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ABSTRACT

The interpretation of potential and electromagnetic fields observed over 3D geological

structures remains one of the most challenging problems of exploration geophysics. In

this paper I present an overview of novel methods of inversion and imaging of gravity

and electromagnetic- data, which are based on new advances in the regularization

theory related to the application of special stabilizing functionals, which allow the

reconstruction of both smooth images of the underground geological structures and

models with sharp geological boundaries. I demonstrate that sharp-boundary geo-

physical inversion can improve the efficiency and resolution of the inverse problem

solution. The methods are illustrated with synthetic and practical examples of the 3D

inversion of potential and electromagnetic field data.

INTRODUCTION

The inversion of geophysical data is complicated by the fact
that geophysical data are invariably contaminated by noise
and are acquired at a limited number of observation points.
As a result, the solutions are ambiguous and unstable. There-
fore, the inversion of geophysical data represents a typical
ill-posed problem. The solution of an ill-posed problem re-
quires the application of corresponding regularization meth-
ods (Tikhonov and Arsenin 1977). The traditional way to
implement regularization in the solution of an inverse prob-
lem is based on a consideration of the class of inverse models
with a smooth distribution of the model parameters. Within
the framework of classical Tikhonov regularization, one can
select a smooth solution by introducing the corresponding
minimum norm, or ‘smoothing’ stabilizing functionals. This
approach is widely used in geophysics and has proven to
be a powerful tool for the stable inversion of geophysical
data. '

The traditional inversion algorithms providing smooth so-
lutions for geological structures have difficulties, however, in
describing the sharp boundaries between different geological
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formations. This problem arises, for example, in the inversion
of a local conductive target with sharp boundaries between
the conductor and the resistive host rocks, which is a typi-
cal model in the exploration for a mining target. A similar
problem arises, for example, in the inversion ofr a local re-
sistive target with sharp boundaries between the conductive
formations of sea-bottom sediments and a resistive hydrocar-
bon reservoir, which is a typical model in offshore petroleum
exploration. In these situations it can be useful to search for a
stable solution within the class of inverse models with sharp
petrophysical boundaries.

The mathematical technique for solving this problem is de-
scribed in detail in the monograph by Zhdanov (2002). It
is based on introducing a special type of stabilizing func-
tionals, the so-called minimum support or minimum gradi-
ent support functionals (Portniaguine and Zhdanov 1999).
This technique is called a focusing regularized inversion to
distinguish it from the traditional smooth regularized in-
version. In this paper I present an overview of new ad-
vances in the regularized inversion of gravity and electro-
magnetic data developed by the Consortium for Electromag-
netic Modeling and Inversion (CEMI) over the last few years.
I will also discuss the application of the focusing inversion
to the solution of gravity and electromagnetic (EM) inverse
problems.
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FOCUSING INVERSION

In a general case, the geophysical inverse problem can be ex-
pressed by an operator equation:

d=A(m). (1)

where A is a forward modeling operator, 72 = m(r) is a scalar
function describing the distribution of the model parameters
(density, magnetic susceptibility or electrical conductivity) in
some volume V in the Earth, (m € M, where M is a Hilbert
space of models with a L, norm) and d = d(r) is a geophysical
data set (d € D, where D is a Hilbert space of data) formed
by observed values of the corresponding geophysical fields
(gravity, magnetic or EM).

Inversion aims at determining the model parameters
based on A and some known (observed) data d. This problem
is usually ill posed, i.e., the solution can be nonunique and
unstable. The conventional way of solving ill-posed inverse
problems, according to the regularization theory, is based on
the minimization of the Tikhonov parametric functionals:

P*(m) = ¢ (m) + as (m) = min, (2)

where ¢(m) is a misfit functional determined as a norm of the
difference between observed and predicted (theoretical) data:

¢ (m) = || Am—d||p, = (Am—d, Am—d)p. 3)

Functional s(m) is a stabilizing functional (stabilizer), and «
is a regularization parameter.

The optimal value of « is determined from the misfit con-
dition:

¢ (my) = 4. (4)

where m1,, is a solution of the minimization problem (2), and
84 is the noise level of the data.

The stabilizing functional incorporates information about
the basic properties of the type of models used in the inver-
sion. The traditional smooth inversion algorithms are based
on the minimum norm or maximum smoothness stabilizing
functionals (e.g., Occam’s inversion). For example, a mini-
mum norm stabilizing functional s() is usually selected in
the Hilbert metric, of model space M = L, as a norm square
of the difference between the current and a priori models:

smn(m) = || (m = mape) |3y

= (m — mup,. m— My )

f/ m— m,,,r dv.
v

(5)

This stabilizer provides, usually, a relatively smooth image of
the inverse model.

This criterion, as applied to the gradient of model param-
eters Vi, brings us to a maximum smoothness stabilizing
functional:

Smaxsm (m) = va”i'l = (Vm- vm)M . (6)

This stabilizer produces smooth geological models, which in
many practical situations do not describe the real blocky geo-
logical structures well.

In order to produce focused images of a target with sharp
boundaries, we use a new type of stabilizing functional, the so-
called minimum support or minimum gradient support func-
tionals.

In particular, the minimum support functional is a non-
quadratic functional of the form (Zhdanov 2002):

(m — ma,,,)
sums (m) = f// ——- +eldv (7)

where e is a focusing parameter required to avoid the sin-
gularity in the last formula for the points where m = m1,,.
The minimum support functional has an important property:
it minimizes the total domain (support) with the nonzero de-
parture of the model parameters from a given a priori model
(Zhdanov 2002). Thus, a
tion of the parameters with all values different from the a

dispersed and smoothed distribu-

priori model gy, results in a big penalty function, while a
well-focused distribution with a small departure from #1,,
will have a small penalty function.

Another example of the focusing functional is a minimum
gradient support functional determined by the following ex-
pression:

Vm-Vm

smas (m) = /// - Vm+ezdv (8)

We denote by sptVm the combined closed subdomains of
V where Vi ;é 0. We call sptVm a gradient support. Then

expression (8) can be modified:
2
d
i (m /ffptanI: Vi - Vm+ e ] .
= sptVm — & / / / - 9)
R sptvm V- Vm + e? e

From the last expression we can see that:
smacs (m) — sptVm, if e — 0. (10)

Thus, we can see that sycs(72) can be treated as a functional
proportional (for a small B) to the gradient support. This
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functional minimizes the anomalous domains and/or the areas
with strong variations of the model parameters, which results
in focusing inverse geophysical images (Zhdanov 2002).

MINIMUM SUPPORT INVERSION METHOD

Consider again the inverse geophysical problem (1). We will
analyse two important cases of the linear and nonlinear oper-
ators A.

Assume first that A is a linear operator. Following the con-
ventional logic of the regularization theory, we reduce the
solution of the inverse problem to the minimization of the
Tikhonov parametric functional:

Pis(m) = ¢ (m) + asys (m) =

(m — mgp )

(Am—d, Am— dD+af/ — 2y, . (1)

(m— mupr)z +¢e?

where sy () is a minimum support stabilizing functional. .
Let us calculate the first variation of this functional
(Zhdanov 2002):

8 Pg(m) = 2(Asm. Am—d)p

+2ae” /// e 5 dv,
m Mhpr ) +e—]
or
8 Pyis(m) = 2(6m, A*(Am — d))ym + 2a(8m, B)y, (12)

where A* is the adjoint operator of A, and:
¢ (m— )

[(m =)+ ]

B =

The necessary condition of the functional minimum requires
that the first variation of this functional be equal to zero at a
minimum. Thus, we have the following equation for :

elt(m - mupr)

A(Am—d) + .
[(m — a0 )* + ]

=0, reV. (13)

Equation (13) is the Euler-Lagrange equation for the para-
metric functional (11) minimization. A solution 71, of this
equation realizes the minimum of P

Pys (my) = min.

However, the direct solution of equation (13) represents a
challenging numerical problem. It is more convenient to apply
the iterative algorithm of the parametric functional minimiza-
tion, which we will outline below for a general case of a
nonlinear operator.
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In the case of the nonlinear forward modelling operator A,
the first variation of the parametric functional (11) takes the

form:
8 Pys (m) = 2 (5m, F*(Am—d))y + 2a (5m. B)
=2(ém, F*(Am—d)+aB)y <0 (14)

where F is a Fréchet derivative of A. Following the basic con-
cepts of the steepest descent method, we select:

Sm = —kl (m) (15)
where the gradient direction is equal to:

I (m) = F*(Am—d)+ aB. (16)
Note that for the linear forward operator:

F=A4

therefore the gradient direction is equal to:

I(m) = A" (Am —d) +aB. (17)

On the basis of equations (15) and (16), one can construct
steepest descent or conjugate gradient algorithms for inverse
problem solutions. In the numerical examples discussed be-
low, we use the conjugate gradient method. The algorithm
for the regularized conjugate gradient method, according to
Zhdanov (2002), can be summarized as follows:

tw=Alm,)—d, Iy =1m,)=F, (Am,—d)+aB, (a)
where B, = e*(m, — myp )/ [(mn — )2 + €]
p= PNl Te=tepde, To=15. () (18)
= 1)/ || EnE) +a |l I’} @
Mysy =m, — K212, (d)

The iterative process (18) is terminated when the misfit reaches
the required level:

@ (mys1) = 4. (19)

Note that the regularized conjugate gradient method (18)
can be applied to the solution of both linear and nonlinear
geophysical inverse problems.

MINIMUM GRADIENT SUPPORT
INVERSION METHOD

Now we introduce the Tikhonov parametric functional with
the minimum gradient support stabilizer:

Pyics (m) = @ (m) + asycs (m)
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Vm-VGm
=(Am—d, Am— dD+a[// o —— —dv. (20)

Let us take a variation of the last formula, assuming first that
A is a linear operator:

8Py (m) = 2 (ASm, Am—d)p+ ads (21)

MCA( )

Calculating the first variation of the minimum gradient sup-
port functional, we find:

Vm - Vm
o _,s///v e
=z/// (C - Vém)yy dv,
14 (22)

where
C=0bt'Vm (zé)
and
e o Fidon Ly
(V- Vm+ e?)
Using the identity:
V- (Cém) = (V-C)dm+ C-Vém,

we can integrate the integral (22) by parts:

I/ (C-VSm)dv:—f//(V-C)amdv
/ff - (Com)d ///VCSmdu

+ f Cém - nds,
%

where we have applied the Gauss theorem, and n is a unit
vector of the normal directed outward from the domain V.

We assume homogeneous Neumann (i.e., no flux) boundary
conditions:

// Cém - nds =// Smb*Vm-nds = 0.
Vv av

The last condition can be reformulated as:

d
Vm-n =_—m =05
on

reav. (24)

where dm/0n is a directional derivative in the direction of
vector n. Therefore we have:

Ssmas (m) =2// v(C-V(Sm)dvz—2'/‘//;(\7~C)8ma'v

==2(8m, (V-C))y. (25)

Substituting (25) into (21), we obtain:

5 Pl <m>=2<Aam.Am—d>D+za/// C.- Vémdv
\'4

= 2(8m, A‘(Am—d))M—a/[/v(V-C)(Smdv

= (8m, [A"(Am—d) —a (V-C)])u

The necessary condition of the functional minimum requires
that the first variation of this functional be equal to zero
at a minimum. Thus we have the following Euler-Lagrange
equation for m1:

A (An—d)—a(V-b*'Vm) =0, reV, (26)
and the boundary condition:

(.)_m =0. (27)
an

A solution m,, of these equations realizes the minimum of the
parametric functional Pgj¢ (m,) = min.

Note that the direct solution of the Euler-Lagrange equation
(26) is very complicated. A less computationally expansive ap-
proach is based on the iterative gradient type inversion, which
could be applied to the inverse problems with both linear and
nonlinear forward modelling operators. For example, in the
case of nonlinear operator A, the expression for the first vari-

ation of the parametric functional (20) takes the form:
3 Py (m) = 2 (6m, [F*(Am—d)—a(V-C)])y. (28)

Following the basic concepts of the steepest descent method,

we select:

m=—kl (m),
where [(m) is a gradient direction:
I(m)=F*" (Am—d)—a(V-C).

Knowing the gradient direction, we can apply the steepest
descent or conjugate gradient method to find the solution of
the inverse problem. The algorithm for the regularized conju-
gate gradient method (18) can be modified as follows:

ry = Am,) —d.l* =1%(m,) = E,,,*(Am, — d)+a (V - C,), (a)
where C,, = e2Vm,/ (Vm, - Vi, + ¢2)” .
Br= il /Ml T =t gl T =15 ()
B= 5 )/ IEE R +a ). @
My = my — 12, (d) (29)
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The iterative process (29) is terminated based on condi-
tion (19).

The basic principles used for determining the regulariza-
tion parameter « are as follows. Consider for example the
progression of numbers:

a =gy k=1.2,3...;9>0. (30)

The first iteration of the steepest descent of the conjugate
gradient method is run usually with o = 0. The initial value
of the regularization parameter, «a, is determined after the
first iteration, my, as a ratio:

_ 14em) - d?
Iy — 1y, |2

In this way we have an approximate balance between the mis-

fit and stabilizing functionals. Then we reduce a, according
to formula (30) on each subsequent iteration and continu-
ously iterate until the misfit condition (4) is reached. This
approach to the optimal regularization parameter selection is
called adaptive regularization (Zhdanov 2002).

In the following sections I will illustrate the principles of
focusing inversion using the examples of airborne gravity gra-
diometer data and land and marine magnetotelluric data.

FOCUSING INVERSION OF GRAVITY
GRADIOMETER DATA

Airborne gravity gradiometer data

Recent technological developments made it possible to ac-
curately measure all the independent tensor components of
the gravity gradient field from an airborne platform. Previous
research has demonstrated that the use of airborne gravity
gradient data can significantly improve inversion results and
increase the effectiveness of the gravity method in mineral ex-
ploration (Zhdanov, Ellis and Mukherje 2004). The technol-
ogy that enables such rapid and accurate data acquisition mo-
tivates the research to further develop methods for processing
and interpreting gradiometer data. Moreover, these advance-
ments continue to stimulate a growing interest in the applica-
tion of gravity gradient data in geophysical exploration.

Here I provide a brief mathematical description of the grav-
ity tensor components (after Zhdanov et al. 2004), which are
measured by airborne gravity gradiometers. First, we know
that the gravity field, g, must satisfy the following equations
(Zhdanov 1988):

V-g=—-4nyp, V. xg=10, (31)
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where y is the universal gravitational constant and p is the
anomalous density distribution within a domain D.
The solution of these equations is given by the formula:

so=+ [ e

where integration is conducted over the variable r'. The gravity

: —_rrl3 , a2}

field can be expressed by the gravity potential U(r) as
g(r) = VU(r),
where:

Ulr) —y///D Ir”(_’rP / (33)

The second spatial derivatives of the gravity potential U(r):

a2

Zaplt) = —— ),

dadp a, B=x 9.2 (34)

form a symmetric gravity tensor:

8xx 8xy 8xz
g= 8yx 8y 8yz
8xx 8zy 8=
where:
92,
8up = (;3 b R e SR T (35)

The expressions for the gravity tensor components can be
calculated based on formulae (34) and (33):

gt = [[[ LKt -, (36)

where kernels K4 are equal to:

Fle—ohip—p) a#p
Kup(t' — 1) 0 ’;)_” 1, acp’ @y pI=x; vz (37)
¥~ i )

Using formulae (36) and (37), derived above, we write the
following expressions for the gravity tensor components in
discretized form, considering each cell as a point mass:

(i~ )
8ux(r) = yZp rP (3 "

x —x)(y —v)
8n(r SyZp (_rl5

- 1) Ax'Ay' AZ.(38)

1) AxX'Ay' AZ. (39)
B N ¥ =% -2 aemiah )

8x(r) =3y ?n(r ) (W 1) AX'AY'AZ.  (40)

(z —2)?
II3 (3 ez |2

galr) =y Zp

- 1) AX' Ay AZ. (41)
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The point-mass approximation dramatically speeds up the
processing time while yielding very accurate results. In a pa-
per by Jessop and Zhdanov (2005a), the accuracy of this ap-
proximation was quantitatively examined by comparing it to
the exact prism body method given by Okabe (1979). It was
demonstrated in the cited paper that, when the depth to the
centre of the cell exceeds twice the dimension of the cell, the
error level quickly falls below one-half of a percent. At the
same time the point-mass approximation method is up to 10
times faster, depending on the ratio of the observation points
to cells; furthermore, the point-mass approximation requires
only one-tenth the amount of memory in comparison with the
exact prismatic body method. This is why in our computer
algorithm we use formulae (38)—(41) for forward modelling
calculations of the tensor gravity field.

Inversion of airborne gravity data in areas with rough
topography

In an area with little topographical variation, the observation
data can usually be acquired at a uniform altitude; in this situ-
ation, we can generally assume that the data lie in a horizontal
plane and that a regular 3D mesh is sufficient to model the
flat terrain.

Many airborne survey areas, however, cover rough terrain,
and the flight surface is necessarily uneven. In such cases,
a rectangular 3D mesh is inadequate for modeling the sub-
surface. A new approach has been designed by Jessop and
Zhdanov (2005b) to handle variations in the topography as
well as those in the flight surface. To set up the modelling
domain, we first define subsurface cell locations in a regular
3D mesh and then by incorporating topographical data we
can adjust each column of cells relative to the interpolated el-
evation directly over each column. This allows for areas with
rough topography to be modelled without having to use a
rectangular domain that can intersect the space of the ob-
served data. This method also ensures a more efficient use of
computer memory by not creating useless cells that lie above
the topography.

Model 1: Single quy

For our first model study, we attempt to recover a rectangu-
lar body from data computed on an arbitrary surface. The
rectangular prism body has dimensions 150 x 150 x 100 me-
tres, has an anomalous density of 1.0 g/cm’, and is centered
125 metres below the subsurface (see Fig. 1). We computed
the synthetic data for gy, on the arbitrary observation surface

Density, p>0.35 g/cm®

100

y (@)

x (m)

Figure 1 Model 1: a rectangular body with an anomalous density of
1 g/em?.

Y (m) pue X (m)

Figure 2 Modelling domain and arbitrary observation surface with a
texture map of the gy, data. A colour scale of the texture map is the
same as in Fig. 8. Observation points are posted as black dots.

shown in Fig. 2, where elevations range from about 20 to
350 metres. In the modelling domain, we use a regular mesh
with 378 cells.

Figures 3 and 4 present the smooth inversion results, ob-
tained with the minimum norm stabilizer. In the 3D inversion
image in Fig. 3 only cells with a density that exceeds 0.07
g/cm? are plotted. Figure 4 shows a vertical section of the in-
verted density. One can see that the smooth inverse image is
very diffuse and provides significantly underestimated values
of the density.

Figure 5 shows our focused inversion result, where cells that
exceed 0.35 g/cm? are plotted. Figure 6 presents the vertical
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Density, p>0.08 g/cm®

350j

200 S
1;’\ /mn
g 2% y (m)

x (m)

Figure 3 The results of smooth gy, inversion for Model 1, obtained *

with the minimum norm stabilizer. Only cells with a density that
exceeds 0.07 g/cm? are plotted.

plya]
Densityatx = 0m

200 5 00 0 0 %
yim)

00 15 200

Figure 4 A vertical section of the inverted density obtained by a
smooth inversion.

section of the inverted density. Clearly, the body is recovered
very well with anomalous densities up to 0.85 g/cm?. If we
add 10% random noise to the data, the body is still recovered
exceptionally well (see Fig. 7). The observed and predicted
data for this case are shown in Fig. 8. Figure 9 presents the
convergence plots for parametric and misfit functionals and
for a regularization parameter. We can see that the algorithm
quickly achieves a misfit level of around 0.01. This corre-
sponds to a predicted norm of errors (or the square root of
misfit) equal to 10%, as expected.

Model 2: Mocha synthetic gravity tensor data

Our second model was provided by BHP Billiton along with
the synthetic data for two gravity gradiometer components,
8xy and ga, both of which are directly measured by BHP’s
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Density, p>0.35 g/ cm®

200 -200

¥ (m)

x (m)

Figure 5 Result of focusing g,y inversion for Model 1 without Gaus-
sian noise.

plg/a]
Density atx=Om

200 B0 00 0 0 %0
y(m)

00 150 20

Figure 6 A vertical section of the inverted density obtained by a fo-
cusing inversion.

Falcon® airborne gradiometer system. The component g, is
a combination of two other tensor components and is given
by:

8xx — 8yy
8a = T2
The data were computed for seven test bodies on a real
flight surface covering more than 200 square kilometres over
the Mocha porphyry copper deposit in northern Chile (see
Fig. 10). The region is characterized by deep canyons and ex-
tremely steep topography rising generally to the east. The test
bodies have an anomalous density of 0.2 g/cm? and are 1500 x
1500 x 500 meters in size. Figure 11 shows the location
of each body numbered 1 to 7 on the topography map.
Each body is centered 350 metres below the topography
at the corresponding easting and northing location. The
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elevations of the test bodies range from 1730 meters (body
1) to 2690 meters (body 4), a difference of nearly 1000 me-
ters. Note that test bodies 1, 5, and 6 are located beneath the
deep canyons and are furthest away from the observation sur-
face; consequently, they have a much smaller signature than
the other four bodies. Figure 12 shows the synthetic data for
gxy and ga computed on the actual flight surface.

For this problem, we incorporated the given topography
information into the modelling domain to match the terrain
(see Fig. 13). Figure 14 shows the result of inverting the g,
field with a discretized model of 29,241 cells, 250 x 250 x
250 m each. Here we have applied the focusing inversion with
the minimum support stabilizer. All seven bodies are easily
located. In this case, where the original bodies are much more
broad in horizontal extent (1500 x 1500 m) than they are

p[g/cm’]

Density, p>0.35 g/cm’

y (m)

x (m)

Figure 7 Result of focusing gy, inversion for Model 1 with 10%
Gaussian noise added.

y (m)

EEENEEEE

thick (500 m), we tend to get a ‘shadow’ effect where the
recovered bodies include not only the original locations but
also much of the area beneath them. We see this is the case for
all seven recovered test bodies, where the shadow effect has
reduced the depth resolution.

To make things more interesting, we added 5 Eotvos of
RMS noise to both the g, and g data and performed a joint
inversion. This level of noise is significant considering that the
peak amplitudes of the pure data were only about £10 Eotvos.
The result in Fig. 15 shows that all seven bodies can still be
located, although body 5 was difficult to resolve separately
from body 6. Both of these bodies lie beneath deep canyons.
For the same case with 4 Eotvos RMS noise added to the data,
we found that we could resolve these two bodies separately.
The observed and predicted fields are given for g, and g in
Figs 16 and 17, respectively.

FOCUSING INVERSION OF
MAGNETOTELLURIC DATA

In this section, we will consider, as an illustration of the de-
veloped method, a solution of the geophysical magnetotelluric
(MT) inverse problem. The MT method was introduced in
geophysics by Tikhonov (1950) and Cagniard (1953). It is
based on measurements of the natural EM field at the surface
of the earth. This field consists of a primary component of
external origin and a secondary component that arises due
to telluric currents induced in conductive regions of the earth
by the primary field. The penetration depth of the primary
field, and therefore of the telluric currents, increases with pe-
riod. The interpretation of magnetotelluric data is based on
the calculation of the transfer functions between the hori-
zontal components of the electric and magnetic fields, which

x (m)

Figure 8 Synthetic gy, data. for Model 1: (a) observed data with 10% noise; (b) predicted data.
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Figure 9 Convergence curve for gy inversion with 10% Gaussian noise. a) Parametric and misfit functionals. b) Regularization parameter & is

reduced after each re-weighting.

il
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Figure 10 Location of Mocha porphyry copper deposit and approximate survey boundary in northern Chile. The numbers on the x and y axes

are UTM coordinates.

form the so-called impedance tensor Z (Zhdanov and Keller
1994). The components of the impedance tensor depend pri-
marily on the subsurface resistivity distribution over the pen-
etration depth. Impedance measurements as a function of pe-
riod can therefore be inverted for a resistivity model of the
earth.

Following the traditional approach used in practical MT
observations, we can calculate the apparent resistivities, p,
and phases, ¢, based on two off-diagonal elements of the MT
tensor, Zyy and Z,,, at each observation point,

1 1
Pxy = '_'lz.\'_v|2~ Pyx = '_'lzyxll~ (42)
[y WLy

1 ImZ;,
ReZ,.

where the quantities pyy, and ¢, are assigned to the nomi-

¢y = tan (43)

nal transverse magnetic (TM) mode, whereas py. and ¢, are
assigned to the nominal transverse electric (TE) mode. Note
that, in inversion algorithm we actually use the logarithm of
apparent resistivity and phase in radians.

The solution of the inverse problem requires numerical
modelling of the apparent resistivities and phases in each step
of the iteration process. The components of the impedance
tensor are determined from the horizontal components of the
electric and magnetic fields in every observation point. The
corresponding technique of solving this problem is outlined,
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for example, in Zhdanov and Keller (1994) and Berdichevsky
and Dmitriev (2002).

The integral equation forward modelling method can be
used for computing the components of the impedance tensor
components in (42) and (43). In a general case, the corre-
sponding formulae can be expressed by an operator equation
including the data vector d and the vector of model parameters
m as

d = A(m), (44)

where A is the forward operator symbolizing the govern-
ing equations of the MT impedance modelling problem, m
is the vector of the unknown conductivity distribution (model
parameters) and d is the vector formed by observed values

of the apparent resistivities and phases at the observation .

points. We can now apply the RCG algorithm (18) with the
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Figure 11 Map view of the Mocha survey area topography with
posted observation coordinates. Locations of the seven test bodies
are shown. Each body is centered 350 metres below the surface.
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Figure 13 3D view of conformable modeling domain and observation
surface, with vertical exaggeration. The observation surface, raised
1000 m, is shown with a texture map of the gy, data produced by the
seven test bodies.

Figure 14 Inversion result for noise-free gy, data for seven bodies.
Flat gray rectangular boxes indicate positions of the original bod-
ies. The x-y coordinate origin corresponds to UTM coordinates 472,
775 m easting, 7,808,450 m northing.
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Figure 12 Synthetic data generated by BHP Billiton for seven test bodies. (a) gy, component; (b) ga component.
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minimum support nonlinear parameterization to solve the
MT inverse problem (44). Note that the computation of
the Fréchet derivative matrix, required by this algorithm,
can be made on the basis of quasi-analytical approxima-
tion with the variable background — QAVB (Gribenko and
Zhdanov 2007).

The 3D MT inversion algorithm described above and the
corresponding computer code has been carefully tested on
synthetic models. I present below some numerical examples
of the MT data inversion with this method.

Density, p>0.07 g/ cm’

T T
. s 0.11

y (m)

x (m)
018

Figure 15 Joint inversion result of g«, and ga components, each with
5 E RMS noise.
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Model 3: a conductive dike

As an example, I will present the results obtained using a
smooth and focusing inversion of the synthetic MT data com-
puter simulated for a model of a conductive dike (Zhdanov
and Tolstaya 2004). Consider a homogeneous half-space with
a background resistivity of p, = 100 Ohm-m, containing
a conductive dike. The resistivity of the inhomogeneity is
3 Ohm-m. The top of the dike is at a depth of 200 m and
its bottom is at a depth of 600 m beneath the surface. This
model is excited by a plane EM wave source. The x and y
components of the anomalous magnetic and electric fields
for four different frequencies (1, 10, 100 and 1000 Hz) have
been simulated at 225 receiver points arranged on a homo-
geneous grid, using integral equation forward modelling code
INTEM3D (Hursan and Zhdanov 2002). The coordinates of
the receiver grid are the following: x and y from -700 to 700
every 100 metres. The receiver system is located at the surface
of the earth. The EM field components were recalculated into
MT apparent resistivity and phase, using the standard formu-
lae (Berdichevsky and Dmitriev 2002). The area of inversion
is covered by a homogeneous mesh consisting of 16 x 25 x
8 cubic cells surrounding the anomalous structure to be in-
verted. Each cell has a dimension of 100 m in the x, y and 2z
directions.

x10° (b)
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Figure 16 Synthetic gy, component. a) Observed field with 5 E RMS noise; b) Predicted field.
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Figure 17 Synthetic go component. a) Observed field with 5 E RMS noise; b) Predicted field.
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Figure 18 Conductive dike model. Top left panel: true model. Top right panel: inversion results with minimum norm stabilizer. Bottom left
panel: final inversion result with minimum support stabilizer. Bottom right panel: convergence curves for focusing inversion — parametric
functional, P[a], stabilizer, S[], misfit, ¢[m] and elapsed time versus iteration number.

Figure 18 shows the true model (top left panel), inversion
result with minimum norm stabilizer (top right panel) and
final focusing inversion result with minimum support stabi-
lizer (bottom left panel). The cut-off level of the resistivity
for these images is shown in the corresponding panels. For
example, the cut-off level p < 3 Ohm-m means that only
the cells with the value of resistivity less than 3 Ohm-m are
displayed. The bottom right panel of Fig. 18 presents the in-
version curves, parametric functional, P[a], stabilizer, S[m],
misfit, ¢ [m], and elapsed time versus iteration number. Note
that due to the high conductivity contrast, the predicted con-
ductivity is slightly smaller than the true conductivity. Never-
theless, the inversion with minimum support stabilizer helps
to obtain an ima.ge with a much higher contrast than the min-
imum norm inversion, as one can see from Fig. 18, where
the cut-off value for the image in the top right panel is 15
times greater than the one in the bottom left panel. The
shape and position of the recovered body is predicted quite
well.

For comparison, we present in Fig. 19 the vertical cross-
sections of the true model (panel a), the inversion result with
minimum norm stabilizer (panel b), and the final focusing
inversion result (panel ¢). One can see that the minimum norm
result underestimates the true conductivity, while the focusing
inversion reconstructs an image very close to the true model.

Model 4: a sea-bottom petroleum reservoir

A sea-bottom petroleum reservoir is a typical target for marine
EM exploration. Following Wan and Zhdanov (2003, 2004),
we consider a synthetic model of a sea-bottom reservoir in the
presence of a resistive salt dome structure. We approximate a
reservoir by a thin resistive body with a resistivity of 100 Ohm-
m located at a depth of 500 m below the sea bottom, with a
thickness of 100 m (Fig. 20). A salt dome of a complex shape
with a resistivity of 30 Ohm-m is located close to the reservoir,
at a depth of 300 m below the sea bottom. Figures 21 and 22
show a plan view and a vertical cross section of Model 4. The
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Figure 19 Conductive dike model: vertical cross sections of the true model (panel a), the inversion result with minimum norm stabilizer

(panel b), and the final focusing inversion result (panel c).
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Y,m 0 B

Ohm-m

Figure 20 Model 4 of a petroleum reservoir in the presence of a
resistive salt dome structure.

depth of the sea bottom is 500 m from the surface, and the sea
water resistivity is equal to 0.25 Ohm-m. This model is excited
by a vertically propagated plane electromagnetic wave. The
magnetotelluric stations are located at the sea bottom along
12 lines parallel to the axis x, with 20 observation points
in each line. The separation between the lines is 500 m, the
observation step along the line is 500 m as well.

True Model

Ohm-m

Figure21 A plan view of Model 4 of a sea-bottom petroleum reservoir
and a salt dome.

The synthetic sea-bottom MT data for Model 4 were gener-
ated using the INTEM3D integral equation forward modeling
code (Hursan and Zhdanov, 2002) for eight different frequen-
cies: 1,0.3,0.1,0.03, 0.01, 0.003, and 0.001 Hz, and the data
(apparent resistivity) have been contaminated by 3% random
Gaussian noise.

The synthetic sea-bottom MT data were inverted using the
MT inversion algorithm outlined above. The area of inversion
is located under the sea bottom. It is divided into 20 x 12 x

© 2009 European Association of Geoscientists & Engineers, Geophysical Prospecting, 57, 463-478
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Figure 22 A side view of Model 4 of a sea-bottom petroleum reservoir
and a salt dome.
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p{am)

Figure 23 A volume image of the inversion result for Model 4 with a
resistivity greater than 2 Ohm-m.

15 = 3,600 cells with the size of each cell being 500 m x
500 m x 50 — 500 m (the vertical size of the cells increases
with the depth from 50 m to 500 m). Figure 23 shows the
volume image of the inversion result with a resistivity greater
than 2 Ohm-m. One can clearly see both the reservoir and a
salt dome in this image. Figures 24 and 235 present plan and
side views, respectively, of the inverse model obtained by the
inversion of the synthetic MT data for model 4.

We should note that the corresponding smooth inversion
was not able to resolve the salt dome and the reservoir sep-
arately and resulted in one diffusive resistive zone covering
both targets.

We present in Fig. 26 the maps of the Z,, apparent resistiv-
ity and phase for the frequency 0.03 Hz. The maps of synthetic
‘observed” MT data are shown in panels a and b, while panels

0 i 5 Ll i i i H i i
0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000s(om)
X, m

Figure 24 A plan view of the inverse model obtained by inversion of
the synthetic MT data for Model 4.

Anomalous body
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01000 2000 3000 4000 5000 G000 7000 8000 9000 10000(cm)
X, m

Figure 25 A side view of the inverse model obtained by inversion of

the synthetic MT data for Model 4.

c and d present the corresponding predicted data. There is a
very good fit between the observed and predicted data.

The corresponding MT sounding curves, computed for
model 4 at an observation point close to the centre of the
reservoir, are shown in Fig. 27. We can see that the observed
and predicted data fit each other with a high degree of ac-
curacy. Thus, the regularized focusing inversion provides an
effective tool for practical interpretation of MT data.

CONCLUSIONS

The regularization is based, in general, on bringing the a priori
information into the inverse problem solution. This informa-
tion is included in the inversion by means of the appropriate
choice of stabilizing functional. Until recently, only one type
of regularization was widely used in practice — that based
on the maximum smoothness criterion. The new regularized
inversion technique discussed in this paper opens new fron-
tiers for effective interpretation of geophysical data. In order
to obtain a stable regularized solution, we can now consider
different classes of inverse models, including an important
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Figure 26 Maps of observed and predicted apparent resistivity and phase for Model 4. Panels a and b show the observed apparent resistivity

and phase for yx polarization, while panels ¢ and d present the corresponding predicted data.
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Figure 27 The observed and predicted MT sounding curves, Z, ap-
parent resistivity and phase, for Model 4 at the point x = §, 750 m,
and y=2,750 m.

class of geological structures with sharp boundaries. This new
approach provides more flexibility in the inversion of practical
geophysical data.

Focusing inversion, similar to traditional smooth inversion,
provides a regularized solution of the geophysical inverse
problem. By choosing different types of stabilizing function-
als, we can generate inversion images resolving different types
of geological targets. In the case of a regional geophysical
study, one can use a smooth inversion to recover the regional
geological structures. In the exploration for local mining or
petroleum targets, it is more appropriate to use focusing in-
version, which allows us to determine the sharp petrophysical
boundaries between the host rocks and the zones associated
with a mineral deposit or a hydrocarbon reservoir. The final
decision, which model to use for inversion — the one with
a smooth distribution of physical properties or the one with
the sharp boundaries — should be based on the analysis of all
available geological information about the potential target of
the geophysical exploration.
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