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A novel approach to the model appraisal and resolution analysis 
of regularized geophysical inversion 

Michael S. Zhdanov1 and Ekaterina Toistaya1 

ABSTRACT 

The existing techniques for appraisa l of geophysical in­
verse images are based on calculating the model reso lution 
and the model cova riance matrices. In some applications, 
however , it become s desirable to evaluate the upper bounds 
of the varia tions in the solution of the inverse problem. It is 
possible to use the Cauchy inequality for the regularized 
least-squares inversion to quant ify the ability of an experi­
ment to discriminate between two similar models in the pres­
ence of noise in the data . We present a new method for resolu­
tion analysis based on eva luating the spatia l distribution of 
the upper bounds of the model variations and introdu ce a new 
characteris tic of geophysical inversi on, resolut ion density, as 
an inverse of these upper bound s. We derive an efficient nu­
merical technique to compute the resolution density based on 
the spectral Lanczos decomp osition method (SLDM). The 
methodology was tested on 3D synthetic linear and nonl inear 
electromagnetic (EM) data inversions, and also to interpret 
the helicopter-borne EM data collected by INCO Exploration 
in the Voisey's Bay area of Canada. 

INTROD UCTION 

The results of geophysica l data interpretation are usually prese nt­
ed in the form of a corres ponding model of the eart h's formations in 
the area of inves tigation. We determin e this model by solving the in­
verse problem for geop hysical data, which are contaminated by 
noise and are acquired at a limited number of observation points. Be­
cause of the ill-posed nature of inverse geoph ysical problems, the 
solutions are ambiguousand unstable. There are always many solu­
tions that will fit the observed noisy data practically with the same 
data misfit. The varia tions of the inverse model parameters may be 
unreasonably large if we.do not use regulari zation (Tikhonov and 
Arsenin, 1977). There are still significant uncertainties, however, 

even with the application of regularization to the inverse -problem 
solution.The question arises , What are the maximum poss ible varia­
tions of the model parameters that would preserve the varia tion of 
the predicted data within the level of the noise in the observa tions? In 
other words , what is the practical resolution of the regularized inver­
sion? 

Th is is one of the most important problems of exploration geo­
physics. This problem arises in the initia l stage of a geo physica l in­
vestiga tion when we design the geophysica l survey. The same prob­
lem appears at the final stage when we examine the results of the 
interpretation of the observed geophysica l data. Actually, the ques­
tion about sensitivity and resolution of the given geophysica l meth­
od is usually the first one asked by geo logists working with geop hys­
ical data. 

The sensitivity of the geop hysica l method is determi ned as the 
ratio of the variation of the data to the varia tion of the model parame­
ters. The sensitivity can be fou nd by direct mode ling of the theoreti ­
cal respo nse for the given model perturba tion, or by using a reciproc­
ity principle (Rodi, 1976; McG illivray and Oldenburg, 1990; 
McGill ivray et aI., 1994; Sp ies and Habashy, 1995; Zhdanov, 2002). 

The word resolution was introduced into geophysical inversion 
by Backus and Gilbert in their classic 1967 and 1968 papers about 
analysis of the general resolution power of the corresponding geo ­
physical method . In this paper, we are interested, instead, in the reso­
lution study of a specific, regularized inversion of given geo physica l 
data. In this sense, our approa ch provides the model appraisal of the 
regularized inversion. However, for this analys is, we use a mathe­
matical technique, which is quite different from the ones discussed 
in previous publications (see, for example, Ramirez et aI., 1995; 
Alumbaugh and Newman, 2000). 

The existing techniques for appraisal of geo physica l inverse im­
ages are based primarily on calcu lating of the data and model resolu­
tion and covariance matrices (Tarantola, 1987; Menke, 1989; Alum­
baugh and Newman, 2000 ). These matrices make possible the a pos­
teriori appraisa l of the quality of the geophysica l inversion by dis­
playing a distribu tion of the variances of the model parame ter m, 
which describes a standard deviation of the model parameters from 
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the inversion resul t. In geo physical applicati ons, however, it may be 
useful to also estimate the upper bound s of the variations in the solu ­
tion of the invers e problem for the given erro rs in the observed data . 
These upper bounds of the model variations confin e the actual reso ­
lution of the geophysica l inversion. In this paper, we introdu ce a new 
characteristic of geophys ical inversion, resolution density, which is 
determin ed as the inverse of the upper bound s of the model parame­
ter variations, and develop a method for solv ing this prob lem. 

Th ere have been previous examples of inversio n procedures for 
generating the bounds on variables [see, for example, Parker (1975) 
on the theory of idea l bodies for gravi ty interp retation , Sabatier 
(l 977a, 1977b, I977c) on linear inverse problems with cons traints, 
Oldenburg (1983) on funnel functions , and Stark et al. (1986) and 
Stark and Parker (1987) on tau-p inver sions for seismic data inter­
pretation]. Howeve r, the previou s publi cations were focused mostly 
on construc ting all kinds of ex treme solutions for a speci fic geophys ­
ical probl em , e.g., on findin g the smallest envelope containing all ve ­
locity profiles consistent with the seismic data (Stark et aI., 1986) or 
looking for an idea l bod y as one whose suprem um is the smalles t of 
all suprema of all solutions of the gravity inverse problem (Parker, 
1975). 

Here, we consider the'problem of eva luating the spatial distribu ­
tion of the upper bound s of the mode ! parameter variations for the 
given invers ion result . We introduce a novel approach to solving this 
probl em using the Ca uchy inequality for the regularized least ­
squares invers ion, In the framework of this approach, we develop a 
method of resoluti on analysis for both the linear and nonl inear in­
verse probl ems. We also develop a numerical meth od of resoluti on ­
den sity computation based on the spec tral Lanzcos decomp osition 
met hod (SLDM), which provides an efficient way of solving this 
problem for different val ues of the regularization parameter a (Zh­
danov, 2002) . 

The method is illustrated by the resoluti on study of 3D electro­
mag netic (EM) inversions of airborne and magnetotellu ric (MT) 
data. The case history includ es interpre tation of the hel icopter-borne 
EM data collec ted by INCO Explorat ion in the Voisey' s Bay area of 
Ca nada . We believe this new technique provid es a useful tool for the 
analys is of the robustness of geophysica l inve rsion. 

RESOLUTION OF GEOPHYSICAL INVERSION 

A strict mathem atical definition of the resolu tion of a geo physical 
method was introduced in Dmitriev et al. (1990 ); see also Zhd anov 
(2002, p. 31). According to this definition, the measur e of the resolu ­
tion R of the give n geophysical method is determined as the inverse 
of the norm of the inverse operator: 

1 
(I )

R = IIA-III' 
where A is a linear forw ard-modelin g operator for the given geo ­
physical probl em. This definiti on comes from the equality 

Llmax = IIA-III£5 = !.. (2)
R ' 

£5
11m 1- mzll :2: Llmax = R' 

The sma ller the norm of the inverse opera tor, the larger the resolu ­
tion R and the closer to each other are the models that can be re ­
solved. If the inverse operator A-I is not bound ed, i.e., its norm goes 
to infinity, the resoluti on goes to zero , R = 0, and the maximum pos ­
sible variations in the determination of m are infinitely large. This 
situation appea rs in the case of ill-p osed probl ems (Zhdanov, 2002) . 
Note, however, that the aforementioned definition prov ides a global 
estima te of the resolut ion in the sens e that we can estimate only a 
norm of the difference betwee n two models that must be resolved . At 
the same time, it would be very important to be able to compute a lo­
cal est ima te of the resolution (reso lution density), which would de­
liver a distribut ion of the upper boun ds of the model parameter varia ­
tions in the reg ularize d solution of the inve rse problem for the give n 
level of the errors in the obse rved data. 

Man y paper s analyze the effect of errors on the geophys ical in­
verse problem solution (e.g., Sab atier , 1977a , b, c; Stark et al., 1986; 
Stark and Parker, 1987; Menke, 1989). Generally speaking, there are 
two major point s of view in addressing this probl em: 

1) The algebraic (deterministic) point of view [dating back to 
Lanczos (196 I), Marquardt (1963, 1970), Backus and Gilbert 
(1967, 1968), Backus (1970a , b, c), and Tikhonov and Arseni n 
(1977)]. 

2) The stochastic (probabilistic) point of view [formul ated in the 
pioneerin g papers of Foster (196 1), Franklin (1970) , Jackso n 
(1972 ), Tarantola and Valette (1982 ), and Tarantola (1987 )]. 

The stochastic point of view is widely used in geo phys ical litera ­
ture because it is closely asso ciated with the statistica l nature of 
noise in geo physical data (see Sam bridge and Mosegaard, 2002). We 
wo uld like to reca ll, however, Sabatier 's rem ark (I 977a , p. 125), " if 
one tru sts a certain statistical interpretation of errors, and ergo dicity, 
the solutions ca n be classed according to one 's degree of confi­
dence." At the same time, it has been demonstrated in many pub lica­
tions [e.g., the classic wor k by Sab atier (1977 a) that bot h point s of 
view result in similar co mputational algori thms ]. 

We analyze the solution of the geoph ysical inverse pro blem based 
on Tikh onov regulariza tion, which correspo nds to the algebraic (de ­
term inistic) point of view (Tikhonov and Arsenin, 1977). 

RESOLUTION DENSITY 

Let us consider a linear matrix equation : 

d =Am. (3) 

Here, m is the vector of the model parameters of order Nm , d is the 
vector of the observed geophysical data of order Nd, and the matri x A 
is the N, X Nm matri x of the linear forward -model ing operator. 

In the framework ofTikhonov regularization theory, the regul ar­
ized solution of this inverse probl em can be based on the parametric 
functional minimization : 

p a(m ,d ) = (WdA m - W~nWdA m - W~) 

verse probl em for the given level of errors in the observed data o. 
where Lim" is the max imum possible error in the solution of the in­

+ a(Wmm - Wmmapr)*(Wmm - Wmmapr)Based on the last equations, one can say that two models, m. and m 2,
 

ca n be resolved if the followin g condition is satisfied: = min , (4)
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where W d and W m are some weight ing matrices of the data and mod­
el parameters; map, is some a priori model; * denotes the complex 
conjugate transpose matrix; and a is a regularization parameter. The 
detailed descript ion of the optim al weighting matrices selection is 
given in Zhdanov (2002) . 

A solution of the general least-squares problem of equation 4 is 
given by the following equation s (Tikhonov and Arsenin , 1977): 

• 2 W 2)-1( • 2 W 2 )
rn a = (A W dA + Q' m A W dd + Q' mm apr ' (5) 

Let us apply the variational operator 8 to both sides of equati on 5: 

om" = (A 'W~A + Q'W~,tIA·W~8d . (6) 

We shall call the matrix 

R" = (A 'W~A + Q'W~t IA'W~ (7) 

a regularized inverse matrix . It is measured in the followin g units : 

[uni ts of mJ 
[units of RaJ = [ . J. 

umts of d 

The spatial variations of the resolution of the geophysical inver ­
sion can be found by individually analyzing the column s of matrix 
R a • Indeed, equation 6 in scalar notation can be writt en as 

Nd 

8mi= L Ra;j &1j , 
j= 1 

where Raij are the scalar components of Ra> and 8 m, and 8 d , are the 
comp onents of vectors 8 rnaand 8 d , respectivel y. 

From the Cauchy inequality, we have 

Nd Nd 

18m;1 2 
,:;; L IRailL 18dl = e21R;, (8) 

j = ! j = 1 

where 

Nd ]-112 
R ; = IIdll-1

[~ IRail (9) 

and 

e = 11 8dll/lldll 
is a norm of the relative errors in the data. Note that the term 
2:,7:IIRa ij I2represents a sum of the squares of the scalar components 
located in the ith column of R u- We can introduce a diagonal matrix 
R formed by the elements Tc; i = 1,2, .. ., Nm • Accordin g to equa­
tion 9, this matrix is related to the regulari zed inverse matrix R, by 
the equation 

R = Ildll-1[diag(R"R:)r Il 2 
. (I 0) 

We will call the diagonal matr ix R a resolution density matrix. 
Note that the resolution density matrix is computed based on the 

regularized inverse matrix R a . The last matrix , according to equation 
7, is not a function of the data but of the operator of the forward prob­
lem, the data and model parameters weight s W~ and W~ used in the 
inversion, and the regularization parameter a. As a result , the resolu­
tion density depends on the physics of the method used to collect 

data, source- receiver configuration, data components, coverage , etc. 
Therefore, similar to data and model resolution and covariance ma­
trices (Menke, 1989), this matrix is affected by the geophysical 
method s under consideration and data acqui sition parameter s only. 

Now we can determine the upper bound s of the variations in the 
solution of the inverse problem for the given relative errors in the ob­
served data, equal to s : 

Nd ] 112 
Ll; max = SUp 18m;1= elldll[L IRal = d R i• (II) 

11&111=0 j = l 

Based on the last equation s, we can determine the resolut ion den­
sity of the inverse problem solution. Two models, m (l ) and m (21, in 
the vicinit y of the point m, can be resolved if the following cond ition 
is satisfied: 

e
I (I) - m(2)1 2: Ll; max = R ' (12)mi I 1 

Thus, the upper bounds of the variati ons in the solution of the inverse 
probl em are proportional to the relative errors in the data e. Note that 
the noise in the data affects the upper bounds of the model variations 
only; it does not affect the reso lution density matrix introduced 
above. At the same time, equation 12 provides an appraisal of the in­
verse problem solution by taking into account the errors (noise) in 
the data , the physics of the method used to colle ct the data, and the 
data acqui sition parameters. The value R; is also related to the 
weights of the data and model and the regularization parameter a 
used in the inversion algorithm. 

The value R: is the meas ure of the resolut ion density for the given 
inverse problem solution. It is measured in the followin g units: 

Resolution den sity : [units o f R;] = [uni J' (13) 
umts of m 

The larger the resolut ion density R i , the closer to each other are the 
models that can be resolved . The low-resolution density R; corre­
sponds to the area where even very different model s cannot be re­
solved. Note that both the maximum possible variations .1, max and 
the resolution density R i depend on the cell number i. Thus, they de­
scribe the spatial distribution of the variations in the inverse-prob ­
lem solution and of the resolution. By knowing the distributi on of 
the resolution density in the area of inversion , we can identify the 
parts of the inverse model that are well resolvr d and the parts that are 
poorly resolved.Therefore, both the upper bound of the model varia­
tions and the resolut ion density provide effec tive tools for a posterio­
ri appraisa l of the regularized inver sion. It is important to notice that 
our model apprais al and resolution analysis method takes into ac­
count the error s,(noise) in the data, the physics of the method used to 
collect the data, the dara acquisition parameters, and the inversion al­
gorithm. 

Numerical calculation of the resolut ion density is a very challeng­
ing computational probl em. In Appendix A, we present an efficient 
algorithm for determining this parameter based on the SLDM (Lane­
zos, 1961 ; Druskin and Knizhnerman, 1994; Golub and Van Loan, 
1996; Druskin et al., 1999; Zhdanov, 2002) . The advantage of the 
SLDM method is that it allows us to compute the resolution density 
for all possible values of the regulariz ation parameter a (Zhdanov, 
2002). 
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RESOLUTION OF THE NONLINEAR 
INVERSE PROBLEM 

We presented a met hod for the resol ution analysis of the linear in­
verse problem. A simi lar technique can be introduced for nonlinear 
inve rse-problem solution as well. Cons ider a nonlinear matrix equa­

tion 

d = B(m), (14) 

where B is the nonlinea r forward operator. Let us assume that mois a 
solution of the nonlinear inver se prob lem obtained by some inver­
sion method. Let us perturb equa tion 14 in the vicinity of point m-, 

od= Foom , (15) 

where 8 m and 8 d are the perturbations of the model parameters and 
the data, respective ly, and Fois the Frechet derivative matrix at mo· 
Our goa l is to find out how the errors in the observed data 8 d will be 
transform ed in the errors of the inver se-problem solution 8m. To 
solve this problem, we consider the regularized solution of equation 
IS, which can be expres sed in the form (Zhdanov, 2002) 

• 2 2- I • 2 
omll' = (FOW dFo + (l'W m) FOWd&l · (1 6) 

We call matri x Ru(mo), 

• 2 2-1 • 2
R Il'(m o) = (FOW dFo+ (l'W m) FOWd, (17) 

a regularized inverse matrix of the non linear inverse probl em at a 

poi nt mo. 
Similar to the linear case , one ca n analyze, based on Ra(mo), the 

maximum pos sible errors in model parameter dis tribution for the 
given level of errors in the observed data: 

28lom j/2:s - 2 
R Oj 

(18) 

where 

( 
Nd )-1 

R~ j = Il d 1 12~ IRll'ij(moW (19) 

and 8 is a level of relative errors in the observed data: 

8 = 11&l11/lldll. 
The value R o;is the meas ure of the reso lution density for the give n 

nonl inear inverse-p robl em solution mo. 
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Figure I . Schematic view of a conductive cubic model located with­
in a res istive half-space and of a model HEM survey com pr ising five 
flight lines. 

Inequ ality 18 allows us to determ ine the maximum possibl e error s 
in the solution of the nonlinea r invers e problem for the given errors 
in the observed data , using the equation simi lar to expression II . 

The numerical technique for findin g R o; is simi lar to one devel ­
oped for a linear inverse problem in Appendix A. The only differ­
ence is that we must substitute the linear forward-modeling operator 
by the Frechet derivative in the corre spo nding equatio ns of resolu ­
tion ana lysis. 

RESOLUTION STUDY OF THE LINEARIZED
 
INVERSION OF A 3D SYNTHETIC
 

HELICOPTER-BORNE EM SURVEY
 

In th is sec tion, we illustrate the developed method of the resolu­
tion analysi s for the lineari zed airborne EM data inve rsion. Helicop ­
ter-borne EM (HEM) surveys are widely used in minera l explora­
tion. The main difficul ties in the modelin g and interpretation of 
HEM data are relat ed to the fact that for any new obse rvation point , 
one must solve the forward probl em anew for the correspon ding 
position of the movin g tran smitter. In this situation, eve n forwa rd 
modelin g of HEM data over inhomogeneo us struc tures requires an 
enormous numb er of computations. That is why, until recentl y, the 
interpret ation of HEM data was restricted to simple I D invers ion. 
Zhdanov and Tartaras (2002) deve loped a new approach to the mod­
eling and inversion of multisource array EM data based on the so­
called localized quasi-lin ear (LQL) approximation. In the frame­
work of this approach, forward model ing and inver sion of mult i­
source data can be calc ulated at the same time fo r all diffe rent posi ­
tions of the transmitters. Th e LQL approximation also reduces the 
HEM data inver sio n to the solution of the linear inver se problem, 
which makes it possible to implement the linear reso lution analysis 
developed in the previous sections of the paper. 

In the original paper by Zhdanov and Tartaras (2002 ), the linear 
EM inverse probl em was solved using the conjuga te gradient (CG) 
meth od . Zhda nov and Chernyavskiy (2004) introduced a new tech­
nique for fast LQL inversion that employs the SLDM meth od 
(Drusk in and Knizhnerm an, 1994 ; Golub and Van Loa n, 1996; 
Dru skin et aI., 1999; Zhdanov, 2002 ). This techni que help s to accel­
era te HEM data inver sio n and provides a stable image of the geo­
electrical target. We use a similar techn ique for the resolution analy­
sis as we ll (see Appendix A). 

First, we consider a synthetic example of the resolu tion ana lysis 
of the HEM data inversion. We appl y the integral equation software 
SYSEM (Xiong, 1992) to simulate such a survey over a relatively 
conductive (200 ohm-m) cubic body located in a resistive 
(5000 ohm-rnjhalf-space . Figure I depi cts a 3D view of the model. 
Five lines were flown ove r the target at an altitude of 30 m and at a 
distance of 25 m apart. A schematic 3D view of the survey is shown 
in Figure I. 

The moving transmitter-receiver syste m was a pair of vert ical 
magnetic dipoles' (sim ulating a horizon tal copl anar coi l pa ir) and a 
pair of hori zont al magnetic dipoles (simulating a vertical coax ial 
coil pair) with 8 m of horizontal sepa ration. The yy (coaxial) and zz 
(coplanar) compo nents of the anomalous magnetic field were mea­
sured eve ry 15 m alo ng the lines (50 observation points in each line). 
A 7.2-kHz freq uency was used. 

We added I % random noise to the anoma lous magnetic field and 
then inverted it using the SLDM method . The area of inversion, ce n­
tered around the body, was 150 m X 150 m X 150 m and was divid­
ed into 12 X 12 X 12 ce lls. 
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Figure 2 shows the vertica l cross sections (along the x-a xis) of the 

3D model obtained as a result of the regularized inversion with the 

minimum norm stabilizer (Zhdanov and Chem yavsk iy, 2004). We 

should note that the inversion provides a corr ect pos itio n of the tar­

get but underestimates the true conductivity of the body. Indeed, the 

recovered resistivity for the body is about 1000 ohm-m, while the 

true resistiv ity of the body is 200 ohrn-rn. This result comes without 

any surprise because it is well known that the linearized smooth in­

vers ion tend s to underestimate the true physical parameters of the 

target (see, for exa mple, Zhdanov , 2002, p. 46 -49). To recover the 

correct conductivity, one should use the nonlin ear inversion with the 

focusing stabi lizer, which will be outlined in the next numerical ex­

ample of the MT data inversion . This is, however, a very challenging 

problem in the case of HEM data collected with the mov ing trans­

mitter-receiver pairs because any new position of the transmitt er re­
quires solving a different forward-mode ling problem . The full 3D 

nonl inear inversion for the multi transmitt er airborne data is still im­

practical because of the huge computatio nal time requi red in this 

case. At the same time, a linearized approac h represents an effec tive 

solution of 3D inverse problem for the multitransmitter EM data, 

which can be widely used in practical interpreta tion of HEM data. 

We should also note that the limitations of the fas t-forward mapping 

operators in inverse-problem solution are addres sed in many publi­

cations, including Zhdanov and Tartaras (2002) and Zhdanov and 

Chernyavskiy (2004) . The errors in these approximations affect the 

uncertainty analysis in the same way that they affect the inversion re­

sult itself. In this situation, it is especially importan t to evaluate how 

rob ust the linearize d inversion is with respect to the noise in the data. 

The new method of model appraisal and resolution analysis provides 

the corresponding mathematical technique for solvi ng this problem . 

Using the general reso lutio n theory outlined above, we can find 

the reso lution density Rf uand the upper bounds of the conductivity 

variations, according to 
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Figure 2. The vertica l cros s sectio ns (along' the x-axis ) of the 3D 
model obtained as a result of regularized inversion for the synthetic 
observed HEM data for a conduct ive cubic model. The black out­
lines show the true contour of the conductive body. 

e 
8L1<T; = RfU' 

The vertical cross sections of the upper bounds of the conductivity 

variations &1if;for the cubic model inversion are show n in Figure 3, 
while Figure 4 presents the R f udistribution . We have assumed in 

these calculations that the relative error in the observe d data is E: 

= 1%. We can see in Figure 3 that the estimated varia tions in the 

HEM data inver sion in the area of the cubic body are within 
0.0000 1 Slm , while the estimated inverte d cond uctivity of the body 
is about 0.00 1 S /m . Thus, the variat ions do not excee d I%, which 

corresponds well to I% level of noise in the data. This fac t demon­
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Figure 3. The vert ical cross sections of the upper bound s of the con­
ductivity var iations 8L1 if;(r) com puted for the cubic model HEM 
data inversion under the assumption that the rela tive error in the ob­
served data is E: = 1%. The white outlines show the true co ntour of 
the conductive body. 
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Figure 4. The vertica l cross sections of the reso lution den sity Rf u 
distributi on for the cubic model HEM data inversion. Th e white out­
lines show the true co ntour of the conductive body. 
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strates that our inversion algorithm does not amplify the noise in the 
data 

Based on this analysis , we can conclude that the LQL inversion 
outlined above is a very robust method . It provides a stable geo met­
ric image of the target while underestimating the true conduc tivi ty. 
We should note, however, that the detailed analysis of Figure 3 
shows that this robust solution is obtaine d only in the upper and cen­
tral parts of the area of inversion. The estimated variations rapidly 
increase with the depth and to the sides of the inversion area, reac h­
ing almost 0.000 I S/m.The reso lution density decreases for the bot ­
tom and edge parts of the inverse model, correspondingly, as shown 
in Figure 4. 

This simple numerical exa mple shows that, in the prac tical inver­
sion ofgeop hysical data, it is not enoug h to plot ju st the inverse mod ­
el obtained by inversion . In principle, the data acquisition and inver­
sion schemes, play rather important roles in the way the noise propa ­
gates into the inverse model. The newly developed method of model 
appraisal and resolution analysis makes it possible to locate the parts 
of inverse image that experie nce the minimal effect of the noise in 
the data and the areas with the stronges t distortions. As a result , the 
interpreter can identify the parameters of the inverse model that can 
be treated with the most co nfidence, as well as less reliable features. 
This is the major practical significance of our method of inverse im­
age appraisal. 

RESOLUTION STUDY OF THE NONLINEA R 
3D MAGNETOTELLURIC 
INVERSION ALGO RITHM 

In this section, we demonstrate the application of the deve loped 
metho d of the reso lution analysis to a nonlinear, 3D MT inverse 
problem. 

The founda tio ns of the MT method were developed by Tikhonov 
(1950) and Cag niard (1953 ). It is based on meas urements of the nat­
ural EM field at the surface of the earth . The interpretation of MT 
data is based on the calculatio n of the transfer functio ns betwee n the 
horizont al co mponents of the electric and magnetic fields, which 

form the so-called impeda nce tensor Z(Berdichevsky and Dmitriev, 
2002 ): 

, _ [Zxx Zxz- y ] . (20) 
z; -: 

The components of the impedance tensor are dete rmined from the 
horizont al comp onents of the electric and magnetic fields at each ob­
servation point. The corresponding technique for solving this prob ­
lem is outlined in Zhd anov and Keller (1994) and Berdichevsky and 
Dmitriev (2002).These data are inverted for a co nductivity model of 
the earth. 

Thus, the MT inversion requ ires forward modeling of EM field 
com ponents, the corre spo nding impedances , and the apparent resi s­
tivi ties and phases on eac h iteration step. This procedure is extre me­
ly time consu ming, resulting in enormous calculations to solve the 
inver se problem. To overcome this com putational difficulty, Zh­
danov and Golubev (2003) suggest using an approximate solution 
based on quasi-analytic ·(QA) approximation on the initial stage of 
the itera tive inversion. The detailed description of the basic princi­
pies of the QA approximation can be found in Zhdanov et al. (2000) 
and Zhda nov (2002). The approximate QA forward opera tors , intro­
duced in the cited papers, can be used to com pute the components of 

the impedance tensor Z.These opera tors significantly speed up the 
com putations at each step of the inver sion. 

In a genera l case, the corre spo nding equations of MT inver sion 
can be expresse d by an ope rator equation including the data vector d 
and the vector of model parameters m as 

d = B(m). (2 1) 

where B is the nonlinear forward operator representing the gove rn­
ing equations of the MT impedance mode ling problem, m is the vec­
tor of the unknown cond uctivity distribution (model parameters), 
and d is the vector forme d by the observed values of the components 
of the MT impedance tensor at the observation points. 

Inversion aims at estimating the model paramete r vector m based 
on B and a known (observed) data vector d . This problem is usually 
ill posed, i.e., the solution can be nonuni que and unstable. The con­
ventional way of solving ill-posed inverse problems, according to 
regularization theory (Tikhonov and Arsenin, 1977; Zhda nov, 
2002 ), is based on minimization of the Tikhonov parametric func­
tion al, similar to one shown in equa tion 4. 

To ge nerate a focused image of the geoe lectrical mode l, Zhdanov 
and Hursan (20QO) and Mehanee and Zhdanov (2002) applied a min­
imum support stabilizer, whi ch is a nonquadratic functional of a 
form 

SMS(m) = (m - maprf [ (lll - mapr)2 + e2ll 1(m - m apr), 

(22) 

whe re mand map,are Nm X Nm diagonal matrice s of inverse-model 
para meters (current and a priori , respec tively) 

tit = dia g (lIl b Ill 2' .. . , inN) ' 

mapr = d ia g (lIl lapp ln 2app . .. , In Nmapr), 

where e is the focusi ng param eter and i is an Nm X Nm identity ma­
trix . Portn iaguine and Zhda nov (1999 ) show that this functio nal 
minimizes an area of nonzero parameter distribut ion (minimizes the 
support of the inverse model) if e tends to zero : e -> 0. The principles 
of the minimum support inversion are discussed in detail in Zhd anov 
(2002 ). 

Recent ly, Zhdanov and Tolstaya (2004) sugges t using a nonlin ear 
paramet erization to transform the nonqu adratic, minimum-support 
stabilizing functional described by equat ion 22 into a quadratic one, 
described by 

-m [ ( , A )2 2JAJ-II2(= m - mapr + e m )- m apr ' (23) 

and 

. m - m . = e[1 - fi\2J- lI2mapr , (24) 

where m = {m,},i = I , .. ., Nm is the original vector of the model pa­
rameters; m= {Iii,}, i = I , .. ., Nm is a new vec tor of the nonlinear 

parameters; and £ is a Nm X Nm diagonal matrix with the diagonal 

formed by nonl inear model paramete rs, £ = diag (lii"m2' . . ., nIN) ' 
We solve the minimization problem for the corresponding 

Tikhonov parametric functio nal by the regularized conjugate gradi­
ent (RCG) method. The details of this algorithm are described in Zh­
danov and Tolstaya (2004). 

The app lication of the QA approximation to forward modelin g 
and Frechet derivative computations speeds up the calculation dra ­
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matically. However, to contro l the accuracy of the inversion, this ative errors in the observed data equal to 3%. The vertical sectio ns of 
method allows applicatio n of rigorous forward modeling in the final the upper bound s of the variations of conductivity distributi ons and 
steps of the inversion procedure. We use an integral equation for­ the reso lution density are show n in Figures 7 and 8. One can see that 
ward-modeling code base d on the co ntractio n integral equation the reso lution is higher in the central parts of the sect ions, and the 
method , which improves the co nverge nce rate of 
the iterative solvers (Hursan and Zhda nov, 2002 ). 
Applicatio n of a few additional iterations with a 
rigorous forward-mode ling solver improves the 
resolution of the inverse method and helps to gen­
era te a more correct image of the target (Zhdanov 
and Tolstaya, 2004 ). 

We now present a nume rical example of the 
MT data inversion and the reso lution analysis. 
Consider a homogeneous half-space with a resis­
tivity of 100 ohrn-rn, containing a conduct ive 
dike. The resistivity of the inhomoge neity is 
3 ohrn-rn. The top of the dike is at a depth of 
200 m, and its bottom is at a depth of 600 m be­
neath the surface.Thi s model is excited by a plane 
EM wave source. The x- and y-co mponents of the 
anomalous magnetic and electric fields for four 
different frequencies (I , 10, 100, and 1000 Hz) 
have been simulated at 225 receiver point s 
arranged on a hom ogeneous grid, using inte­
gral equation forward-modeling code INTEM3D 
(Hursan and Zhdanov, 2002 ). The coordinates of 
the receiver grid arex and y from - 700 to 700 ev­
ery 100 m. The receiver system is located at the 
surface of the earth. The EM field components 
were recalculated into MT impeda nces , using the 
standard equations (Berdichevsky and Dmitriev, 
2002 ). The area of inversion is covere d by a ho­
mogeneous mes h consisting of 16 X 25 X 8 cubic 
ce lls surro unding the anomalous structure to be 
inverted. Each cell has a dimension of 100 m in 
the r -, yo, and z-directions. We select the focusing 
parameter as e = 0.016 .The details of the tech -

a) J' lohm-ml 
3 c) 

'"

.....;. ...( 

"" .",.1' 

I' (ohm·ml 
3 

...· (i ;·~ru e··~· ~ · ~ h·m·; rrt·· .... rI; ·~~ J~ ~~;;:; , · . ! : .0- ····· 22 0· ··.. 22 

42 42 
:[ 500 -', ~ :[ 500 1. " .... ..; 
.... .... 

61 61 
" .:, 

." . , •• > ........
 :':,,:1000 1000
 
- 1000
 81 81100 - 1000 

100 1001000 - 1000 

b ) I'fohm-ml 

0 . ..··.

~i . · · · · · · · · · · · · : ': ;,~~i'
 
,i,..","',···,····,,·.·:·:·:.:> 1 

"" ,.."., . <:1000 
-1000 10 

1000 -1000 

3 

d) 10' r~:nm:+?
22 

10' 

42
 

61
 

." . - PI,,) 

:··'C7:{'}!·'il:::~ifEl(s)L ~ ..".; _". ~,. " J 

i I 

?\!7f'7. '...If::.?2£LT??:1 

10' ~~~:r~i~~~:~;:~~·~
81 

l~ ...~.~.~ ~ ~ 
100 '0'" 

o 20 40 60 80 100 
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Figure 5. (a) The true model of a co nduc tive dike. (b) Inversion results after 15 iterations 
with the minimum-norm stabilizer. (c) Final result after 60 iterations with the minimum­
support stabilizer and QA forwa rd modeling and 20 additional iterat ions of the RCG 
method with minimum-suppor t inversion and rigorous full-forwa rd modeling . (d) Inver­
sion curves, parametric functio nal P[ a], stabilizer sC m], misfit <p[m ], and elapsed time 
versus iterat ion number. In this figure, we present 3D image s of the resis tivity distribution 
with volume rendering. The cutoff level of the resistivity for these images is show n in the 
corresponding panels. For exa mple, the cutoff level p<5 ohm- rn mea ns that only the 
cells with a value of resist ivity less than 5 ohm-m are displayed (after Zhdanov and Tol ­
staya , 2004 ). 

Figure 5a shows the true model. For this model, we run inversion 
using differe nt inverse methods. On the first stage, we ran 15 itera­
tions of the RCG meth od with minimum norm stabilizer (Figure 5b); ~: . ........ . ~: ::
;after that, we applied 60 iterations with a minimum-support stabi liz­ .........~ " 

er and QA forw ard modelin g and an additional 20 iteration s of the 
800 .. i .'; ......; .... ' 1

RCG method with minimum-support inversion and rigorou s fo r­ 100 
- 500 o 500 

ward modeling (Figure 5c). Th e inversion curves , parametric func­

tional P[ a] ,stabilizer s[m],misfit <p[ m], and elapsed time versus it­ b) i'lohm-mi
 

OJ 1 _ 3 
eration number are shown in Figure 5d, as well. 

Figure 6 presents the vertica l cross sections of the true model 200 7 

(panel a) , the smoo th inversion result with minimum-norm stabilizer 
N400 17(panel b), the intermediate result with minimum -support stabilizer 

and QA forward modeling (panel c), and the final foc using inversion 600 42 

result (panel d). One can see that the smooth minimum-norm result 800 ..·· 100underestimates the true conductivity, whi le the focusing inver sion 
reco nstructs an image that is very close to the true mode l and with 
prac tically the same resistivity. 
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Figure 6. Dike model. Vertica l cross sections of the true model (a),We have analyzed the reso lution ofour nonl inear-inversion meth­
the inversion result with the minimum-norm stabilizer (b), the inter ­

od for the final model presented in Figure 5c and in Figure 6d . We media te result with the minimum-support stabilizer and QA forward 
computed the maximum possible variations in the solution of non­ modeli ng (c), and the final sharp inversion result (d) (after Zhda nov 
linear-inverse problems for a co nductive dike for a give n level of rel- and Tolstaya , 2004 ). 
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APPENDIX A 

AP PLICATION OF T HE SPECTRAL LANCZOS
 
DE CO MPOSITION METHOD (SLDM) FOR
 
RESO LUTIO N DENSITY CALCULATION
 

In thi s appe nd ix, we construct a numerical algorithm fo r re solu­

tion-density c alculation. 

Acc ording to th e definition , the resolution densit y is obtained by 

adding the squa res of the column ele m ent s of th e regularized in verse 

matri x R . To find th e ith column of thi s matrix , we can introduce a a 

ve ctor e, w ith un ity in the ith po sit ion :	 . 

e, = [0,0, .. ., 0, 1,0, .. ., oy E ENd, 

w here EN, is Nr d imens iona l Euclidean space , and recover the ith 
co lumn of the re gularized in verse matrix R~ ) by simple multipl ica ­

tion : 

R (i) = (A*W2A + W 2 )-lA*W2 e . d da a m I 

=W~12(A *W ~A~2 + aItlA *W ~ ej . (A-I) 

Introdu c ing th e notations 

* 2 - 2 
B = A W dA W m ' 

* 2 e, = A W d ei ' 

we fin all y obtain 

R(i) - W · 2f (B) a - m a Cj, (A-2) 

where 

f a(B) = (B + a It l . 

Thus , we have arrived at th e problem of co m puting a function of 

matrix B . 
This problem can be so lve d by th e SLDM (D ru skin and Knizhner­

man , 1994; Golub and Van Loan , 1996 ; Zhdanov, 2002). First , we 

apply the Lanczos algorithm for QT decomposition of matrix B : 

f30 = 1, qo = 0, ql = Cj , (A-3a) 

f j 
while f3j =t- 0, aj = q;Bqj , (A-3b ) qj+l = f3/ 

f j =(B - IN)qj - f3j- lqj- 1> f3j =Ilf j ll, (A-3c ) 

j = 1, 2, .. ., N - 1. 

A s a result , we find an orthogonal matrix QLand the tridiagonal ma­

trix T L , where L is an iteration ste p of th e Lanczo s algorithm. 

We can writeexpressionA-2 as 

LR~) =w ;;,21IdQJa(T L)e lL) = w ;;,21IcAI QL(TL + a I t	 lei ), 

(A-4) 

whe re 

eiL) = [1,0, .. .,0,0, .. ., oy E E L . 

The re so lution density is com puted now, accor d ing to equation 9 , as 

Nd ]-112 
l 2n ,= IIdll- [~ IRaij l (A-S ) 

The advantage of th e SLDM method is th at we have to run the 

Lanczos algorithm only on ce fo r a ll different values of the regu lar­

ization parameter a . After th at we only have to invert a tridiagonal 

matrix (TL + ail for a differ ent a, w hich is a much sim pler op era­

tion . 

The selectio n of th e optimal re gu larizati on paramet er a can be 

made using either Tikhono v 's m ethod o r th e L-curve method . The 

detail ed description of the se m eth od s can be found in Z hd anov 

(2002) . 
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