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Reliance on desktop computers limits the scale of 3D 
inversion of gravity and gravity gradiometry surveys, making 
it impractical to achieve an appropriate level of resolution and 
detail for geological interpretation. To begin with, airborne 
surveys are characterised by very large data volumes. They 
typically contain hundreds to thousands of line kilometres of 
data with measurement locations every few metres. Often, 
surveys cover thousands of square kilometres in area with tens 
of thousands of line kilometres of data. Regional surveys may 
be even larger and denser as the result of merging multiple 
and/or historic surveys. Secondly, 3D modelling of large-scale 
surveys exceeds the capacity of desktop computing resources. 
And finally, gravity data are finite and noisy, and their 
inversion is ill posed. Regularisation must be introduced in 
order to recover the most geologically plausible solutions from 
the infinite number of mathematically equivalent solutions. 
Various strategies for 3D inversion have been previously 
proposed but few lend themselves to truly large-scale 3D 
inversion. In this paper, we describe how gravity and gravity 
gradiometry surveys can be inverted to 3D earth models of 
unprecedented scale (i.e., hundreds of millions of cells) within 
hours using cluster computers.

Introduction

Structural interpretations of gravity and gravity gradiometry data 
are often based on some form of Euler deconvolution, wavelet 
analysis, or analytic signal method. While such methods may 
provide information about the sources, it is not immediately 
obvious how this information can be quantified in terms of the 
density distribution within a 3D earth model. For this reason, 
inversion of gravity data to a 3D density distribution is an 

important step in quantitative interpretation. Generalised 
inversion methods first discretise the 3D earth models into 
cells of constant density. Then, regularisation is introduced. 
Regardless of the inversion methodology used, all geological 
constraints manifest themselves as regularisation that can be 
quantified through a choice of data weights, model upper and 
lower bounds, model weights, an a priori model, and the type 
of stabilising functional used. The stabilising functional 
incorporates information about the class of models from which a 
unique solution is sought, and its choice should be based on the 
user’s geological knowledge and prejudice.

It has been common (if not ubiquitous) practice to use smooth 
stabilising functionals, which minimise the deviation from an a 
priori model and/or the gradients of the 3D density distribution 
(Li and Oldenburg, 1998; Li, 2001). However, smooth density 
distributions are rare in real geology. Economic geology is 
typically characterised by sharp boundaries of contrasting 
density, for example, between an ore deposit and host rock, or 
across a discontinuity. It follows that the various smooth 
stabilisers can produce results that bear little relevance to real 
geology. To overcome this problem, Portniaguine and Zhdanov 
(1999) introduced focusing regularisation that makes it possible 
to recover 3D density models with sharp boundaries and 
contrasts. Below, we use this technique. We refer the reader 
to Zhdanov (2002, 2009) and Zhdanov et al. (2004) for further 
details on focusing regularisation.

For gravity, computational complexity increases linearly with the 
size of the problem. There are two major obstacles in large-scale 
3D inversion. The first one being that storing the kernels of the 
forward modelling operators requires a large amount of computer 
memory. Even a small-sized 3D inversion of thousands of data 
to 3D earth models with hundreds of thousands of cells can 
exceed memory available on a desktop computer. The second 
obstacle is the amount of CPU time required to apply the dense 
matrix of the forward modelling operator to the data and model 
vectors. The translational invariance of the kernels has been used 
to reduce the matrices to Toeplitz block structure and use FFTs 
for matrix-vector multiplication (Pilkington 1997; Zhdanov et al., 
2004). This strategy, and others like it, dramatically reduces 
memory requirements and CPU time. However, these methods 
presume that the data lies on a regular grid of a flat surface 
above the topography. This means FFT-base modelling is 
applicable only if the data have been upward continued to a flat 
surface or in other special cases (e.g. marine gravity).

Another strategy for 3D inversion is compression (Portniaguine 
and Zhdanov, 2002; Li and Oldenburg, 2003). However, for the 
large-scale 3D inversion of tens of thousands of data to models 
with millions of cells, the compressed linear operators can still 
be too large to store and manipulate on a desktop computer. As 
a result, large surveys are often divided into subsets and each 
subset is inverted separately. The resulting 3D earth models are 
stitched together post-inversion (Phillips et al., 2010). Depending 
on the functionality of the software environment, such work 
flows can become complicated and time consuming. Our goal is 
to use massively parallel 3D inversion so as to eliminate the 
need for stitching and to deliver results within hours. Our 
inversion methodology is similar to those of Zhdanov et al. 
(2004) in that we use the re-weighted regularised conjugate 
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gradient method for minimising the objective functional. 
Additionally, we have incorporated a wide variety of 
regularisation options.

Inversion methodology

The gravity potential, U(r′), is linear with respect to the 3D 
density distributions, ρ(r):

U(r′) = ∫ψ(r′, r) ρ(r)d3r

where the kernel functiony ψ(r′, r) is the Green’s function for 
the gravity potential. All components and gradients of the 
gravity field can be derived from spatial differentiation of 
ψ(r′, r). Closed-form solutions for the volume integrals over 
right rectangular prisms of constant density have been previously 
derived (Okabe, 1979). While exact, these analytic solutions are 
inefficient to implement; for example, the gravity response 
requires evaluation of 16 logarithms and 8 arctangents (Li and 
Chouteau, 1998, p. 344). However, the volume integrals can be 
evaluated numerically. Zhdanov (2009) showed how for gravity 
gradiometry, single-point Gaussian integration with pulse basis 
functions was as accurate as the analytic solution, provided the 
depth to the centre of the cell exceeded twice the dimension of 
the cell. This implies that for an airborne gravity gradiometry 
survey with 80 m ground clearance, the 3D earth model can be 
discretised to 40 m cubic cells. The advantage of numerical 
integration is that it significantly decreases the run time when 
compared to the corresponding analytic solutions.

The above kernels also represent the sensitivity of the data to 
the variations of the density due to the linearity of gravity fields. 
Dransfield (2010a) used the same kernels to investigate 
instrument sensitivity. He demonstrated that at a limited 
distance, which we call the footprint, the receiver is no longer 
sensitive to the 3D earth model. The size of the footprint is 
often less than the size of an airborne survey. Cox et al. (2010) 
previously introduced the concept of a moving footprint for 3D 
inversion of airborne electromagnetic (AEM) data. They showed 
that for a single transmitter–receiver pair, there was no need to 
calculate the responses or sensitivities beyond the AEM’s 
footprint. The sensitivity matrix for the entire 3D earth model 
could be constructed as the superposition of footprints from all 
transmitter–receiver pairs. The framework of this approach can 
be described as follows: for a given receiver, compute and store 
the sensitivities for those inversion cells within the footprint. 
The radius of the footprint is based on the rate of sensitivity 
attenuation. As an analogue of this 3D AEM inversion strategy, 
we introduce a moving footprint for 3D potential field inversion.

For example, we can consider an instrument 60 m above a 
homogeneous earth model. Figure 1 presents the integrated 
sensitivities for each of the gravity fields and gravity gradients. 
The figure shows that the gravity gradients have approximately 
95% of the sensitivity within a 15 km footprint. It also shows 
the integrated sensitivity for the total magnetic intensity (TMI). 
The sensitivity of the TMI with respect to the footprint radius 
behaves similarly to the gravity gradients with about 95% of the 
sensitivity being within the 15 km footprint. This behaviour is 
fully expected since the kernels have similar spatial 
dependencies. Past a 15 km radius, the sensitivity decays very 
slowly. Increasing the footprint radius beyond 15 km is not 
practical. Therefore, we conclude that 15 km is an optimal 
footprint radius for gravity gradiometry.

Parallel performance

Our 3D inversion algorithm has been implemented as a 
multilevel parallel application. The 3D inversion domain is 
divided in a distributed fashion over Message Passing Interface 
(MPI). On a fine-grained level, loops over the data points and 
a few other auxiliary loops within each MPI process are further 
parallelised with a shared memory OpenMP standard. This 
two-level approach has multiple advantages. It reduces the 
number of MPI communicating processes, minimising 
communication stress on the network. It also saves memory, 
since there are data structures needing to be replicated by each 
process and most of the data is shared by the OpenMP threads. 
Finally, it allows for better locality of the processes/threads on 
the node’s boards and sockets, which improves data transfers to/
from the main memory. The data locality is critical on modern 
non-uniform memory architecture (NUMA) computers with a 
growing number of CPU cores.

In a typical cluster configuration, we run one or two MPI 
processes per cluster node. Each of these processes launches a 
number of OpenMP threads – one thread per processor core. 
The current generation of clusters ship with two hexa-core CPUs 
(i.e., 12 cores) per node. We have found that it is optimal to run 
one MPI process per socket (i.e., two per node), with six 
OpenMP threads per MPI process. The advantage of this is the 
ability to pin the process to the CPU socket, so that it does not 
move from one socket to another, which improves the memory 
performance. We have found that without pinning, the 
performance can degrade by up to 20%.

Our 3D inversion is relatively light in MPI communication, 
largely thanks to the linearity of the forward modelling 
operators. Most MPI communication consists of accumulation of 
the sensitivities and the regularisation as reduction operations. 
As a result, the program exhibits excellent parallel scaling. 
Parallel scaling is usually evaluated with two different metrics. 
The first one is called strong scaling. It measures the 
performance of a fixed problem size with an increasing number 
of processors. Another parallel scaling evaluation metric is weak 
scaling. It relates the time to complete one unit of work on one 
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Fig. 1. Percentage of total response of the integrated sensitivity for the 
vertical gravity component, various gravity gradients and total magnetic 
intensity as a function of footprint radius. Note that as the footprint is 
symmetrical in x and y directions, some gravity gradients overlap.
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processing element to the time to perform N units of work on N 
processing elements. In both cases, ideal (linear) scaling is 
100%. Any scaling below 100% is sublinear, and any scaling 
above 100% is superlinear. As a side note, it is possible to 
achieve superlinear scaling due to hardware architectural features 
that multiprocessor programs can exploit.

We have evaluated the parallel efficiency of our software. All 
results presented in this paper were run on the University of 
Utah Center for High Performance Computing’s Ember cluster 
which has 260 nodes, each equipped with two hexa-core (i.e., 
12) Intel Xeon CPUs running at 2.8 GHz with 24 GB of RAM 
and QDR InfiniBand interconnect. Figure 2 shows the parallel 
scaling efficiency of the subsequent Vredefort case study. In the 
case of strong scaling, as depicted by the blue line in Figure 2, 
we chose a 3D model with about 11 million cells and 600 000 
data. The scaling efficiency is excellent from 18 to 288 cores. 
We see a drop at 576 cores. This is due to running 12 rather 
than 6 cores per process. The memory load is much more 

uneven for the single MPI process sharing threads on both CPU 
sockets in the node, which decreases the efficiency by 15%. The 
weak scaling, depicted by the red line in Figure 2, varied the 
number of inversion cells from about 11 million cells on 18 
cores to about 350 million cells on 576 cores. Again, the scaling 
is nearly linear with a 1 to 2% difference, which can be 
attributed to system noise. We draw two conclusions from our 
scaling analysis. First, our 3D inversion software shows linear 
scaling and is expected to scale well to thousands of cores. 
Second, we have identified that process and thread locality is 
critical in achieving optimal performance, and that one MPI 
processes should be bound to each socket.

Case study – Vredefort, South Africa

We have applied our massively parallel 3D inversion with a 
moving footprint to a FALCON® airborne gravity gradiometry 
(AGG) survey acquired over the Vredefort dome in the Republic 
of South Africa, approximately 120 km southwest of 
Johannesburg within the Witwatersrand Basin of the Kaapvaal 
craton. The Vredefort dome is known as the largest and oldest 
impact structure on Earth, with a diameter of 250 to 300 km, it 
is larger than the 200 km Sudbury Basin impact structure in 
Canada and the 170 km Chicxulub impact structure in Mexico. 
The impact structure has since been deformed via erosion and 
tectonic processes, though the centre remains largely unaltered. 
The centre of the dome is approximately 40 km in diameter and 
contains an uplifted Archaen basement surrounded by upturned, 
sub-vertical sediments of the Witswatersrand Supergroup and 
volcanics of the Ventersdorp Supergroup.

In February 2007, Fugro Airborne Surveys flew a FALCON® 
AGG survey of 4800 line km over the Vredefort dome area 
(Dransfield, 2010b). The survey was comprised of two blocks. 
This study uses 2460 line km of data from the eastern block. The 
eastern block was flown north-south with a line spacing of 1 km 
and with 2 east-west tie-lines spaced at 40 km, over an area 
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Fig. 2. Parallel scaling efficiency for 3D inversion of the Vredefort FALCON® 
data. Strong scaling is shown in blue, and weak scaling is shown in red.
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Fig. 3. (a) Observed and (b) predicted terrain corrected gzz data from joint inversion of all gravity gradient components.
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60 km north-south by 40 km east-west, covering most of the 
Vredefort dome structure. The ground clearance was nominally 
80 m flown in a drape over the terrain, corresponding to 
ellipsoidal heights of between 1430 m and 1740 m. Summer 
conditions meant moderate to high turbulence at this survey 
height. The measured gradients were processed by the usual 
multistep FALCON® processing procedures. After the initial 
reduction of error due to the residual effects of aircraft motion, 
the data were demodulated and low-pass filtered with a sixth 
order Butterworth low-pass filter at a cut-off frequency of 

0.18 Hz. The demodulated data were corrected for the self-
gradient effects of the aircraft and the tie-lines were levelled. 
The resulting differential curvature gravity gradient data were 
further processed to produce terrain-corrected data using a 
density of 2.67 g/cm3, and hence the full gravity gradient tensor. 
In the processing, a low-pass filter with cut-off wavelength of 
1000 m was applied to the data.

The 37.8 km × 61.9 km × 2.4 km inversion domain was discretised 
to over 358 million cubic cells of 25 m dimension. The inversion 
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domain conformed to topography and contained no a priori 
density model. Our previous experience with moving footprint 
inversion (Cox et al., 2010) has indicated that inversion of 
redundant data does not aid model recovery. As such, the survey 
data were decimated by a factor of four, resulting in a data 
density of one point every 25 m along line. Inversion was run 
for 85 970 stations, each containing all seven gravity gradients, 
giving a total of 601 790 data. An example of the observed and 
predicted data for the gzz component is shown in Figure 3.

Figure 4 shows horizontal cross-sections through the 3D density 
model at depths of 500 m, 1000 m, and 1500 m below the peak 
topography, respectively. As we compare our results to the 
known geological structures (Figure 5), we are able to 
distinguish the ring structures E and F from the deeper ring 
structures C and D. The density high in the central part of the 
dome (J) is related to the deeper structures. Borehole drilling has 
confirmed that the underlying rock is peridotite, the source of 
which is open to debate. For example, it is not clear whether 
these rocks are related to the Bushveld igneous event 
approximately 2060 Ma (Henkel and Reimold, 1998) or represent 
mantle material which was uplifted to the surface as a result of 
the Vredefort impact approximately 2020 Ma (Tredoux et al., 
1999). Figure 4 shows a very good agreement between our 3D 
inversion results and the estimated depths to mass centres 
obtained from eigenvector analysis by Beiki and Pedersen 
(2010).

Conclusions

We have developed massively parallel software for the practical 
large-scale 3D regularised inversion of gravity and gravity 
gradiometry data to models of unprecedented size. We have also 
implemented kernels and positivity constraints for 3D magnetic 
inversion, but that discussion is beyond the scope of this paper. 

We have achieved linear strong and weak scaling with our 
parallelisation. Our software can be confidently installed on 
massively parallel computing architectures. We have introduced 
a moving footprint, which allows us to represent large, dense 
linear operators using sparse matrices. The moving footprint 
approach reduces memory requirements and operation counts for 
matrix-vector multiplications significantly. Computing the linear 
operators as needed allows us to handle problems of unlimited 
size. The effectiveness of our approach has been demonstrated 
with a case study for 3D inversion of 2460 line km of 
FALCON® data from Vredefort, South Africa, which included 
the joint inversion of over 600 000 gravity gradient data to a 3D 
earth model with over 350 million cells. The computational time 
for the above inversion totalled about 24 hours using a cluster 
with 576 CPUs. The results of our inversion agree well with the 
known geology and independent analyses of the same data.
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Geokinetics
onSEIS
A Revolution in

Onshore Technology

Geokinetics onSEIS delivers all the benefits 
of traditional impulsive surface sources with 
the added advantage of Synchronization 
to improve operational efficiency.

This revolution in technology offers a 
lightweight source solution for urban areas, 
difficult terrain, and limited access areas 
with minimal environmental impact; without 
compromising data quality.




