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Special Section Marine Controlled-Source Electromagnetic Methods 

Rigorous 3D inversion of marine CSEM data 
based on the integral equation method 

Alexander Grlbenko' and Michael Zhdanov' 

ABSTRACT 

Marine controlled-source electromagnetic (MCSEM) sur­
veys have become an important part of offshore petroleum 
exploration , However, due to enormous computational diffi­
culties with full 3D inversion, practical interpretation ofMC­
SEM data is still a very challenging problem. We present a 
new approac h to 3D inversion of MCSEM data based on rig­
orous integral-equation (IE) forward modeling and a new IE 
representation of the sensitivity (Frechet derivative matrix) 
of observed data to variation s in sea-bottom conductivity. 
We develop a new form of the quasi-analytical approxima­
tion for models with variable background conductivity 
(QAVB) and apply this form for more efficient Frechet deriv ­
ative calculations. This approach require s jus t one forward 
modeling on every iteration of the regu larized gradient-type 
inversion algorithm, which speeds up the computations sig­
nificant ly. We also use a regularized focusing inversion 
method, which provides a sharp boundary image of the petro­
leum reservoir. The methodology is tested on a 3D inversion 
of the synthet ic EM data repre senting a typical MCSEM sur­
vey conducted for offshore petro leum exploration . 

INTRODUCTION 

During recent years, mar ine controlled-source electromagnetic 
(MCSEM ) surveys have become intensively used for offshore petro­
leum exploration (Eidesmo et al., 2002 ; Ellingsrud et aI., 2002; 
Tompkins, 2004 ; Caraz zone et al., 2005 ; Hesthammer and Boulaen­
ko, 2005; Srnka et aI., 2005) . The success of the EM method 's 
application for the search of oil and gas reservoirs is based on the 
fundamental fact that oil- and gas-containing structures are charac­
terized by very high resistivity, while the surrounding sea-bottom 

formations filled with salt water are very conducti ve. Therefore, a 
petro leum reservoir repre sents a clear target for EM methods. How­
ever, the interpretation of MCSEM data is still a very challenging 
problem, especially if one would like to take into account a real 3D 
structure of a sea-bottom geolog ic format ion. The inversion of MC­
SEM data is complicated by the fact that the EM response of a petro­
leum reservoir is very weak in comparison with a background EM 
field generated by an electric dipole transmitter in layered geoelcc­
trical structures formed by a conductive seawater layer and bottom 
sediments. 

There were several publications recently reporting significant 
progre ss in 3D inversion of MCSEM data based on the finite-differ­
ence (FD) method (Newman and Boggs, 2004 ; Hoversten et aI., 
2004 ,2005). In this paper , we present a different approach to 3D in­
version of MCSEM data , whic h uses a rigorou s integral -equation­
(IE) based forward modeling and regularized focusi ng inversion al­
gorit hm. There are several advantages in using the IE metho d in the 
MCSEM data inversion in compari son with the more traditional FD 
approach. First , IE forward modeling requires the calculation of the 
Green ' s tensors for the backgro und conductivity model. These ten­
sors can be precomputed only once and saved for multiple use on ev­
ery iteration of inversion, which speeds up the computation of the 
predicted data on each iteration significantly. Second, the same pre­
computed Green' s tensors can be readily used for Frechet derivative 
calc ulations , which is another importan t element of inversion. Final­
ly, IE forward model ing and inversion requires the discretization of 
the domai n of inversion only, while in the framework of the FD 
method, one has to discreti ze the entire modeling domain, which in­
clude s not only the area of investigation but an additional domain 
surrounding this area (including the areas in the air). As a result, the 
IE inversion method require sjust one forward modeling on every it­
eration step, which speeds up the computations and results in a rela­
tively fast but rigorou s inversion method. To obtain a stable solution 
of a 3D inverse problem, we apply a regularization method based on 
a focusing stabili zing functional (Zhdanov , 2002) . This stabil izer 
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helps generate a sharp and focused image of ous conductivity distri­
bution, which is important in petroleum exp loration with the goa l of 
delineating the boundarie s of a prospective reservo ir. 

We present the result s of the application of the rigorous inversion 
method to the interpr etation of synthetic MCSEM data. 

INTEGRAL EQUATION METHOD IN 
3D INVERSION OF MCSEM DATA 

We consider first, the typ ical MCSEM survey consisting of a set 
of sea -bottom electrica l and magnetic receivers and a horizontal 
electric dipole transmitter towing at some eleva tion abo ve the sea 
bottom. This type of survey is often referred to as sea bed logg ing, 
SBL (Eidesmo et al., 2002). The transmi tter generates a frequency­
domain EM field . The operating frequencies are usually selected to 
be low enoug h (in a range of 0.1- 5 Hz) to propagate throu gh the 
conductive seawater and sea-bottom layers of the sediments and to 
illuminate the sea-bo ttom geologic structures . The field recorded by 
the recei vers can be represented as a sum of the normal EM field, 
{E nonn, H nonn},generated in a horizontally layered background model 

formed by seawater and sediment layers, and an anomalous part , 
[Es.H''}, related to the hor izontal co nductiv ity inhomoge neities zsrr 
present in the sea bottom: 

=E norm HnormE + E", H = + H Q 

• 

The anoma lous electro magnetic field is related to the electric current 
induced in the inhomogeneity j = !J.uE , acco rding to the following 

integral formulas: 

EQ(r) = ffLGE(r )r) . [~u(r)E(r) Jdu = GE[~uE J , 

(I) 

HQ(r) = ffLGH(r j lr ) . [ ~ u( r) E( r)Jdu = GH [~uEJ , 

(2) 

where GE(rjlr ) and GH(rjlr) are the electric and mag netic Green ' s 
tensors defined for an unbounded conductive medium with the nor­
mal (horizo nta lly layered) conduct ivity unann; GE and GH are corre ­
sponding Green' s linear operators ; and domain D represent s a vol­
ume with the anoma lous conductivity distribut ion u (r) =U nann 
+!J.u (r ),r ED . 

We use integral equations I and 2 to formulate bo th the forward 
and inverse problems of the SBL method. Indeed , in short form these 
equations can be written as 

d = A(~u) ,	 (3) 

where A is a forward modeling operator, d stands for the observed 
EM data in the sea-bottom receivers, and !J.u is a vec tor formed by 
the anomalous conductivities within the targeted domain. The inver­
sion is based on minimization of the Tikhonov parametric functional 
pa(!J.u), with the corresponding stabilizer s( !J. u) (Tikhonov and 
Arsen in, 1977): 

pa (~u) = IlwiA(~ u) - d)llz + Q'S(~ u) , (4)
2 

where W d is the data-weighting matrix, and IX is a regularization pa­
rameter. 

There are seve ral possible cho ices for the stabilizer (Zhdanov , 
2002). In this paper, we use two of them: 

I)	 The minimum norm stabilizer (SMN) ' which is equal to the 
square L2 norm of the difference between the current model Arr 
and an appropriate a priori model !J.uap , : 

SMN(~ U) = rwm(~ u - ~uQPr) I I Z2 ' 

where W m is the we ighting matrix of the model parameters. 
2) The mini mum support stabilizer (SMS) , which is proportional to 

the volume (support) of the nonzero values of the difference be ­
tween the current mode l Arr and the a priori model !J.u ap, : 

(~u - ~uQP r) 2 d 
(5)SMS(~ U) = D (~u _ ~uQp r) 2 + e2 u,fff 

where e is the focusing parame ter. 

It was shown by Portn iagu ine and Zhdanov (1999) that the mini­
mum support fun ctional min imizes the volume of nonzero parame­
ter distribution (minimizes the support of the inverse mode l), if e 
tend s to zero : e --+ O.The principles of the optima l foc using parame­
ter selection are discus sed in Zhdanov and Tol staya (2004). 

The mos t common approach to minimization of the parametric 
functional P(!J.u) is based on using gradient-type methods. For ex­
ample, the reg ular ized conjuga te gradient (RCG) algo rithm of the 
parametric functional minimization in the case of the min imum 
norm stabiliz er can be summarized as follows (Zhdanov , 2002): 

r, =A(~ un) - d , In = I (~un ) =ReF:W~Wdr n 

+ aW:Wm(~ un - ~uQP r) ' (6a) 

f3n =IllnI12/11In_1112, In= In + f3Jn- l , 10 = 10 , (6b) 

kn = (In,l n)I{llwdFJnI12 + aIIWml nI12} , (6c) 

~Un+ l = ~un - kJn, (6d) 

where r , is a residual at the iteration step n, Inis the grad ient direc ­
tion, F, is a Frechet derivative ma trix, W d is a data weig hting matr ix, 

IX is a reg ular izat ion param eter, W m is a model weighti ng matrix. I, is 
the conj uga te direction, k; is a length of the itera tion step, IIIIdenotes 
vec tor or matrix norm, and * sign represent s adjoint matrix. 

The appropriate selection of the data and model parameters 
weig hting matrices is very important for the success of the inversion. 
We determi ne the data weights as a diagonal ma trix formed by the 
inverse abso lute values of the normal field. Com putation of the mod­
el weighting matrix is based on sensitivity ana lys is. In this rese arch, 
we select as the square root of the sensitivi ty matrix in the initial 
model: 

Wm = Jdiag (F~F0)112. (7) 

As a result, we obtain a uniform sensitivi ty of the data to different 
model parameters (Zhdanov, 2002). 

In the case ofthe minimum support stabilizer we use the reweight­
ed regularized conj ugate gradient (RRCG) method introduced in 
Zhdanov (2002, pp. 161-166). Th is algor ithm is similar to the RCG 
algor ithm represented by equa tion 6. However, the inversion is con­
ducted in the space of the weig hted mode l parameters m;:', which are 
related to the or iginal parameters by the form ula: 
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m: =W mWenmn, (8) 

where the reweig hting matr ix Wenis equal to 

W en = { diag[ (m~ + e2) lI2Jt I . (9) 

We refer the interested readers to a book on inversio n theory by Zh­
danov (2002) for in-depth explanation of the RRCG technique, 
which is widely used in different geo physical applicat ions. 

In express ions 8 and 9 we use the logarithmic model parameters, 

vector ill, with the scalar components mi'given by the formul a: 

_ _ (ti.U; - ti.Ui ) 
m i -In + . (10)

ti.u; - ti.u; 

This log parameterization has a property that the scalar compone nts 
ofthe original conductivity vector Arr always remain within the giv­
en lower and upper bound s, tso; and !:l(Tt , respect ively: 

ti.ui :s ti.u; .s ti.u7, i = 1,2, . ... L. (I I) 

We apply the adaptive regulari zation method. The regularization 
parameter a is updated in the process of the iterative inversion as 
follows: 

an= atqn-l ; n= I ,2 ,3 . . . . . O <q <l. 

(12) 

In order to avoid divergence , we begin an iteration from a value of 
a I , which can be obtained as a ratio of the misfit functional and the 
stabilizer for an initial model, then reduce anaccording to formula 
12 on each subsequent iteration and continuously iterate until the 
misfit conditi on is reached: 

r:o = Ilr:oll = IIWd(A(m anO
) - d)II/IIWddll :s 8, (13) 

where r:io is the norm alized weighted residual, and 0 is the relative 
level of noise in the weighted observed data. 

Parameter q control s the rate of decrease of the regulari zation pa­
ra meter an in the process of inversion. This parameter is usuall y se­
lected with in an interval [0.5; 0 .9]' 

Note that in practical applications of the regularized iterative in­
version, we begin the inverse process with the minimum norm 
(smooth) inversion to produce an initial image of the target. After a 
few minimum norm iterations we switch the iterative process to the 
minimum support inversion by introducing a reweighting matrix 

Wen(equation 9) and continue with the focusing inversion unti l the 
misfit function al reaches the required misfit level. In other words, the 
developed algorithm has the flexibility to run the minimum norm in­
version to produ ce a smoo th image of the target, or to run a combina­
tion of the smooth and focusing inversions to generate a more 
focused image. Exa mples of practical applications of this appro ach 
will be given below in a section on synthetic MCS EM data 
invers ion. 

Formula 6 demon strates that every iterati on step requir es at least 
one forw ard modeling solution to find the predicted data A (!:l u n). 
Additional computations are needed to find the Frechet derivative 
Fn , and the optimal length of the iteration step k. , 

Thu s, the critical element of the inversion is computing the 
Frechet derivative of the forward mode ling operator. Direct compu­
tation of the Frechet derivative is very time consuming even when 
the reciprocity principle is utilized. It was demonstrated by Golubev 

and Zhd anov (2005) for MT data inversion, that the number of for­
ward modelin gs can be reduced to one on every iterati on step if we 
compute the Frechet derivative using the modified form of the quasi­
analytical (QA) approx imat ion (Zhdanov et aI., 2000). In the current 
paper, we develop a new form of the QA approximation for models 
with variable background conductivity (QAVB) and apply this form 
for more efficient Freche t derivative calculations. We use this ap­
pro ach for developing a fast and rigorous method of the MCSEM 
data inver sion.Thi s method uses IE-based forward modeling solvers 
on every iteration of the RRCG inversion to calculate the predicted 
data. That is why it delivers a rigorous inversion. At the same time, to 
speed up the computations, the method uses the QAVB approxima­
tion for the Frechet derivative calculation. We will discuss the prin ­
cip les of the new method of Frechet derivative calculation using 
QA VB approximation in the next sec tion. 

Another important elem ent of the IE-based inversion is the selec­
tion of the appropriate background conductivity model. This prob ­
lem is a typical one in many methods of exploration geoph ysics. 
There exist several differen t techniques for solving this problem. 
The simplest approach is based on ID inversion of the observed data 
set using the same regularized conj ugate gradient method, described 
above . One can use the corresponding ID inverse model as a back­
ground model for the subsequent 3D inversion. We can also find the 
ID background conducti vity by ID inversion of the data in the re ­
ceivers located outside of the area with the target. We will present an 
example of such an approach in our numerical study below. 

FRECHET DERIVATIVE CALCULATION USING
 
QUASI-ANALYTICAL APPROXIMA TI ON
 

FOR A VARIA BLE BACKGROUND (QAVB)
 

We assume now that the conductivity within a 3D geoelectrica l 
model can be represented by the norm al (horizontally layered) con ­
ductivity (Tn ann> background conductivity (Tb = (Toonn + !:l(Tb, and an 
arbitrarily varyin g conductivity (T = (Tb + !:leT,,, within a domain D. 

In this model , the electrom agnetic field can be presented as a sum 
of the background field, E", H ", and the anomalous field, EdO"" H~O", : 

E =E b + EIlO"a, H =H b + H IlO"a, 

where the background field is a field generated by the given sources 
in the model with a background distributi on of conductivity (Tb, and 
the anomalous field is produ ced by the anomalous conductivity dis­
tribution !:l eTa' 

In Appendix A, we introdu ce a new form of quasi-analytical ap­
proximation of the anomalous EM field for a variable background 
(QAVB): 

a fff [ bA ti.ua(r) ]EQAVB(rj ) = DGE(r j lr). 1 _ gQ(r )E (r ) do, 

(14) 

and 

a fff ' [ ti.ua(r) ]HQAVB(r) = DGH(r j1 r). l _ gQ(r )Eb(r ) du , 

(15) 

where : 
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E Q(r ) . Eb*(r) 
(16) gQ(r) = Eb(r ) . Eb*(r ) , 

and EQis the quasi-Born approximation of the anomalous electric 
field: 

E Q = G E [~(TaEb ]. 

The main difference between the QAVB and the origin al QA ap­
proximation can be explained as follows. It is very well known that 
the accuracy of any approximation of the anomalous EM field de­
pends on the value of the anomalous conductivity. The smaller the 
anomalous conductivity is, the more acc urate the approx imate solu­
tions are (Zhdanov, 2002). In the case of the original QA approxi ma­
tion, the anomalous field is caused by an anomalous conductiv ity , 
which is the difference between the total conductivity of the model 
and some known layered-earth background model. In the case of the 
QAVB approximation , the anomalous field is caused by an anoma­
lous conductivity, which is calculated as a difference between the to­
tal conductivity and some arbitrary inhomogeneous background 
conductivity: tl,ua = U - U b' In principle, this background conduc­
tivity U b can be selected very clo se to the total conductivity , which 
results in a very small value of the anomalous conductivity and a 
high accuracy of the QAVB approximation. 

Another advantage of using expressions 14 and 15, as mentioned 
in Zhdanov and Hur san (2000), is the ability to generate a simple for­
mula for the Frechet der ivative opera tor which can be used in inver ­
sion algorithms. For example, by introducing a perturb ation of the 
anomalous conductivity 8tl,ua(r ) , we can calculate the correspond­
ing perturbation of the electric field bE( r) on the basis of equa tion 
14. After some straightforward algebra, we arr ive at the following 
integral representations for the Frechet derivative of the electri c and 
magnetic fields: 

aE(r;) I = FE(r j lr), aH( r;) I = FH(r)r) , 
a~ (Ta (r) AlTa a~(Ta (r) AU 

a 

(17) 

where the vector functions FEand F H are the kerne ls of the integra l 
Frechet derivative operators: 

1 , ' ]bFE.H(rj Ir ) = [ 1 _ gQ(r )GE.H(rj lr) + K(rj lr) E (r ), 

(18) 

and 

, fff ' ,~(Ta (r ) b 
K (r)r) = D (1 _ gQ(r ' » 2GE(rj1 r' ) . E (r ' ) 

Eb*(r ' ) , ] 
(19) X [ Eb(r' ) . Eb*(r ' ) . GE(r ' lr) dv ' . 

Function gQis determined by expression 16. 
We can use expressions 17-19 for computing the Frec het deriva­

tives required by the RCG algorit hm 6. Indeed, we can treat the elec ­
tric field E (n) found on iteratio n numb er n as a background field E b 

for a subsequent iterati on (n + 1), E b = E (n). In this case , the Frechet 
derivative at iteration number n can be found by direct integration 

from express ions 17-19 involving the electric field E (n) computed on 
the current iteration: 

1 , , ]
FE,H(r jlr ) = 1 _ gQ(r) GE,H(rj lr) + K (r)r) E (n)(r) , [ 

(20) 

and 

K(r)r) = fff ~(Tn(r ' ) ,D ( , _O(_,\\2 GE(rj lr ' ) . E(n)(r ' ) 

E(n)*( ' ) X r ' 
[ E(n)(r' ) . E(nJ*(r ' ) . G£(r ' lr ) ] dV " (21) 

Note that the electric field E (n) is computed , as a rule, using the rigor ­
ous IE forward-modeling method . However, to speed up the compu­
tations, differe nt numerical techniques can be used, as will be dis­
cussed below in the section on numerical examples. We use system­
atically the QAVB approximation for comp uting the Frechet deriva­
tives, based on form ulas 20 and 2 1. As we can see, in the inversion 
algor ithm, the background field requ ired by the QAVB approxima­
tion is equal to the predicted electric field found on the previou s iter­
ation . There fore , no extra computation is required to find the back ­
ground field for the Frechet derivative calculation. The corre spond­
ing numerical method of the Frechet der ivative computations is 
based on the discrete form of the explicit integral expressions 20 and 
2 1, which simplifies all calculations dramatically. However, similar 
to conventional inversion techn iques, we do not need to keep the en­
tire Frechet derivative matrix in the computer memory. We save the 
results of the app lication of the adjo int Frec het matrix to the weight­
ed residual field , F~WdWdrn , only. The major difference between 
the conventional approach and our approac h is that in the first case, 
one has to solve the full 3D EM forward problem on every iteration 
of the inversion in order to find the term F~WdWdrn ' In our method, 
we do not need to solve any forwar d probl em to find the Frechet de­
rivative, because we com pute this term by direct algebraic expres­
sion arising from our new integral repre sentation of the Frechet ma­
trix. The same algebraic expression is used to find the optimal length 
of the iteration step according to expression 6c. As a result, our new 
inversion technique, based on the IE method, requ ires just one for­
ward modeling on every iteration step without any extra memory us­
age, while the conventional inversion schemes require, as a rule, at 
least three forward modeli ng solutions per inversion iteratio n (one to 
compute the predicted data, another one to compute the gradient di­
rection, and the last one for opti mal calculation of the iteration step) . 
Th is approach results in a very efficient invers ion method . 

SYNTHETIC MCSEM DATA INVERSION 

We have investigated several models of marine CSEM surveys. 
First, we have consid ered a 2D CSEM survey, which is currentl y the 
most widely used in offshore exploration. The typical 2D survey 
consists of a set of receivers located along a line at the sea bottom and 
of an electr ic bipole transmitter towed parallel to and above the re­
ceiver s. 

Modell 

In the first set of numerical experiments, we assume that a synthet­
ic CSEM survey is conducted in relatively shallow water with a sea 
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depth of 300 m (Figure I). The survey consists of seventeen sea-bot­
tom receivers and an electric dipole transmi tter moving along a line 
passing directly above the receivers at an elevation of 50 m above 
the sea bottom. The separation between the receiver s is 1000 m. The 
transmitter generates a frequency-domain EM field with two fre ­
quencies of 0.25 and 0.75 Hz from points every 200 m along the 
transmitte r line. The maximum transmitter-receiver offset is 10 km. 
The background geoelectrical model consists of a seawater layer 
with a thickness of300 m and a resistivity of 0.25 ohm-m, a sea-bot­
tom gas-hydrate layer with a thickness of 100 m and a resistivity of 
5 ohm-rn, conductive sea-bottom sedime nts with 
a thickness of 1400 m and a resistivity of I ohm 
om, and a more resis tive basement with a resistiv­
ity of 3.33 ohm-rn (Figure I). We assume that we 
have two petroleum reservoirs with the same 
thickness of 100 m and a resistivity of 
50 ohm-m, but located at depths of 1300 and 

tric field Ex,normalized by the absolute values of the normal electric 
field E';0rm, generated in the horizontally layered background model 
formed by the seawater, the sea-bottom gas-hydrate layer, the con­
ductive sea-bottom sediments, and a relatively resistive baseme nt. 
One can see rather complex anomalous behavior of the observed 
field. We have applied our inversion algorithm to the noisy data . We 
should note that we use 3D forwa rd modeling and inversio n to pro­
cess the data observed by this 2D synthetic survey. In order to speed 
up the computat ions in this example , we have used the multigrid 
quasi-linear (MGQL) forward modeling code to compu te the pre-

True model, tota l resistivity 

1000 m, respectively, below sea level (Figure 1). 
2000 I 

The horizontal dimen sions of the reservoirs are 2 -4000 - 3000 -2000 - 1000 o 1000 2000 3000 4000 
and I km in the x-direction and 1.8 km in the X(m) 
y-direction, respectively. 

The synthetic CSEM data were computed for Figure I. Modell formed by two resistive reservoirs located at different depths . The area 
this model using the rigorous IE method . We use shown with grids defines the extent of the anomal ous domain in the inversions. 

I 

as input data for the inversion the total electric 
field Ex> normalized by the absolute value of the 
normal electr ic field E~orm , generated in the horizontally layered 
background model described above. 

First, we applied the rigorous inversion algor ithm to the inversion 
of the noise-free synthetic CSEM data computed for this model. The 
area of inversion is extended from - 4,000 to 4,000 m in the 
.r-direction. from - 900 to 900 m in the y-direction, and from 
800 to 1,600 m at a depth with cell sizes equal to 500, 600, and 50 m 
in thex-, yo, and z-directions, respectively. 

We ran 30 iterations of the minimum norm (smooth) inversion 
and 53 iterations of the focusing inversion. No a priori model was 
used in the inversion. The convergence plot is shown in Figure 2 
shows the normalized residual versus the iterat ion number, Figure 
2b presents the norma lized parametric functional behavior. The nor­
malized residual is computed by the formula: 

r; = jIWAA(m" 
nO
) - d)II/IIWddll, (22) 

where the data-weightin g matrix is a diagonal matrix formed by the 
inverse absolute values of the background electric field. 

Note that the first iteration of the RRCG method is computed with 
the regularization parameter a = O. After about 50 iterations of the 
rigorous inversion, the normalized residual reaches 3%. Figure 3 
shows a vertical section of the inversion result. As 
one can see, the depth and the horizontal extent of 
both reservoirs are recovered well in the inverse 
image. 

In the next numerical experiment, we contami­ 500 

nated the synthetic observed data with random I 
Gaussian noise. The noise level increases linearly N 1500 

from I% at zero offse t up to 7% at 10,000 m off­
2000 1 
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Figure 2. The convergence plots of the iterative inversion for Model 
1. (a) The normali zed residual versus the iteratio n number, (b) the 
normalized parametr ic functional behavior. 

Predicted model, total resistivity 

. I 
set to simulate a typical noise behavior in the field -4000 -3000 - 2000 - 1000 o 1000 2000 3000 4000 
data. X (m) 

The normalized inline electric field data re­
corded in receiver lO(x = 1000 m) for two fre ­ Figure 3. The vertica l section ofthe result of the inversion of the noise-free data for Mod­
quencies are shown in Figures 4 and 5. We plot el I with the true layered-earth background conductivi ty model. The area shown with 
here the real and imaginary parts of the total elec- grids defines the extent of the anomalo us domai n in the inversions . 
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dieted data at every step of the iterative inversion. The numerical 
study shows that, for the simple geoe lectrical models considered in 
our paper, the MGQL method produ ces a very accurate result , com­
parable to the rigorous IE solution (Ueda and Zhdan ov, 2005). At the 
same time, for validating of the new algorithm it is always useful to 
try the inversion code on the data produced by a different forward 
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Figure 4. (a) The plots of the real and (b) imaginar y parts of the nor­
malized observed and predicted inline electric fields Exat a frequen ­
cy of 0.25 Hz for receiver 10 (x = -1000 m) in model I. The dots 
show the noisy observed data, whereas the predicted data for a model 
obtained by the inversion are plotted by lines. The solid line corre­
sponds to the predicted data (predicted I) obtained by inversion with 
the true ID background model, whereas the dashed line shows the 
predicted data (predicted 2) computed for 3D inversion result ob­
tained with the backg round model found by ID inversion. 
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modeling method. In this case, the synthetic observed data were 
comput ed using the rigorous IE forward-modeling calcul ations, 
while in the inversion algorithm we used a MGQ L approximation as 
the forward-modeling solver. We ran practically the same number of 
RRCG iterations for this data as for the noise-free data example con­
sidered above. No a priori model was used in this inver sion as well. 
The vertical sectio n of the resulting inverse model is shown in Figure 
6. As one can see, the inversion result is still very close to the one ob­
tained for the noise-free data with the inversion algorithm based on 
rigorous forward modeling. Thi s example illustrates the stability of 
the method with respect to the noise in the data and modelin g noise 
related to the different forward-modeling solvers used for synthetic 
observed data calculation and in the inversion algorithm. 

In the previous examples, we assumed that the true ID back­
ground conductivity model was known. We now investigate a more 
realistic situation where this background model is unknown. In this 
case, we can apply the ID inversion to the data recorded by receivers 
I and 9, located outside of the area with two resis tivity reservoirs. As 
a result of ID inversion, we found the followin g parameters of the 
new ID background model: thickne sses of the layers : 300, 100, and 
1400 m and resis tivities of the layers: 0.25, 5.44, 0.97, and 
4.290hm-m 

We applied the IE-based inversion algorithm to the same noisy 
data, as in the previous case . However, we use a new ID background 
model found by ID inversion. We ran practically the same number 
of RRCG iterations for this case as for the example s considered 
above. Figure 7 presents the vertical section of the resulting inverse 
model. The dashed lines in Figures 4 and 5 show the predicted data 
computed for the 3D inversion result obtained with the background 
model found by ID inversion. One can see in these figures that the 
predicted data still fit the observed noisy data within the level of the 
noise, and the inverse model shown in Figure 7 represents a reason­
able image of the targets. 

This example shows that the interpretation of the practical MC­
SEM data should consist of two stages. In the first stage , we found 
the horizontall y layered background geoelec trical model by ID in­
version of the observed data. In the second stage, we ran full 3D in­
version using the correspond ing ID inverse model as a background. 

Model 2 

In the next numerical experiment, we consider a CSEM survey 
over a truly 3D target: a petroleum reservoir in the presence of a salt 
dome structure. Figures 8 and 9 show a plan view and a vertical cross 
section of the model. The sea-bottom reservoir is approximated by a 
thin resistive body located at a depth of 900 m below sea level, with 
a thickness of 100 m, and a horizontal size of 800 X 800 m. The re­
sistivity of the reservoir is 50 ohm-m. There is located, also, an ir­
regular-shaped salt dome structure close to the reservoir at a depth of 
700 m below the sea bottom. The resistivity of the salt dome is 
30 ohm-m. The depth of the sea bottom is 500 m from the surface, 
and the seawater resistivity is assumed to be equal to 0.25 ohm-m . 
The salt dome and the reservoir are surrounded by conduc tive sea ­
bottom sediments with a resistivity of I ohm-m. A 3D image of the 
true model is shown in Figure 10. 

A synthetic CSEM survey consists offourteen sea-bottom receiv­
ers and an electric dipole transmitter moving along two mutually or­
thogon allines at an elevation of 50 m above the sea bottom. The po­
sitions of the receivers are shown by red dots in Figure 8. The separa ­
tion between the receiv ers is 250 m. The locations of the transmit­
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Figure 5. (a) The plots of the real and (b) imaginary parts of the nor­
malized observed and predicted inline electric fields Exat a frequen­
cy of 0.75 Hz for receiver 3 (x = -1000 m, y = 0 m) in model I. 
The dots show the noisy observed data, whereas the predict ed data 
for a model obtained by the inversion are plotted by lines. The solid 
line corresponds to the predicted data (predicted I) obtained by in­
version with the true ID background model, whereas the dashed line 
shows the predicted data (predicted 2) computed for 3D inversion re­
sult obtained with the backg round model found by ID inversion. 
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ters are shown by green diamonds in the same figure. The transmitter 
sends a frequency-domain EM signal with two frequencies of 0.25 
and 0.75 Hz from point s located every 100 m along the transmitter' s 
line. The receivers measure the inline components of the electr ic 
field only. The observ ed data arc computed with the rigoro us IE for­
ward-mod eling code and are contaminated by random Gaussian 
noise, with the noise level increas ing linearly 
from 5% at zero offset up to 10% at 3000 m offse t 
to simulate the typical noise behavior in the field 
data. The area of inversion is extended from 
- 600 to 600 m in the x-direction, from - 600 
to 600 m in the y-direction directi on, and from 
700 to 1200 m at depth . We discretize the inver­
sion domain into 1320 Prismatic cells with the 
cell sizes equal to 100, 100, and 50 min the x- , y-, 
and z-directions, respectively. 

We have conducted two numerical experi ­
ments. In the first experiment, we have used an 
approach based on inhomogeneous backgro und 
conductiv ity (Zhdanov and Wilson, 2004). We 
have assumed that the position of the salt dome is 
known, and we have included a salt dome in the 
inhomogeneous backgro und. This approac h 
seems to be quite real istic. There are practical 
cases of offshore geop hysical exploration where 
the salt dome structure is known from seismic 
data, but the location of the petroleum reservoir is 
unknown. Our new inversi on method makes it 
possible to include this known information in the 
background geoelectric al model. We ran the rig ­
orous IE-based inversion and after 45 iterations 
we obtained a normalized weighted residual be­
tween the observed noisy data and predicted data 
equal to 5%. Figures II and 12 present the plots 
of the real (a) and imaginary (b) parts of the nor­
malized observed and predict ed inline electric 
fields Ex at a frequency of 0.25 and 0.75 Hz, re­
spectively, at receiver 3 (x = - 250 m, y = 0 m). 

the RRCG method is computed with the regularization parameter a 
= O. There is a jump in both plots at iteration 2, because at this itera­
tion we calculate the optimal starting value of the regularization pa­
rameter and introduce it in the inverse process . After iteration 2, the 
normalized residual and the parametric functional steadily decrease. 
After 40 iterat ions of the rigorous inversion, the normalized residual 
reaches almost 5%. 

Predicteo model, tota l resistivity 
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Figure 6. The vertica l section of the result of the inversion of the data contaminated by 
random noise for mode l I. The noise level increases linearly from I% at zero offse t up to 
7% at 10,000 m offset. The true layered-earth background conductivity model is used in 
the inversion. The area shown with grids defines the extent of the anomalo us doma in in 
the inversions. 
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Figure 7. The vertical section of the result of the inversion of the data contaminated by 
rando m noise for model l. The noise level increases linearly from I% at zero offset up to 
7% at 10,000 m offset. The 3D inver sion result is obtained with the background model 
found by ID inversion . The area shown with grids defines the exte nt ofthe anomalous do­
main in the inversions. 

The dots show the noisy observed data, while the predicted data for a True model, total resistivity 
model obtained by the inversion are plotted by lines . The solid line Transmitters 
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The presence of these noisy elements in the inverse image is easily 

1.3 exp lained by the effect of the noise in the data, and by the fact that 200 
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observati onal lines . 
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same noisy data we used in the previous experiment. However, we 
used the distorted salt dome backgroun d conductivity model in the 

Figure 8. Model 2. A petroleum reservoir in the presence of a salt 
inversion. We ran the rigorous IE-based invers ion with 10smooth it­ dome structure (plan view). The positions of the receivers are shown 
erations and 30 focusing iterations. The convergence plot of the in­ by red dots, whereas the green diamonds show the transmitters loca­
version process is shown in Figure 16. Note that the first iteration of tions. 
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Figure 9. Model 2 . A petroleum reservoir in the presence of a salt 
dom e structure (vertical section). The area shown with grids defines 
the extent of the anom alous domain in the inversions. 
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Figure 10. A 3D image of true Mode l 2. 
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Figure 11. The plots of the (a) real and (b) imaginary parts of the nor­
mali zed observed and predicted inline electric fields Exat a frequen­
cy of 0.25 Hz for receiver 3 (x = - 250 m, y = 0 m) in model 2. The 
dots show the noisy observed data, whereas the predicted data for a 
model obtained by the inversion are plotted by blue lines. The solid 
line corresponds to the predicted data (predicted 1)obtained by in­
version with the true salt dome background model , whereas the 
dashed line shows the predicted data (predicted 2) computed for 3D 
inversion result obtai ned with the distorted background model of a 
salt dome . 
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Figure 12. The plots of the (a) real and (b) imag inary parts of the nor­
malized observed and predicted inline electric fields Exat a frequen­
cy of 0.75 Hz for receive r 3 (x = -250 m, y = 0 m) in model 2. The 
dots show the noisy observed data, whereas the predict ed data for a 
model obtained by the inver sion are plotted by lines. The solid line 
corresponds to the predicted data (predicted I) obtained by inversion 
with the true salt dome background model , whereas the dashed line 
shows the predicted data (predicted 2) computed for 3D inversion re­
suit obtained with the distorted background model of a salt dom e. 
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Figure 17 shows the vertical section of the result of the inver sion, 
while Figure 18 presents the corre spond ing 3D image of the inverse 
model. We still can clearly see the resist ive reservoi r in these figures. 
However, the images are slightly distorted due to incorrect selection 
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Figure 13. The vertical section of the result of the inversion of the 
data contaminated by random noise for model 2. The noise level in­
creases linearl y from 5% at zero offset up to 10% at 3000 m offset. 
The true salt dome background conductivity mode l is used in the in­
version . The area shown with grids defines the extent of the anoma­
lous domain in the inver sion s. 
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Figure 14. A 3D image ofthe result of the inversion of the data con­
taminated by random noise for model 2. The true salt dom e back­
ground conductivity mode l is used in the inversion. 

of the background model. This resu lt demon strates that even in the 
case of the inaccurate inform ation about the background model, the 
inversion is still able to recover the meanin gfu l image of the resistive 
reservoir. 
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Figure 15. A vertic al section of the distorted background model of a 
salt dome. The area shown with grids defines the extent of the anom­
alous domain in the inversions. 
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Figure 16. The convergence plots of the iterative inversion for Mod­
el 2 with the data contaminated by random noise. The noise level in­
creases linearly from 5% at zero offset up to 10% at 3000 m offset. 
(a) The norm alized residual versus the iteration number, (b) the nor­
mali zed parametric functional behavi or. The distort ed salt dome 
background conductiv ity model is used in the inversion. 
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Figure 17. The vertical section of the result of the inversion of the 
data cont aminated by random noise for model 2. The noise level in­
creases linearly from 5% at zero offset up to 10% at 3000 m offset. 
The distorted salt dome background conductivity model is used in 
the inversion . 
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Figure 18. A 3D image of the result of the inversion of the data con­
taminated by random noise. The distorted salt dome background 
conductivity model is used in the inversion . 

CONCLUSIONS 

We developed a rigorous method for 3D inversion of MCSEM 
data based on the integral equation formulation. The paper presents a 
theoretical background of this new method and a numerical proof of 
concept. We tested this method on a relatively simple synthetic 2D 
CSEM survey, simulating the typical transmitter-receiver layout 
which is currently used by EM-acquisition compan ies. The results of 
these tests demon strate that the inverse images generated by this 
method provide a reasonable reconstruction of the true location and 
the resistivity of the target. We show also that this method has the po­
tential to be used for full 3D inversion of the MCSEM data collected 

by 3D surveys . We have illustrated the theory and the corresponding 
numerical methods by simple, but meaningful numeri cal examples, 
because practical experience shows that the most effective way to 
test the new method and comp uter code is by analyzing relatively 
simple model s. At the same time, our models may serve as a good 
testing ground for a comparison of different inversion codes in the 
future. 

We should note that the IE method does not necessarily require a 
small inversion domain. The inversion area can be as large as neces­
sary. However, ifthere is any a priori information available about the 
known geologic structures, this information may be included in the 
background model. The only difference between say, the FD solu­
tion and the IE-based solution is that in the first case one should use 
the corresponding bound ary condit ions and include in the modeling 
grid, the cells located very far away from the true area of potential 
target location. In the framew ork of the IE approach, we assume that 
the background model is known inside and/or outside of the inver­
sion area, and we focus our inversion on the potential target. The last 
property of the IE technique is beneficial because it allows more in­
vers ion cells to be used to describe the fine structure of the area of in­
vestigation, while in the FD approac h many inversion cells are locat­
ed at a large distance from the target area, includ ing the air and the 
water layers. 

A serial version of the code can be run on a single PC. The typical 
inversion on a grid of up to a few thousand inversion cells requires 
ju st less than half an hour of computational time on an AMD 4400 
+ (2.2 OHz) 3.25 OB ofRAM Windows rc. 

We should conclude that there is still a lot of work ahead to make 
this method a practical tool for MCSEM data interpretation for off­
shore petro leum explorat ion. For example, we are working now on a 
parallel version of the code based on our new parallel IE-modeling 
software PIE3D. The parallel version will allow us to consider large­
scale inverse problems and use large inversion domains with the in­
homogeneous background to represent the true complexity of sea­
bottom geoelectrical structures. Future research will be directed to 
the analysis of more complex geoelectrica l mode ls and to applica­
tion of the developed method for interpretation of field MCSEM 
data. 
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APPENDIX A 

QUASI-ANALYTICAL APPROXIMATION FOR 
A VARIABLE BACKGROUND (QAVB) 

Zhd anov and Wilson (2004) introdu ced a new formulation of the 
QA approximation which can be used for models with a 3D arbi­
trary, or inhomogeneous, background conductivity distribution . 
This approximation was used by Golubev and Zhdanov (2005 ) to de­
velop a modified QA express ion for both the forward model ing and 
for the Frechet deriv ative computation in magnetotelluric (MT) in­
verse problem solution. In the current paper, we introduce a new im­
proved formu lation of the QA approx imation for model s with vari­
able backgrounds, which results in more acc urate integral represen­
tation for the Frechet der ivative as well. 

Following Zhdanov et al. (2006), we ass ume now that the conduc­
tivity within a 3D geoelectrical model can be represented by the nor­
mal (horizontally layered) conductivity <Tnonn , background conduc­
tivity <Tb =<Tnmm + !i<Tb' and an arbitrarily vary ing conductivity <T 

= <Tb + !i<Ta, within a domain D. 
In this model, the electromagnetic field can be presented as a sum 

of the background field, E",H", and the anomalous field, EA ~" HAa,: 

E = Eb + EdO'Q, H = Hb + HdO'Q, (A - I) 

where the background field is a field generated by the given sources 
in the mode l with a background distribution of conductivity ai , and 
the anom alous field is produced by the anoma lous conductiv ity dis­
tribution !i<Ta: 

EdO'a(r) = E(r) - En(r) - EMb(r) = GE(L\,uaE), 

(A -2) 

HdO'Q(r) = H(r) - Hn(r) - HdO'Qb(r) = GH(L\,uaE). 

(A -3 ) 

Note that formulas A-2 and A-3 can be rewritten in the form : 

EdO'a(r) =GE(L\,ua(Eb + EdO'a)) , (A -4) 

HdO'a(r) = GH(L\,ua(Eb + EdO'a)) . (A -5 ) 

Follo wing the main ideas of the QL app roximation, we assume 
that inside the local inhomogeneity D, the anom alous field EAa, is 
linearl y proportional to the background electric field E": 

E" = EdO'Q= l a . Eb. (A-6) 

Sub stitut ing A-6 into A-4 and A-5, we arrive at the QL approx ima­
tion of the anomalous electromagneti c field for a model with a vari­
able background conductivity (QLVB appro ximation): 

EdO'Q= EQLVB =GE[L\,ua(I + l a) . Eb], (A-7) 

HdO'Q= HQLVB = GH[L\,ua(I + l a) . Eb]. (A-8) 

Therefore , we have the fo llowing equation for Aa: 

l a . Eb = GE[L\,ua(I + l a) . Eb]. (A -9 ) 

In the framework of the quasi- linear app roach, the electrical re­

flectiv ity tensor can be selected to be a sca lar: An= A • In this case , 
integral formula A-9 can be cast in the form : 

a

Aa(r)Eb(r) = GE[L\,uaAaEb] + EQ(r) , (A- lO) 

where EOis the qua si-Born appro ximation of the anomalous field . 
We call this term a qua si-Born approximation, because in the case of 
the conventional Born approx imation, one should use the normal 
electric field inside the Green ' s operator: 

EQ= GE[L\,uaEb]. 

Followin g the ideas ofthe original QA approximation, we use the 

fact that the Green ' s tensor GE( rjlr ) exhibits either singular ity or a 
peak at the point where rj = r . Therefore, one can expect that the 
domin ant contribution to the integral Gd !i<TnAEbJ in equation A-to 
is from some vicinity of the po int rj = r . Assumin g also that Aa(r ) is 
slowl y vary ing within domain D, one can write 

Aa(rj)Eb(r) = Aa(r)GE[L\,uaEb] + EQ(r) 

= AaCrj)EQ(r) + EQ(r) . (A-II ) 

Note that expression A-II represents a vector equation, while we 
have ju st one sca lar unkn own function, Aa( r). Taking into account 
that we are lookin g for a sca lar reflectiv ity tensor, it is useful to intro­
duce a scalar equation based on the vector equ ation A-II. We can 
obtain a scalar equation by taking the scalar product of both sides of 
equation A-II with the complex conj ugate background electri c 
field: 

AaCr)Eb(r) . Eb*(r) = Aa(r)EQ(rj) . Eb*(r) 

+ EQ(r) . Eb*(r) . (A - I 2) 

Dividing equation A-12 by the square of the normal field and assum­
ing that 

Eb(r) . Eb*(r) *' 0, (A- l3 ) 

we obtain 

AaCr) = Aa(r) gQ(r) + gQ(r) , (A -I4) 

where: 

EQ(r) . Eb* (r ; ) 
gQ(r) = Eb(r) . Eb*(r ) . j

Solving equation A-I 4, we find 

_ gQ( r;) 
Aa(r) - Q() ' (A - I 5) 

1 - g rj 

Note that at the point s where the background field vanishes , we 
can select Anequal to (- 1): 

Aa(r) = - 1, if Eb(r) . Eb*(r) = O. 

Sub stituting equation A- IS into A-I , we find 

I 
E(r) = [AaCr) + I]Eb(r) = Q( )Eb(r) . 

1 - g r 

(A- I6) 

Therefore , from equations A-2 and A-3, we finally determin e 



WA84 Gribenko and Zhdanov 

Golubev, N., and M. S. Zhdanov, 2005, Accelerated integral equation inver­
sion of 3D magnetotelluric data in models with inhomogeneous back­to" fff [~ojr) b ]AEQA'Vs(r j ) = D GE(r )r) . I _ gQ(r )E (r) do, ground: 75th Annual International Meeting, SEG, Expanded Abstracts, 

(A-17) 

and 

to"a - fff [~(Ta(r) ]AH QAVS(r) - D GH(r j lr) . I _ gQ(r )E b(r ) duo 

(A- IS) 

Equations A-1 7 and A-1 8 g ive qu asi- analyti cal solutions w ith the 

variable back ground (QAV B) for 3D elec tro mag ne tic fie lds . W e 

sho uld note that formulas A-17 and A-18 provide more accurate ap­

prox imat ions of the anomalo us field than the origin al QA appro xi­

matio ns dev eloped by Zhdanov et al. (2000) , bec au se they are based 

on the linear re latio ns hip between the anomalous and the back­

gro und fields, while the original approximation s used a similar rela­

tionship between the ano malous and the normal field s. In the ca se o f 

the high co nductivity contras t between the inh omogen eity and the 

ho ri zon tall y layered background, the acc uracy of the original QL 

and QA approximations may decrease , while using the appro priate 

variable background model ca n make this approx imatio n as clo se to 

the true data as required. 
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