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In this work, an inversion technique comprising stochastic search and regularized
gradient optimization is used to solve the atmospheric source characterization
problem. The inverse problem comprises retrieving the spatial coordinates, source
strength and the wind speed and wind direction at the source, given certain
receptor locations and concentration values at these receptor locations. The
Gaussian plume model is adopted as the forward model and derivative-based
optimization is chosen to take advantage of its simple analytical nature. A new
misfit functional that improves the inversion accuracy of atmospheric inverse-
source problems is developed and is used in the solution procedure. Stochastic
search is performed over the model parameter space to identify a good initial
iterate for the gradient scheme. Several Quasi-Monte Carlo point-sets are
considered in the stochastic search stage and their performance is evaluated
against the Mersenne–Twister pseudorandom generator. Newton’s method with
the Tikhonov stabilizer and adaptive regularization with quadratic line-search is
implemented for gradient optimization. As the forward modelling and measure-
ment errors for atmospheric inverse problems are usually unknown, issues
concerning ‘model-fit’ and ‘data-fit’ are examined. In this article, the workings
and validation of the proposed approach are presented using field data from the
Copenhagen tracer experiments.

Keywords: inverse-source problem; Gaussian plume model; Monte Carlo;
Quasi-Monte Carlo; regularized Newton’s method; quadratic line-search

AMS Subject Classifications: 15A29; 11K45; 60J60

1. Introduction

The solution of inverse problems involves the retrieval of information about a physical
process or phenomenon from known or observed data [1]. Inverse problems arise in
various fields and hence techniques to solve such problems have been an area of extensive
study. One of the contemporary applications of inversion techniques includes the source
characterization problem for atmospheric contaminant dispersion. Atmospheric source
characterization problems, also referred to as event reconstruction, source-inversion or
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inverse-source problems, comprise characterizing the source of a chemical/biological/
radiological (CBR) agent released into the atmosphere. Source characterization typically
involves predicting the release location and rate of the CBR agent and the meteorological
conditions at the release site, based on the time-averaged concentration and wind
measurements obtained from a distributed sensor network in the region of interest. In this
article, an inversion technique developed to retrieve the spatial coordinates, source
strength and the wind speed, and wind direction at the source, using concentration
measurements from known receptor locations in the domain is described.

Efficient and robust event reconstruction tools can play a crucial role in the event of
accidental or deliberate release of CBR agents in or close to urban centres. Under such
circumstances, quick and accurate reconstruction can help government agencies evacuate
people from the affected regions. Also, using the information obtained from inversion,
forward models can be run to estimate the extent of the plume spread and the consequent
exposure. Event reconstruction tools can also be of use to environmental monitoring
agencies as they can help evaluate the contribution of the stack releases from various
industries close to urban areas to the air quality within urban areas. Therefore, from the
perspective of public safety and national security, a fast, robust and accurate atmospheric
event reconstruction tool is pivotal for air-quality management and to effectively deal with
emergency response scenarios.

It is generally well-accepted that a single best procedure to solve an inverse problem
does not exist. For inverse problems having small domains and few decision variables,
conducting an exhaustive grid search is the most robust inversion technique [2]. For larger
problems, the performance of a solution technique depends upon the problem at hand, the
nature of the forward model, and the manner in which the inverse problem is formulated.
Inverse problems are also difficult to solve owing to their inherent ill-posedness, i.e. the
existence, uniqueness and stability of the computed solution. For real-life inverse
problems, the question of existence is more mathematical than physical [1,3]. This is also
true for the present case, wherein the sensor network recording a measurement suggests the
existence of a solution to the source characterization problem. However, to date, there is
no formal proof for the existence of solutions to inverse problems with contaminated data,
and seldom do we obtain noise-free data from measuring devices [3]. Therefore, for the
accurate retrieval of the model parameters (m), the knowledge of the uncertainty in the
observed data (dobs) is absolutely essential. In short, one needs to know the uncertainties
(�) in the data to know what it means to fit the data [3].

The solution phase of inverse problems can be divided into two stages [3]: (1) the
estimation stage, and (2) the appraisal stage. The estimation stage involves using an
inversion algorithm to predict a set of model parameters (mpr) based on the observed data
(dobs). The appraisal stage is comprised of determining how well the data generated (dpr)
using the predicted model parameters (mpr) fits the observed data (dobs) [1]. Errors arising
in inversion and the inherent ill-posedness associated with inverse problems can be
accounted for in one of these two stages. Errors arising in the inversion procedure can be
attributed to one of the four possible sources: (1) the forward modelling error (�FM), (2)
measurement error (�M), (3) non-uniqueness and (4) nonlinear error propagation. For real-
life problems, the forward modelling error (�FM) is inevitable. This is because no forward
model (A) can ever incorporate all the physics associated with the problem. During
inversion, the forward modelling (�FM) and the measurement errors (�M) may be
accounted for in the estimation stage. Non-uniqueness arises primarily due to one of the
following four factors: (1) retrieval of a model that may have infinite degrees of freedom
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from finite amount of data, (2) lack of information – this is especially true when solving
an under-determined system, (3) correlation between the model parameters (m) and (4)
distortion of the misfit functional space due to the previously mentioned errors resulting in
multiple optimal solutions. Non-uniqueness and nonlinear error propagation (that is
intractable) can be accounted for during the appraisal stage. Due to these uncertainties in
the solution procedure, one usually defines a ‘data-fit’ or ‘model-acceptancy’ criterion (�)
based on any prior information available about the noise level (�) [4–7]. In summary, the
goal of inversion is to find a set of model parameters (mpr) that fit the observed data (dobs)
to some prescribed level (�).

Given that the subject of source characterization of atmospheric contaminant
dispersion is in its infancy, researchers have examined the applicability and effectiveness
of the various available inversion procedures to solve such problems. The solution
methodologies used span the range of deterministic (adjoint methods), stochastic
(simulated annealing (SA), genetic algorithms (GA), Bayesian inference using Markov
Chain Monte Carlo (MCMC) sampling) and ‘common-sense’ methods (collector footprint
methods). The inverse-source problem has been solved over local [8,9], regional [10,11] and
continental scales [12] for different model parameters (m) using empirical, diagnostic and
prognostic models for scalar transport as the forward operator (A). Apart from identifying
the source parameters, inversion techniques have also been used to estimate model
coefficients in forward operators used to characterize atmospheric dispersion [12,13].
Table 1 summarizes the salient features of the inversion procedures adopted by some of the
research groups across the world to solve the inverse-source problem.

All inversion techniques have their own merits and demerits and the approaches found
in Table 1 are no exception. Adjoint methods, apart from requiring a good initial guess,
also require the misfit functional to be continuous and differentiable. Hence, they are more
likely to get trapped in local minima since inverse problems are often characterized by
misfit functionals that have multiple critical points (maxima, minima and saddle points).
Also, for problems that have complicated forward operators in the form of partial
differential equations (PDEs), adjoint methods can be computationally expensive as they
require the forward model evaluation and the Frechet evaluation over the entire domain
on every iteration (when Newton’s method is employed, evaluation of the inverse of the
Hessian over the entire domain is required). Therefore, problems that have complicated
(non-convex) misfit functional surfaces often require stochastic search methods in order to
distinguish the local minima from the global minima. The computational efficiency of
guided-search algorithms such as SA and GA also depends on the forward operator, as
every iteration of these algorithms requires the forward operator to be evaluated. Adjoint
methods, SA and GA also carry the added disadvantage that they only provide a single
model that fits the data rather than giving a set of acceptable models. Though Bayesian
inference techniques appear robust and give probabilistic answers, they rely heavily upon
the manner in which prior information is included into the initial probability distribution
[14]. The posterior distribution is then computed using MCMC sampling, which also
requires the forward model to be evaluated on every iteration, and hence can get
computationally intractable in higher dimensions [3].

In this article, an approach that has the combined benefits of stochastic search and
gradient descent methods is presented. The workings of the proposed approach are
explained using field experiment data (the Copenhagen tracer experiments – TCTE) [15].
The objective of conducting stochastic search is to provide the gradient optimization
scheme a good starting solution (mSTOCH). It should be noted that the stochastic search is
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not a guided-search and this ensures that the misfit functional space has been uniformly

sampled, thereby reducing the possibility of getting stuck in local minima. Three strategies

for solving the inverse-source problem in general and computing the ‘data-fit’ criterion

(�STOCH) for the stochastic search stage in particular are discussed. Gradient optimization

(Newton’s method) is performed with the initial iterate provided by the stochastic search

stage (mSTOCH). The ‘model-acceptancy’ criterion (�GD) for the gradient scheme is based

on the L2-norm of the difference between predicted and observed data vectors in the

iteration space. The Gaussian plume dispersion model is adopted as the forward model

because of its theoretical and computational simplicity. The proposed approach is used to

retrieve the source parameters from TCTE [15], and the results obtained are compared

against the true parameters. The works of [9,21] also used the Copenhagen data to

demonstrate quasi-Newton and Bayesian inference approaches to the inverse problem.

The results obtained from this work are compared to those obtained by [9,21].
Apart from the hybrid approach proposed, this article also investigates some of the

vital aspects of the atmospheric source characterization problem when using the Gaussian

plume model (GPM) as the forward operator. The first feature examined is the effect of the

misfit functional formulation on the accuracy and complexity of inversion. Based on this

study, a new misfit functional that takes into account both the zero and non-zero

measurements recorded by the receptors and improves the inversion accuracy of

atmospheric inverse-source problems is developed and is used in the solution procedure.

Several Quasi-Monte Carlo (QMC) point-sets are considered in the stochastic search stage

and their performance is evaluated against the conventional Monte Carlo (MC) sampling

using the Mersenne–Twister pseudorandom generator. The choice of the descent methods

(steepest descent, Newton’s and conjugate gradient methods), stabilizing functional

(Tikhonov) and the regularization parameter (�) for gradient optimization were also

examined. Gradient descent methods are an attractive choice for the current problem as

analytical expressions for the Frechet and Hessian can be pre-computed for the Gaussian

plume equation. For the current inverse problem, Newton’s method with adaptive

regularization and quadratic line-search is implemented. Since the forward modelling and

measurement errors for atmospheric inverse problems are usually unknown, issues

concerning ‘model-fit’ and ‘data-fit’ are examined.
As has been the central theme of this discussion, the area of application of inversion

techniques to atmospheric source characterization problems is in its nascency and various

methods are being tested and their performance is being evaluated. In the work presented

in this article, a solution procedure different from the ones published in the literature is

outlined. As with most of the other inversion techniques, the speed and accuracy of the

present solution methodology depends on the noise level (�) in the observed data (dobs) and

the quality of the forward model (A). When properly formulated, the solution to an inverse

problem can help identify the necessary physics that need to be incorporated into A. Thus,

inverse problems can in-turn be used to improve the speed and accuracy of the solution to

the forward problem by enhancing or pruning the physics in the forward model.

2. Problem definition

In this section, the atmospheric inverse-source problem is defined mathematically.

6 B. Addepalli et al.
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2.1. The forward problem

The GPM is the simplest model that describes the dispersion of atmospheric contaminants.
It is an analytical solution to the simplified advection–diffusion equation [19,23,24].

Of all the models used to characterize atmospheric dispersion, the GPM has the
least computational complexity (requires minimum number of arithmetic operations).

In emergency-response situations, the two most important factors are the speed and
accuracy of reconstruction. The accuracy of reconstruction depends as much on the

forward model (A) as it does on the inversion technique. Therefore, within its range
of applicability, the GPM is the most desirable in such situations, due to the meagre

cost associated with the forward model evaluation. Accordingly, the inverse-source
problem is solved using the GPM for continuous point-releases as the forward
operator. The GPM for steady, continuous and uniform wind conditions can be

written as [23,24],

Ciðxi, yi, ziÞ ¼
QS

2�uS�y�z
exp
�y2

2�2y

 !
exp
�ðzi � zSÞ

2

2�2z

� �
þ exp

�ðzi þ zSÞ
2

2�2z

� �� �
, ð2:1Þ

�y ¼ �1x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:0004x
p

, �z ¼ �2x, ð2:2Þ

x ¼ �ð yR � ySÞcosð�SÞ � ðxR � xSÞsinð�SÞ, ð2:3Þ

y ¼ �ð yR � ySÞsinð�SÞ þ ðxR � xSÞcosð�SÞ: ð2:4Þ

Equation (2.1) gives an estimate of the concentration (Ci) at a receptor i with the
position vector ~X ¼ ðxR � xiÞ, ð yR � yiÞ, ðzR � ziÞ½ �, where, xS, yS, zS, and xi, yi, zi, represent

the source and the ith receptor spatial coordinates, respectively. The emission rate is QS,
and the wind speed (uS), and wind direction (�S) are assumed to be constant over the

region of interest. The distances (xi� xS), (yi� yS), and (zi� zS) are measured in the along-
wind, cross-wind and vertical directions with the origin of the coordinate system being the

source location. The parameters �y and �z (Equation (2.2)) are called the Gaussian plume
spread parameters and account for the turbulent diffusion of the plume. They are

empirical parameters and are defined for various meteorological stability conditions. For
the present problem, Brigg’s formulae for Pasquill C-type stability conditions were chosen

[23,24]. These parameters, however are terrain and problem dependent and therefore for
this work, the dimensionless empirical constants �1 and �2, which in Brigg’s formulae are

0.22 and 0.20, were replaced by 0.12 and 0.10 for TCTE [15] as per the work of [9]. There
are several other assumptions that are tacit in the Gaussian dispersion equation for which
the reader may refer to [23,24].

It should be realized that the GPM is not a ‘building-aware’ model, in that it does not

account for the changes in flow and dispersion patterns caused by buildings and other
roughness elements when estimating the concentration value at a receptor in an urban

domain. Therefore, depending on the terrain, the GPM may or may not be accurate in the
near-field of a point source. In the far-field, since the plume is transported in the mesoscale

wind direction, the constant wind direction assumption in the GPM becomes more admis-
sible [25]. The solution methodology that will be developed in the subsequent sections is

independent of the forward model used. The solution procedure developed can be applied
with other versions of the GPM, or forward models that solve the governing equations for

Inverse Problems in Science and Engineering 7

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
U

ta
h]

, [
M

ic
ha

el
 Z

hd
an

ov
] 

at
 1

3:
16

 0
7 

O
ct

ob
er

 2
01

1 



fluid flow and dispersion [26]. It should however be noted that depending on the forward
model used, the performance of the proposed solution procedure will vary.

The forward problem can be defined as estimating the concentrations at the
desired receptor locations based on the given model (source) parameters (m) and can be
written as

AðmÞ ¼ d: ð2:5Þ

Here, A is the forward modelling operator (which in this case is the GPM), m is the set of
model or source parameters and d is the vector of concentration measurements at the
various receptor locations. For the computation of the concentration values at any point
downwind of the source, the GPM requires eight model parameters (mGPM). Hence, when
using the GPM as the forward model, (2.5) can be written as

AðmGPMÞ ¼ d, ð2:6Þ

mGPM ¼ xS yS zS QS uS �S �1 �2
� �T

8�1
, ð2:7Þ

d ¼ d1 d2 . . . dN
� �T

N�1
: ð2:8Þ

2.2. The inverse problem

The inverse problem can be defined as the solution of the operator equation,

d ¼ AðmÞ: ð2:9Þ

The solution to the inverse problem requires determining such a model mpr (predicted
model) that generates predicted data, dpr, which ‘fits-well’ the observed data dobs [1]. If the
forward operator is nonlinear, the solution to the inverse problem can only be found
iteratively. Therefore, nonlinear inverse problems are often cast as minimization or
optimization problems as shown below:

arg min
mpr

AðmprÞ � dobs
		 		

2

� �
: ð2:10Þ

From (2.1) and (2.7), it can be deduced that when solving the source-inversion problem
using the GPM, at most eight model parameters can be retrieved (mGPM). Of these eight
parameters, since the source strength (QS) and the wind velocity at the source (uS) are a
fraction of each other in the Gaussian equation (Equation (2.1)), attempting to retrieve
them individually can result in non-unique solutions for these parameters. Therefore, they
were combined into a single term (QS/uS) in the present solution procedure.

The following five (mSTOCHþGD) of the eight model parameters (mGPM) (Equation
(2.7)) in the GPM (QS and uS combined into a single term (QS/uS)) are retrieved in this
work for TCTE:

mSTOCHþGD ¼ xS yS zS QS=uS �S
� �T

5�1
: ð2:11Þ

Hence, the inverse-source problem is a five-dimensional (5D) inverse problem. The
rationale behind retrieving five model parameters is based on the relationship between the
increasing nonlinearity of inversion and the number of model parameters to be retrieved.

8 B. Addepalli et al.
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With the GPM, if only QS or uS are to be retrieved, the inverse problem is in fact linear
(Equation (2.1)). Nonlinearity creeps into the GPM from the remaining six model
parameters. It is also well-accepted that an increase in the number of unknown model
parameters leads to greater correlation between the model parameters, thereby resulting in
non-unique solutions. The simple analytical nature of the Gaussian dispersion equation
therefore raises the important question of the number of model parameters that one would
want to retrieve (ideally eight) versus the accuracy of inversion. Non-uniqueness in inverse
problems may be mitigated by including any prior information (mapr) about the parameter
values. But including prior information can compromise the robustness of the inversion
technique as it can be inaccurate for a certain source release scenario. Hence, when using a
simple analytic forward model such as the GPM for inversion, the question of number of
retrievable model parameters should be addressed a priori. Therefore, in this work, five
model parameters are retrieved (Equation (2.11)). The stochastic search stage is imple-
mented with broad bounds on the model parameter values and unconstrained gradient
optimization is performed with the initial iterate provided by the stochastic search stage.

3. The Copenhagen tracer experiments

In this work, data from the Copenhagen field experiments [15] is used to explain and
validate the proposed solution procedure. The dataset used from the Copenhagen
experiments is briefly described in this section.

As part of the Copenhagen experiment, the tracer sulphurhexafluoride (SF6) was
released without buoyancy from a tower of height 115m. It was collected 2–3m above the
ground-level by sensors placed in three crosswind arcs positioned 2–6 km from the point of
release. The first (Arc 1), second (Arc 2) and third (Arc 3) arcs were at radial distances of 2,
4 and 6 km from the source. The receptor locations and the source release location are
shown in Figure 1. A total of 40 tracer-samplers were used with 15 sensors placed in Arc 1,
12 in Arc 2 and 13 in Arc 3. Three consecutive 20-min averaged tracer concentrations were
measured, allowing for a total sampling time of 1 h. The site was mainly residential having
a roughness length (z0) of 0.6m. The experiments were conducted on different days under
neutral and unstable meteorological stability conditions. For this work, the experiment
conducted on 19 October 1978/1979 is considered. The experiment was conducted mid-
day, thereby resulting in unstable meteorological conditions (Monin–Obukhov length
L��108m, friction velocity u*� 0.39m s�1, inversion height� 1120m, standard devia-
tion of the lateral and vertical velocities at the release point �v� 0.85m s�1 and
�w� 0.68m s�1, stability class¼Pasquill C-type) The emission rate was 3.2 g s�1 and the
limit of estimation (LOE) of the sensors was 9 ngm�3. In the Copenhagen dataset [15], the
mean value of the three consecutive 20-min averaged concentration datasets for the
experiment conducted on 19 October is provided. In this work, this dataset is used as the
observed data for inversion. The minimum positive concentration in the observed data
vector from TCTE is 6 ngm�3. Therefore for inversion, the value of LOE is set to 6 ngm�3

instead of 9 ngm�3. The average temperature (tS), wind speed (uS) and direction (�S) at the
release height during the course of the experiment were tS� 283.72K, uS� 4.92m s�1 and
�S� 308.6�. For the validation of the proposed inversion technique, the height of the
sensors is considered to be 2.5m.

It is worth noting that for the 19 October experiment, 34 out of the 40 sensors recorded
positive concentrations (received a hit). These have been denoted by the ‘squares’ (h)
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in Figure 1. As stated in Section 1, the total error that needs to be accounted for during the

estimation stage is the sum of the following individual error components:

Estimation error ð�EÞ ¼ forward modelling error ð�FMÞ

þmeasurement error ð�MÞ: ð3:1Þ

Since the authors of the report [15] make no mention of the uncertainties in the

measurements, �M is assumed to be zero (i.e. �E¼ �FM). The rationale behind setting �M¼ 0

lies in the definition of the LOE in atmospheric source-inversion problems. For instance,

assuming 5% noise in the observed data can result in certain non-zero measurements going

below the LOE, thereby becoming zero. Since the locations of zero and non-zero

measurements are of paramount importance for source characterization, the measure-

ments were not tampered with by assuming noise levels. In order to get a feel for �FM when

using the GPM, the forward problem was solved with the known source parameters, with

�1 � 0:12 and �2 � 0:1 (from the work of [9]). The results obtained are shown in Figure 1.

From the figure it is evident that despite using the modified �y and �z values, the plume

spread predicted by the GPM does not match the experimental measurements.
The difference in the plume spread predicted by the GPM can be attributed to the

complexities associated with real-world flows that are incorporated into the present version

of the GPM. Since �E¼ �FM, and �FM is due to the inadequacies of the forward model and

cannot be quantified, the inversion procedure developed (and described in subsequent

sections) is designed to drive the forward model to match the zero and non-zero

measurements recorded by the sensors. That is, the inversion procedure developed

ensures that at the end of inversion, the plume spread predicted by the GPM is as close

as possible to that observed in the experiments, not in terms of magnitudes of

Figure 1. Schematic depicting the sensor positioning and the number of non-zero (h) and zero (�)
measurements recorded for TCTE on 19 October. Also shown is the plume spread predicted by the
GPM for true source parameters (mt). ‘St’ is the true source location.
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concentration measurements, but in terms of the zero and non-zero measurements
recorded by the respective sensors.

Definition 1 Whenever the predicted model parameters generate non-zero (�LOE)
predicted data at a receptor that recorded a non-zero concentration (�LOE), or zero
(5LOE) predicted data at a receptor that recorded a zero concentration value (5LOE), it
will from hereon be said that the predicted model parameters ‘satisfy’ the concentration
measurement at the receptor location.

The true model parameters (mt) for TCTE are shown in Equation (3.2). The bounds of
the model parameter space considered during inversion are shown in Equation (3.3).

mt ¼ xSðmÞ ySðmÞ zSðmÞ QS=uSð g=mÞ �Sð
�
Þ

� �T
5�1

¼ 0 0 115 0:65 308:6
� �T

5�1
, ð3:2Þ

xS 2 ½�2000, 8000�, yS 2 ½�5000, 5000�, zS 2 ½0, 200�, QS=uS 2 ½0, 1�, �S 2 ½0, 360�:

ð3:3Þ

4. Solution procedure

4.1. The Tikhonov parametric functional

In this work, the atmospheric inverse-source problem is solved using a combination of
stochastic search and regularized gradient optimization methods. Regularization provides
a mechanism by which any prior information can be included in the inversion procedure.
Including prior information can help improve the stability of inversion. The regularized
solution of an inverse problem can be obtained by minimizing the unconstrained
parametric functional shown in Equation (4.1).

Pðm, d,�Þ ¼ 	DðAðmÞ, d Þ þ �sðmÞ, ð4:1Þ

arg min
m

P m, d,�ð Þ


 �
: ð4:2Þ

In Equation (4.1), 	DðAðmÞ, d Þ is the misfit functional (over the data space (D)), sðmÞ is
the stabilizing functional and P m, d,�ð Þ is the parametric functional. The parametric
functional is a linear combination of the misfit and the stabilizing functionals, and the
parameter � is called the regularization parameter.

The role of the misfit functional is to check if, on every step of inversion, the
discrepancy between the observed and the predicted data is increasing or decreasing. Since
most real-life inverse problems are ill-posed, casting the inverse problem as the
minimization of the misfit functional can result in unstable solutions. This is because
the operator A�1 may not be continuous (may not exist) over the entire model space (M).
The inherent ill-posedness of inverse problems can be overcome by considering a family of
well-posed problems ðd ¼ A�ðmÞÞ that approximate the original ill-posed problem
ðd ¼ AðmÞÞ. The scalar parameter �4 0 in the above expression is called the regularization
parameter and regularization is imposed under the constraint m�! mT; as �! 0
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(where mT is the true solution). That is, regularization approximates the non-continuous

operator A�1 by the family of continuous operators A�1� ðd Þ for different values of �. The
family of continuous A�1� ðd Þ operators that approximate the original non-continuous

operator A�1 are called the regularization operators R�ðRðd,�Þ ¼ A�1� ðd ÞÞ. Regularization

operators can be constructed by adding a stabilizing functional to the misfit functional.

The task of the stabilizing functional is to help identify from the set of all possible models

that fit the data, a solution that belongs to the correctness-set MCðMC 	MÞ, such that the

operator A�1 is continuous over MC. Formulating an inverse problem in this manner

converts an ill-posed problem into a ‘conditionally well-posed problem’, expressed by the

parametric functional in Equation (4.1)
In this article, Equation (4.1) is minimized using Newton’s method. Gradient methods

require the misfit functional to be convex, continuous and differentiable (C-C-D) to

converge to the global minimum. Examining the GPM, one can recognize that the misfit

functional generated by the GPM (using Equation (4.4)) has multiple critical points

(maxima, minima and saddle points). In fact, when using the GPM, the number of maxima

in the misfit functional space is a function of the domain size, the wind direction at the

source (�S) and the number of sensors (N) in the domain. This can be shown by

considering the GPM in Equation (2.1). For instance, if in Equations (2.1)–(2.4), xS ¼ xi,

yS ¼ yi, and zS ¼ zi, then, in (2.1),Ciðxi, yi, ziÞ ¼ NaNð¼ 0=0Þ. If xi, yi and zi, approach xS,

yS and zS at the same rate, for some fixed �S, the predicted concentration in (2.1)

approaches infinity.
Thus, it is seen that when using the GPM, whenever the predicted source location is

close to any of the receptor locations, there is an increase in the misfit functional value.

The presence of the various maxima in addition to the various error components (�E and

�A) results in the formation of several critical points interspersed around the global

minimum. Therefore, to employ gradient schemes to solve such problems, a good starting

solution is pivotal. The starting solution needs to be in the C-C-D region surrounding the

global minimum in the misfit functional space. For this reason, the approach proposed in

this article is comprised of stochastic search to provide a good initial iterate to the gradient

descent scheme (that may be in the C-C-D region).
In order to illustrate that the proposed approach works for inverse-source problems

with the GPM as the forward operator, the domain of TCTE (Figure 1) was discretized

and the misfit functional at every grid node was computed using Equation (4.4). This was

done in two-dimensions (2D) by considering the x and y coordinates of the source (xS and

yS) to be the unknown model parameters (m). The results obtained are shown in

Figure 2(a) and (b). From the figures it can be seen that as xS ! xi and yS ! yi,�� dobsð Þi� dpr
 �

i

�� " ðincreasesÞ. This behaviour is in agreement with the previously stated

assertion that as xS! xi and yS ! yi,Ciðxi, yi, ziÞ ¼ dpr
 �

i
!1. From the figures it can

also be deduced that there exists a region in the misfit functional space in which the misfit

functional appears to be convex and continuous, and houses the global minimum.

The plots also shed light on the distortion of the misfit functional by the forward

modelling error �FM (assuming �M¼ 0). The distortion manifests itself in terms of the

discrepancy observed in the predicted Sp (square – #) and the true source locations

St (hexagon –]) as shown in Figure 2(b). However, not too many conclusions should be

drawn from these plots as they are in 2D. In 5D, the hyper-volume that spans the C-C-D

region might be of different size and corrugated, due to the effects of nonlinear error

propagation.
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4.2. The misfit functional

The definition of themisfit functional is one of themost important components of an inverse

problem. When properly formulated, it guides the inversion algorithm to the global

minimum. Misfit functional formulation, just like the choice of an inversion algorithm, is

highly problem dependent. Some of the popular formulations of misfit functionals are based

on the L1- and L2-norms of the misfit (Equations (4.3) and (4.4)), the L1- and L2-norms of

the relative misfit, the Kullback–Leibler information divergence functional (Equation (4.5))

and the negative Poisson log-likelihood functional (Equation (4.6)) [27,28].

	L1
A mpr

 �
, dobs

 �
¼ A mpr

 �
� dobs

		 		
1
, ð4:3Þ

	L2
A mpr

 �
, dobs

 �
¼ A mpr

 �
� dobs

		 		
2
, ð4:4Þ

	KL A mpr

 �
, dobs

 �
¼ A mpr

 �
, log A mpr

 �
=dobs

 �� �
, ð4:5Þ

	LHD A mpr

 �
, dobs

 �
¼ A mpr

 �
, 1

� �
� dobs, log A mpr

 � �� �
: ð4:6Þ

Computing the L2-norm or the L1-norm of the misfit to determine the class of models

(mpr) that fit the observed data (dobs) can lead to erroneous results for the atmospheric

source-inversion problem. This is primarily because atmospheric inverse-source problems

suffer from sparse number of measurements (N) in general, and very few non-zero

measurements (NNZ) in particular. Therefore, computation of the L1-or L2-norms

(Equations (4.3) and (4.4)) does not take into account the zero-measurements recorded

by the sensors, as the magnitude of these norms are driven only by the non-zero

measurements. Also, since the observed and predicted data vectors in atmospheric inverse-

source problems consist of concentration values of varying orders of magnitudes, the

larger components of the observed and predicted data vectors suppress the effect of the

smaller components in the computed value of the norm of the residuals.

Figure 2. (a) Surface of the misfit functional for TCTE, (b) 2D contour of the misfit functional for
TCTE data with the true (St) and predicted (Sp) source locations.
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To mitigate the above-mentioned problems, one can use an appropriate data-
weighting matrix such that the significance of the individual components of the
predicted and observed data vectors is preserved during inversion. In this article, an
even simpler approach (misfit functional) is proposed and is described in the following
paragraphs.

Our new misfit functional takes into account zero and non-zero measurements in the
observed and predicted data vectors and treats both of them equally. The new functional
uses the base 10 logarithm of the ratio of the observed (dobs) and predicted data (dpr), and
is shown in Equation (4.7). In Equation (4.7), If g is the indicator function, and is defined
in Equation (4.8). The positive constant " ("
 LOE) accounts for the zero measurements
and becomes insignificant for non-zero measurements. For the present work, " value was
set to 10�16.

	D dobs, dpr
 �

¼
XN
i¼1

I log10
dobsð Þi þ "

dpr
 �

i
þ"

" # !
2 �

( ) !�1
, ð4:7Þ

� ¼ �LB�STOCH,�UB�STOCH½ �

I� xð Þ ¼
1, if x 2 �,

0, if x =2 �:

�
ð4:8Þ

The applicability of the proposed misfit functional is based on the fact that for
inversion without noise, the end result of inversion should give predicted model
parameters (mpr), such that for mpr�mt, ð dobsð Þiþ "Þ=ððdprÞi þ 1Þ � 1, 8i. The bounds
�LB�STOCH and �UB�STOCH are the lower and upper bounds (data-fit criteria) of the
stochastic search stage and depend upon the noise level (�M) in the observed data (dobs),
the forward modelling error (�FM) and the accuracy to which one wants to implement the
search stage. Depending on the values of �LB�STOCH and �UB�STOCH, the search stage can
either be computationally exorbitant or inexpensive. Strategies to solve the inverse-source
problem in general, and to compute the bounds �LB�STOCH and �UB�STOCH in particular
are described in the subsequent sections.

The new misfit functional is used in the stochastic search stage to identify a good
starting solution for the gradient descent scheme. It should be noted that the starting
solution (mSTOCH) is a function of the values of �LB�STOCH and �UB�STOCH, and the values
of �LB�STOCH and �UB�STOCH characterize the size of the hyper-volume constituting the
C-C-D region (based on L2-norm) around the global minimum in the misfit functional
space. Due to this, care should be taken in the selection of �LB�STOCH and �UB�STOCH

values, since large values of these parameters may no longer provide an initial iterate
(mSTOCH) in the C-C-D region surrounding the global minimum for problems with misfit
functional spaces comprising several critical points. Since gradient methods only work
with continuous and differentiable misfit functionals, the conventional misfit functional
based on L2-norm (Equation (4.4)) is used for computing the new iterates for the gradient
scheme.

4.3. Strategies for solving the atmospheric source-inversion problem

In this section, strategies for solving the atmospheric source characterization problem in
general and computing the bounds �LB�STOCH and �UB�STOCH in particular are discussed.
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Three strategies are proposed to solve the inverse-source problem. They are described in
the following sections:

4.3.1. Rigorous strategy

The objective of this strategy is to ‘satisfy’ (Definition 1) all the sensor measurements (N).
This is the preferred strategy for evaluating atmospheric dispersion models (forward
models) using field experiment data. The same approach can be adopted to solve inverse-
source problems using the forward model (dispersion model). In spite of being the most
rigorous method to solve such problems, this approach cannot be implemented for all real-
life atmospheric dispersion situations and for increasing number of sensor measurements
(N). This is because, the effects of myriads of real-world processes are not captured in
totality by the existing forward dispersion models (A) in general, and the GPM in
particular. Since in this article, field experiment data (TCTE) are used to retrieve the model
parameters (mSTOCHþGD), the rigorous strategy is not adopted. However, 108 MC
simulations (points) with the semi-rigorous strategy described in Section 4.3.2.1 and with
�LB�STOCH and �UB�STOCH values prescribed in Section 4.4 were run to illustrate that in
spite of running an astronomical number of MC simulations, all the sensor measurements
for TCTE cannot be satisfied. For the final model parameters obtained (mSTOCH), the
maximum number of sensor measurements (Nmax�S) satisfied were 39 out of the available
40 measurements, and out of the 108 random samples (model parameter vectors) only four
model parameters satisfied 39 measurements.

4.3.2. Semi-rigorous strategy

The objective of this strategy is to satisfy most, but not all the sensor measurements (N).
The number of sensor measurements that should be satisfied (NS), or the percentage of the
total number of measurements (N) that should be satisfied (
N¼ 100�NS/N) for the
predicted solution to be in the vicinity of the true solution is problem-specific, and depends
upon the number of available sensor measurements (N), the number of model parameters
to be retrieved (Nm), and the quality of the forward model (A). While 
N values close to
100% make the stochastic search stage computationally intensive, relaxed values of 
N
might produce initial iterates that do not belong to the C-C-D region surrounding the
global minimum.

It should be noted that while solving inverse-source problems, fixing values of NS

might result in erroneous source locations. This is because the inversion algorithm might
end up not accounting for either only the zero or non-zero measurements to satisfy the 
N
value assigned. To avoid such pitfalls, if NNZ and NZ represent the number of zero and
non-zero measurements recorded (NNZþNZ¼N), it is suggested that NS should be
divided into its individual components based on the number of zero (NS�Z) and non-zero
(NS�NZ) measurements (NS¼NS�ZþNS�NZ) that should be satisfied. Assigning 
N values
based on the percentage of zero (
Z¼ 100�NS�Z/NZ) and non-zero (
NZ¼ 100�NS�NZ/
NNZ) measurements should (will) improve the accuracy of the inverse problem solution.
Based on how the 
N values are determined, the semi-rigorous strategy can be
implemented in three ways, which are as given in the following sections.

4.3.2.1 Semi-rigorous strategy 1 (SR1). SR1 comprises satisfying 
N measurements
without assigning individual values for 
NZ and 
Z. It is the least robust of all the
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semi-rigorous strategies and produces initial iterates in the C-C-D region only for large
values of 
N. To get an idea about the minimum 
N value for the TCTE that makes the
solution procedure fail-safe, the MC simulations used to compute Nmax�S were utilized.
From the simulations it was deduced that for making the stochastic search stage fail-safe
(i.e. generate initial iterates in the C-C-D region), at least 37 sensors (92.5% of the
observed data) had to be satisfied. To evaluate the performance of the various QMC
point-sets, the number of MC and QMC points required for satisfying NS¼ 37, 38 and, 39
sensors are compared in this article (discussed in section 5.2).

4.3.2.2 Semi-rigorous strategy 2 (SR2). SR2 comprises assigning individual values for

NZ and 
Z. For the TCTE, based on the 108 MC simulations, the following details were
observed: (1) if all the zero measurements are satisfied (NS�Z¼ 6), the minimum number of
non-zero measurements that need to be satisfied to make the solution procedure fail-safe is
NS�NZ� 27, (2) if NS�Z¼ 5, then NS�NZ� 31 and (3) for 1�NS�Z� 4, NS�NZ� 33. These
details are illustrated in Figure 3. The benefit of assigning individual values for 
NZ and 
Z
is that the value of NS required for identification of an initial iterate can be brought down.
That is, if all six zero measurements are satisfied, then the minimum number of non-zero
measurements that need to be satisfied is 27, which makes NS� 33 (NS� 37 for SR1 for the
solution procedure to be fail-safe). In this article, for conciseness, the results for SR2 are
not presented.

4.3.2.3 Semi-rigorous strategy 3 (SR3). In SR3, all non-zero measurements must be
satisfied. The number of zero measurements that should be satisfied is problem dependent.
The rationale behind setting 
NZ¼ 100% is based on the idea that over-prediction
is always better than under-prediction. Setting 
NZ¼ 100% and 
Z� 100% implies
over-predicting the extent of the plume spread, which implies over-predicting the

Figure 3. The number of zero (NS�Z) and non-zero (NS�NZ) measurements that should be satisfied
to obtain initial iterates in the C-C-D region for TCTE. The details of this figure are highly problem-
dependent. They also depend on the plume spread parameters chosen.
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source strength. This is the preferred approach in atmospheric dispersion problems as
over-prediction implies a higher factor of safety. For evaluating the performance of the
various QMC point-sets, results for the cases when NS�Z� 1, 2, 3, 4 and 5 are reported
(in Section 5.2).

4.4. Computing the bounds bLB�STOCH and bUB�STOCH

The two scenarios that should be avoided when solving the inverse-source problem are:

(1) predicting non-zero concentrations at sensors that recorded zero measurements,
and

(2) predicting zero concentrations at non-zero sensor locations. Whenever these
scenarios occur, the stochastic search algorithm must be able to identify them and
reject the generated (predicted) model parameters (mpr). The two scenarios
mentioned help compute the bounds for the stochastic search stage. The method
for computing the bounds is described below.

Case 1

dobsð Þi¼ 0, A mpr

 � �
i
6¼ 0

At a sensor location where the observed data is zero (56 ng), the predicted data can
take either a zero (56 ng) or a non-zero value (�6 ng). The smallest non-zero value that
dpr
 �

i
can take so that the definition of LOE is preserved is 6� 10�9g (¼LOE (¼6 ng)).

From this, �LB�STOCH can be estimated as

�LB�STOCH � log10 "=LOE½ � � log10 10�16=6� 10�9
� �

� �7:78: ð4:9Þ

Case 2

dobsð Þi 6¼ 0, A mpr

 � �
i
¼ 0

Predicted data values of zero can occur at receptor locations with non-zero measured
values. If zero concentration is predicted at the receptor that recorded the maximum
concentration, it is more likely that the predicted model parameters (mpr) that generated
the predicted data (dpr) are incorrect. The likelihood of the predicted model parameters
being close to the true model parameter is higher if dpr

 �
i
¼ 0 occurs at the receptor that

recorded the minimum concentration value. Since the noise level in the data in unknown,
the smallest non-zero value that the observed data vector (dobs) can take is 6 ng. Hence,
�UB�STOCH can be estimated as

�UB�STOCH � log10 LOE="½ � � log10 6� 10�9=10�16
� �

� 7:78: ð4:10Þ

Based on the values of �LB�STOCH and �UB�STOCH derived, it can be seen that the semi-
rigorous strategy allows for considerable over- and under-prediction of the concentrations
at the receptors.

4.5. MC and QMC sampling

QMC point-sets and MC sampling are considered in the stochastic search stage. QMC
sampling is recommended over the conventional MC sampling as quasi-random numbers
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were developed to fill an s-dimensional hyper-cube on ½0, 1Þs more uniformly than

pseudorandom numbers [29]. Additionally, QMC point-sets provide the extra advantage

of being completely deterministic. This property of QMC point-sets is highly desirable for

atmospheric event reconstruction problems. This is because, for known receptor locations,

stochastic algorithms developed to solve the inverse-source problem for a real city can be

tested for a large set of possible model parameter values, and the performance of the

algorithm in terms of total execution time (which is equivalent to the number of forward

model evaluations) can be determined a priori.
QMC sampling is performed using the Halton, Hammersley, Sobol,

SpecialNeiderreiter and NeiderreiterXing point-sets [29,30], in their original and scram-

bled forms. The scrambled versions of the Halton, Hammersley, SpecialNeiderreiter, and

NeiderreiterXing point-sets were obtained by applying Faure permutations over the

original set [29]. The scrambled version of the Sobol point-set was obtained by applying

the scrambling procedure described in [31], a random linear scramble combined with a

random digital shift.
For comparing the performance of the various QMC point-sets with the Mersenne–

Twister pseudorandom generator, the expected number of MC points E(MC) required for

satisfying a given set of sensor measurements were used. The quantity E(MC) was

computed from the 108 MC simulations run to compute Nmax�S. Leaving the Hammersley

point-set, the ith components of all other QMC point-sets considered are independent of

the number of points generated (n: n� i). This is because, only in the Hammersley point-

set, the first dimension is a regular one-dimensional (1D) lattice evenly distributed on the

interval ½0, 1Þ. Therefore for accurate comparison of the performance of the Hammersley

point-set with the pseudorandom generator, E(MC) number of Hammersley points were

generated to satisfy NS¼ k measurements.

4.6. The stabilizing functional, regularization parameter and gradient methods

The stabilizing functional s(m) in conjunction with the regularization parameter � is used

to construct the regularization operator R� that converts an ill-posed problem into a

‘conditionally-well-posed’ problem (Equation (4.1)). For the inverse-source problem, the

standard Tikhonov stabilizing functional was chosen as the stabilizing functional. The

Tikhonov stabilizer is shown in Equation (4.11). The vector mapr represents some prior

information that we might have about the model parameters (m). No prior information

was assumed in the solution procedure for the atmospheric event reconstruction problem.

However, a modified version of the stabilizer shown in Equation (4.11) was used in the

descent algorithm and is shown in Equation (4.12). The rationale behind using this

stabilizer is based on the initial iterate provided by the stochastic search stage. The

stochastic search stage was designed to provide a starting solution that belongs to the C-C-

D hyper-volume around the global minimum. Therefore, to ensure that the gradient

scheme does not bounce out of the C-C-D region, the model parameters on the current ( j)

and previous iterations ( j� 1) were used to stabilize the gradient scheme.

sðmÞ ¼ m�mapr

		 		2
2
, ð4:11Þ

sðmÞ ¼ mj �mj�1
		 		2

2
, j ¼ 2, 3, . . . : ð4:12Þ

18 B. Addepalli et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
U

ta
h]

, [
M

ic
ha

el
 Z

hd
an

ov
] 

at
 1

3:
16

 0
7 

O
ct

ob
er

 2
01

1 



The regularization parameter � determines the relative significance of the misfit and the
stabilizing functionals. Choosing extremely small values of � leads to the situation where
the inverse problem reduces to the minimization of the misfit functional, which can result
in unstable solutions. Large values of � correspond to the situation where the inverse
problem is driven in the direction of the stabilizer. Hence, accurate reconstruction requires
optimal regularization parameter selection. Several methods have been proposed for
optimal regularization parameter selection. Prominent among these are the Morozov
condition [28] and the L-curve criterion [1,27,28,32]. In this article, a more heuristic
approach as suggested in [1] was adopted. The regularization parameter was estimated
following Equations (4.13) and (4.14). The first iteration of the gradient scheme is run
without regularization and �1 is calculated at the end of the iteration following Equation
(4.13). Values of � on the subsequent iterations are computed using (4.13). In Equation
(4.14), the scalar q helps control the extent of regularization. Lower values of q favour
faster convergence, but can lead to instabilities in the inversion procedure. Higher values
of q promote better stability, but result in more iterations for convergence. In this work,
the initial value of q was set to 0.7 and was decreased by raising it to the power of the
previous iteration number ( j� 1) as shown in Equation (4.14).

�1 ¼ Aðm1Þ � dobs
		 		2

2
= m1 �m0
		 		2

2
, ð4:13Þ

� j ¼ �1q j�1, ð05 q5 1Þ, j ¼ 2, 3, . . . : ð4:14Þ

Following Equations (4.4) and (4.12)–(4.14), the unconstrained parametric functional
described in Equation (4.1) can be written as

Pj mj, dobs,�
j

 �
¼ A mj

 �
� dobs

		 		2
2
þ � j m j �mj�1

		 		2
2
: ð4:15Þ

The parametric functional shown in Equation (4.15) is minimized using Newton’s
method. To ensure convergence and to prevent overshooting of the Newton jump,
quadratic line-search was implemented. For computational efficiency, the Hessian is
approximated by calculating the residual assuming unit-step with linear line-search.
Additional details of the algorithm implemented can be found in [1].

4.7. The hybrid algorithm conundrum

Hybrid algorithms are an attractive choice for solving optimization problems as they can
help increase the speed of convergence of the algorithm. It is for this reason that they have
been used extensively in several problems from diverse fields and also in problems
involving atmospheric source characterization [18,20,33]. The solution procedure
described in this article is also a hybrid approach comprising stochastic search and
gradient optimization, with different misfit functionals implemented in each stage. The
stochastic search stage can be regarded as a crude maximization stage (because the
likelihood of the initial iterate being close to the true source parameters increases with
increasing NS values), and the gradient descent stage can be regarded as the minimization
stage (the residual of the observed and predicted data is minimized). The predicament
arises when model parameters that maximize the number of sensors satisfied are different
from model parameters that minimize the residual. This situation arises in real-life
problems as the estimation error (Equation (3.1)) that needs to be accounted for is
unknown. If the stochastic search stage is implemented with tight error bounds
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(for safety), and if the model parameters obtained from this stage (mSTOCH) satisfy
NSTOCH�N sensors, and if the model parameters computed by the gradient scheme

(mSTOCHþGD) (using mSTOCH) are closer to the true model parameters (mt), but satisfy

lesser number of sensor measurements (NSTOCHþGD) than NSTOCH, then the question of

which model parameters to believe more emerges. That is, if NSTOCHþGD5NSTOCH, but

kmSTOCHþGD�mtk5 kmSTOCH�mtk, in a real-time situation, should one go with

mSTOCH or mSTOCHþGD? When using field experiment data to evaluate hybrid algorithms,

since mt is known a priori, the decision is relatively easy to make. However, in real-time,

where mt is unknown, then the question becomes: should one choose the model parameters
that give the best ‘data-fit’ or ‘model-fit’? Therefore, in this article, when the Mersenne–

Twister generator is used, model parameters that produce the maximum NS value, as well

as the minimum residual, are presented (Section 5.1, Table 2).

4.8. Implementing the proposed approach

Almost all algorithms developed to solve inverse problems either have tuning parameters

or parameters that require a good initial value or distribution. The approach proposed in
this article is no different in that it also requires the specification of the parameter (
) for
its successful implementation. It should be realized that one might get away by considering

the misfit functional based on the L2-norm in the stochastic stage for some source-receptor

configurations, and hence circumvent the need for the specification of a 
 value, making

the solution procedure free of tuning parameters (the convergence criterion for the

L2-norm can be deduced from the available data). However, a new misfit functional, and

thereby the 
 value were introduced only to make the solution procedure fail-safe. Since

the optimum 
 value is never available in real-life situations, it is recommended that the
proposed approach be implemented with large 
 values (using SR1, SR2 or SR3), or,

implemented multiple times starting with 
 values of 90% (for SR1: 
N¼ 90%, for SR2:


NZ¼ 
Z¼ 90%, for SR3: 
NZ¼ 100% and 
Z¼ 90%) and with increments that result in

integer values of NS�NZ and NS�Z. When choosing the initial 
 value of 90% option, it is

advantageous to note that since QMC point-sets are deterministic, the entire simulation

need not be re-run in case 
 values need to be incremented. Instead, only the QMC points

that succeed the points required for satisfying the previously rejected 
 value can be used

for satisfying the current 
 value. Also, since atmospheric inverse-source problems always
comprise sparse number of sensor measurements (N), the maximum number of times that

the proposed approach needs to be run is theoretically N. To provide the reader an

estimate for the values of N, currently, approximately 500 sensors have been placed in

Table 2. Computed inversion model parameters for TCTE.

Model parameters xS (m) yS (m) zS (m) QS/uS (gm�1) �S (degrees) NS

mt 0 0 115 0.64 308.57 –
mSTOCH �650.81 736.72 3.08 0.73 297.22 37
mSTOCH*max(Ns) 91.05 �21.44 85.97 0.86 294.63 39
mSTOCHþGD �339.78 73.6 193.42 1.06 291.73 34
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31 US cities according to the Bio-Watch program, which on an average reduces to 16

sensors per city (N¼ 16) [34].

5. Results and discussion

5.1. Final model parameters and comparison with results from the literature

The final model parameters obtained using Newton’s method are shown in Table 2. For

these simulations, the Mersenne–Twister generator was used in the stochastic search stage
(the random number seed was set equal to zero). In Table 2, mt represents the true model

parameters from TCTE. The parameters mSTOCH are the initial iterates obtained from the

stochastic stage when SR1 was used with NS� 37. The parameters mSTOCH*max(Ns)

represent the model parameters that satisfy the maximum number of sensor measurements
(NS¼ 39). The final solution from Newton’s method is denoted as mSTOCHþGD. The

convergence of Newton’s method is illustrated in Figure 4. Based on the value of the norm

of the residuals in the iteration space, as well several runs (using the Mersenne–Twister

generator), it was found that when Newton’s method converged, it converged at NS¼ 34,
after about 100 iterations (Figure 4). Irrespective of the strategy (SR1, SR2 or SR3) chosen

to identify an initial iterate, Newton’s method always converged to the final model

parameters given by mSTOCHþGD. This brings us to the question raised in Section 4.7

concerning ‘model-fit’ and ‘data-fit’. From the results in Table 2 it can be clearly seen that
the solution provided by Newton’s method results in the minimum value of the norm of

the residuals, while that provided by the stochastic search results in better ‘data-fit’. The

performance of the various QMC point-sets in terms of number of points required for

identifying an initial iterate are discussed in the subsequent sections (Section 5.2). The
performance of Newton’s method in terms of number of iterations required to converge to

the final solution depending on the strategy chosen is discussed in Section 5.3.

Figure 4. Convergence of Newton’s method for TCTE.
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The work of [9] used data from TCTE to demonstrate the Bayesian approach to solve
the atmospheric inverse-source problem. The model parameters obtained from Newton’s
method cannot be directly compared to those obtained by [9] as [9] did not provide the
expected values for the final model parameters. However, Figure 6 in their work shows the
probabilistic plume spread for 95% confidence level. In Figure 5, the plume spread
predicted by the parameters from Newton’s method is shown. Comparing the figures it can
be seen that the plume spread predicted by both the approaches has the same underlying
characteristics in terms of the zero and non-zero measurements satisfied. Comparing
Figure 5 with Figure 1 from this work, it can be seen that the plume spread predicted by
parameters obtained from inversion matches the plume spread observed in TCTE better
than the plume spread predicted by the true parameters.

The work of [20] also used the Copenhagen data for inversion. They employed a
Langevin equation-based forward model and used the dataset recorded between 12 : 13 h
and 12 : 33 h on 19 October 1978 (instead of the mean dataset, which is used in this work).
To compare with the results of [20], the present approach is implemented with the dataset
adopted by [20].

From Table 3 it can be seen that the predicted data from Newton’s method matches 26
out of the 27 non-zero measurements, and 6 out of the 12 zero measurements, resulting in
total number of matched measurements of 32 out of 39. In comparison, the predictions
from [20] match all the non-zero measurements, but do not match any of the zero
measurements, resulting in total matched measurements of 27 out of 39. Also, the values
predicted by the present approach are closer to the observed data, than those predicted by
[20]. The final model parameters predicted by Newton’s method for the dataset between
12 : 13 h and 12 : 33 h are shown in Table 4. From Table 4 it is seen that using this dataset
leads to improvement in inversion accuracy.

Figure 5. Plume spread predicted by model parameters from inversion. The squares (h) and the
circles (*) represent sensors that recorded non-zero and zero measurements. ‘St’ (hexagon – ]) is
the true source location in, and ‘Sp’ (cross – �) the location predicted by Newton’s method.
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5.2. Performance of the various QMC point-sets in the stochastic search stage

The performance of the various QMC point-sets for SR1 and SR3 for the different NS

values described in Sections 4.3.2.1 (SR1) and 4.3.2.3 (SR3) is compared against the

Mersenne–Twister pseudorandom generator. In the stochastic search stage, the number of

Table 3. Comparison of the predicted concentrations from Newton’s method with Copenhagen
data (12 : 13 h–12 : 33 h on 19 October 1978) and [16].

Position

Sensor
x-coordinate

(m)

Sensor
y-coordinate

(m)

Observed
concentration

(ngm�3)

Predicted
concentration [16]

(ngm�3)

Predicted
concentration
from this
work

(ngm�3)

9 1398 �1312 0 721 0
10 1404 �1214 0 135 28
11 1492 �1131 186 2271 259.4
12 1516 �1044 614 3266 896
13 1582 �964 1816 4478 2672
14 1592 �884 5455 5105 4642.9
15 1602 �798 7016 5727 6682.1
16 1703 �767 6770 5582 7161.6
17 1766 �681 5472 5077 5860.7
18 1800 �593 3806 4067 3523.4
19 1877 �485 1114 2842 1053.1
20 1921 �405 919 1969 320.4
21 2067 �371 77 1902 101.6
22 2061 �284 0 1001 22.5
23 2055 �180 0 463 0
11 2818 �2134 0 1400 53.3
12 2920 �1987 107 1579 295.3
13 3002 �1830 840 2635 1022.3
14 3075 �1704 1478 2691 2029.3
15 3204 �1629 3133 2580 2797.2
17 3380 �1367 2563 2249 2627.3
18 3448 �1231 2225 2033 1614.8
19 3518 �1093 538 1282 722.2
20 3558 �919 0 1050 194.8
21 3729 �787 0 361 33.4
22 3837 �550 0 121 0

9 4027 �3616 0 306 0
10 4283 �3447 18 788 0
11 4390 �3277 21 1087 12.4
12 4459 �3010 85 1117 97.6
13 4572 �2795 800 1552 396.8
14 4668 �2514 1502 1236 1180.5
15 4824 �2260 2035 1297 1762.0
16 5029 �2108 1112 1063 1476.7
17 5286 �1939 434 778 761.8
18 5378 �1570 53 124 129.9
19 5395 �1399 0 49 42.1
20 5375 �1139 0 109 0
21 5323 �913 0 47 0
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QMC points required to satisfy a given NS value (NS¼ k) was determined by the minimal
number of points that satisfy NS� k. The results obtained are shown in Tables 5–8.

In Tables 5–8, E(MC) stands for the expected number of random samples required
from the Mersenne–Twister generator to satisfy the given criteria. The letters O and S

Table 7. Performance of the various original QMC point-sets with SR3.

Point-sets (NS�NZ¼ 34) NS�Z� 5 NS�Z� 4 NS�Z� 3 NS�Z� 2 NS�Z� 1

E(MC) 25,000,000 114,943 32,342 12,533 9371
O-Halton 6666,989 50,081 50,081**** 50,081**** 50,081****
O-Hammersley 5258,175 – 4010 678 90
O-Sobol 437,165 18,761 1649 1649 1649
O-SplNie 1150,264 97,632 81,072**** 10,224 10,224****
O-NieXing – 171,000**** 22,536 2240 2240

Table 5. Performance of the various original QMC point-sets with SR1.

Point-sets NS� 37 NS� 38 NS� 39

E(MC) 12,633 82,102 25,000,000
O-Halton 6521 50,081 6666,989
O-Hammersley 678 17,730 4903,807
O-Sobol 1649 18,761 437,165
O-SplNie 24,377**** 97,632**** 1150,264
O-NieXing 10,040 159,266**** 4434,687

Table 6. Performance of the various scrambled QMC point-sets with SR1.

Point-sets NS� 37 NS� 38 NS� 39

E(MC) 12,633 82,102 25,000,000
S-Halton 797 43,565 1740,461
S-Hammersley 2047 9250 –
S-Sobol 1230 23,758 1213,246
S-SplNie 29,265**** 49,313 –
S-NieXing 6087 6087 2414,141

Table 4. Computed inversion model parameters for TCTE using the dataset between 12 : 13 h and
12 : 33 h.

Model parameters xS (m) yS (m) zS (m) qS/uS (gm�1) �S (degrees) NS

mt 0 0 115 0.64 308.57 –
mSTOCHþGD 64.001 2.58 181.49 1.11 295.11 32
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before the various QMC point-sets are indicative of their original or scrambled nature.
SplNie and NieXing are abbreviations for the SpecialNiederreiter and Niederreiter
point-sets.

Based on the results obtained for SR1 and SR3 from Tables 5–8, the following
conclusions can be made: (1) the QMC point-sets on average perform better then
Mersenne–Twister generator for most of the cases, and (2) of all the QMC point-sets, the
original Sobol sequence and the scrambled NiederreiterXing point-set perform better than
the others (and the Mersenne–Twister generator).

The arguments based on which the original Sobol sequence and the scrambled
NiederreiterXing point-set were determined to be the best of the point-sets considered are
as follows: (1) The Hammersley point-set is not recommended as its first dimension is the
regular 1D lattice evenly distributed on the interval [0, 1). Therefore, based on the number
of points generated, the Hammersley sequence changes in the first dimension. Since the
optimum number of points that should be generated for identifying the initial iterate with
the fewest possible points is not known a priori, the Hammersley point-set is not
recommended. Also, if the proposed approach is implemented with initial 
¼ 90% option,
and if the 
 value needs to be incremented subsequently, the entire simulation should be re-
run if the Hammersley sequence is used. (2) Apart from the original Sobol and the
scrambled NiederreiterXing point-sets, all other point-sets exceed the number of MC
points required in at least one of the reported results in Tables 5–8. Such results are
indicated either by the asterisk superscript (****), or have not been reported (indicated
by - - - -) (whenever the number of QMC points required is much larger than E(MC)).

5.3. Overall performance of the proposed approach

The overall computational cost and thereby the execution time of the proposed approach
can be divided between the stochastic and gradient stages. Depending on the strategy and
the QMC point-set chosen in the stochastic stage, the computational costs and the
execution times of the stochastic and the gradient stages vary. For TCTE, Newton’s
method always took less than 200 iterations irrespective of the strategy employed. The
choice of SR1, SR2 and SR3 depends on the complexity of the problem at hand and on
how much one is willing to expend on the stochastic search stage. To get an estimate for
the execution time of the present approach, stochastic search was performed with the
criteria, NS� 37. Stochastic search was performed with the Mersenne–Twister generator,
with the random number seed set to zero. With the initial iterate provided by the stochastic
stage, 200 Newton iterations were run. The algorithm was implemented in 32-bit Matlab

Table 8. Performance of the various scrambled QMC point-sets with SR3.

Point-sets (NS�NZ¼ 34) NS�Z� 5 NS�Z� 4 NS�Z� 3 NS�Z� 2 NS�Z� 1

E(MC) 25,000,000 114,943 32,342 12,533 9371
S-Halton 18,025,133 188,933**** 19,841 10,961 10,961
S-Hammersley – – – 262 262
S-Sobol – 23,758 1230 1230 1230
S-SplNie – 49,313 29,265 10,609 9473****
S-NieXing 2414,141 6087 6087 4651 4651
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7.8.0 (R2009a) and was executed on a 64-bit Dell desktop machine running Windows
Vista, with 8Gb RAM, and 3.0GHz QuadCore processor. The overall execution time was
�3 s, with the stochastic stage taking �2.3 s, and Newton’s method taking �0.7 s.

6. Conclusions

An inversion technique comprising stochastic search and regularized gradient optimization
to solve the atmospheric inverse-source problem is described in this article. The inverse
problem involves retrieving the spatial coordinates, source strength and the wind speed
and wind direction at the source, given certain receptor locations and concentration values
at these receptor locations. The GPM is adopted as the forward model and derivative-
based optimization is chosen to take advantage of its simple analytical nature. The
proposed approach is explained using the Copenhagen field experiment data. Stochastic
search is performed over the domain of the misfit functional to identify an initial iterate for
the gradient scheme. A new misfit functional is developed to take into account the zero
and non-zero measurements recorded by the receptors and is used in the stochastic stage.
It is based on the base 10 logarithm of the ratio of the observed and predicted data and it is
shown that the new misfit functional improves the inversion accuracy. Several QMC point-
sets in their original and scrambled forms are considered in the stochastic stage. Their
performance are evaluated against the Mersenne–Twister generator. QMC point-sets are
recommended for atmospheric inverse-source problems due to their deterministic and
superior space-filling nature. Three strategies to solve the inverse-source problem are
proposed and are implemented in the stochastic stage. The original Sobol and the
scrambled NiederreiterXing point-sets are found to produce the best results across all
the test cases considered. Newton’s method with the Tikhonov stabilizer and adaptive
regularization with quadratic line-search is implemented in the gradient stage. The final
solution obtained from Newton’s scheme is close to the true model parameters from the
Copenhagen data.
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