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A novel approach to the model appraisal and resolution analysis

of regularized geophysical inversion

Michael S. Zhdanov' and Ekaterina Tolstaya'

ABSTRACT

The existing techniques for appraisal of geophysical in-
verse images are based on calculating the model resolution
and the model covariance matrices. In some applications,
however, it becomes desirable to evaluate the upper bounds
of the variations in the solution of the inverse problem. It is
possible to use the Cauchy inequality for the regularized
least-squares inversion to quantify the ability of an experi-
ment to discriminate between two similar models in the pres-
ence of noise in the data. We present a new method for resolu-
tion analysis based on evaluating the spatial distribution of
the upper bounds of the model variations and introduce a new
characteristic of geophysical inversion, resolution density, as
an inverse of these upper bounds. We derive an efficient nu-
merical technique to compute the resolution density based on
the spectral Lanczos decomposition method (SLDM). The
methodology was tested on 3D synthetic linear and nonlinear
electromagnetic (EM) data inversions, and also to interpret
the helicopter-borne EM data collected by INCO Exploration
in the Voisey’s Bay area of Canada.

INTRODUCTION

The results of geophysical data interpretation are usually present-
ed in the form of a corresponding model of the earth’s formations in
the area of investigation. We determine this model by solving the in-
verse problem for geophysical data, which are contaminated by
noise and are acquired at a limited number of observation points. Be-
cause of the ill-posed nature of inverse geophysical problems, the
solutions are ambiguous and unstable. There are always many solu-
tions that will fit the observed noisy data practically with the same
data misfit. The variations of the inverse model parameters may be
unreasonably large if we do not use regularization (Tikhonov and
Arsenin, 1977). There are still significant uncertainties, however,

even with the application of regularization to the inverse-problem
solution. The question arises, What are the maximum possible varia-
tions of the model parameters that would preserve the variation of
the predicted data within the level of the noise in the observations? In
other words, what is the practical resolution of the regularized inver-
sion?

This is one of the most important problems of exploration geo-
physics. This problem arises in the initial stage of a geophysical in-
vestigation when we design the geophysical survey. The same prob-
lem appears at the final stage when we examine the results of the
interpretation of the observed geophysical data. Actually, the ques-
tion about sensitivity and resolution of the given geophysical meth-
od is usually the first one asked by geologists working with geophys-
ical data.

The sensitivity of the geophysical method is determined as the
ratio of the variation of the data to the variation of the model parame-
ters. The sensitivity can be found by direct modeling of the theoreti-
cal response for the given model perturbation, or by using a reciproc-
ity principle (Rodi, 1976; McGillivray and Oldenburg, 1990,
McGillivray etal., 1994; Spies and Habashy, 1995; Zhdanov, 2002).

The word resolution was introduced into geophysical inversion
by Backus and Gilbert in their classic 1967 and 1968 papers about
analysis of the general resolution power of the corresponding geo-
physical method. In this paper, we are interested, instead, in the reso-
lution study of a specific, regularized inversion of given geophysical
data. In this sense, our approach provides the model appraisal of the
regularized inversion. However, for this analysis, we use a mathe-
matical technique, which is quite different from the ones discussed
in previous publications (see, for example, Ramirez et al., 1995;
Alumbaugh and Newman, 2000).

The existing techniques for appraisal of geophysical inverse im-
ages are based primarily on calculating of the data and model resolu-
tion and covariance matrices (Tarantola, 1987; Menke, 1989; Alum-
baugh and Newman, 2000). These matrices make possible the a pos-
teriori appraisal of the quality of the geophysical inversion by dis-
playing a distribution of the variances of the model parameter m,
which describes a standard deviation of the model parameters from
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the inversion result. In geophysical applications, however, it may be
useful to also estimate the upper bounds of the variations in the solu-
tion of the inverse problem for the given errors in the observed data.
These upper bounds of the model variations confine the actual reso-
lution of the geophysical inversion. In this paper, we introduce anew
characteristic of geophysical inversion, resolution density, which is
determined as the inverse of the upper bounds of the model parame-
ter variations, and develop a method for solving this problem.

There have been previous examples of inversion procedures for
generating the bounds on variables [ see, for example, Parker (1975)
on the theory of ideal bodies for gravity interpretation, Sabatier
(1977a, 1977b, 1977¢) on linear inverse problems with constraints,
Oldenburg (1983) on funnel functions, and Stark et al. (1986) and
Stark and Parker (1987) on tau-p inversions for seismic data inter-
pretation]. However, the previous publications were focused mostly
on constructing all kinds of extreme solutions for a specific geophys-
ical problem, e.g., on finding the smallest envelope containing all ve-
locity profiles consistent with the seismic data (Stark et al., 1986) or
looking for an ideal body as one whose supremum is the smallest of
all suprema of all solutions of the gravity inverse problem (Parker,
1975).

Here, we consider the problem of evaluating the spatial distribu-
tion of the upper bounds of the model parameter variations for the
given inversion result. We introduce a novel approach to solving this
problem using the Cauchy inequality for the regularized least-
squares inversion. In the framework of this approach, we develop a
method of resolution analysis for both the linear and nonlinear in-
verse problems. We also develop a numerical method of resolution-
density computation based on the spectral Lanzcos decomposition
method (SLDM), which provides an efficient way of solving this
problem for different values of the regularization parameter « (Zh-
danov, 2002).

The method is illustrated by the resolution study of 3D electro-
magnetic (EM) inversions of airborne and magnetotelluric (MT)
data. The case history includes interpretation of the helicopter-borne
EM data collected by INCO Exploration in the Voisey’s Bay area of
Canada. We believe this new technique provides a useful tool for the
analysis of the robustness of geophysical inversion.

RESOLUTION OF GEOPHYSICAL INVERSION

A strict mathematical definition of the resolution of a geophysical
method was introduced in Dmitriev et al. (1990); see also Zhdanov
(2002, p. 31). According to this definition, the measure of the resolu-
tion R of the given geophysical method is determined as the inverse
of the norm of the inverse operator:

1
T v

where A is a linear forward-modeling operator for the given geo-
physical problem. This definition comes from the equality

6
Apas = |46 = z 2

where A, is the maximum possible error in the solution of the in-
verse problem for the given level of errors in the observed data &.
Based on the last equations, one can say that two models, m; and m,,
can be resolved if the following condition is satisfied:

”ml_ m2” = Amax =

=l

The smaller the norm of the inverse operator, the larger the resolu-
tion R and the closer to each other are the models that can be re-
solved. If the inverse operator A~ is not bounded, i.e., its norm goes
to infinity, the resolution goes to zero, R = 0, and the maximum pos-
sible variations in the determination of m are infinitely large. This
situation appears in the case of ill-posed problems (Zhdanov, 2002).
Note, however, that the aforementioned definition provides a global
estimate of the resolution in the sense that we can estimate only a
norm of the difference between two models that must be resolved. At
the same time, it would be very important to be able to compute a lo-
cal estimate of the resolution (resolution density), which would de-
liver a distribution of the upper bounds of the model parameter varia-
tions in the regularized solution of the inverse problem for the given
level of the errors in the observed data.

Many papers analyze the effect of errors on the geophysical in-
verse problem solution (e.g., Sabatier, 1977a, b, c; Stark et al., 1986;
Stark and Parker, 1987; Menke, 1989). Generally speaking, there are
two major points of view in addressing this problem:

1) The algebraic (deterministic) point of view [dating back to
Lanczos (1961), Marquardt (1963, 1970), Backus and Gilbert
(1967, 1968), Backus (1970a, b, ¢), and Tikhonov and Arsenin
(1977)].

2) The stochastic (probabilistic) point of view [formulated in the
pioneering papers of Foster (1961), Franklin (1970), Jackson
(1972), Tarantola and Valette (1982), and Tarantola (1987)].

The stochastic point of view is widely used in geophysical litera-
ture because it is closely associated with the statistical nature of
noise in geophysical data (see Sambridge and Mosegaard, 2002). We
would like to recall, however, Sabatier’s remark (1977a, p. 125), “if
one trusts a certain statistical interpretation of errors, and ergodicity,
the solutions can be classed according to one’s degree of confi-
dence.” At the same time, it has been demonstrated in many publica-
tions [e.g., the classic work by Sabatier (1977a) that both points of
view result in similar computational algorithms].

We analyze the solution of the geophysical inverse problem based
on Tikhonov regularization, which corresponds to the algebraic (de-
terministic) point of view (Tikhonov and Arsenin, 1977).

- RESOLUTION DENSITY

Let us consider a linear matrix equation:
d=Am. 3)

Here, m is the vector of the model parameters of order N,,, d is the
vector of the observed geophysical data of order N, and the matrix A
is the N, X N, matrix of the linear forward-modeling operator.

In the framework of Tikhonov regularization theory, the regular-
ized solution of this inverse problem can be based on the parametric
functional minimization:

P*(m,d) = (W,Am — W,d) (W,Am — W ,d)
+ a(Wmm - Wmmapr)*(wmm - Wmmapr)

= min, (4)
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where W, and W, are some weighting matrices of the data and mod-
el parameters; m,, is some a priori model; * denotes the complex
conjugate transpose matrix; and « is a regularization parameter. The
detailed description of the optimal weighting matrices selection is
given in Zhdanov (2002).

A solution of the general least-squares problem of equation 4 is
given by the following equations (Tikhonov and Arsenin, 1977):

m, = (A'W2A + aW2)(A"Wid + aWom,,). (5)

Let us apply the variational operator dto both sides of equation 5:

Sm, = (A"W2A + aW2)'A"Wi5d. (6)
We shall call the matrix
R, = (A"W2A + aW2)'A"W) (7

aregularized inverse matrix. It is measured in the following units:

[units of m]
[units of d]
The spatial variations of the resolution of the geophysical inver-

sion can be found by individually analyzing the columns of matrix
R,. Indeed, equation 6 in scalar notation can be written as

[units of R,] =

Ny
om; = 2 Rm‘j&ij,
. j=1

where R, are the scalar components of R, and §m; and & d; are the
components of vectors § m, and §d, respectively.
From the Cauchy inequality, we have

N, N,
|omf* = 2 R |8 = e¥/R?, @®)
j=1 j=1
where
Ny -172
R =l X |Raij|2 9)
j=1
and
e =|od||/d]

is a norm of the relative errors in the data. Note that the term
2}";,|Rm-j|2 represents a sum of the squares of the scalar components
located in the ith column of R,,. We can introduce a diagonal matrix
R formed by the elements R;, i = 1,2, ..., N,,. According to equa-
tion 9, this matrix is related to the regularized inverse matrix R, by
the equation '

R = |d|"'[diag(R,R})] . (10)

We will call the diagonal matrix R aresolution density matrix.

Note that the resolution density matrix is computed based on the
regularized inverse matrix R,,. The last matrix, according to equation
7, is not a function of the data but of the operator of the forward prob-
lem, the data and model parameters weights W7 and W2 used in the
inversion, and the regularization parameter a. As a result, the resolu-
tion density depends on the physics of the method used to collect

data, source-receiver configuration, data components, coverage, etc.
Therefore, similar to data and model resolution and covariance ma-
trices (Menke, 1989), this matrix is affected by the geophysical
methods under consideration and data acquisition parameters only.

Now we can determine the upper bounds of the variations in the
solution of the inverse problem for the given relative errors in the ob-
served data, equal to €:

Ny 12

A ax = sup || = eld|l| 2 [Rayl>| =e/Ri. (A1)
[|5dl|=6 j=1

Based on the last equations, we can determine the resolution den-
sity of the inverse problem solution. Two models, m") and m®, in
the vicinity of the point m, can be resolved if the following condition
is satisfied:

!~ m) = 4 02)

&
1 max Rl *
Thus, the upper bounds of the variations in the solution of the inverse
problem are proportional to the relative errors in the data €. Note that
the noise in the data affects the upper bounds of the model variations
only; it does not affect the resolution density matrix introduced
above. At the same time, equation 12 provides an appraisal of the in-
verse problem solution by taking into account the errors (noise) in
the data, the physics of the method used to collect the data, and the
data acquisition parameters. The value R, is also related to the
weights of the data and model and the regularization parameter «
used in the inversion algorithm.

The value R; is the measure of the resolution density for the given
inverse problem solution. It is measured in the following units:

1

[units of m] '

Resolution density: [units of R;| = (13)

The larger the resolution density R, the closer to each other are the
models that can be resolved. The low-resolution density R, corre-
sponds to the area where even very different models cannot be re-
solved. Note that both the maximum possible variations 4; ,,,, and
the resolution density R, depend on the cell number i. Thus, they de-
scribe the spatial distribution of the variations in the inverse-prob-
lem solution and of the resolution. By knowing the distribution of
the resolution density in the area of inversion, we can identify the
parts of the inverse model that are well resolved and the parts that are
poorly resolved. Therefore, both the upper bound of the model varia-
tions and the resolution density provide effective tools for a posterio-
ri appraisal of the regularized inversion. It is important to notice that
our model appraisal and resolution analysis method takes into ac-
count the errors (noise) in the data, the physics of the method used to
collect the data, the data acquisition parameters, and the inversion al-
gorithm.

Numerical calculation of the resolution density is a very challeng-
ing computational problem. In Appendix A, we present an efficient
algorithm for determining this parameter based on the SLDM (Lanc-
z0s, 1961; Druskin and Knizhnerman, 1994; Golub and Van Loan,
1996; Druskin et al., 1999; Zhdanov, 2002). The advantage of the
SLDM method is that it allows us to compute the resolution density
for all possible values of the regularization parameter « (Zhdanov,
2002).
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RESOLUTION OF THE NONLINEAR
INVERSE PROBLEM

We presented a method for the resolution analysis of the linear in-
verse problem. A similar technique can be introduced for nonlinear
inverse-problem solution as well. Consider a nonlinear matrix equa-
tion

d = B(m), (14)
where B is the nonlinear forward operator. Let us assume that m is a

solution of the nonlinear inverse problem obtained by some inver-
sion method. Let us perturb equation 14 in the vicinity of point my,

5d =F,om, (15)

where §m and & d are the perturbations of the model parameters and
the data, respectively, and F is the Fréchet derivative matrix at m.
Our goal is to find out how the errors in the observed data §d will be
transformed in the errors of the inverse-problem solution §m. To
solve this problem, we consider the regularized solution of equation
15, which can be expressed in the form (Zhdanov, 2002)

sm, = (FyW2F, + aW2)'FoWiad. (16)
We call matrix R,(m,),
R,(m) = (FoWFo + aW,)"'FoW5,  (17)

a regularized inverse matrix of the nonlinear inverse problem at a
point mg.

Similar to the linear case, one can analyze, based on R,(my), the
maximum possible errors in model parameter distribution for the
given level of errors in the observed data:

2 82 )
om|- = — 18
ol = 2 (
where
Ny -1
R%i = (||d||22 |Rm'j(m0)|2) (19)
J=1
and ¢ is alevel of relative errors in the observed data:
e = ||ad]/|d]|.

The value R is the measure of the resolution density for the given
nonlinear inverse-problem solution my.
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Figure 1. Schematic view of a conductive cubic model located with-
in aresistive half-space and of a model HEM survey comprising five
flight lines.

Inequality 18 allows us to determine the maximum possible errors
in the solution of the nonlinear inverse problem for the given errors
in the observed data, using the equation similar to expression 11.

The numerical technique for finding R; is similar to one devel-
oped for a linear inverse problem in Appendix A. The only differ-
ence is that we must substitute the linear forward-modeling operator
by the Fréchet derivative in the corresponding equations of resolu-
tion analysis.

RESOLUTION STUDY OF THE LINEARIZED
INVERSION OF A 3D SYNTHETIC
HELICOPTER-BORNE EM SURVEY

In this section, we illustrate the developed method of the resolu-
tion analysis for the linearized airborne EM data inversion. Helicop-
ter-borne EM (HEM) surveys are widely used in mineral explora-
tion. The main difficulties in the modeling and interpretation of
HEM data are related to the fact that for any new observation point,
one must solve the forward problem anew for the corresponding
position of the moving transmitter. In this situation, even forward
modeling of HEM data over inhomogeneous structures requires an
enormous number of computations. That is why, until recently, the
interpretation of HEM data was restricted to simple 1D inversion.
Zhdanov and Tartaras (2002) developed a new approach to the mod-
eling and inversion of multisource array EM data based on the so-
called localized quasi-linear (LQL) approximation. In the frame-
work of this approach, forward modeling and inversion of multi-
source data can be calculated at the same time for all different posi-
tions of the transmitters. The LQL approximation also reduces the
HEM data inversion to the solution of the linear inverse problem,
which makes it possible to implement the linear resolution analysis
developed in the previous sections of the paper.

In the original paper by Zhdanov and Tartaras (2002), the linear
EM inverse problem was solved using the conjugate gradient (CG)
method. Zhdanov and Chernyavskiy (2004) introduced a new tech-
nique for fast LQL inversion that employs the SLDM method
(Druskin and Knizhnerman, 1994; Golub and Van Loan, 1996;
Druskin et al., 1999; Zhdanov, 2002). This technique helps to accel-
erate HEM data inversion and provides a stable image of the geo-
electrical target. We use a similar technique for the resolution analy-
sis as well (see Appendix A).

First, we consider a synthetic example of the resolution analysis
of the HEM data inversion. We apply the integral equation software
SYSEM (Xiong, 1992) to simulate such a survey over a relatively
conductive (200 ohm-m) cubic body located in a resistive
(5000 ohm-m) half-space. Figure 1 depicts a 3D view of the model.
Five lines were flown over the target at an altitude of 30 m and at a
distance of 25 m apart. A schematic 3D view of the survey is shown
inFigure 1. )

The moving transmitter-receiver system was a pair of vertical
magnetic dipoles (simulating a horizontal coplanar coil pair) and a
pair of horizontal magnetic dipoles (simulating a vertical coaxial
coil pair) with 8 m of horizontal separation. The yy (coaxial) and zz
(coplanar) components of the anomalous magnetic field were mea-
sured every 15 m along the lines (50 observation points in each line).
A7.2-kHz frequency was used.

We added 1% random noise to the anomalous magnetic field and
then inverted it using the SLDM method. The area of inversion, cen-
tered around the body, was 150 m X 150 m X 150 m and was divid-
edinto 12X 12 X 12 cells.
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Figure 2 shows the vertical cross sections (along the x-axis) of the
3D model obtained as a result of the regularized inversion with the
minimum norm stabilizer (Zhdanov and Chernyavskiy, 2004). We
should note that the inversion provides a correct position of the tar-
get but underestimates the true conductivity of the body. Indeed, the
recovered resistivity for the body is about 1000 ohm-m, while the
true resistivity of the body is 200 ohm-m. This result comes without
any surprise because it is well known that the linearized smooth in-
version tends to underestimate the true physical parameters of the
target (see, for example, Zhdanov, 2002, p. 46—49). To recover the
correct conductivity, one should use the nonlinear inversion with the
focusing stabilizer, which will be outlined in the next numerical ex-
ample of the MT data inversion. This is, however, a very challenging
problem in the case of HEM data collected with the moving trans-
mitter-receiver pairs because any new position of the transmitter re-
quires solving a different forward-modeling problem. The full 3D
nonlinear inversion for the multitransmitter airborne data is still im-
practical because of the huge computational time required in this
case. At the same time, a linearized approach represents an effective
solution of 3D inverse problem for the multitransmitter EM data,
which can be widely used in practical interpretation of HEM data.
We should also note that the limitations of the fast-forward mapping
operators in inverse-problem solution are addressed in many publi-
cations, including Zhdanov and Tartaras (2002) and Zhdanov and
Chernyavskiy (2004). The errors in these approximations affect the
uncertainty analysis in the same way that they affect the inversion re-
sult itself. In this situation, it is especially important to evaluate how
robust the linearized inversion is with respect to the noise in the data.
The new method of model appraisal and resolution analysis provides
the corresponding mathematical technique for solving this problem.

Using the general resolution theory outlined above, we can find
the resolution density R4 and the upper bounds of the conductivity
variations, according to
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Figure 2. The vertical cross sections (along the x-axis) of the 3D
model obtained as a result of regularized inversion for the synthetic
observed HEM data for a conductive cubic model. The black out-
lines show the true contour of the conductive body.

SAc; = %.
1
The vertical cross sections of the upper bounds of the conductivity
variations 8Aa; for the cubic model inversion are shown in Figure 3,
while Figure 4 presents the RA“ distribution. We have assumed in
these calculations that the relative error in the observed data is &
= 1%. We can see in Figure 3 that the estimated variations in the
HEM data inversion in the area of the cubic body are within
0.00001 S/m, while the estimated inverted conductivity of the body
is about 0.001 S/m. Thus, the variations do not exceed 1%, which
corresponds well to 1% level of noise in the data. This fact demon-

do x 107
26

X ==4375m

Figure 3. The vertical cross sections of the upper bounds of the con-
ductivity variations §Ao;(r) computed for the cubic model HEM
data inversion under the assumption that the relative error in the ob-
served data is £ = 1%. The white outlines show the true contour of
the conductive body.

Xx=-1875m
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Figure 4. The vertical cross sections of the resolution density RA7
distribution for the cubic model HEM data inversion. The white out-
lines show the true contour of the conductive body.
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strates that our inversion algorithm does not amplify the noise in the
data

Based on this analysis, we can conclude that the LQL inversion
outlined above is a very robust method. It provides a stable geomet-
ric image of the target while underestimating the true conductivity.
We should note, however, that the detailed analysis of Figure 3
shows that this robust solution is obtained only in the upper and cen-
tral parts of the area of inversion. The estimated variations rapidly
increase with the depth and to the sides of the inversion area, reach-
ing almost 0.0001 S/m. The resolution density decreases for the bot-
tom and edge parts of the inverse model, correspondingly, as shown
in Figure 4.

This simple numerical example shows that, in the practical inver-
sion of geophysical data, it is not enough to plot just the inverse mod-
el obtained by inversion. In principle, the data acquisition and inver-
sion schemes, play rather important roles in the way the noise propa-
gates into the inverse model. The newly developed method of model
appraisal and resolution analysis makes it possible to locate the parts
of inverse image that experience the minimal effect of the noise in
the data and the areas with the strongest distortions. As a result, the
interpreter can identify the parameters of the inverse model that can
be treated with the most confidence, as well as less reliable features.
This is the major practical significance of our method of inverse im-
age appraisal.

RESOLUTION STUDY OF THE NONLINEAR
3D MAGNETOTELLURIC
INVERSION ALGORITHM

In this section, we demonstrate the application of the developed
method of the resolution analysis to a nonlinear, 3D MT inverse
problem.

The foundations of the MT method were developed by Tikhonov
(1950) and Cagniard (1953). It is based on measurements of the nat-
ural EM field at the surface of the earth. The interpretation of MT
data is based on the calculation of the transfer functions between the
horizontal components of the electric and magnetic fields, which
form the so-called impedance tensor Z (Berdichevsky and Dmitriev,

2002):
& Zo Z,
7 = [ y } ) (20)
Zyx Zy_v

The components of the impedance tensor are determined from the
horizontal components of the electric and magnetic fields at each ob-
servation point. The corresponding technique for solving this prob-
lem is outlined in Zhdanov and Keller (1994) and Berdichevsky and
Dmitriev (2002). These data are inverted for a conductivity model of
the earth.

Thus, the MT inversion requires forward modeling of EM field
components, the corresponding impedances, and the apparent resis-
tivities and phases on each iteration step. This procedure is extreme-
ly time consuming, resulting in enormous calculations to solve the
inverse problem. To overcome this computational difficulty, Zh-
danov and Golubev (2003) suggest using an approximate solution
based on quasi-analytic (QA) approximation on the initial stage of
the iterative inversion. The detailed description of the basic princi-
ples of the QA approximation can be found in Zhdanov et al. (2000)
and Zhdanov (2002). The approximate QA forward operators, intro-
duced in the cited papers, can be used to compute the components of

the impedance tensor Z. These operators significantly speed up the
computations at each step of the inversion.

In a general case, the corresponding equations of MT inversion
can be expressed by an operator equation including the data vector d
and the vector of model parameters m as

d = B(m), (21)

where B is the nonlinear forward operator representing the govern-
ing equations of the MT impedance modeling problem, m is the vec-
tor of the unknown conductivity distribution (model parameters),
and d is the vector formed by the observed values of the components
of the MT impedance tensor at the observation points.

Inversion aims at estimating the model parameter vector m based
on B and a known (observed) data vector d. This problem is usually
ill posed, i.e., the solution can be nonunique and unstable. The con-
ventional way of solving ill-posed inverse problems, according to
regularization theory (Tikhonov and Arsenin, 1977; Zhdanov,
2002), is based on minimization of the Tikhonov parametric func-
tional, similar to one shown in equation 4.

To generate a focused image of the geoelectrical model, Zhdanov
and Hursan (2000) and Mehanee and Zhdanov (2002) applied a min-
imum support stabilizer, which is a nonquadratic functional of a
form

sus(m) = (m - m)"[( - ,,)? + 17 (m - m,y,),
(22)

where m and m,, are N,, X N,, diagonal matrices of inverse-model
parameters (current and a priori, respectively)

m = diag(m,,ms, ..., mNm),

mg, = dlag(mlapr’mZapr’ ceey mNmapr)’

where e is the focusing parameter and Lisan N,, X N,, identity ma-
trix. Portniaguine and Zhdanov (1999) show that this functional
minimizes an area of nonzero parameter distribution (minimizes the
support of the inverse model) if e tends to zero: e — 0. The principles
of the minimum support inversion are discussed in detail in Zhdanov
(2002).

Recently, Zhdanov and Tolstaya (2004) suggest using a nonlinear
parameterization to transform the nonquadratic, minimum-support
stabilizing functional described by equation 22 into a quadratic one,
described by

m = [(h - i) + 172(m - m,,), (23)

and

“m - my, = e[ - @*]m, (24)

wherem = {m},i =1, ..., N, is the original vector of the model pa-
rameters; m = {rﬁA,}, i=1,...,N,is a new vector of the nonlinear
parameters; and m is a N,, X N,, diagonal matrix with the diagonal
formed by nonlinear model parameters,ﬁl = diag(m,,my, ..., Ay ).

We solve the minimization problem for the correspondimng
Tikhonov parametric functional by the regularized conjugate gradi-
ent (RCG) method. The details of this algorithm are described in Zh-
danov and Tolstaya (2004).

The application of the QA approximation to forward modeling
and Fréchet derivative computations speeds up the calculation dra-
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matically. However, to control the accuracy of the inversion, this
method allows application of rigorous forward modeling in the final
steps of the inversion procedure. We use an integral equation for-
ward-modeling code based on the contraction integral equation
method, which improves the convergence rate of

the iterative solvers (Hursdn and Zhdanov, 2002). a)
Application of a few additional iterations with a
rigorous forward-modeling solver improves the
resolution of the inverse method and helps to gen-
erate a more correct image of the target (Zhdanov
and Tolstaya, 2004).

We now present a numerical example of the
MT data inversion and the resolution analysis.
Consider a homogeneous half-space with a resis-
tivity of 100 ohm-m, containing a conductive
dike. The resistivity of the inhomogeneity is
3 ohm-m. The top of the dike is at a depth of b)
200 m, and its bottom is at a depth of 600 m be-
neath the surface. This model is excited by a plane 0y
EM wave source. The x- and y-components of the
anomalous magnetic and electric fields for four
different frequencies (1, 10, 100, and 1000 Hz)
have been simulated at 225 receiver points
arranged on a homogeneous grid, using inte- 10003
gral equation forward-modeling code INTEM3D
(Hursén and Zhdanov, 2002). The coordinates of
the receiver grid are x and y from —700 to 700 ev-
ery 100 m. The receiver system is located at the
surface of the earth. The EM field components
were recalculated into MT impedances, using the
standard equations (Berdichevsky and Dmitriev,
2002). The area of inversion is covered by a ho-
mogeneous mesh consisting of 16 X 25 X 8 cubic
cells surrounding the anomalous structure to be
inverted. Each cell has a dimension of 100 m in
the x-, y-, and z-directions. We select the focusing
parameter as e = 0.016. The details of the tech-
nique for the optimum e selection can be found in Zhdanov and Tol-
staya (2004).

Figure 5a shows the true model. For this model, we run inversion
using different inverse methods. On the first stage, we ran 15 itera-
tions of the RCG method with minimum norm stabilizer (Figure 5b);
after that, we applied 60 iterations with a minimum-support stabiliz-
er and QA forward modeling and an additional 20 iterations of the
RCG method with minimum-support inversion and rigorous for-
ward modeling (Figure Sc). The inversion curves, parametric func-
tional P[ a], stabilizer s m], misfit ¢{ m], and elapsed time versus it-
eration number are shown in Figure 5d, as well.

Figure 6 presents the vertical cross sections of the true model
(panel a), the smooth inversion result with minimum-norm stabilizer
(panel b), the intermediate result with minimum-support stabilizer
and QA forward modeling (panel ¢), and the final focusing inversion
result (panel d). One can see that the smooth minimum-norm result
underestimates the true conductivity, while the focusing inversion
reconstructs an image that is very close to the true model and with
practically the same resistivity.

We have analyzed the resolution of our nonlinear-inversion meth-
od for the final model presented in Figure 5c and in Figure 6d. We
computed the maximum possible variations in the solution of non-
linear-inverse problems for a conductive dike for a given level of rel-

5004

staya, 2004).

1000 -1000

TP <45 {ohm:m}"-

1000 -1000

ative errors in the observed data equal to 3%. The vertical sections of
the upper bounds of the variations of conductivity distributions and
the resolution density are shown in Figures 7 and 8. One can see that
the resolution is higher in the central parts of the sections, and the
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Figure 5. (a) The true model of a conductive dike. (b) Inversion results after 15 iterations
with the minimum-norm stabilizer. (c) Final result after 60 iterations with the minimum-
support stabilizer and QA forward modeling and 20 additional iterations of the RCG
method with minimum-support inversion and rigorous full-forward modeling. (d) Inver-
sion curves, parametric functional P[ a], stabilizer s[ m], misfit ¢[m], and elapsed time
versus iteration number. In this figure, we present 3D images of the resistivity distribution
with volume rendering. The cutoff level of the resistivity for these images is shown in the
corresponding panels. For example, the cutoff level p<<5 ohm-m means that only the
cells with a value of resistivity less than 5 ohm-m are displayed (after Zhdanov and Tol-
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Figure 6. Dike model. Vertical cross sections of the true model (a),
the inversion result with the minimum-norm stabilizer (b), the inter-
mediate result with the minimum-support stabilizer and QA forward
modeling (c), and the final sharp inversion result (d) (after Zhdanov
and Tolstaya, 2004).
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APPENDIX A

APPLICATION OF THE SPECTRAL LANCZOS
DECOMPOSITION METHOD (SLDM) FOR
RESOLUTION DENSITY CALCULATION

In this appendix, we construct a numerical algorithm for resolu-
tion-density calculation.

According to the definition, the resolution density is obtained by
adding the squares of the column elements of the regularized inverse
matrix R,. To find the ith column of this matrix, we can introduce a
vector e; with unity in the ith position:

e;=[0,0,...,0,1,0, ..., 0]" € ENe,

where EV is N;,-dimensional Euclidean space, and recover the ith
column of the regularized inverse matrix RY by simple multiplica-
tion:

RY = (A"W2A + aW2)'A"W] e,
= WHA'W2AW,? + o) 'A"Wie. (A1)
Introducing the notations
B=A"WAW.2 ¢, =A"Wje,
we finally obtain
RY = W,’f,(B)c, (A-2)
where
f.(B) = (B + al)l.

Thus, we have arrived at the problem of computing a function of
matrix B.

This problem can be solved by the SLDM (Druskin and Knizhner-
man, 1994; Golub and Van Loan, 1996; Zhdanov, 2002). First, we
apply the Lanczos algorithm for QT decomposition of matrix B:

Bo=1, qo=0, q,=¢, (A-3a)

l‘j 5
i
L= (B - IN)qj - Bj-19j-1, Bj= ||rj
j=12,..,N-1.

while Bj # 0, qj+1 =

, (A-3¢)

As aresult, we find an orthogonal matrix Q, and the tridiagonal ma-
trix T,, where L is an iteration step of the Lanczos algorithm.
‘We can write expression A-2 as

RY = W;2e|Qufu(T el = W, 2c]lQu(T, + al) e,
(A-4)
where
ef? =[1,0, «1:x 0,0; ..., 0F & E.

The resolution density is computed now, according to equation 9, as

Ny -1
R;=|d] i |Raij‘2 . (A-5)
j=1

The advantage of the SLDM method is that we have to run the
Lanczos algorithm only once for all different values of the regular-
ization parameter «. After that we only have to invert a tridiagonal
matrix (T, + o) for a different @, which is a much simpler opera-
tion.

The selection of the optimal regularization parameter « can be
made using either Tikhonov’s method or the L-curve method. The
detailed description of these methods can be found in Zhdanov
(2002).
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