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ABSTRACT
The key to deriving a reliable quantitative interpretation from marine controlled-
source electromagnetic data is through the integration of shared earth modeling and
robust 3D electromagnetic inversion. Subsurface uncertainty is minimized through
efficient workflows that use all available subsurface data as a priori information and
which permit multiple resistivity models to explain the same observed data. To this
end, we present our implementation of an iterative migration method for controlled-
source electromagnetic data that is equivalent to rigorous 3D inversion. Our iterative
migration method is based on the 3D integral equation method with inhomogeneous
background conductivity and focusing regularization with a priori terms. We will
show that focusing stabilizers recover more geologically realistic models with sharper
resistivity contrasts and boundaries than traditional smooth stabilizers. Addition-
ally, focusing stabilizers have better convergence properties than smooth stabilizers.
Finally, inhomogeneous background information described as a priori resistivity mod-
els can improve the fidelity of the final models. Our method is implemented in a fully
parallelized code. This makes it practical to run large-scale 3D iterative migration
on multicomponent, multifrequency and multiline controlled-source electromagnetic
surveys for 3D models with millions of cells. We present a suite of interpretations
obtained from different iterative migration scenarios for a 3D controlled-source elec-
tromagnetic feasibility study computed from a detailed model of stacked anticline
structures and reservoir units of the Shtokman gasfield in the Russian sector of the
Barents Sea.

Key words: CSEM, Electromagnetics, Inversion, Migration, Regularization,
Stabilizer.

INTRODUCTION

The premise of the various marine controlled-source electro-
magnetic (CSEM) methods is sensitivity to the lateral extents
and thicknesses of resistive bodies embedded in conductive
hosts. For this reason, CSEM methods were initially applied
to de-risking exploration and appraisal with direct hydrocar-
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bon indication. However, CSEM methods represent just one
part of an integrated exploration strategy for hydrocarbons.
The value of CSEM data is only realized when those mod-
els derived from CSEM inversion are integrated, with sound
geological understanding, in a shared earth model. The most
successful applications of CSEM to date have been in com-
plement to those seismic interpretations where lithological or
fluid variations cannot be adequately discriminated by seis-
mic methods alone (Hesthammer et al. 2010). Hydrocarbon
reserves and resources are estimated with varying confidence
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(or risk) from volumetrics calculated from different subsurface
models. Confidence is only established through the testing of
multiple subsurface models that satisfy all available data. Re-
sistivity models derived from 1D or 2.5D CSEM inversion
provide the least confidence because of their inherently re-
duced dimensionality; those models derived from 3D inver-
sion provide the most confidence.

Here, we distinguish between inversion and interpretation,
two terms often used interchangeably. Inversion is a quanti-
tative process whereby a model is recovered from observed
data, regardless of whether any a priori knowledge was used
or not. Interpretation is a more qualitative process whereby
geological insight is inferred from at least one model. CSEM
interpretation is inherently reliant upon models derived from
inversion methods since CSEM data cannot simply be sep-
arated or transformed with linear operators as per seismic
methods. Methods for inverting CSEM data are complicated
by the very small, non-unique and non-linear responses of
hydrocarbon-bearing reservoir units when compared to the
total fields.

In 3D CSEM inversion, geological prejudice is introduced
via regularization (Tikhonov and Arsenin 1977), whether this
is an a priori model, data or model weights, model bounds
and/or by the choice of a stabilizing functional (Zhdanov
2002). Most often, resistivity models are obtained from regu-
larization with a smooth stabilizing functional (e.g., Mackie,
Watts and Rodi 2007; Commer and Newman 2008; Støren,
Zach and Maaø 2008; Ramananjaona and MacGregor 2010).
This means the first or second derivatives of the resistivity dis-
tribution are minimized, resulting in smooth distributions of
the resistivity. These types of solution allegedly satisfy Oc-
cam’s razor since they are claimed to produce the most ‘sim-
plistic’ models for the data. Unfortunately, this approach has
led to a tendency to deliver a single resistivity model as ‘the’ so-
lution. Moreover, these classes of models are the least relevant
to economic geology, which is anything but smooth. When the
resistivity distribution is discontinuous, smooth stabilizers can
also produce spurious oscillations and artefacts. Therefore, a
model that is smooth in the first or second derivative of the
anomalous resistivity distribution is not any ‘simpler’ than,
say, a model that has the minimum volume of the anoma-
lous resistivity distribution. As we will show below, the use
of focusing stabilizers allows us to recover stable and geologi-
cally realistic models with sharper geoelectric boundaries and
contrasts (Fig. 1 ).

In this paper, we demonstrate that the best practice is to
run multiple 3D inversion scenarios with differing regulariza-
tion in order to enable interpreters to explore alternative 3D

Figure 1 A smooth stabilizer will recover a model with a smooth
distribution of model parameters. A focusing stabilizer will recover a
model closer to the true model, with sharper boundaries and higher
contrasts.

resistivity models and to select the most geologically plausible
ones for further analysis. Such practice identifies any artefacts
that may arise from interpreting a single resistivity model.
Alternative models may be used to reveal which additional
data, if any, are needed to further constrain the interpreta-
tion. To this end, it is important to develop rigorous but fast
3D inversion methods. The requirement for ‘fast’ 3D inver-
sion makes the various stochastic methods computationally
prohibitive. Rigorous inversion methods are also not practi-
cal, as the sensitivity matrix needs to be constructed at each
iteration for the many transmitter-receiver combinations in a
CSEM survey. To minimize computation costs, various incar-
nations of the Born approximation that linearize the adjoint
operators are often used (e.g., Gribenko and Zhdanov 2007;
Støren et al. 2008). However, for nonlinear inverse problems
such approximations can result in inaccurate calculations of
the gradient directions, model updates and thus final models.
Our more pragmatic approach to 3D CSEM inversion is based
on iterative electromagnetic migration. Iterative migration is
implemented in a reweighted regularized conjugate gradient
method to rigorously compute the gradient directions with-
out needing to explicitly construct the sensitivity matrix or
its products (Zhdanov 2002). Modelling is based on the 3D
integral equation method with inhomogeneous background
conductivity that can capture arbitrary geological complex-
ity. We have implemented our iterative migration method in
fully parallelized software that allows us to invert entire 3D
CSEM surveys for models with millions of cells. Our approach
makes it practical to run multiple inversion scenarios as de-
scribed above and as we shall demonstrate in our Shtokman
case study.
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Iterative electromagnetic migration for 3D inversion 3

ELECTROMAGN E T I C M I GR A T I ON

The physical principles of electromagnetic migration parallel
those underlying optical holography and seismic migration;
i.e., the recorded fields scattered by an object form a holo-
gram, which one can subsequently use to reconstruct an image
of the object by ‘illuminating’ the hologram with a reference
field (Zhdanov 1988). In traditional formulation of migration
imaging (e.g., Zhdanov and Čuma 2009), in order to produce
the migration field, we replace a set of the receivers with a
set of auxiliary transmitters located in the receiver’s positions.
These transmitters generate an electromagnetic (EM) field,
which is called a backscattering or migration field, Em. The
vector cross-power spectrum of the background field, Eb and
the migration field, Em, produces a numerical reconstruction
of a volume image of the conductivity distribution (Zhdanov
2002, 2009). In the case of the marine CSEM method, it is
convenient to use a reciprocity principle both for forward
modelling and imaging/inversion of the marine CSEM data.
In the framework of this approach, the multiple computations
of the EM field in the sea-bottom receiver, generated by mul-
tiple transmitter positions, is substituted by one calculation
of the EM fields in the locations of the true transmitters due
to one reciprocal source located in the true receiver position.
Taking into account this ‘reciprocal’ application of the reci-
procity method, the principles of marine CSEM migration can
be summarized as follows (Zhdanov 2009):

1 We ‘illuminate’ the background media by a reciprocal elec-
tric dipole (in the case of electric observations) located in
the positions of the actual receivers to generate the ‘electric
mode’ background EM fields, ẼbE and H̃bE. Alternatively,
we ‘illuminate’ the background media by a reciprocal mag-
netic dipole (in the case of the magnetic field observations)
located in the positions of the actual receivers to generate
the ‘magnetic modes’ background EM fields, ẼbH and H̃bH.

2 We ‘illuminate’ the background media by artificial trans-
mitters located in the positions of the true transmitters
and represented by equivalent (fictitious) electric current
dipoles. In the case of electric observations, the current mo-
ments are determined by the complex conjugate anomalous
electric field observed in the true receiver for a given trans-
mitter position. The electromagnetic field produced by this
system of artificial electric dipoles generates the ‘electric
mode’ migration anomalous fields, ẼmE and H̃mE. In the
case of magnetic observations, the current moments are de-
termined by the complex conjugate anomalous electric field
multiplied by the factor −iωμ. The electromagnetic field
produced by this system of artificial transmitters generates

the ‘magnetic mode’ migration anomalous fields, ẼmH and
H̃mH.

3 In the case of electric field observations, the conductivity
model of the subsurface lE

0 is formed by summation of the
cross-power spectrum of the ‘electric mode’ background
and migration fields:

lE
0 = Re

∑
ω

ẼbE · ẼmE, (1)

where summation is done over all frequencies of the
recorded fields.

4 In the case of magnetic field observations, the conductivity
model of the subsurface lH

0 is formed by calculating the
cross-power spectrum of the ‘magnetic mode’ background
and migration fields:

lH
0 = Re

∑
ω

ẼbH · ẼmH. (2)

5 In the case of joint migration of electric and magnetic ob-
served data, the conductivity model of the subsurface lEH

0 is
formed by summation of the ‘electric mode’ and ‘magnetic
mode’ images

lEH
0 = Re

∑
ω

[̃
EbE · ẼmE + ẼbH · ẼmH

]
. (3)

Note that, in the case of multireceiver observations, the
final image is produced by summation of all the migration
fields generated for each receiver. The conductivity models
generated by equations (1)–(3) are usually slightly distorted
due to the different spatial sensitivities of the observed data
in the model. To account for different sensitivities of the data
to the conductivity distribution, we use an additional model
weighting function, Wm:

σ ≈ −k(W∗
mW)−1l0, (4)

where l0 stands for any of the migration images introduced
above and k is some scaling coefficient. The model param-
eter weighting matrix Wm is computed using the integrated
sensitivity S as follows:

Wm =
√

S, (5)

where the integrated sensitivity is determined from:

S = diag
√

F∗F. (6)

In this last equation, F is the Fréchet matrix of the for-
ward modeling operator. By weighting the migration image
lEH
0 with the integrated sensitivity, we make sure that the ob-

served data are equally sensitive to the conductivity variations
within every part of the domain of investigation.
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Electromagnetic migration for controlled-source
electromagnetic methods

Let us consider a typical CSEM survey consisting of a set of
electric and magnetic field receivers located on the seafloor
and an electric bipole transmitter towed at some elevation
above the seafloor. We assume that the electrical conductiv-
ity in the model can be represented as the sum of the back-
ground conductivity σb and an anomalous conductivity �σ

distributed within some local inhomogeneous domain D as-
sociated with the reservoir structures.

The background conductivity is formed by a horizontally
layered model that consists of nonconductive air and a layered
subsurface including the conductive sea column. The receivers
are located at the points r j , where j = 1, 2, 3, . . . , J, in a Carte-
sian coordinate system. Every receiver Rj records electric and
magnetic field components generated by an electric bipole
transmitter moving above the receivers. We denote these ob-
served fields as Ei (r j ) and Hi (r j ) where i is the index of the
corresponding transmitter Ti located at the point ri where i =
1, 2, 3, . . . , I.

Let us consider the data observed by one receiver, Rj. We
also introduce two auxilary electric current dipoles, q and p.
According to reciprocity, the electric field component excited
at r j in the direction of p by an electric current element q at ri

is identical to the electric field component excited at ri in the
direction of q by an electric current element p at r j (Zhdanov
2002, p. 226):

Ei (r j ) · p = EE
j (ri ) · q. (7)

Similarly, the magnetic field component excited at r j in the
direction of p by an electric current element q at ri is equal
to the electric field component (multiplied by the minus sign)
excited at ri in the direction of q by a magnetic current element
p at r j :

Hi (r j ) · p = −EH
j (ri ) · q. (8)

Therefore, one can substitute a reciprocal survey configu-
ration for the original survey, assuming that we have electric
TE

j and magnetic TH
j dipole transmitters located in the posi-

tions of the receivers, Rj and a set of receivers measuring the
reciprocal electric fields EE

j (ri ) and EH
j (ri ) in the positions of

the original transmitters, Ti.
We can calculate the migration field for the data collected

by one fixed seafloor receiver, Rj. Consider, for example, the
reciprocal electric fields EE

j (ri ). These fields can be represented
as the sum of the background (b) and anomalous (a) parts:

EE
j (ri ) = Eb

j (ri ) + Ea
j (ri ), (9)

where the background electric field Eb
j (ri ) is generated by the

electric dipole transmitter TE
j in a model with a background

conductivity σ b(z). The residual fields REj (ri ) are equal to the
difference between the background and ‘observed’ reciprocal
field:

REj (ri ) = Eb
j (ri ) − EE

j (ri ) = −EEa
j (ri ). (10)

According to the definition by Zhdanov (2002, 2009), the
migrated residual field is a field generated in the background
medium by a combination of all electric dipole transmitters
located at points ri with current moments determined by the
complex conjugate residual field R∗

Ej
(ri ) according to the fol-

lowing:

Em
j (r) = Em

j (r; R∗
Ej

) =
I∑

i=1

ĜE(r, ri ) · R∗
Ej

(ri ), (11)

where the lower subscript j shows that we migrate the field
observed by the receiver Rj and ĜE(r, ri ) is the electric Green’s
tensor for the background conductivity model, σ b. Therefore,
the migration field can be computed as a superposition of
1D responses weighted by the corresponding receiver residual
and generated by electric dipoles with unit moments located
at every transmitter position in the model with background
conductivity σ b. This 1D electric dipole modelling is a very
fast process, which results in a fast migration algorithm.

Equation (11) allows us to reconstruct the migration field
everywhere in the medium under investigation. It can be
shown that this transformation is stable with respect to the
noise in the observed data (Zhdanov 2009). At the same time,
the spatial distribution of the migration field is closely related
to the conductivity distribution in the medium. However, one
needs to apply imaging conditions to enhance the conductivity
model produced by migration. We will discuss this problem
in a later section.

In the general case of multiple receivers, the migration field
is generated in the background medium by all electric dipole
transmitters located above all receivers, Rj, having current
moments determined by the complex conjugate residual field,
R∗

Ej
(ri ):

Em(r) =
J∑

j=1

I∑
i=1

ĜE(r, ri ) · R∗
Ej

(ri ). (12)

According to equation (11), we have:

Em(r) =
J∑

j=1

Em
j (r). (13)
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Therefore, the total migration field for all receivers can be
obtained by summation of the corresponding migration field
computed for every individual receiver. A remarkable fact is
that the migration of both electric and magnetic field data is
actually reduced to the same forward problem for the electric
field generated by the electric dipole transmitters. The only
difference is that, in the case of the electric field receivers,
we use the electric observed data to determine the electric
current moment in the reciprocal transmitters. In the case of
the magnetic receivers, the observed magnetic data are used
to determine the electric current moments of the receivers.

Regularized iterative migration

It can be demonstrated that migration can be treated as the
first iteration in the solution of an electromagnetic inverse
problem (Zhdanov 2009). Obviously, we can obtain better
images if we repeat migration iteratively. Following Zhdanov,
Čuma and Ueda (2010), we can describe the method of iter-
ative migration as follows: on every iteration, we calculate
the predicted electromagnetic response Ẽn for the given con-
ductivity model σ n, obtained from the previous iteration. We
then calculate the residual field between this response and the
observed data, R̃n

E, and then we migrate the residual field. The
updated conductivity model is obtained, according to equa-
tion (1), as a sum over the frequencies of the dot product
of the migrated residual field and the predicted electromag-
netic response Ẽn. This conductivity model is then corrected
by the integrated sensitivity S to produce the new conductivity
model σ n on the basis of equation (4). The iterative migration
is terminated when the residual field becomes smaller than the
required accuracy level of the data fitting. In fact, the iterative
migration results in rigorous inversion.

It has been demonstrated that migration provides an al-
ternative method for evaluation of adjoint operators. When
applied iteratively, migration is analogous to inversion by pro-
viding a rigorous solution to the corresponding inverse prob-
lem (Zhdanov 2002, 2009).

Note that every iteration of the migration algorithm re-
quires two forward modeling computations: one to compute
the migration field and another to compute the predicted data
in the receivers. In this work, we use a recently developed
migration code that is parallelized over the z dimension of
the migration domain. For calculation of the migration and
predicted fields, we use the integral equation method with
inhomogeneous background conductivity. This enables us to
considerably reduce computation time and also model larger
problems by increasing the migration domain size and the

number of the cells used for the migration domain discretiza-
tion.

CHOOSING A STABIL IZ ING FUNCTIONAL

Another advantage of iterative migration is based on the fact
that it allows us to include an a priori model of the target in
the iterative process in a way similar to the case of conven-
tional inversion. The details of this technique can be found in
Zhdanov (2002).

Regardless of the iterative scheme used, all our regularized
inversions seek to minimize the Tikhonov parametric func-
tional, Pα(m):

Pα(m) = φ(m) + αs(m) → min, (14)

where φ(m) is a misfit functional of the observed and pre-
dicted data, s(m) is a stabilizing functional and α is the reg-
ularization parameter that balances (or biases) the misfit and
stabilizing functional (Zhdanov 2002). The stabilizing func-
tional incorporates information about the class of models used
in the inversion. The choice of stabilizing functional should
be based on the user’s geological knowledge and prejudice.
Using an inappropriate type of stabilizer is akin to looking
for an inappropriate solution. In this section, we will briefly
describe different smooth and focusing stabilizers in order to
demonstrate the results from the iterative migration of the
same CSEM data produced by each.

A minimum norm (MN) stabilizer will seek to minimize the
norm of the difference between the current model and an a
priori model:

sMN(m) =
∫

V
(m − mapr )2dv, (15)

and usually produces a relatively smooth model for a differ-
ence (m − mapr). The Occam (OC) stabilizer implicitly in-
troduces smoothness with the first derivatives of the model
parameters:

sOC(m) =
∫

V
(∇m − ∇mapr )2dv, (16)

and produces smooth resistivity models that bear little re-
semblance to economic geology. Moreover, it can result in
spurious oscillations and artefacts when the resistivity is dis-
continuous.

Alternatively, the use of focusing stabilizers makes it possi-
ble to recover models with sharper geoelectric boundaries and
contrasts. We briefly describe this recently introduced fam-
ily of stabilizers here and refer the reader to Zhdanov (2002,
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2009) and Zhdanov, Gribenko and Čuma (2008) for further
details.

First, we present the minimum support (MS) stabilizer:

sMS(m) =
∫

V

(m − mapr )2

(m − mapr )2 + e2
dv, (17)

where e is a focusing parameter introduced to avoid singularity
when m = mapr. The minimum support stabilizer minimizes
the volume with nonzero departures from the a priori model.
Thus, a smooth distribution of all model parameters with
a small deviation from the a priori model is penalized. A
focused distribution of the model parameters is penalized less.
Similarly, we present the minimum vertical support (MVS)
stabilizer:

sMVS(m) =
∫

V

(m − mapr )2∫
S(m − mapr )2ds + e2

dv, (18)

where S is a horizontal section from the inversion domain (Zh-
danov et al. 2008). This minimizes the thickness of the volume
with non-zero departures from the a priori model. The MVS
stabilizer is specifically designed to invert thin subhorizontal
structures, such as hydrocarbon-bearing reservoirs.

Finally, we present the minimum gradient support (MGS)
stabilizer:

sMGS(m) =
∫

V

∇(m − mapr ) · ∇(m − mapr )
∇(m − mapr ) · ∇(m − mapr ) + e2

dv, (19)

which minimizes the volume of model parameters with non-
zero gradient.

Note that, the focusing parameter e controls the degree of
focusing the inverse images. The smaller the focusing param-
eter e, the sharper the contrasts of conductivities in the in-
verse images. However, parameter e should not be too small,
because it could result in singularities of the expressions for
focusing stabilizers when m = mapr. At the same time it should
not be too large, because in this case the image will not be fo-
cused. Thus, the problem of selecting the focusing parameter
e is very similar to the problem of choosing the regularization
parameter alpha. Zhdanov and Tolstaya (2004) introduced
a method to estimate the optimum value of e, similar to the
L-curve method for selection of the regularization parameter
α (Hansen 1998).

Figure 2 Observed (red) and background (blue) fields for the in-line electric and transverse magnetic field components at a receiver close to the
centre of the Shtokman model.
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C A S E S T U D Y – S H T O K M A N

The Shtokman gasfield lies in the centre of the Russian sec-
tor of the Barents Sea, approximately 500 km north of the
Kola Peninsula. It is currently operated by a joint venture be-
tween Gazprom, Total and StatoilHydro. Shtokman is one

of the world’s largest known natural gasfields, with reserves
of 3.8 tcm of gas and 37 mln t of gas condensate (Gazprom
2009). The water depth gently varies between 320–340 m
over the field. The overburden sequence contains Jurassic and
Cretaceous siliciclastics of shallow marine origin. From ap-
proximately 1800 m depth, the Shtokman reservoir sequence

Figure 3 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of in-line electric field data with a
homogeneous half-space for a) the true resistivity, b) Occam inversion, c) minimum norm, d) minimum support, e) minimum vertical support
and f) minimum gradient support. All models fit the observed data within 5.5%.
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consists of four Middle and Upper Jurassic sandstone hori-
zons. The gas is trapped in an anticlinal four-way dip struc-
ture that is faulted in the crest. The reservoir horizons vary
from 10–80 m in thickness. The porosity is between 15–20%,
and permeability ranges from hundreds of millidarcies to over
a darcy (Zakharov and Yunov 1994).

We constructed a 3D geoelectric model of the Shtokman
field from available geological and geophysical information.
This model was used to simulate a multifrequency 3D CSEM
survey at 0.25 Hz, 0.5 Hz and 0.75 Hz using the 3D integral
equation method. The survey consisted of 345 receiver posi-
tions distributed over a 2 km × 2 km grid draped over the
seafloor. The transmitter was towed 50 m above the seafloor
along 50 km long lines that were spaced 2 km apart. For
the entire survey, we prepared different combinations of the
multifrequency data for migration: in-line electric field only,
in-line electric and transverse magnetic fields and in-line and
vertical electric and transverse magnetic fields. No noise was
added to any of the data, so we could effectively compare the
performance of each stabilizer.

As noted in the introduction, the anomalous fields are gen-
erally very weak compared to the background fields in the
CSEM measurements. Figure 2 shows the observed and back-
ground fields for a receiver near the centre of the Shtokman
field. The observed field, which includes the anomaly contri-
bution, shows only a small departure from the background
signature at offsets under 10 km for the Ex and Hy compo-
nents. For the Ez component the difference is larger but the
magnitude of the amplitude is much smaller.

A number of iterative migration scenarios were considered.
In each, the model domain was 44 km × 40 km × 3 km in
easting and northing and at depth. The migration was done
on a grid with a cell size of 200 m by 200 m in the hor-
izontal directions and with a relatively fine vertical size of
20 m. Thus, the vertical cell size of the migration grid was
smaller than the 50–100 m thicknesses of the reservoir layers.
The data sets corresponding to each data combination were
then migrated with different stabilizers: Occam (OC), mini-
mum norm (MN), minimum support (MS), minimum vertical
support (MVS), and minimum gradient support (MGS). The
focusing parameter was equal to 1e-12 for all the stabilizers.
For the purpose of benchmarking performance, all scenarios
were run to a common misfit of 5.5%. In the first part of
our study, all scenarios commenced with no a priori models
so as to not bias the effectiveness of any stabilizer. With no
a priori model, we do not expect to be able to resolve the
stacked reservoir units of the Shtokman gasfield. What we do
expect, however, is to recover a feature with a general shape
and a conductivity-thickness product that is comparable to
the stacked reservoir units. This is a well-known limitation of
the CSEM method’s resolution.

Figures 3, 5 and 6 present the results for the different it-
erative migration scenarios at their final iterations. Though
the actual resistivity models are 3D, we show only common
vertical cross-sections through each model for ease of visual
inspection of model quality. Panel (b) of Fig. 3 shows that iter-
ative migration of the Ex component only with the Occam sta-
bilizer converged to produce a very smooth resistivity model,

Figure 4 Convergence of misfit for inversion of in-line electric field data with minimum vertical support (MVS), minimum gradient support
(MGS), minimum support (MS), Occam (OC) and minimum norm (MN) stabilizers.

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–13



Iterative electromagnetic migration for 3D inversion 9

one that bears the least resemblance to the actual resistivity
model as shown in panel (a) of the same figure. As shown
in panel (c) of the same figure, iterative migration with the
minimum norm stabilizer also produced a smooth resistivity
model. Models with sharper geoelectric boundaries and con-
trasts were obtained using the family of focusing stabilizers, as

shown in panels (d)–(f). Migration with the minimum support,
minimum vertical support and minimum gradient support sta-
bilizers produced compact resistivity models. These resistivity
models bear the most geological relevance to the actual geol-
ogy, as they recovered the anticlinal trends of the Shtokman
reservoir units. As expected, the minimum vertical support

Figure 5 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of in-line electric field and transverse
magnetic field data with a homogeneous half-space for a) the true resistivity, b) Occam inversion, c) minimum norm, d) minimum support, e)
minimum vertical support and f) minimum gradient support. All models fit the observed data within 5.5%.
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recovered the thinnest resistivity model. The minimum gradi-
ent support spreads the anomaly out somewhat in an effort to
account for the multiple stacked true anomalies. As shown in
Figs 5 and 6, addition of the Hy and Ez components improves
the Occam and minimum norm results but they still produce
overly smooth models.

We have compared the convergence of the inversion mis-
fit, which we define as the norm of difference between the
normalized observed and predicted data (Fig. 4). This result
is representative of the other scenarios whereby all stabilizers
exhibited near-quadratic convergence. As shown in previous
figures, our results show that there is noticeable improvement

Figure 6 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of in-line and vertical electric field and
transverse magnetic field data with a homogeneous half-space for a) the true resistivity, b) Occam inversion, c) minimum norm, d) minimum
support, e) minimum vertical support and f) minimum gradient support. All models fit the observed data within 5.5%.

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–13
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in the quality of the recovered resistivity models as the trans-
verse magnetic and then vertical electric fields are added to the
CSEM data prepared for migration. It follows that, as the in-
dustry moves towards acquiring 3D surveys with the intent of
defining 3D structure, the ability to invert all components of

data along multiple lines for 3D resistivity models will prove
to be essential.

In the second part of our study, we evaluate the use of
an inhomogeneous background resistivity model rather than
a homogeneous half-space (Zhdanov and Čuma 2009). We

Figure 7 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration of in-line and vertical electric field and
transverse magnetic field data with an inhomogenous a priori model for a) the true resistivity, b) inhomogeneous a priori resistivity, c) Occam
inversion, d) minimum support, e) minimum vertical support and f) minimum gradient support. All models fit the observed data within 5.5%.
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constructed an inhomogeneous background resistivity model
from the original resistivity model but removed the reservoirs
so as to present the anticlinal structures. Again, we ran it-
erative migration for all types of stabilizers and data combi-
nations. Figure 7 shows results for iterative migration of the
Ex, Hy, and Ez data. Interestingly, the stacked reservoir units
emerge from the smooth stabilizers but are far better defined
with the focusing stabilizers. In Fig. 8, we compare models
obtained using the minimum vertical support stabilizer for
different data combinations. It is remarkable that it is possi-
ble to recover stacked resisters in these images that correlate
to the stacked reservoir horizons.

CONCLUSION

3D inversion of CSEM data is inherently nonunique; multiple
models will satisfy the same observed data. Multiple inversion

scenarios must be investigated in order to explore different a
priori models, data combinations and stabilizers, all with the
intention of minimizing subsurface uncertainty. For such prac-
ticality, it is important to use rigorous but fast 3D inversion
methods. Our approach to this is based on iterative migra-
tion, theoretically equivalent to but more efficient than iter-
ative inversion. As we have demonstrated with our synthetic
example for the Shtokman field, we are able to effectively
invert multicomponent, multifrequency and multiline CSEM
surveys for models with millions of cells. This makes it prac-
tical to run multiple scenarios in order to build confidence in
the robustness of features in the resistivity models, as well as
to discriminate any artefacts that may arise from the interpre-
tation of a single resistivity model. We have shown that re-
liance on regularization with smooth stabilizers may produce
resistivity models that bear little resemblance to petroleum ge-
ology. We have shown that focusing stabilizers recover more

Figure 8 Vertical cross-section of the Shtokman resistivity model obtained from the iterative migration using the minimum vertical support
stabilizer with an inhomogeneous a priori model for a) the true resistivity, b) inversion of in-line electric field data, c) inversion of in-line electric
field and transverse magnetic field data and d) inversion of in-line and vertical electric field and transverse magnetic field data. All models fit
the observed data within 5.5%.
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realistic resistivity models with sharper geoelectric contrasts
and converge to lower misfits in fewer iterations. Finally, using
a known non-horizontally layered structure as an inhomoge-
neous background resistivity a priori model to the iterative mi-
gration can improve model fidelity and recover stacked reser-
voir units. In order to extract the most reliable information
from geophysical data, multiple inversion scenarios should be
applied and the inversions should be run both with differ-
ent a priori models and with different regularization param-
eters. The final selection of the most geologically meaningful
model should be based on integrated analysis/interpretation
of all available geological and/or geophysical information in
the area of investigation.
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