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Institute of the USSR Academy of Sciences commissioned 
Academician Andrei N. Tikhonov to conduct a mathematical 
evaluation of electrical prospecting methods. While doing 
so, he worked closely with geophysicists exploring for oil in 
the Ural Mountains. As a mathematician, Tikhonov believed 
that any attempt to recover the electrical properties of the 
Earth from observed resistivity data were at best limited and 
at worst, doomed to fail. To his surprise, the geophysicists 
were successful interpreting such data and discovered several 
large oil fields. 

Tikhonov realized that by imposing their preconceived 
geological knowledge of the possible solutions, and then 
selecting the most geologically relevant models, the geo-
physicists were able to make valid interpretations. Based on 
this experience, Tikhonov formalized the following concept: 
intuitive estimations about the potential solutions are useful 
in selecting the class of models from which a solution is 
sought (Tikhonov, 1943). This concept became known as 
regularization and was central to the subsequent develop-
ment of theories for solving ill-posed problems in applied 
mathematics (Tikhonov and Arsenin, 1977). 

In 3D CSEM inversion, geological prejudice is introduced 
via regularization; whether that is an a priori model, data 
or model weights, model bounds and/or by the choice of 
stabilizing functional. Most often, resistivity models are 
obtained from regularization with a smooth stabilizing 
functional. This means the first or second derivatives of the 
resistivity distribution are minimized, resulting in smooth 
distributions of the resistivity. This type of solution allegedly 
satisfies Occam’s razor since it is claimed to produce the 
most ‘simplistic’ model for the data. Unfortunately, this 

T he premise of the various marine controlled-source 
electromagnetic (CSEM) methods is sensitivity to 
the lateral extents and thicknesses of resistive bodies 
embedded in conductive hosts. For this reason, CSEM 

methods were initially applied to de-risking exploration and 
appraisal with direct hydrocarbon indication. However, 
CSEM methods represent just part of an integrated explora-
tion strategy. The value of CSEM data is only realized 
when it is integrated with sound geological understanding 
in a shared earth model. The most successful applications 
of CSEM to date have been in complement to those seis-
mic interpretations where lithological or fluid variations 
cannot be adequately discriminated by seismic methods 
alone (Hesthammer et al. 2010). Methods for interpreting 
CSEM data are complicated by the very small responses of 
hydrocarbon-bearing reservoir units when compared to the 
total fields. CSEM interpretation is inherently reliant on 
iterative inversion methods since the data cannot simply be 
separated or transformed with linear operators as per seismic 
methods. 

Three questions arise when we try to solve a geophysi-
cal inverse problem: 1) does a solution exist? 2) is the 
solution unique? and 3) is the solution stable? According 
to Hadamard (1902), a problem is ill-posed if the solution 
is not unique or if it is not a continuous function of the 
data (i.e., an arbitrarily large perturbation of the solution 
corresponds to a small perturbation of the data). This 
suggests the CSEM inverse problem is ill-posed because the 
solutions are either non-unique or unstable. However, there 
is an interesting historical background to the solution of this 
problem. During the Second World War, the Geophysical 
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volume of the anomalous resistivity distribution. As we will 
show, the use of focusing stabilizers allows us to recover sta-
ble and geologically realistic models with sharper geoelectric 
boundaries and contrasts (Figure 1). 

In this paper, we intend to demonstrate that best practice 
is to run multiple inversion scenarios in order to enable inter-
preters to explore alternative resistivity models and select 
the most geologically plausible ones. Such practice identifies 
any artifacts that may arise from interpreting a single 
resistivity model. Alternative models may be used to reveal 
which additional data, if any, are needed to further constrain 
the interpretation. To this end, it is important to develop 
rigorous but fast 3D inversion methods. The requirement 
for ‘fast’ 3D inversion makes the various stochastic methods 
computationally prohibitive. Rigorous inversion methods are 
also not practical, as the sensitivity matrix needs to be con-
structed at each iteration for the many transmitter-receiver 
combinations in a CSEM survey. To minimize computation 
costs, various incarnations of the Born approximation which 
linearize the adjoint operators are often used. However, such 
approximations result in inaccurate calculations of the gradi-
ent directions, model updates, and thus final models. 

Our more pragmatic approach is based on iterative elec-
tromagnetic migration. Iterative migration is implemented 
in a reweighted regularized conjugate gradient method to 

approach has led to a tendency to deliver the single resistiv-
ity model as ‘the’ solution. Moreover, this approach is the 
least relevant to economic geology, which is anything but 
smooth. When the resistivity distribution is discontinuous, 
smooth stabilizers can also produce spurious oscillations 
and artifacts. Therefore, a model that is smooth in the first 
or second derivative of the anomalous resistivity distribution 
is not any ‘simpler’ than, say, a model that has the minimum 

Figure 1 A smooth stabilizer will recover a model with a smooth distribution 
of model parameters. A focusing stabilizer will recover a model with sharper 
boundaries and contrasts, and will be closer to the true model. 

Figure 2 3D view of the Shtokman resistivity model, with three of the four reservoir units shown. The vertical cross-section corresponds to those vertical cross-
sections shown in Figures 3, 4, and 5. The horizontal cross-section shows the extent of the main reservoir horizon. Receiver positions are denoted by the grey 
cubes. A vertical exaggeration of six was used in this image.
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al., 2009), which enables models with arbitrary geoelectric 
complexity to be migrated. Our modelling exploits the 
Toeplitz structure of the large, dense matrix system in order 
to solve multiple right-hand side source vectors using an 
iterative method with fast matrix-vector multiplications 
provided by a 2D FFT convolution. This algorithm reduces 
storage and complexity, and naturally lends itself to paral-
lelization. Another advantage of this approach is that once 
the inhomogeneous background fields and Green’s tensors 
have been pre-computed, they are stored and re-used in 
subsequent iterations and different migrations, further reduc-
ing runtime. Modelling in the frequency-domain has two 
additional advantages over time-domain methods. First, the 
effects of frequency-dependent complex conductivity which 
occurs in induced polarization can be modelled. Secondly, 
artificial dispersion effects that arise when time-stepping in 
direct time-domain modelling are avoided. 

Choosing a stabilizing functional
Regardless of the iterative scheme used, all regularized inver-
sions seek to minimize the Tikhonov parametric functional, 
Pa(m): 

Pa(m)=φ(m)+ as(m) → min,

where φ(m) is a misfit functional of the observed and 
predicted data, s(m) is a stabilizing functional and a is the 
regularization parameter that balances (or biases) the misfit 
and stabilizing functional (Zhdanov, 2002). The stabilizing 
functional incorporates information about the class of 
models used in the inversion. The choice of stabilizing func-
tional should be based on the user’s geological knowledge 
and prejudice. Using an inappropriate type of stabilizer is 
akin to looking for an inappropriate solution. In this section, 
we will briefly describe different smooth and focusing stabi-
lizers in order to demonstrate the results from the iterative 
migration of the same CSEM data produced by each. 

A minimum norm (MN) stabilizer will seek to minimize 
the norm of the difference between the current model and an 
a priori model: 

SMN(m)= ∫V(m–mapr )
2dv,

and usually produces a relatively smooth model. The Occam 
(OC) stabilizer implicitly introduces smoothness with the 
first derivatives of the model parameters:

Soc(m)= ∫V(∇m–∇mapr )
2dv,

and produces smooth resistivity models that bear little 
resemblance to economic geology. Moreover, it can result 
in spurious oscillations and artifacts when the resistivity is 
discontinuous. Alternatively, the use of focusing stabilizers 

rigorously compute the gradient directions without needing 
to explicitly construct the sensitivity matrix or its products. 
The modelling is based on the 3D integral equation method 
with inhomogeneous background conductivity that can cap-
ture arbitrary geological complexity. We have implemented 
our iterative migration method in a fully parallelized code 
that allows us to invert entire 3D CSEM surveys for models 
with millions of cells. Our approach makes it practical to run 
multiple inversion scenarios as described above, and as we 
shall demonstrate in our Shtokman feasibility study. 

Electromagnetic migration
The physical principles of electromagnetic migration parallel 
those underlying optical holography and seismic migra-
tion, i.e., the recorded fields scattered by an object form a 
hologram from which one can subsequently reconstruct an 
image of the object by ‘illuminating’ the hologram (Zhdanov, 
1988). It has been demonstrated that migration provides 
an alternative method for evaluation of adjoint operators. 
When applied iteratively, migration is analogous to inversion 
in providing a rigorous solution to the corresponding inverse 
problem (Zhdanov, 2002, 2009).

At each iteration, we calculate the predicted fields meas-
ured at the receiver positions due to a 3D resistivity model. 
We minimize the computational burden for CSEM surveys by 
exploiting the reciprocity theorem and by interchanging the 
assignment between transmitters and receivers. The receivers 
become sources and the transmitters become receivers. We 
then calculate the residual fields as the difference between the 
observed and predicted data. These residual fields are then 
migrated. This means the residual fields are used as source 
moments and these are simultaneously solved to compute the 
adjoint operator. The gradient direction is computed as the 
integral of the dot product of the predicted and migration 
fields. This gradient direction and its associated step length 
are used to obtain an updated resistivity model. The optimal 
value of the regularization parameter is selected according 
to the conventional principles of regularization theory. The 
process is then repeated until the misfit reaches a preset 
threshold, or the maximum number of iterations is reached 
(Zhdanov and Čuma, 2009; Zhdanov et al., 2010). The 
described approach allows us to use the physical properties 
of the migration field in order to construct effective numeri-
cal methods for computing the gradient. Thus, when applied 
iteratively, migration is equivalent to inversion. The main 
difference between migration and inversion is in the physical 
interpretation of the gradient directions. 

The reweighted regularized conjugate gradient method 
is used as the basis for iterative migration. The user has the 
option to regularize the migration with a choice of stabiliz-
ing functional, as will be discussed in the next section. The 
modelling is based on the 3D integral equation method 
with inhomogeneous background conductivity (Endo et 
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Figure 3 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of inline electric field data using the following stabilizers: 
(a) Occam, (b) minimum norm, (c) minimum support, and (d) minimum gradient support.

Figure 4 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of inline electric and transverse magnetic field data using 
the following stabilizers: (a) Occam, (b) minimum norm, (c) minimum support, and (d) minimum gradient support.
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prepared different combinations of the multi-frequency data 
for migration: inline electric field only, inline electric and 
transverse magnetic fields, and inline and vertical electric and 
transverse magnetic fields. No noise was added to any of the 
data so we could effectively compare the performance of each 
stabilizer. The datasets corresponding to each data combina-
tion were then migrated with different stabilizers: Occam, 
minimum norm, minimum support, and minimum gradient 
support. For the purpose of benchmarking performance, all 
scenarios were run for a maximum of 26 iterations rather 
than a misfit tolerance. Moreover, all scenarios commenced 
with no a priori models so as to not bias the effectiveness of 
any stabilizer. With no a priori model, we don’t expect to be 
able to resolve the stacked reservoir units of the Shtokman 
gas field. What we do expect, however, is to recover a feature 

makes it possible to recover models with sharper geoelectric 
boundaries and contrasts. We briefly describe this recently 
introduced family of stabilizers here and refer the reader to 
Zhdanov (2002, 2009) for further details. 

First, we present the minimum support (MS) stabilizer:
	 (m–mapr)

2

SMS(m)= ∫V  	 dv,
	 (m–mapr)

2+e2

where e is a focusing parameter introduced to avoid 
singularity when m=mapr. The minimum support stabilizer 
minimizes the volume with non-zero departures from the 
a priori model. Thus, a smooth distribution of all model 
parameters with a small deviation from the a priori model 
is penalized. A focused distribution of the model param-
eters is penalized less. Similarly, we present the minimum 
gradient support (MGS) stabilizer: 

	 ∇(m–mapr)• ∇(m–mapr)SMGS(m)= ∫V  	 dv,
	 ∇(m–mapr)• ∇(m–mapr)+e2

which minimizes the volume of model parameters with non-
zero gradient. 

Case study: Shtokman gas field 
The Shtokman gas field lies in the centre of the Russian 
sector of the Barents Sea, approximately 500 km north of 
the Kola Peninsula. It is currently operated by a joint venture 
between Gazprom, Total, and StatoilHydro. Shtokman is 
one of the world’s largest known natural gas fields, with 
reserves of 3.8 tcm of gas and 37 mln t of gas condensate 
(Gazprom, 2009). The water depth gently varies between 
320 m and 340 m over the field. The overburden sequence 
contains Jurrasic and Cretaceous siliciclastics of shallow 
marine origin. From approximately 1800 m depth, the 
Shtokman reservoir sequence consists of four Middle and 
Upper Jurassic sandstone horizons. The gas is trapped 
in an anticlinal four-way dip structure that is faulted in 
the crest. The reservoir horizons vary from 10 m to 80 m 
thickness. They have porosity between 15% and 20% and 
permeability ranges from hundreds of millidarcies to over 
a darcy (Zakharov and Yunov, 1995). We constructed a 3D 
geoelectric model of the Shtokman field from available geo-
logical and geophysical information. This model was used to 
simulate a multi-frequency 3D CSEM survey at 0.25 Hz, 0.5 
Hz, and 0.75 Hz using the 3D integral equation method. The 
survey consisted of 345 receiver positions distributed over a 
2 km x 2 km grid draped over the seafloor (Figure 2). The 
transmitter was towed 50 m above the sea floor along 50 km 
long lines that were spaced 2 km apart. 

A number of migration scenarios were considered. In 
each, the migration domain was 44 km x 40 km x 3 km 
in easting, northing, and depth. For the entire survey, we 

Figure 6 Convergence of the misfit for the following stabilizers: Occam (OC), 
minimum norm (MN), minimum support (MS) and minimum gradient support 
(MGS). These convergence curves are shown for the (a) iterative migration of 
the inline electric fields, (b) joint iterative migration of the inline electric and 
transverse magnetic fields, and (c) joint iterative migration of the inline and 
vertical electric and transverse magnetic fields.
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Figure 7 3D view of the Shtokman resistivity model obtained from the joint iterative migration of the inline and vertical electric and transverse magnetic fields 
using the minimum gradient support stabilizer. The cross-sections are corresponds to the cross-sections shown in Figure 2. The horizontal cross-section shows the 
extent of the main reservoir horizon. Receiver positions are denoted by the grey cubes. A vertical exaggeration of six was used in this image.

Figure 5 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of inline and vertical electric and transverse magnetic field 
data using the following stabilizers: (a) Occam, (b) minimum norm, (c) minimum support, and (d) minimum gradient support. 
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for models with millions of cells. This makes it practical 
to run multiple scenarios in order to build confidence in 
the robustness of features in the resistivity models, as well 
as to discriminate any artifacts that may arise from the 
interpretation of a single resistivity model. We have shown 
that reliance on regularization with smooth stabilizers will 
produce resistivity models that bear little (if any) resem-
blance to economic geology. We have shown that focusing 
stabilizers recover more realistic resistivity models with 
sharper geoelectric contrasts and converge to lower misfits 
in fewer iterations.
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with a general shape and conductivity-thickness product that 
is comparable to the stacked reservoir units. This is a well 
known limitation of the CSEM method’s resolution. 

Figures 3 to 5 present the results for the different 
migration scenarios at their final iterations. Though the 
actual resistivity models are 3D, we only show vertical cross-
sections through each model for ease of visual inspection 
of model quality. Figures 3 to 5 show that migration with 
the Occam stabilizer converged to produce very smooth 
resistivity models bearing the least resemblance to the actual 
resistivity model shown in Figure 2. Migration with the 
minimum norm stabilizer also produced smooth resistivity 
models, though not as smooth or under-estimating as ones 
produced with the Occam stabilizer. Models with sharper 
geoelectric boundaries and contrasts were obtained using the 
family of focusing stabilizers. Migration with the minimum 
support and minimum gradient support stabilizers produced 
compact resistivity models. These resistivity models bear 
the most geological relevance to the actual geology as they 
recovered the anticlinal trends of the Shtokman reservoir 
units (Figure 6).

Next, we compared the convergence of the misfit, which 
we define as the norm of difference between the normalized 
observed and predicted data (Figure 7). For each scenario, 
the family of focusing stabilizers had similar near-quadratic 
convergence to lower misfits. We notice that migration 
with the Occam stabilizer had the slowest convergence. In 
other words, focusing stabilizers produce better results in 
less time compared to smooth stabilizers. Our results also 
show that there is noticeable improvement in the quality of 
the recovered resistivity models as the transverse magnetic 
and then vertical electric fields are added to the CSEM data 
prepared for migration. It follows that as the industry moves 
towards acquiring 3D surveys with the intent of defining 
3D structure, the ability to invert all components of data 
along multiple lines for 3D resistivity models will prove to 
be essential. 

Conclusions
3D inversion of CSEM data is inherently non-unique; 
multiple models will satisfy the same data. Multiple inver-
sion scenarios must be investigated in order to explore 
different a priori models, data combinations, and stabiliz-
ers. For such practicality, it is important to use rigorous 
but fast 3D inversion methods. Our approach to this 
is based on iterative migration; theoretically equivalent 
to, but more efficient than iterative inversion. We have 
implemented this method in a fully parallelized code. As 
we have demonstrated with our synthetic example for the 
Shtokman field, we are able to effectively invert multi-
component, multi-frequency, and multi-line CSEM surveys 


