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Integral Electric Current Method in 3-D
Electromagnetic Modeling for Large
Conductivity Contrast

Michael S. Zhdanov, Vladimir 1. Dmitriev, and Alexander V. Gribenko

Abstract—We introduce a new approach to 3-D electromagnetic
(EM) modeling for models with large conductivity contrast. It is
based on the equations for integral current within the cells of the
discretization grid, instead of the electric field or electric current
themselves, which are used in the conventional integral-equation
method. We obtain these integral currents by integrating the
current density over each cell. The integral currents can be found
accurately for the bodies with any conductivity. As a result, the
method can be applied, in principle, for the models with high-
conductivity contrast. At the same time, knowing the integral
currents inside the anomalous domain allows us to compute the
EM field components in the receivers using the standard integral
representations of the Maxwell’s equations. We call this tech-
nique an integral-electric-current method. The method is carefully
tested by comparison with an analytical solution for a model of
a sphere with large conductivity embedded in the homogenous
whole space.

Index Terms—Electromagnetic (EM) modeling, high conductiv-
ity contrast, integral equations.

. INTRODUCTION

NE OF THE difficult problems in clectromagnetic (EM)

modeling is accurate numerical solution for models with
large conductivity contrast. This problem appears, for example,
in modeling EM data for mineral exploration when we have a
conductive target embedded in relatively resistive host rocks.
The study of the topography effect on EM data requires the
solution of a similar problem, because the contrast in con-
duclivity between the conductive earth and nonconductive air
can be as large as 105—10"" times. Well-logging is another
area where one should take into account a strong contrast
between the cased borehole, for example, and surrounding rock
formations.
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In this paper, we introduce a new approach (o the solution
of this problem based on the integral-equation (IE) method.
The basic principles of the IE method were -outlined in the
pioneer papers [8], [9], [12], [17], [18], and [22]. Over decades,
these methods were further developed and improved in a large
number of publications (see, for example, [2], [6], [7], [11],
[14], [19], [21], [23], [24], and [26]). However, most existing
IE mcthods fail for large conductivity contrast, because they
use the boxcar basis functions to approximate the electric
field within the conductive body [10], [11], [16], [19]. The
development of accurate EM modeling methods for the models
with large conductivity contrast is considered one of the most
challenging problems in EM geophysics.

The conventional IE algorithms are usually written for the
electric field or electric current components within the domain
with anomalous conductivity. This domain is divided in the
number of cells, which are selected to be so small that the field
components vary slowly within the cell. If the conductivity of
the body and/or frequency are high, it is difficult to satisfy this
condition. The EM field varies extremely fast within a good
conductor, which may result in errors of numerical modeling.
In order to overcome this difficulty, Newman and Hohman used
a special grouping of the boxcar basis functions to form current
loops within the conductor [16]. Farquharson and Oldenburg
implemented the more sophisticated edge element basis func-
tions to avoid the inaccuracy of the conventional boxcar basis
function approach [10].

In this paper, we consider a novel approach for solving this
problem. We develop a new form of the IE method, which is
based on the equations for integral current within the cells,
instead of the electric field or electric current themselves.
We obtain these integral currents by integrating the current
density over each cell. The integral currents can be found
accurately for a body with any conductivity. We do not use
anymore the requirements that the field varies slowly inside
the cell, because we deal with the integral of this field. As
a result, the method can be applied, in principle, for mod-
els with arbitrary conductivity contrast. At the same time,
knowing the integral currents inside the anomalous domain
allows us to compute the EM field components in the re-
ceivers using the standard integral representations of Maxwell’s
equations. We call this technique an integral-electric-current
(IEC) method. We will present below the detailed description
of the IEC method and will illustrate it by numerical modeling
results.

0196-2892/$25.00 © 2007 IEEE
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II. FORMULATION OF THE IE METHOD

We consider, first, the basic IEs of 3-D EM forward model-
ing, written for the total electric E and magnetic H fields

E(r') — / / Gr(r'|r) - [AF(r)E()] do + EP (r)
D

=G |[AF(r)E(r)] + E*(r)) (1

H(r') = Gy (r'Ir) - [AG(r)E(r)] dv + H(r')
I
— Gy [AG(r)E(r)] + H(r) @

where G(r;|r) and G g(r;|r) are the electric and magnetic
Green’s tensors defined for an unbounded conductive medium
with the complex background conductivity o1, = 0 — iwe; Gg
and G arc corresponding Green'’s lincar operators; and EP,
HP" are the background electric and magnetic fields; domain
D corresponds to the volume with the anomalous conductivity
distribution 5 (r) = 0}, + Ao (r),r € D.

Equation (1) written for the points r’ located inside domain
D, r’ € D, gives us an IE with respect to clectric ficld E(r).
The main problem is to solve this IE.

The conventional approach to discretization of the integral
(1) is based on dividing domain D into N elementary cells, D,,,
formed by some rectangular grid in the domain D — UN_, D,,,
and assuming that A5 (r) has the constant value Ag,, within
the cell. Note that the coefficients AG,, can be represented as
the components of a vector o of the order N

o = [AGy, AGy,..., AFN]T

where superscript “T™ denotes transposition.

We also assume that each cell D,, is so small that the electric
field is approximately constant within the cell, E(r) = E(r,),
where r,, is a center point of rectangular cell 1,,. Under this
condition, (1) takes the form

N o~
Er,) =Y / / Gi(r r)dv - AFaE(rs) | EX(r,)
=], D,
p—1,2,...N. 3)

Thus, inside the anomalous domain D, the discrete analog of
(1) can be wrilten as [27]

ep = apa\e[) +e% 4)

where o is a (3N x 3N) diagonal matrix of anomalous
conduclivities

o — diag(AGy,...,A0N,01,...,AFN,01,...,ATN)  (5)
ep and eb) are the vectors of the total and background electric
fields [ormed by the x, y, and z components ol these fields at
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the centers of the cells D,, of the anomalous domain D
il g2 N pl g2 N 1 2 NI
cp.={E;sES;. . . Ej sibigilise B BB, .. B
b bl b2 b,N b1 1b2
ep =[E;  E)%,...E] NS Tn g R
EYNES, BY, L ERNT.

These vectors have the order 3N .

The 3N x 3N matrix G p is formed by the volume integrals
over the elementary cells D,, of the components of the corre-
sponding electric Green’s tensor G g, acting inside domain D

Gp = [67] ©)
where

Grs= ///Ggag(rplr)d'u, a,B=x,y,z;p$,n=1,2,...N.
T

Note that (3) or equivalent matrix (4) provides an ad-
equate approximation of the original IE, if the following
conditions hold.

1) The linear size h of elementary cell D,, is much smaller
than the wave length Ay, of the EM field in the background
medium

h < Ay, (7

2) his much smaller than the wave length A, of the EM field
in a medium with anomalous conductivity

h < A ®

The first condition (7) usually holds for typical geophysical
EM modeling problems. The second condition may fail in the
case of high anomalous conductivity, which is the subject of
this paper.

TIT. TIiS FOR INTEGRAL. CURRENTS

Our goal is to construct a discrete analog of integral (1),
which would provide an accurate approximation only under
condition (7). We will consider, first, (1) and (2), written for
calculation of the EM field in the receivers located outside
domain D. Let us denote by R the minimal distance from
the receivers to domain D with the anomalous conductivity:
R = minyep |r' —r|, where v’ is (he observation point. We
assume that the linear size h of elementary cell 1),, is much
smaller than the distance to the observation point r’

h< R )]

and that it is also much smaller than the wave length ), in the
background medium [condition (7)]. Under these conditions the
Green's tensor Gg(x'|r) slowly varies inside cell D, if point
r moves within this cell, and the observation point r’ is [ar
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away [rom D,. It is possible, therefore, to wrile the integral
representations (1) and (2) in the form

ol ;

E(r) ~ Gu(r|r,) - j(r)dv| + EP(x')  (10)
(x") nZI_Err //D/n_] v—
N[ i

H(r') ~ (r'|r,,) - j(r)do| +HP(x) (1D
(r ; rr //D[J ]

where r,, is the center point of rectangular cell 1),,, and j(r) is
the excess clectric current

i(r) = A5 (r)E(r).

/ /D / () do’ =

is the IEC within clementary cell D,,. Substituting (13) into (10)
and (11), we obtain

(12)

Note that integral

(13)

N

@) =3 Gp('|r.) - L.+ E°(r)) (14)
n=1
N

H(r) =Y Gu(r'|r.) - L, + H(x). (1s)

n=1

Thus, the EM ficld components can be calculated in the re-
ceivers, if we know the integral currents within the cells of
the grid. Note also that we obtained formulas (14) and (15)
without imposing any restriction on the behavior of the electric
field or electric current within the elementary cell of the grid.
In other words, we do not use condition (8), and therefore the
conductivity of the anomaly can be arbitrarily high. This result
indicates that we can develop the IE method for the models
with high-conductivity contrast, if the corresponding equations
are written not for the electric field E(r,,) but for the integral
currents L,,.

In order to obtain a system of linear equations with respect
to electric currents, let us multiply both sides of (1) by AF(r'),
assuming that AG(r’) # 0 within domain .

As aresult, we have

= AG(Y) // GE

jir)dv +3P@)  16)

where

() = AG()EP(Y), reD
is the induced current due to background field EP.

We should note that integral (16) with respect to the electric
currents, in principle, equivalent to the original integral (1) with
respect to the electric field. These equations were analyzed in
many publications (e.g., [1], [5], [18], and [22]). The discretiza-
tion of (16), similar to (1) written for the points r’ located inside
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domain D, ¥’ € D, requires holding condition (8), which may
fail in the case of high anomalous conductivity. That is why we
need to modity (16). At the same time, we should emphasize
that in the case of the domain (16) and (1), we do not need
to impose condition (9), which was used only in developing
formulas (14) and (15) for calculation of the EM field in the
receivers located outside domain D) from the IEC given inside
domain 7).

In order to obtain an equation with respect to integral cur-
rents, we integrate both sides of (16) over elementary cell D,
and assume (hat anomalous conduclivity is constant within the
cell D, AG = Av,

IpZM,,il [[[ ][] estima
o= Dy D,

where IE is the integral current in the cell D, due to background
field B

8= /[ s

Let us introduce the notation
/// Gr(r|r)dv' = G ,(r).
DP

Note that integral G E,p(r) represents smoothing of the Green’s
tensor, and it is a relatively slow varying function. Therefore,
we can take this expression outside of the integral over D, in
formula (17)

-j(r)dv + 1D

(17)

r)dv = // AG()EP(r))dv'.  (18)

(19)

i =
I, ~ A%, Y Gg,lr,) I, + 1}

n=1

(20)

where in the case of a slow varying field G £,p(r) and small
cells D,, one can assign the points r,, to the centers of the
cells. Thus, we have arrived at a system of linear equations with
respect to the integral currents within each cell, which, using
matrix notation, can be written in the form

Ip =5Gplp +1% @21
where G is a (3N x 3N) diagonal matrix of anomalous conduc-
tivities, Ip and I% are the vectors of the total and background
electric field intensities formed by the z, ¥, and z components

of these fields at the centers of the cells D,, of the anomalous
domain D

172 N 71 72 N 71 72 N1T
ID_[IQ7IT7" Iarvava’“ I 177]77 I ]
b _[yb1 ;b2 5N b1 (b2 b.N b1 b2 b,N1T
10, =[50, 102, AN B 00 (BN b gha | T

These vectors have the order 3N. Note that the background
IEC can be found by the corresponding numerical integration
according to (18).
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The 3N x 3N matrix G p is [ormed by the volume integrals
over the elementary cells D,, of the components of the corre-
sponding electric Green’s tensor Gz, acting inside domain D.
Due to the reciprocity principle [25], elements of this matrix,
GZZ can be written as

&= [ [ [ Grastalrnae
Dy

~ [ [ [ Graateaiyin
Dy

o (‘H/[)
=G "

2 a,f=z,y,2, p,n=12,...N

where Gg'; are the elements of the corresponding matrix (6)
of the conventional integral (3) for the electric field. In other

words, matriyg\é p is a transposed matrix of the original linear
system (4), Gp, for the vector of electric field ep (which

justifies the notation we use tor G D).

Thus, forward EM modeling based on the IE method is
reduced to the solution of the matrix (21) for the unknown
vector Ip of TEC components inside domain D. The equation
isa3N x 3N linear system

BIp =13 (22)

where

B-1-5Gp (23)
and 1 is identity tensor.

We have reduced the EM forward modeling problem to
the solution of the matrix (22) with respect to the IEC. The
use of the integral current instead of the conventional current
density constitutes the key new idea of our method. The integral
currents can be found accurately for a body with any conduc-
tivity. We do not use anymore the traditional for IE method
requirements that the electric field (or electric current) varies
slowly inside the cell, because we deal with the integral of this
field (or of this current) over the entire cell. As a result, the
method can be applied, in principle, for models with arbitrary
conductivity contrast.

Matrix B isa 3N x 3N dense matrix. We use the contraction
IE method to precondition matrix (22) [13], [27]

ﬁ1 EM\QTD = K/I\}ff}j (24)
where M, is the 3N x 3N diagonal matrix of the square root
of the background conductivity, similar to matrix (5)

and where

Tp =M;'1p. (25)
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Fig. 1. Panel (a) shows a model of a prismatic conductive body with a
resistivity of 0.1 €2 - m embedded in the two-layered background. Panel (b)
presents the vertical distribution of the electric field within a conductive prism
computed using three different discretizations in the vertical direction: 5 cells
(stars), 15 cells (circles), and 25 cells (crosses).

with My defined as the diagonal matrix
M, =diag (uf,a?,...,al_v1,a1_],a§1,...
B R e -1
an ,0; ,09 7""a'N) (26)
s 20 bi + A&,
7 9 /_Ubi ’
One can use different types of iterative methods for the
solution of this problem. Detailed analysis of the different
solvers is given in [13]. After determining the integral current,

we can find the components of the EM field by substituting this
current in (14) and (15).

doois Tesirt 4 .

IV. NUMERICAL ANALYSIS OF THE ELECTRIC CURRENT
DISTRIBUTION INSIDE THE CONDUCTIVE BODY

Consider a model of a prismatic conductive body with a
resistivity of 0.1 € - m embedded in a two-layered background
(Fig. 1). The resistivity contrast between the second layer and
the prism is 10%. The incident field is a vertically propagated
plane EM wave at the 25-Hz frequency, containing both the TM
and TT: modes. We investigated the effect of different vertical
discretizations of the prismatic body on the electric current
calculations. Three different discretizations were used in the
vertical direction: 5, 15, and 25 cells. The discretizations in
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Fig. 2. y component of the electric field £y obtained using three discretiza-
tions in the vertical direction, 5, 15, and 25 cells, respectively.
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Fig.3. Two left panels show the real part (top) and imaginary part (bottom) of
the @ component of the magnetic field H, obtained using three discretizations
in the vertical direction, 5, 15, and 25 cells, respectively. Two right panels show
the relative errors in rcal (top) and imaginary (bottom) parts of the component.

the = and y directions remained the same: 10 and 20 cells,
respectively. The horizontal components of the TE mode elec-
tric and magnetic fields obtained using all three discretizations
are shown in the left panels of Figs. 2 and 3, respectively. The
right panels in these figures present the relative errors, £,
and eg,, in the real (top) and imaginary (bottom) parts of the
corresponding components computed as the difference between
the field for the finest discretization (25) and the field, obtained
for the coarsest discretization (5), normalized by the field at the
finest discretization (25)

- E§25) o E§5)

Ha(v%) S Hés)
Ep, = e B3 5 ALl e
y Ez(l%)

2 (25)
x

One can see that these errors do not exceed 1.5%.
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Fig. 4. Model of two conductive bodies embedded within different layers of
two-layered horizontally homogeneous background medium.

Fig. 1, panel (b), presents the vertical distribution of the elec-
tric ficld within the conductive prism computed using different
vertical disretizations. To produce these plots, we selected a
central vertical column of the cells within the prism for each
discretization. The electric field, E(r,,), was calculated in the
center of each elementary cell from this column according to
the following formula bascd on cxpressions (13) and (12):

using the IEC, I,,, computed for this cell with the IEC method
(where D,, and AG,, are the volume and the anomalous
conductivity of the corresponding elementary cell, respec-
tively). Fig. 1, panel (b), shows that the electric field computed
for the finest discretization (25 cells in the vertical direction)
describes well the skin effect within the conductive body, while
the field on the coursed discretization of five vertical cells is
practically insensitive to the skin effect. At the same time, the
difference between the observed EM field components at the
surface is within just 1.5% (Figs. 2 and 3). This remarkable
property of the IEC solution is related to the main principle
of the IEC method, which is based on computing the IEC,
I,,, within cvery cell. In this casc, the clectric ficld computed
according to formula (27) should also describe the averaged
electric field within the cell, which corresponds well to the
plots shown in Fig. 1, panel b. One can see that the plots
of the horizontal electric field components for the coarser
discretization describe the average values of the same plot for
the finer discretization. The plots of the vertical component of
the electric field behaves a little bit differently, because the
vertical field is 10% times smaller than the horizontal fields.
Nevertheless, the plots for 15-cell and 25-cell discretizations
practically coincide, which is a clear manifestation that we
reached the optimal level of discretization at 25 cells in the
vertical direction. The solution will not change il we will use
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Fig. 5. Plots of the real and imaginary parts of the magnetic field H.., computed using the conventional [E method and the IEC method. The crosses show
the data obtained by the IE, while the solid lines present the results of numerical modeling with the IEC method with the cell size of 10 x 10 x 10 m® for the
following resistivity contrasts, ¢ = pr/p1, between the homogeneous background layer and the conductive upper body: (a) ¢ = 102, (b) ¢ = 10%, (¢) ¢ = 10°,
and (d) ¢ = 10°. Circles show the results obtained using the conventional TE method for fine discretization grid with the cell size of 10 x 10 x 1 m®.

the finer discretization. Thus, another important property ol
the new IEC method is that it does not require a very fine
discretization to producc an accuratc result, because it does not
operate with the discretized electric field but with the integral
currents, instead.

V. COMPARISON BETWEEN THE IEC AND
THE CONVENTIONAL IE METHOD

In this section, we compare the conventional IE method with
the new IEC algorithm. We consider a model shown in Fig. 4.
The model consists of two conductive bodies embedded within
different layers of two-layered horizontally homogeneous back-
ground with the resistivity of the first and second layers equal
to 100 and 1000 €2 - m, respectively, and with a thickness of the
first layer equal to 100 m. In our numerical experiments, the
resistivily of the lower body stays constant at 0.1 €2 - m, while
the resistivity of the upper body changes: p; = 1, 0.01, 0.001,
and 0.0001 ©-m. The incident ficld is an E-polarized (TE
mode) vertically propagated plane EM wave at a frequency of
25 Hz. We use the same discretization of the conductive bodies
for both the conventional IE and the IEC methods with the cell
size of 10 x 10 x 10 m3.

Fig. 5 presents the rcal and imaginary parts of thc mag-
netic field component H, computed using the conventional
IE method (crosses) and the IEC method (solid lines), for the
resistivity contrast between the homogeneous background layer
and the conductive upper body, ¢ — p,,/p1, equal to 102, 10%,
10°, and, 10°, respectively. One can see that for this model,
the two methods generate practically the same result for low-
resistivity contrast. However, they produce diflferent results

with the increase of the resistivily contrast, as one would expect.
We have repeated the calculations using the conventional IE
mcthod with morc fine discretization with the cell size of
10 x 10 x 1 m®. These results are shown by circles in panel (c)
of Fig. 5 for the highest conductivity contrast ¢ — 10°, where
two methods have diverged. One can see that in this case the IE
method produces the result which is closer to one generated by
the IEC method. Note that the limitations of the computer mem-
ory did not allow us to run the modeling for the conductivity
contrast ¢ = 10° for the smaller cell’s size than 10 x 10 x 1 m?
using the conventional IE method. At the same time, for the
conductivity contrasts up to ¢ — 10°, the results obtained by
the conventional IE method with the fine discretization and
the results of IEC modeling on the relatively coarse grid are
practically the same. This example shows that, the conventional
method requires more cells than the IEC method to get the same
accuracy.

VI. COMPARISON BETWEEN TIIE IEC METIIOD AND
ANALYTICAL SOLUTION FOR A CONDUCTIVE SPHERE

In order to check the accuracy of the new IEC method, we
apply this technique to model a response of the conductive
sphere cxcited by the vertically propagated planc EM wave.
This problem represents one of a few EM problems which
allow for an analytical solution. The mathematical solution of
this problem has been described in several publications (see,
tor example, [3], [4], [15], and [20]). This problem is usually
solved by means of the Debye potentials. We compare this
analytical solution with numerical modeling using the IEC
method.
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(b)

(a) Model of a conductive sphere with a radius of 50 m embedded in the homogeneous whole space with a background resistivity of 1000 Q - m; and

(b) approximation of the sphere with a model formed by cubic cells with a side of 6.25 m.

Fig. 6(a) shows a model of the conductive sphere with a
radius of 50 m embedded in the homogeneous whole space
with a background (normal) resistivity ol p,, = 1000 €2 - m. In
the model study, we use different resistivities of the sphere:
pa = 100, 10,1,0.1, and 0.01 © - m. The incident field is an
E-polarized (TE mode) vertically propagated plane EM wave
at a frequency of 25 Hz. The origin of the Cartesian coordinate
system is located in the center of the sphere. The receiver profile
runs trom —410 to 410 m in the = direction at an elevation
of 350 m above the center of the sphere. The receivers are
located every 20 m. To calculate the sphere response by the
IEC method, we approximated the sphere with a model formed
by cells with a side of 6.25 m [see Fig. 6(b)].

Using both the analytical solution and the 11{C method, we
computed an apparent magnetotelluric resistivity for a sphere
model according to the formula

_ 1 (BN
* T wpg \Hy )

Note that, according (o the method of Debye potentials [4],
the EM field components are represented in the form of series.
Therefore, the result may depend on the number of the terms
kept in these series in calculations. However, these series con-
verge extremely fast. Fig. 7 represents the plot of the maximum
value ol the apparent resistivity versus the number ol terms
used in the series in analytical calculations for the model with
maximum conductivity contrast (1e + 5). Onc can sce that the
result practically does not change after adding the third term.

Fig. 8 shows the plots of the real and imaginary parts of
the apparent resistivity, Rep, and Imp,, for the different resis-
tivity contrasts between the homogeneous background and the
conductive sphere, ¢ = p,./pa, cqual to 10, 102, 10%, 104, and
10°, respectively. The solid lines correspond to the analytical
solution, while the dashed lines present the numerical IEC
results. One can see that the difference between the analytical
and the numerical T:C solutions does not exceed 0.15% at
the extremum value of the apparent resistivity for the highest
conductivity contrast of 10°, This result demonstrates that the
developed new method of integral current equations produces
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Fig. 7. Plot of the maximum value of the apparent resistivity versus the
number of terms used in the series in analytical calculations for the model with
maximum conductivity contrast (le + 5 ).

an accurate result even for the models with high-conductivity
contrast.

VII. CONCLUSION

For a long time the main limitation of the IE method was
modeling the EM field for models with high-conductivity
contrast. In this paper, we have developed a new approach
to the construction of the IE method. It is based on using
1ECs, calculated over the elementary cells of the discretization
grid, instead of the electric field itself within the cells, as is
commonly used in the conventional T} method. As a result, the
mecthod is capable of modeling the EM response in gcoelectrical
structures with high contrast of conductivity.

The method was carefully tested. We compared the numer-
ical modeling results with the exact analytical solution for a
model of a conductive sphere. I'uture work will be directed to
application of the new method for examining the complex mod-
els of geological targets with the large conductivity contrast,
typical for mineral exploration.
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Fig. 8. Plots of the real and imaginary parts of the apparent resistivity Rep, and Imp, computed using the analytical solution and the IEC method. The solid
lines show the data obtained by the analytical solution, while the dashed lines present the results of numerical modeling with the IEC method for the following
resistivity contrasts ¢ — pn/pgq between the homogeneous background and the conductive sphere: (a) ¢ — 10, (b) ¢ — 102, (c) ¢ — 107, (d) ¢ — 10, and

(e) ¢ = 10°.
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