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1. INTRODUCTION

The principal physical laws characterizing the behavior and interaction
of electric and magnetic fields were unified in the comprehensive theory of
electromagnetic fields by James Maxwell in his Treatise on Electromagnetism,
first published in 1873 (Maxwell, 1954). The formulation of this theory
represents one of the most important events in physics since Newton’s time.
In fact, Maxwell was the first to introduce the mathematical equations and
physical laws which govern the electromagnetic field. Any effort to use
electromagnetic fields to explore the earth must be firmly based on these
physical laws and their mathematical consequences.

The fundamental system of electromagnetic (EM) field equations,
Maxwell’s equations, was developed by generalization of the basic laws of
electromagnetism established in the first half of the 19th century. In the
framework of classical theory, the EM field is described by the electric
and magnetic vector fields, and Maxwell’s equations represent a system of
differential equations with respect to these vector fields.

During recent decades, an alternative approach was developed to the
formulation of Maxwell’s equations. This approach is based on the algebraic
theory of differential forms and results in a very compact and symmetric
system of differential form equations.

The differential forms were originally introduced in difterential geom-
etry to study the properties of the lines and surfaces in multidimensional
mathematical spaces. However, it was realized not so long ago that these
forms provide a very elegant and powerful tool to study the physical fields
as well. We can treat the differential forms as another mathematical language
which, similar to the vectorial language, can be used to describe the physical
fields. In fact, in a four-dimensional space-time continuum, the differential
forms can be treated as linear combinations of the differentials of the flux,
the work, and/or the source of the vector fields. Therefore, Maxwell’s equa-
tions for the differential forms contain the differentials of the flux and work
of the electric and magnetic fields. This property of differential forms indi-
cates that it is more suitable to consider the electric and/or magnetic flux and
work as major characteristics of the EM field, instead of using the conven-
tional vectorial representations. This approach seems to be quite reasonable
from a physical point of view as well, because in physical experiments we, as a
rule, measure the flux and the work (or voltage) of the electric and magnetic
fields.
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Moreover, the remarkable fact is that, based on the fundamental
differential equations for the forms in a four-dimensional space, we can
demonstrate that any pair of the arbitrary vector fields, H(r, ¢) and D(r, 1),
satisfies a system of differential equations which is similar to Maxwell’s
classical equations for electromagnetic fields! In other words, we can show
that if a 2-form in the four-dimensional space-time Ej4 is comprised of
two arbitrary vector fields, H(r, ) and D(r, ), then these fields must
automatically satisfy a system of Maxwell’s equations.

The goal of this paper is to show that Maxwell’s equations appear natu-
rally from the basic equations of field theory for the differential forms. There
are no other equations for a pair of nonstationary vector fields but equations
of the Maxwell type. The basic laws of electromagnetism are actually imprin-
ted in the fundamental differential relationships between the vector fields and
differential forms. This new approach to the formulation and understanding
of the basic properties of the laws of electromagnetism has the strong poten-
tial to stimulate future development in electromagnetic geophysics.

2. DIFFERENTIAL FORMS IN VECTOR FIELD THEORY

2.1. Concept of the differential form

In general, we can introduce the differential forms as expressions on which
integration operates. There exist differential forms of different degrees
depending on the dimensions of the domain of integration. In particular,
a differential form of degree p, or a p-form, is an integrand of an integral
over a domain of dimension p. We shall start our discussion by introducing
the basic concept of differential forms in three-dimensional Euclidean space,
where the degree of forms p varies from 0 to 3. A O-form is a scalar
function which is “integrated” over a region of zero dimension. In three-
dimensional space the differential forms are closely related to the vector
fields, and the algebraic and differential operations on the forms can be
defined by conventional vector algebra and calculus, which makes it easier
to understand for the reader familiar with conventional vector field theory.
In particular, a differential expression B - dl, which is integrated over
a curve, represents the elementary work, dIW, of the vector field B along
an infinitesimally small vector element of curve dl. It is called a differential

1-form @ :
(1)

¢ =B-dl =dW. (1)
(1)

A differential expression B - ds, which is integrated over a surface,
describes an elementary scalar flux, dFS®, of the vector field B through
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an infinitesimally small vector element of surface ds. It is called a differential
2-form ¥r:
(2)

W =B -ds = dFg )

@ Y )

Finally, a differential expression divBdv, which is integrated over a
volume, is equal to an elementary source, dQ, of the vector field B within
an infinitesimally small element of volume dv. We call this expression a
differential 3-form 6 :

(3)
(;)):qdv:dQ. (3)
(2

where
g = divB.

It is known that the divergence of the vector field B can be treated as a
source of this field. Thus, all three forms represent the scalar values of the
work, flux, and source of the vector field, respectively.

2.2. Exterior (wedge) product of the differential forms

[t can be shown that the conventional differential forms of vector calculus
(the expressions that are integrated over a line, surface, or volume) are
described by antisymmetric linear functions of one, two, or three vector
arguments (Zhdanov, 2009). These linear functions (differential forms)
represent new mathematical objects which are very useful in a description
of the electromagnetic field equations.

The differential forms provide the most natural and elegant mathematical
tool for a description of electromagnetic fields (Lindell, 2004; Zhdanov,
2009). In order to be able to apply these functions to electromagnetic theory,
we should introduce the mathematical rules of operation on the differential
forms. which define the algebra of the differential forms.

The simplest operation is addition. It is obvious that the addition of
two antisymmetric linear forms is determined as a conventional summation
of two functions. This operation satisfies the traditional commutative and
associative laws, and also the distributive laws with respect to multiplication
by a scalar.

The multiplication of the differential forms requires the introduction of
a special algebraic operation, an exterior product, which we will discuss in
detail below.

In the case of vectors, we can use different multiplication operations,
e.g., dot and cross products of the vectors. In principle, it is easy to consider
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a product, f, of two forms, ¢ and ¥, as a product of two linear functions of
vector arguments. For example, if ¢ = ¢(dl) and ¥ = v (da, db), we have

f = f(dl, da,db) = ¢(dl)y (da, db), 4)

where multiplication on the right-hand side of Eq. (4) is conducted in the
conventional way as a product of two scalar values, ¢ and ¥. The only
problem with this definition is that the product of the two antisymmetric
linear functions, ¢ and ¥ is no longer an antisymmetric function! Indeed,
one can see that

f(dl, da, db) # — f(da, dl, db).

In order to keep the result of multiplication within the class of antisymmetric
linear functions, we should apply an antisymmetrization operation to
the conventional product (4). As a result, we arrive at the following
multiplication operation, which is called the exterior (or wedge) product,
denoted by the symbol A, and defined as

Q= OAY
= {¢ (d1) ¥ (da, db) + ¢ (da) ¥ (db, d1) + ¢ (db) ¥ (dl, da)
— ¢ (dl) ¥ (db, da) — ¢ (da) ¥ (dl, db) — ¢ (db) ¥ (da, d1)} . (5)

It is easy to verify that the new linear function, = Q (dl, da, db), is
indeed an antisymmetric function.

In the case of the product of two 1-forms, ¢ (da) and x (db), the exterior
product is given by the following formula:

® (da, db) = ¢ (da) A x (db) = ¢ (da) x (db) — ¢ (db) x (da), (6)
which is again an antisymmetric function:
® (da, db) = — [¢ (db) x (da) — ¢ (da) x (db)] = —® (db,da). (7)

In summary, we can see that the addition and exterior multiplication
operations of 1-forms satisfy the following laws:

(1) the commutative and associative laws of addition:

p+x=x+¢ and o+ (x+n =@+ x)+n (8)

(2) the anticommutative law of exterior multiplication:

PAX=—XN@; 9)
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(3) the distributive law of multiplication over addition:

eA(x+nM=¢Ax+eAn and

(10
(+xXx)ANn=9An+xADN. ;

It comes immediately from the anticommutative law (9) that
oNep=0. (11

We can see now that the exterior product of two 1-forms generates a
2-form, while the exterior product of three 1-forms produces a 3-form.

2.3. Canonical representations of the differential forms in
three-dimensional Euclidean space

The important fact of the differential form theory is that any 2-form and any
3-form can be expressed as the exterior products of two 1-forms and three 1-
forms respectively. These representations are called the canonical representations
for the differential forms (Zhdanov, 2009). The following table presents a
summary of these canonical representations for differential forms in three-
dimensional Euclidean space E3:

O-form: ¢ = f, (12)
(0)
l-form: ¢ = Z ¢odo = @ dx + @ydy + ¢, dz = ¢ -dr, (13)
M a=x,y,z A
2-form: ¥ = Z Vopda A dB = Yy.dy A dz
@ a,p=x,y,2
+ Yzxdz Adx + Yxydx Ady = ¢ - dX, (14)
3-form: O = 6dx Ady Adz = 6dv. (15)
3)

In these last formulas we used the following notations:

¢ = (¢x, 0y, ¢z), dr=(dx,dy,dz),
v = w,\f:d.x =+ w:xd,\' + I//x_\'d:
dX = ds,d, + dsyd, + ds.d;,

where dsy, dsy, and ds, are the combinations of the exterior products of
differentials:

dsy =dy Adz, dsy=dzAdx, ds;=dxAdy.
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2.4. The exterior derivative operation

The calculus of differential forms is based on a special differential operation
called the exterior derivative. This operation can be treated as a generalization
of conventional vector differential operations. In fact, all three different
vector differential operations (gradient, divergence, and curl) can be
represented as a single exterior differential operator.
0-forms

In the case of the simplest O-form described by a function f(r), the
exterior differential is equivalent to the full differential of the function:

a af d
df = —'id.x' + "—fd_\,f' =+ ,—fdz = grad f(r) - dr. (16)
0x ay 0z

We can see that in this case the exterior differential operator d can be
treated as a counterpart of the vector del operator V. We can introduce a
symbolic differential 1-form dg, as follows:

PR WL RS EL W S (17)
=dx— )— z— =dr- V.
B3 0x )8_\' 0z

Then Eq. (16) can be written as
df =dE3f =dr-Vf=Vf.dr.

Therefore, the exterior derivative of the O-form is equivalent to the
gradient of the corresponding scalar field.

1-forms
The exterior differential of the 1-form field ¢ (r) is calculated as an
exterior product of the differential operator 1-form dg, and a given 1-form

¢:

d(p=dE3/\(p=dE3/\((p-dI')
=curlg -dX = [V x ¢]-dZ (18)

where we took into account representations (13) and (14) for the differential
forms. Therefore, the exterior derivative of the 1-form is equivalent to the
curl of the corresponding vector field.

2-forms
The exterior differential of the 2-form field ¥ (r) is equal to:

dy =de; A Y =dgs A (Y -dX)
= (divy)dv = (V- ¢)dv.
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According to the canonical representation (14), every 2-from can be
described by a vector field ¥. Therefore, the exterior derivative of the
2-form is equivalent to the divergence of the corresponding vector field.
3-forms

The exterior differential of the 3-form § = 6dx A dy A dz can be
3)

calculated as follows:

dg. A § =df Adx Ady Adz.
’ 3)

This last expression is equal to zero according to the anticommutative law
of the wedge product:
00 a0

a0
de, A 0 = (—d.x 4+ —dy + ‘—dz> Adx Ady Adz=0. (20)
) 0x dy 0z

Thus we can see that, the exterior differential operation in three-
dimensional space corresponds to either the gradient, curl, or divergence
of conventional vector calculus:

O-forms® dg, ¢ =dg,f =grad f (r) -dr =V f (r) - dr, (21)
~(0) )

I-forms : dg, ® =dg, A (¢ -dr) =curlg -dX =[V X @] - dX, (22)
(1) :

2-forms: dg, ¢ =dg, A (Y -dX) = (divy)dv = (V- ¥)dv, (23)
) i

3-forms: dg, ¥ =dg;, A (Bdv) =0. (24)
(3 ’

The beauty of the exterior differentiation operator is that it includes all
varieties of vector differential operations. In addition, this operator allows us
to extend naturally the differentiation operation for multidimensional spaces.

3. NONSTATIONARY FIELD EQUATIONS AND DIFFERENTIAL
FORMS

Geophysical methods are based on studying the propagation of the
different physical fields within the earth’s interior. Two of the most widely
used fields in geophysics are seismic and electromagnetic fields, which are
typical nonstationary fields. These fields can be represented as vector fields
in four-dimensional Euclidean space-time Ej4. In this paper we will derive
the general system of differential equations for nonstationary vector fields.
We will demonstrate that these equations are nothing else but Maxwell-type
equations.
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3.1. Nonstationary vector fields and differential forms in
four-dimensional space E4

The most effective way of presenting the theory of nonstationary (time-
dependent) fields is based on the theory of differential forms. We introduce
the four-dimensional Euclidean space E4, which has three conventional
spatial coordinates, x; = x, xp = y and x3 = z, and the fourth coordinate,
X4, equal to time: x4 = 1.

Any scalar, U, or vector, A, functions of the space coordinates
(x1, x2, x3) and time coordinate ¢ can be treated as functions defined in
the four-dimensional space E4. We can also introduce arbitrary vector fields
H(r, 1), D(r, 1), and j(r, 1), all of which are nonstationary (time-dependent)
vector functions in three-dimensional space, and a scalar function ¢(r, ).
The remarkable fact is that any pair of nonstationary fields, H(r, ) and
D(r, t), satisfies a set of differential equations which have exactly the same
structure as Maxwell’s equation of electromagnetic theory! We will derive
these equations using the differential form theory.

One can show that, using the vector and scalar fields A, H, D, j and g, we
can define differential forms of five different orders in the four-dimensional
space E4. These forms can be expressed using the three-dimensional vector
notations as follows (Zhdanov, 2009):

O-forms: Q = U, (25)
(0)

l-forms: Q@ =a =A-dr — Udt, (26)
(1)

2-forms: Q =¢¥ =D .dX — (H-dr) A dt, (27)
(2)

3-forms: Q =y =qdv— (j-dX) Adt, (28)
(3)

4-forms: Q =60 = gdv A dt. (29)
(4)

3.2. Differential form equations

It is known that any p-form in four-dimensional space E4 can be
split into two terms which are called its spatial, Q0s, and temporal, Q2,
components (Lindell, 2004; Fecko, 2006):

(p)

Note that the time coordinate and the spatial coordinates are mutually
orthogonal in E4. Therefore, any differential form equation in the space Ej4,
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Q =0,
(p)

can be split into separate equations for the spatial and temporal components:
Q=0 and Q;=0.

We will summarize below the basic differential equations for the
differential forms in the four-dimensional space Ej.

3.3. Exterior derivative of a scalar field and a generalized source
1-form

We begin with the exterior derivative of the O-form:

: a
dQ=dU =gradU -dr+ —Udr = § . (30)
(0) ot (1)

According to Eq. (26), the 1-form & can be written as:
(1

((?):gls'*'glrd{:gl'dr+glrdr- 31)
Splitting Eq. (30) into its spatial and temporal parts, we find:

0
gls =g -dr=gradU -dr and g = 8—IU‘ 32)

The 1-form & is called a generalized source form of the O-form field Q.

(€)) 0)

Its spatial component is equal to the work of the gradient of a scalar field U,
along a vector element dr, while its temporal component is equal to the time

derivative of the scalar field U.

3.4. Exterior derivative of a four-potential and a generalized
source 2-form

It can be demonstrated that the exterior derivative of the 1-form e (so-called
four-potential) is given by the following expression (Zhdanov, 2009):

0A
dQ:d/\a:curlA‘dZ—<gradU+—>~dr/\dt: g8, (33
(1) ot 2)
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where & is a generalized source 2-form:
(2)

A
§ = 825 + gordt = j, -dX — (gradU + E) -dradf, (34)

(2)

and j4 = curl A.
Splitting Eq. (34) into its spatial and temporal equations, we find:

0A
82 =Jja-d¥ and gor=-— (gradU - E) - dr. (35)

3.5. Exterior derivative of a 2-form and a four-current

Similarly, we can find the exterior derivative of the 2-form:

) a
(30) dQ =dAy =(divD)dv + (ED — CurlH) -dX Adt = 8, (36)
(2) (3)
where & is a generalized source 3-form or so-called four-current P
3)
(31)
g = g3+ g3cdr = ¢Vdv — (i -dE) ndr =y, (37)
3)
and
(32) 9
Ry v .

i j¥ = curlH — —a—’D and ¢g"Y =divD. (38)
o field Q.
e © From Egs (37) and (38) we find the spatial and temporal components of
cld U, the generalized source 3-form (four-current ¥):
o the time & ’ ye)
_ . ad
g3 = (divD)dv, g3, =|—D—curlH) - -dX. (39)
alized or
o -callcd 3.6. Exterior derivatives of a 3-form and a 4-form
:' J): ' Finally, the exterior derivative of a 3-form is equal to:

¢ ad
=5, (33) dQ=d/\y=—(divj+—q>dv/\dl‘:g. (40)
' (3) ot 4)
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The generalized source 4-form & , according to Eq. (29), can be written
4)
as:

g = g3, dt = q”dv A dt, (41)
4)
where
0
Y = —divi — —aq.
q ) 8[5/

The exterior derivative of the 4-form 6 in a four-dimensional space is
always equal to zero:

dané =0.

We can summarize all these results as:
' 0
0-forms : dU = grad U - dr + EUdI. (42)

0A
l-forms: d Ao = curl A -dX — (gradU + W) ~dr Adt, (43)

‘

0
2-forms: d A = (divD)dv + (ED - (‘LH'[H) -dX Adt, (44)

a
3forms: dAy = — <divj + d—q) dv A dt. (45)
T

4-forms: d A6 =0. (46)

4. AMPERE-TYPE DIFFERENTIAL FORMS AND A CONTINUITY
EQUATION

According to Eqs (36) and (37), we have the following differential
equation for any 2-form ¢ = D -dX — (H - dr) A dt:

day =yY, (47)
where the corresponding four-current 3-form vV is equal to:
yV =qVdv - (j¥ -dX) A dr, (48)
and

0
iV = curlH — ED and ¢V =divD.
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Note that, according to the basic property of the exterior derivative
operator, the double application of the external differential is identically
equal to zero. Therefore, the four-current vV satisfies the following
equation:

dAayY =dA@A ) =0. (50)

This last equation can be written, according to formula (40), as:
pt H g )
divj¥ + =g = 0. (31)

We can see that Eq. (49) represents Maxwell’s equations exactly if vector
fields D and H are treated as the electric and magnetic fields, respectively.
Correspondingly, Eq. (51) represents a conservation law for the four-current
and is called the continuity equation because it has the form of the continuity
equation of electromagnetic theory.

Equation (47) is called a fundamental differential equation for 2-forms,
because any 2-form in the four-dimensional space E4 must satisfy this
equation. At the same time, Eq. (49) are nothing else but Maxwells first
and fourth equations for the electric field D and magnetic field H, which
describe Ampere’s law of electromagnetism with Maxwell’s displacement
current dD/d¢. Thus, Maxwell’s equations appear naturally from the general
theory of differential forms.

The 2-form v, which satisfies the fundamental equation (47), is called
an Ampere-type differential form. We should note, however, that actually every
2-form in the four-dimensional Euclidean space E4 is an Ampere-type form.
Its spatial component, Vs, is called an electric induction 2-form D, while its
temporal component, ¥, is called a magnetic 1-form H:

D=vy,=D-d¥, H=vy,=H- dr (52)
Thus, the Ampere-type differential form can be written as:

¥ =D—HAdr. (53)

5. FARADAY-TYPE DIFFERENTIAL FORMS AND
FOUR-POTENTIAL

Let us consider now a special class of 2-forms, which satisfies Eq. (47)
with a zero right-hand part:

dano=0.

(54)
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In other words, we assume now that the corresponding four-current is
equal to zero, yp = 0, and the 2-form ¢ is an exact form.

In this case, according to de Rham’s theorem (Lindell, 2004), there exists
a 1-form (four-potential) «,

a=A- -dr —Udt,
such that
p(r)=dAa(r). (55)
Equation (55) can be written in an equivalent way as:

¢=B-dXE+(E-dr)Adt =dAa(r)
0A
= curl A -dX — (gradU + ;) -dr A dt, (56)

where B and E are some conventional nonstationary (time-dependent)
vector functions in three-dimensional space. These functions, according to
formulas (54) and (38), satisfy the following equations:

B _
curl E = e and divB =0. (57)

R emarkably, Eqs (57) are nothing else but Maxwell’s second and third
equations for electric field E and magnetic field B, which describe the
Faraday law of electromagnetic induction and the fact of an absence of
magnetic charges. That is why the 2-form ¢, which satisfies Eq. (54), is called
a Faraday-type differential form. Its spatial component, @y, is called a magnetic
induction 2-form B, while its temporal component, ¢, is called an electric
I-form E:

B=¢;=B-dX¥, E =¢,=E-dr. (58)
Thus, the Faraday-type differential form can be written as:
v =B+ E Adt. (59)

Equation (56) shows that every Faraday-type form can be expressed by
the corresponding four-potential «. Splitting Eq. (56) into its spatial and
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temporal equations, we find that:
0A i
B=B -d¥ =curlA-d¥, E=E.dr=- <gmdU+W> -dr. (60)

Finally we arrive at the conventional representation for the vector fields
B and E by the vector A and scalar U potentials:

0A
B = curl A and E:—(gl‘udU%——g). (61)

6. MAXWELL’S EQUATIONS

6.1. Basic equations in the theory of electromagnetic fields

Maxwell’s equations consist of the two vector equations and two scalar
equations shown below:

V=i 62)
X = — =,
2T )
0B
VxB=—tt (63)
ot
V.B=0, (64)
V:D=g. (65)

Here, H and B are the vector magnetic and induction fields, respectively;
E and D are the vector electric and displacement fields, respectively; g is the
electrical charge density; j is the conduction current density; and c is the total
current density (the sum of conduction and displacement currents). The
pairs of fields, E and D, H and B, are related by the following expressions,
known as the constitutive equations:

D=c¢E, (66)
B=uH, (67)

where ¢ and p are dielectric and magnetic permeabilities of the medium,
respectively.

Maxwell’s equations were introduced by generalization of the basic laws
of electromagnetism established in the first half of the 19th century. It is
interesting to note that in fact all these equations can be derived directly from
the basic differential equations of field theory, formulated above. Indeed, let



314 M.S. Zhdanov

us introduce two electromagnetic differential 2-forms, M and F, according
to the following formulae:

M=D.-dX - H-dr)Adt =D — H Adt, (68)
F=B-dX + (E-dr)Adt =B+ E Adt, (69)

where D=D-.-dX,H=H -dr,B=B-dX¥,and E =E -dr.

Following Misner et al. (1973) and Deschamps (1981), we will call
these forms Maxwell’s field, M, and force field, F, respectively. Using the
basic properties of differential 2-forms, discussed above, we can write the
following differential equations for these forms:

dAM=y° (70)
dAF=y™, (71)

where the corresponding electric, y¢, and magnetic, "™, four-currents are
equal to:

e = gdv — (- dZ) Adt, (72)
Y™ = g"dv — (" - dX) A dr. (73)

Here, the functions g™ and j™ are the magnetic charge density and the
magnetic current density, respectively.

According to formulae (47) and (49), from the differential equation (70)
for Maxwell’s field M we obtain immediately Maxwell’s first and fourth
equations (62) and (65):

0
curlH=j+ 5D and divD =gq. (74)

Taking into account that the external differential of the four-current y,
according to (70), is equal to zero,

dAay®*=dAdAM=0,

and considering formula (40), we arrive at the continuity equation for electric
current density j and the charge density g:

dq

Vij=——.
J at
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In a similar way, from the differential equation (71) for the force field
F we obtain immediately a generalization of Maxwell’s second and third
equations (63) and (64), which allows the existence of the magnetic charges:

-

d
curlE = —j™ — EB and divB =gq". (76)

Note that the magnetic four-current y™ satisfies the same differential
equation as the electric four-current:

dAy" =dAdAF =0.

Therefore, the magnetic charges and current, in general cases, are related
by the continuity equation as well:

aq’”
Vij=-—-——""—, 77
J o1 (77)

Introducing the magnetic charges makes Maxwell’s equation symmetri-
cal. However, in the real world we do not observe the magnetic charges,
which results in a Faraday-type equation for the force field:

dAF=0. (78)

This equation, written in vectorial notation, brings us to Maxwell’s
original second and third equations (63) and (64):

0
curl E = _EB and divB = 0.

Thus, the whole system of Maxwell’s equations automatically appears
from the general theory of nonstationary fields. This remarkable fact
demonstrates the power of mathematical theory. We can see now that
the basic laws of electromagnetism are actually hidden in the fundamental
differential relationships between the vector fields and the differential forms.

In summary, we can represent now the full system of Maxwell’s equations
in a very compact and elegant form as follows:

dAM = y°, (79)
dAF =0, (80)

where

M=D-dX¥ — (H-dr) Adf = D — H A dt,




316 M.S. Zhdanov

and
F=B-dX¥+ (E-dr) Adt = B+ E Adt. (82)

It was demonstrated above that any Faraday-type form can be expressed
by the corresponding four-potential «. Taking into account that the force
field F is a Faraday-type form, we can use Eq. (60), according to which,

dA
B=B-dX =curlA-dX, E=E.dr=-— (gradU e W) -dr. (83)

From the last formula we obtain a classical representation of the magnetic
and electric fields using electrodynamic potentials, Aand U :

0A
B=curlA and E =— (gradU + ¥> . (84)
C

7. INTEGRAL FORMULATIONS OF THE DIFFERENTIAL FORM
EQUATIONS FOR MAXWELL’S FIELD AND FORCE FIELD

Equations (79) and (80) represent a differential (localized) formulation
of the laws of electromagnetism. In applications, it is useful to have the
integral formulations of the same laws. For example, we will demonstrate
below that the integral formulations are useful in numerical modeling of

EM fields.

7.1. Faraday’s electromagnetic induction law

Let us consider Maxwell’s equation for the force field first:
dA F =0. (85)

We can integrate this equation over a geometrical element Cp, (p =
1,2,3,4) from the four-dimensional Euclidean space Eg:

/ dAF =0, (86)
A

4

where the geometrical element C), can be treated as a p-dimensional domain
in a multidimensional space. For example, we can consider a geometrical
element C3 in a form of the “cylinder” over some surface S in three-
dimensional Euclidean space E3, with the conventional spatial coordinates,
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X] =Xx,x2 =y,andx3 = z,and a time interval T = (tng <t < to + At).
Using standard mathematical notations, we can present the geometrical
element C3 in the form:

C3=T x S.

According to a general Stokes’s theorem (Fecko, 2006), the integral of the

exact p-form Q =dA Q overa geometrical element C), is equal to the
(p) (p=1)
integral of the (p-1)-form Q over the boundary, dC p, of the geometrical
(p—1)
element C):

/ Qz/ dn Q :/ Q, p=1234 (87)
cpm Jc, =D Jac, (p=1)

According to Maxwell’s equation (85), the force field F is an exact
2-form. Integrating both sides of Eq. (85) over the geometrical element
C3; = T x § and taking into account the general Stokes’s theorem (87),

we obtain
/ dA F = / F=0. (88)
€3 9C3

Substituting expression (85) for the force field in Eq. (88), we have:

/, F::/m B-dZ%:/ (E-dr) A dr
aC3 8C3 3Cs

:/ B+/ EAndt=0. (89)
3Cy aC3

A simple geometrical consideration shows that
0C3 =0T xS —T x3S=[to+ At] x S—[to] x S—T x 3S§. (90)

Taking into account the geometrical structure (90) of the boundary 9C3,
we can calculate the integrals in Eq. (89):

/ B:/ B(r.t):/ B(r.t()-f-AI)-/ B (r,t9), (91)
9C3 9C3 aC3 aC3
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and

/ E/\df:/ fE(r.r)dr. (92)
3Cs 38 JT

Thus, Eq. (89) is reduced to

/ B+/ E/\df———/[B(r.l()-FA[k)—B(I’.t())]
9C3 aC3 S

+/ /E(r.r)/\dt:(). (93)
as JT

Let us assume that we have an infinitesimal time interval At — 0. In this
case Eq. (93) can be simplified as

/[B(r,10+AI)—B(l‘.l())]z—AT/ E (r, 1),
S aS

d

which leads to the final equation:

E SB(r't)|’():—ASE(r.f()). (94)

We can recall now that B = B - dZ is a magnetic induction flux 2-form,

and E = E - dr is an electric voltage 1-form. Therefore, Eq. (94) represents
2 conventional Faraday’s law for electromagnetic induction:

0
/ E(r,ty) - dr = —f/B(r.r) -dX|,,. (95)
38 ot Js v

7.2. Integral formulation of Ampere’s law

In a similar way we can demonstrate that the differential form equation for
Maxwell’s field (70) results in Ampere’s electromagnetic law. Indeed, let us

reproduce Eq. (70) for convenience:
dAM = vye. (96)

Integrating both sides of this equation over the geometrical element
C3 = T x § and taking into account the general Stokes’s theorem (87),




(93)
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we obtain:

/dAM:/ M:/ ve. 97)
C3 0C3 0C3

Substituting expressions (68) and (72) for Maxwell’s field M and four-
current ¥¢ in Eq. (97), we have:

/ (D—H Adt) = / [gdv — j A dt], (98)
0C3 C3
where

j=j-dz (99)

1s an electri¢ current 2-form.

Assuming that we have an infinitesimal time interval At — 0, and
proceeding in analogy with the force field equations above, we can calculate
the integrals in Eq. (88) as

/ (D—H Adt) = / [D(r,t9g+ At) — D (r, t9)]
aC3 S
- Ar/ H (r, 1) (100)
2S5

and

/ gdv =0, / jAdt = —At / J (r, 1) . (101)
TxS TxS S

Substituting expressions (100) and (101) back into Eq. (98), we arrive at
the final integral form of the first Maxwell’s equation:

d
,—/ D (r, 1)l —/ H (r, 1) = —/j(t 1) . (102)
dat S aC S

Taking into account that D = D - dX is an electric displacement flux
2-form, H = H - dr is magnetic work 1-form, and j = j - dX is an electric
current 2-form, we obtain the classical integral formulation of Ampere’s law:

0
flfm:/ﬁdﬁ+f/DdE (103)
S s at Js
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7.3. Integral equations for Maxwell’s field and force field in the
frequency domain

We can obtain the integral equations for Maxwell’s field and force field in
the frequency domain by introducing frequency domain differential forms:

[E(r, w), D(r,w), H(r, ), B(r, w), j(r, )}
l o0

(E(r, w), D(r, ), H(r, ), B(r, w), j(r, w)le ! ds. (104)

21 Joo

Applying the Fourier transform (104) to Egs (94) and (102), we obtain:

/ E(r,w) = iw/ B (r, w) (105)
as S

and

/ H (r,w) = / j(r,w)— iu)f D (r, ). (106)
S S S

Equations (105) and (106) provide integral representations of Maxwell’s
differential form equations in the frequency domain.

8. NUMERICAL MODELING USING DIFFERENTIAL FORMS

There are several ways to obtain discrete analogs of Maxwell’s
equations. In the vast majority of numerical algorithms, the model region
is discretized into a number of prisms as shown in Figure 1 (Zhdanov, 2002).

A Cartesian coordinate system is defined with the z axis directed
downward, and the x axis directed to the right. The indices i, k, and [ are
used to number the grid points in the x, y, and z directions, respectively. The
electromagnetic parameters, 0, i, and & are assumed to be constant within
each elementary prism. We denote this grid by X:

i
x1=x', xNy, =X Xiy1 = X;i + Ax;

Y1

.....
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Figure1 The model region is discretized into a number of prisms. The indices i, k, and [ are
used to number the grid points in the x,
parameters, 0, 4, and & are assumed to be constant within each elementary prism.

y, and z directions, respectively. The electromagnetic

(ik-1,) (i+1,k1,)
/ 854(”( N
(ikl) = (i+1)k)
350 5kh asl
y
(ik1+1) (i+1,k1+1)
[)SZ(LK./)

Figure 2 Discretization of the electromagnetic differential forms on a rectangular grid.

Let us consider one prismatic cell of the grid (Figure 2). We denote by S
a face of the prism, bounded by a rectangular contour 9S. We consider the
integral Eq. (105) for EM differential forms written for a face of the prism.

We can evaluate the contour integral in Eq. (105) as a sum of four
integrals over the edges of the face of the prism:

/ E(r.w)+/ E(r.w)+/ E(r,a))+/ E (r, w)
a8 35, 953 34

= iw/ B (r,w). (107)
S

For example, at the prism face Sk parallel to the vertical plane xz (see
Figure 2) and having the upper left corner at the node (i, k, I) the integral
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Eq. (107) can be written as follows:

/as;"‘-” ) AS‘ZIA 5 & E0) + /95;‘-““ E (r, w)

—+—/ E (r, w):ia)/ B (r,w). (108)
(-,)SL’-/‘-” Stk

: ikl
We denote by E, (i,k,l) a voltage along the edge aS,(,: ). m =

1,2,3,4,

E,,,(i.k,/)zf by E (r,w),
S

and by B(i, k, [) a magnetic induction flux through the prism’s face SG-kD

B(i.k./):/ B(r,w).
Sti.k.D)

Using these notations, we can write Eq. (108) in the form:

4
Y En(,kd)=BG.kD. (109)

m=1

Similar algebraic expressions can be obtained for other faces of an
elementary prism. We derive analogous formulae using Eq. (106) for EM
differential forms written for a face of the prism. Combining all these
algebraic equations together, we arrive at a full system of linear equations for
the discretized values of the flux and voltage (work) of an electromagnetic
field on a rectangular grid.

[t is important to emphasize that the system of algebraic equations
for the fluxes and voltages (work) of an electromagnetic field, derived
above, provides an exact representation of the original system of Maxwell’s
equations for the differential forms. At the same time, any discretization
of the classical system of Maxwell’s equations for the vector fields based
on finite difference or finite element methods results in some approximate
representation of the vector fields. This property of the numerical methods
based on differential form equations opens a possibility for developing a very
accurate technique for electromagnetic modeling, especially in the case of a
high conductivity contrast.

Another advantage of modeling based on the differential form equations
is that the corresponding fluxes and voltages (work) of EM fields are
continuous on the faces and edges, respectively, of homogeneous prisms.
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9. CONCLUSIONS

We have demonstrated in this paper that the major differential
equations for nonstationary vector fields can be expressed in a very simple
form (47). The simplicity and symmetry of this equation indicates that the
differential forms provide a natural representation for vector fields in four-
dimensional space, E4. Note that these forms are introduced as a linear
combination of the flux of the vector field D through a vector element of
the surface, D = D-dX, and a time differential multiplied by the work of the
vector field H along a vector element of a line, H = H - dr. The differential
equations for a pair of arbitrary vector fields in a four-dimensional Euclidean
space have a structure identical to Maxwell’s system of equations. Therefore,
the basic laws of the classical theory of electromagnetic fields are encoded in
the mathematical structure of the differential forms.

An important feature of the differential form of Maxwell’s equations
(79) and (80) is that they describe the relationships between the elementary
fluxes and the work of the different EM field components, while the
original Maxwell’s equations (62)—(65) deal with the vectors of the EM
fields themselves. Thus, the new mathematical form of Maxwell’s equations
emphasizes the importance of the fluxes and the work of the EM field.
We should conclude that, the flux of the field through a given surface
and the work of the field along a given path indeed represent the most
important physical entities which are studied and measured in geophysical
experiments. That is why the new form of Maxwell’s equations (79) and (80)
appears to be extremely well suited for the description of geophysical EM
phenomena.
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