the minimization of the misfit functional ¢ (m),
thus we do not have regularization. When « is too big,
minimization of P%(m) is equivalent to the minimization of
the stabilizer functional s(m), which will force the solution to
be closer to the a priori model.
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Figure 7. A comparative study of minimum support () and minimum norm (c) inversion of travel times from model 4 (figure 1). Panel (a)

shows the same plots for the true model.

In our algorithm, the regularization parameter « is selected
using the adaptive regularization (Zhdanov 2002, p 154). This
means that & is updated during the process of iterative inversion
in the following manner. The initial iteration is run with
ag = 0. In the following iterations

=152 (36)

where «, are the subsequent values of the regularization
parameter, and «; is determined, after the first iteration, as
the ratio

oy = ayg", 0<qg<l,

o — Ay —d|?
P smy)

and m is the model obtained after the first iteration.

(37)

)
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Note that the regularization parameter « can be modified

not on every iteration, but after every Nth iteration, where N

is usually selected from 1 to 10. The minimization process is

terminated when the misfit condition is reached:
[Am, —d|| =3,

where § is the noise level in the observed data.

(38)

5. Model parameter weights

It was demonstrated in the monograph by Zhdanov (2002) that
it is important to use the appropriate weights for the model
parameters in order to have an efficient inversion algorithm.
The model weighting matrix W,, is usually selected based
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Figure 8. A comparative study of minimum support (b) and minimum norm (c) inversion of travel times from model 1 (figure 1). Panel (a)
shows the same plots for the true model.

on the sensitivity analysis of the geophysical method. In
ok souree particular, the weighting matrix W,, selected as the square
., Teasiver root of the sensitivity matrix provides the uniform sensitivity
' of the data to the different model parameters (Zhdanov 2002):

D (A2

The physical meaning of this choice is evident if we take into
account that ), A;; is the sum of the distances that every
ray travels in the pixel jth. These weights really make the
sensitivity of the travel time uniform to the effect of every cell
of the grid.

In order to include the model parameter weights in the
RCG algorithm described above, we introduce the weighted
model parameters m* according to the formula

m” = W,,m. (40)

Now we solve the problem of the parametric functional

= OPSIE ) ! LR minimization in the space of the weighted parameters m".
gokm":); en:;l:ssbﬁ;musﬁsg; va—zﬁlof;z:,ﬁ‘,ﬁf:cgﬂﬁn 2 In this situation, the forward operator is modified as

configuration is the same as in model 4 (figure 9) (6). A,m” = AW,;lm"’, 41)

(39

Figure 9. Model 5 consists of two anomalies with, respectively,
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Figure 10. A comparative study of minimum support (b) and minimum norm (c) inversion of travel times from model 5 (figure 9). Panel (a)

shows the same plots for the true model.

To obtain the original model parameters, we have to apply
inverse weighting to the result of the parametric functional
minimization in the space of the weighted parameters:

m=W,'m". (42)

6. 2D crosswell seismic tomography problems

Let us consider synthetic model 1 of the crosswell travel-time
tomography, shown in figure 1. The sources and the receivers
are equally spaced and placed in two wells at the left and right
boundaries of the model (11 sources and 11 receivers in every
well). Synthetic ‘observed’ data for this model were computed
using the Fermat principle discussed above (equations (4)
and (7)). In order to simulate a practical situation with the
noisy observed data, the synthetic data were contaminated
by normally distributed random noise, dd, according to the
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formulae

d=Am"™ +4d, (43)

and
8d =p(Am™)q, (44)

where m™® is the true model, (Am'™) is the mean value
of Am"™¢, p is the percentage of noise, and 1 is a diagonal
matrix of normally distributed random numbers with the mean
value equal to zero and standard deviation equal to one. This
choice for noise distribution makes the ‘observed’ synthetic
data more realistic and harder to invert than in the case of
uniformly distributed noise.

Panel (a) in figure 1 shows the true model of the slowness
distribution. Panel (b) presents the inversion result obtained
with the minimum norm stabilizer. The grid spacing used
for inversion is 10 m x 10 m. The image is unfocused and
diffused because the minimum norm solution is characterized



Sharp boundary inversion in crosswell travel-time tomography

Slowness at x = 173.8924 m

20

(=]

(=

200 400 600

Slowness at x = 300.3596
0
20

(=]

200 400 600

Slowness at x = 173.8924 m
0
20

(=]

200 400 600
Slowness at x = 300.3596

0

20

(=]

200 400 600

Slowness at x = 173.8924 m
0
20

o

200 400 600

Slowness at x = 300.3596
0

20

(=

200 400 600

Slowness at x = 205.5092 m Slowness at x = 237.126 m )(2104
0 0
0 200 400 600 O 200 400 600f {18
Slowness at x = 331.9794 m Slowness at x = 363.5932 m
0
oo [ ] _
0 200 400 600
@) [S/m]
Slowness at x = 205.5092 m Slowness at x = 237.126 m 3; 10°
0 0
0 200 400 600 O 200 400 600f |18
Slowness at x = 331.9794 m Slowness at x = 363.5932 m
0
Yo = e = |
0 200 400 600
(b) [S/m]
Slowness at x = 205.5092 m Slowness ax=237.126m X 10“‘
0 =
0 200 400 600 400 600 1.8
Slowness at x = 331.9794 m Slowness at x = 363.5932 m 1.6
0 0
14
0 200 400 600 0 200 400 600
© [s/m]

Figure 11. A comparative study of minimum support (b) and minimum norm (c) inversion of travel times from model 5 (figure 9). Panel (a)

shows the same plots for the true model.
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Figure 12. Model 6 consists of a quite complex target with 6 km s™!

seismic velocity embedded within a homogeneous background
(Skms™).

by relatively smooth distribution of the model parameters.
Panel (c) shows the inversion result obtained with the minimum

support stabilizer. In figure 2, panels (a) and (b) present the
behaviour of the normalized misfits and parametric functionals
versus iteration number for model shown in figure 1. The solid
lines describe the inversion process with the minimum norm
stabilizer, while the dotted lines describe the behaviour of
the misfit and parametric functional for the minimum support
minimization. Both iteration processes are terminated when
the misfit reaches the level of noise, p, which is 1% for
this numerical example. It is clear that using a minimum
support stabilizer improves the image resolution dramatically
(figure 1(c)). Note that the synthetic noise that we used in
this and other experiments was not white random noise, but
normally distributed random noise.

Figures 3 and 4 show the inversion results for the same
model 2 consisting of two blocks with different seismic wave
slowness, but for data contaminated by different noise levels,
1% and 5%, respectively. What is interesting is that the
minimum support inversion applied to data with 5% noise
(figure 4(c)) still provides a better result than the minimum
norm inversion of data with 1% noise (figure 3(b)). The
last numerical test illustrates the importance of the model
parameter weights. Figure 5 presents the seismic tomography
results obtained for model 3 with a quite complicated shape
and slowness distribution. We apply the minimum support
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Figure 13. A comparative study of minimum support and minimum norm inversion of data from model 6 (figure 12). Panel (a) shows the
true model; in panels (b), (). it is possible to see minimum support results obtained using, respectively, 20 and only 12 transmitters; panels
(¢), (¢) show minimum norm results obtained from the same two data sets (20 and 12 transmitters).

inversion without the model parameter weights (figure 5(b))
and with the model parameter weights (figure 5(c)). This test
shows that model parameter weights based on the sensitivities
provide a better resolution of the bodies. Note that the grid
spacing used for inversion for models 2 and 3 is the same:
10m x 10 m.

7. 3D crosswell seismic tomography problems

In this section, we use the same algorithm as above, but apply
it to 3D data. We compare the results of regularized inversion
performed with the two stabilizing functionals introduced
above: the minimum norm, sy, and the minimum support,
sms, stabilizers. Let us consider a synthetic 3D model 4
of the travel-time tomography, shown in figure 6. Fifteen
sources are located in three boreholes that are not vertical
and not straight while forty receivers are at the ground level;
this model consists of a dipping slab with 4 km s~! seismic
wave velocity embedded within a background with 2 km s~!
velocity. Figures 7(b) and (c) show the inversion results along
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the z constant planes obtained using, respectively, sys and
smn, while panel (@) in this figure presents the horizontal
sections of a true model. The grid spacing used for inversion is
316 m x 342 m x 3.4 m in the x, y, and z directions,
respectively.

If we compare these images with the true model
(figure 7(a)), we can see that the minimum norm result is
unfocused and diffused because this stabilizer generates a
solution characterized by relatively smooth distribution of the
model parameters. Figure 8 shows the slices of the same
results along y constant planes.

Let us analyse the inversion results for model 5
(figures 9—11). It is a quite complicated model: the source—
receiver configuration is the same as in the former example;
there are two anomalies with different velocities (5 km s~! and
6 km s™!) enclosed in a background with 5.5 km s . The grid
spacing used for this model is the same as for model 4.

Detecting the small low-velocity anomaly is particularly
difficult; in fact, it is shielded by the bigger high-velocity
anomaly. We would like to point out that sys can reconstruct
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Figure 14. Ray distributions for model 6. Left panels show the vertical and horizontal projections of the rays for the case with 20 sources,
while the right panels present the same pictures for the case with only 12 sources.

properly not only the shape but also the velocity value of
both of the bodies (figures 10(b) and 11(b)). This would be
even clearer if we analyse the two inversion results using two
different colour scales that fit better the two sets of model
parameter values. In fact, in order to plot all figures with the
same colour scale, we use the colour range of the minimum
norm case because it is the widest.

In model 6 (figures 12 and 13), the parameter value range
for the minimum norm is much wider but, in these figures,
we plot the data using a colour scale that goes from 1.562 x
104sm ' (6.4kms 1) t02.173 x 107 sm™! (4.6 km s™1)
and we clamp the values outside this interval to the two limit
colours. The goal of this last example is to illustrate that sys
can help to reconstruct targets properly even in those situations
where ray coverage is far from optimal. The grid spacing used

for inversion for model 6 is 20 m x 28 m x 15 m in the
x,y, and z directions, respectively. In figures 13(b) and (c),
we can see the results of minimum support and minimum
norm inversion if we use data from all 20 transmitters; in
this case, even sy provides a good result. If we use a
transmitter borehole that is not so deep (thus we use only
the first 12 sources) we can see (figure 13(d) that sys still
provides good resolution of the body while this is not true for
swn inversion (figure 13(e)). The ray distributions for model 6
are displayed in figure 14. Left panels show the vertical and
horizontal projections of the rays for the case with 20 sources,
while the right panels present the same pictures for the case
with only 12 sources. One can see that we have poorer ray
coverage for the model with 12 sources in comparison with the
model where we have 20 sources. Thus, we can conclude that
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the method works well even under the condition of relatively
poor ray coverage.

8. Conclusions

In this paper, we have developed a new tomographic method
based on application of a minimum support (MS) stabilizer
to the crosswell travel-time inverse problem. We have
investigated different methods of regularized inversion in
interpretation of travel-time tomography data. The results
of this work demonstrate that minimum support inversion
improves resolution of the tomographic imaging and provides
a clear and focused image of targets with sharp boundaries
between areas with different seismic wave velocities.

It is also shown that this kind of inversion is quite robust
to noise. It allows us to recover an accurate image even in the
presence of a relatively high level of noise in the data. We also
show the importance of using the appropriate model parameter
weights in order to obtain a good image of anomalous structure.

Finally, this work demonstrates that the new tomographic
inversion with the MS stabilizer provides good results even
with a poor ray coverage, when the traditional methods with the
maximum smoothness stabilizing functional fails. In practice,
this result means that with the new inversion method one can
use a transmitter borehole that is not as deep as is required by
conventional travel-time tomography.
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