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Potential field migration for rapid imaging of gravity gradiometry data
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ABSTRACT
The geological interpretation of gravity gradiometry data is a very challenging prob-
lem. While maps of different gravity gradients may be correlated with geological
structures present, maps alone cannot quantify 3D density distributions related to ge-
ological structures. 3D inversion represents the only practical tool for the quantitative
interpretation of gravity gradiometry data. However, 3D inversion is a complicated
and time-consuming procedure that is very dependent on the a priori model and con-
straints used. To overcome these difficulties for the initial stages of an interpretation
workflow, we introduce the concept of potential field migration, and demonstrate
how it can be applied for rapid 3D imaging of entire gravity gradiometry surveys. This
method is based on a direct integral transformation of the observed gravity gradients
into a subsurface density distribution that can be used for interpretation or as an a pri-
ori model for subsequent 3D regularized inversion. For large-scale surveys, we show
how migration runs on the order of minutes compared to hours for 3D regularized
inversion. Moreover, the results obtained from potential field migration are compara-
ble to those obtained from regularized inversion with smooth stabilizers. We present
a case study for the 3D imaging of FALCON airborne gravity gradiometry data from
Broken Hill, Australia. We observe good agreement between results obtained from
potential field migration and those generated by 3D regularized inversion.
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INTRODUCTION

All targeting decisions pertaining to hydrocarbon exploration
are based on geological interpretations of depth-converted
seismic data. For salt and basalt plays, an accurate depth con-
version workflow needs to include both 3D velocity and den-
sity models. Given the non-uniqueness of recovering both the
velocity and density from acoustic impedance, independent
measures of the subsurface density are essential. As in mineral
exploration, targeting decisions are often based on structural
interpretations of regional gravity and magnetic data. Rela-

∗E-mail: mzhdanov@technoimaging.com.
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tionships between the density and susceptibility distributions
can potentially provide an indication of mineralization. The
advantage of gravity gradiometry over other gravity methods
is that the data are extremely sensitive to localized density
contrasts within regional geological settings. Moreover, high
quality data can be acquired over very large areas for relatively
low cost from either air- or ship-borne platforms.

As a potential field, gravity gradiometry data are very chal-
lenging to interpret. While maps of the different gravity gra-
dients or their invariants can be correlated with the existence
of geological structures, such maps cannot infer the 3D den-
sity distributions of the geological structures present. 2D or
3D inversion of gravity gradiometry data to 2D or 3D density
models is presented as the only practical tool for quantita-
tive interpretation. A number of publications have discussed
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3D inversion with smooth (e.g., Li 2001), and focusing (e.g.,
Zhdanov, Ellis and Mukherjee 2004) regularization. How-
ever, an interpretation workflow including 3D inversion can
be complicated and time consuming because it is dependent
on a priori models and other geological constraints.

To overcome these difficulties during the initial stages of an
interpretation, a number of fast semi-automated techniques
related to the Euler deconvolution methods have been devel-
oped. Fedi and Florio (2006) described five groups of meth-
ods for fast estimation of the structural index (SI) and depth
to the source for a potential field: 1) classical Euler decon-
volution (e.g., Thompson 1982; Stavrev 1997); 2) continu-
ous wavelet transform (CWT) (e.g., Hornby, Boschetti and
Horowitz 1999; Sailhac and Gibert 2003); 3) analytic sig-
nal (e.g., Salem and Ravat 2003; Smith and Salem 2005); 4)
magnitude magnetic anomaly interpretation (Stavrev 2006);
and 5) the depth-from-extreme points (DEXP) method (Fedi
2007). Most of these techniques are based on the analysis
of theoretical responses from specific sources of the potential
fields, such as poles, dipoles, lines of poles and lines of dipoles.
These techniques estimate the source position and some pa-
rameters of the source based on the attenuation characteristics
of the potential field. For example, the DEXP method (Fedi
2007) uses the extreme points of the scaled, upward-continued
potential field to determine the depth to the source and the
excess mass or dipole moment.

While the various Euler deconvolution methods may pro-
vide information about the sources, it is not immediately ob-
vious how this information can be prepared as a 3D density
model for improved velocity modelling or as an a priori model
for 3D regularized inversion. In this paper, we present an al-
ternative approach, one which is based on and extends the
idea of potential field migration as originally introduced by
Zhdanov (2002). We note that Zhdanov (2002) described the
migration of gravity fields to 2D density distributions and
the migration of the magnetic potential to 2D magnetization
distributions. For completeness, we expand upon the works
of Zhdanov (2002) and Zhdanov, Liu and Wilson (2010) to
describe, in detail, the theory for 2D then 3D potential field
migration for transformation of observed gravity gradiometry
data into a 3D density distribution. In a subsequent paper, we
will describe the extension of the migration to both 3D mag-
netic and magnetic gradient fields. We note that 3D potential
field migration does not require any a priori information about
the type of the sources, nor does it rely on regularization.

Mathematically, migration is described by an action of the
adjoint operator on the observed data. This concept has long
been developed for seismic wavefields (e.g., Schneider 1978;

Berkhout 1980; Claerbout 1985), and has also been developed
for electromagnetic fields (Zhdanov 1988, 2002, 2009a,b),
where the adjoint operators manifest themselves as the (back-
ward) propagation of seismic or electromagnetic fields in re-
verse time. When applied to potential fields, migration mani-
fests itself as a special form of downward continuation of the
potential field and/or its gradients. A downward continuation
is applied to the migration field, which is obtained by relocat-
ing the sources of the observed field into the upper half-space
as mirror images of the true sources. Contrary to conven-
tional downward continuation of the potential field, down-
ward continuation of the migration field is away from the
mirror images of the sources. Therefore, migration is a stable
transform, similar to upward continuation. At the same time,
the migration field does contain remnant information about
the original source distribution, which is why it can be used
for subsurface imaging. Analogous to iterative electromag-
netic migration (e.g., Zhdanov 2002, 2009a,b), the adjoint
operators may be applied iteratively in such a manner that
iterative potential field migration is equivalent to regularized
inversion.

We have previously presented 2D migration and 3D fo-
cusing inversion for marine full tensor gradiometry data ac-
quired for salt mapping in the Nordkapp Basin, located in
the Norwegian sector of the Barents Sea. We refer the readers
to our previous papers (Zhdanov et al. 2010) for a detailed
description of the marine full tensor gradiometry survey and
the results. In this paper, we present a case study for the 3D
migration of a 5600 line km FALCON airborne gravity gra-
diometry data from the historic Broken Hill mining district in
Australia. We compare our results to those obtained from 3D
regularized inversion, as well as to the 1:250 000 geological
sheets of the area.

2 D G R A V I T Y A N D G R A V I T Y G R A D I E N T
FIELDS A ND THEIR ADJOINT OPERATORS

For completeness, we begin our exposition with the case of
2D gravity fields (Zhdanov 2002) and 2D gravity gradient
fields. The gravity field g = (gx, gz) of a 2D distribution of
masses concentrated with a density ρ(x, z) can be described
by a complex intensity:

g(ζ ) = −gx(x, z) + igz(x, z), (1)

where ζ = x + iz is a complex coordinate of the point (x, z) in
the vertical plane XZ. The function g(ζ ) satisfies the following
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equation (Zhdanov 2002):

∂

∂ζ ∗ g(ζ ) = 2πγρ, (2)

where γ is the universal constant of gravitation.
The solution of equation (2) is governed by the following

expression:

g(ζ ′) = Ag (ρ) = −2γ

∫∫
�

1
ζ − ζ ′ ρ(ζ ) ds, (3)

where ρ(ζ ) = ρ(x, z) and Ag(ρ) denotes the forward operator
for a gravity field (Zhdanov 1988).

The gravity field can be expressed as the first spatial deriva-
tive of the gravity potential, U(x, z). The second spatial deriva-
tives of the gravity potential, U(x, z),

gαβ (r) = ∂2

∂α∂β
U(r), α, β = x, z, (4)

form a symmetric gravity tensor:

ĝ =
[

gxx gxz

gzx gzz

]
, (5)

where:

gαβ = ∂gα

∂β
, α, β = x, z. (6)

The terminologies of the gravity tensor and gravity gra-
diometry or gradient(s) are synonymous in the literature and
in the following we will preferentially use the terms gravity
gradiometry or gradient(s).

Let us define a complex intensity of the gravity gradient
field, gT(ζ ), as a complex derivative of the complex intensity
of the gravity field g(ζ ), introduced by equation (1):

gT(ζ ) = ∂g(ζ )
∂ζ

= 1
2

(
∂

∂x
− i

∂

∂z

)
g(ζ ). (7)

Substituting equation (1) into equation (7), we obtain:

gT(ζ ) = gzz(x, z) + igzx(x, z). (8)

Equation (8) takes into account the symmetry of the gravity
gradients, i.e., gzx = gxz and the fact that the gravity potential
outside the source(s) must satisfy the Laplace equation:

gxx(x, z) + gzz(x, z) = 0. (9)

According to equations (3) and (7), we have the following
expression for the complex intensity of the gravity gradient
field:

gT(ζ ′) = AT (ρ) = −2γ

∫∫
�

1
(ζ − ζ ′)2

ρ(ζ ) ds, ζ ′ /∈ �, (10)

where AT(ρ) denotes the corresponding forward operator.
Note that both the gravity field g(ζ ′) and the gravity gra-
dients gT(ζ ′) are described by analytical functions outside the
sources, ζ ′ �∈ � (Zhdanov 1988). The analytical representations
derived above for the gravity and gravity gradient fields pro-
vide a useful tool for the solution of inversion and migration
problems.

Mathematically, migration is the action of the adjoint op-
erator upon the observed data. The closed form of the adjoint
operator for a complex 2D gravity field was first developed by
Zhdanov (2002). The adjoint gravity operator, Ag
, applied
to some function, f (ζ ′), is given by the following:

Ag
 ( f ) = 2γ

∫ ∞

−∞

f ∗ (x′)
x′ − ζ

dx′. (11)

Using a derivation similar to the one discussed in Zhdanov
(2002) for the adjoint gravity operator, one can find that
the adjoint gravity gradient operator, A


T , applied to some
function f (ζ ′), is given by the following:

A

T ( f ) = −2γ

∫
L

f ∗ (ζ ′)

(ζ − ζ ′)2 dζ ′. (12)

We examine the physical significance of the adjoint gravity
gradient operator in Appendix A.

MIGRATION OF 2D GRAVITY AND
G R A V I T Y G R A D I O M E T R Y F I E L D S

Zhdanov (2002) introduced the migration gravity field, gm
� (ζ ),

as a result of the application of the adjoint gravity operator,
Ag
, to the complex intensity, g(ζ ), of the observed gravity
field, multiplied by a coefficient, (i/4πγ ):

gm
� (ζ ) = i

4πγ
Ag
g�. (13)

It was also shown that if the line of observations, L, coin-
cides with the horizontal axis, z = 0, the migration is equiv-
alent to downward continuation of the complex conjugate of
the observed field. Downward continuation of the observed
gravity and migration fields are significantly different. The
gravity field has singular points in the lower half-plane as-
sociated with sources, so its analytic continuation can only
be extended down to these singularities. This makes it an
ill-posed and unstable transform (e.g., Strakhov 1970a,b; Zh-
danov 1988). On the contrary, migration fields are analytical
everywhere in the lower half-plane, meaning that migration is
a well posed and stable transform.

It is demonstrated in Appendix A that the adjoint grav-
ity gradient operator is equal to the differentiation of the
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downward continued complex conjugate of the observed grav-
ity gradient field. We call this transformation a gravity gradi-

ent field migration and will use the following notation:

gm
T (ζ ) = ∂

∂ζ
gT∗ (ζ ) = i

4πγ
A


TgT. (14)

Migration of the complex intensities of the gravity and grav-
ity gradiometry fields are largely similar. Both of these trans-
formations are based on the downward continuation of the
respective adjoint fields. The main difference is that an addi-
tional differential operation is required for the migration of
the complex intensity of the gravity gradient fields, whereas
only downward continuation is required for the migration of
the complex intensity of the gravity field.

Migration sheds new light on the basic principles of the
Depth from EXtreme Points (DEXP) method (Fedi 2007).
The DEXP method uses the extreme points of the scaled,
upward-continued potential field to determine the depth of the
source(s). It is demonstrated in Appendix A that the sources of
the migration field are the mirror images of the true sources of
the potential field with respect to the real axis, x (see Figure 1
). This is why the extreme points defined by the DEXP method
correspond to the sources of the migration field, which reflects
the true source position as a mirror image of the sources.

We should note, however, that applying the adjoint oper-
ator directly to the observed gravity and/or gravity gradient
fields does not produce adequate images of the subsurface
density distributions. An appropriate spatial weighting oper-
ator must be applied to the migration field in order to image

Figure 1 The source of the observed field is a material point located
at the depth −z0, while the source of the migration field is a material
point located at the height +z0 (from Zhdanov 2002).

the sources at their correct locations. This weighting operator
is calculated from the integrated sensitivities of the gravity
gradient data with respect to density.

It was demonstrated by Zhdanov (2002) that, using gravity
migration, one can find the first approximation for the distri-
bution of the density of the gravity field sources, described by
the following expression:

ρ
g
1 (ζ ) = kgw

−2
g (z) ReAg
g� = −4πγ kgw

−2
g (z) Re

[
igm

� (ζ )
]
,

(15)

where:

kg = ‖Agw
g�‖2
M

‖Agw Agw
g�‖2
D

, (16)

Agw=AgW−1
g . (17)

The linear weighting operator, Wg, is the linear operator mul-
tiplying the density, ρ, by a function, wg, equal to the square
root of the integrated sensitivity of the complex intensity of
the gravity field, Sg:

wg = √Sg, (18)

where Sg can be evaluated from the following:

Sg = 2γ

√
π

|z| , z < 0. (19)

Equation (15) is called a gravity migration density, ρ
g
m(ζ ):

ρg
m (ζ ) = −4πγ kgw

−2
g (z) Re

[
igm

� (ζ )
]
, (20)

which is proportional to the weighted real part of the grav-
ity migration field, gm

� . Thus, migration transformation with
spatial weighting provides a stable algorithm for calculating
the gravity migration density. We note that the weighting op-
erator, Wg, plays the same role as the scaling function of the
DEXP method. The important difference is that, in the case
of migration, our approach to the definition of the scaling
operator is based on the integrated sensitivity.

In a similar way, we can introduce a gravity gradient mi-

gration density, ρT
m(ζ ):

ρT
m (ζ ) = kTw−2

T (z) ReAw

T gT, (21)

where:

kT
T =

∥∥Aw

T gT

∥∥2
M∥∥Aw

T AW

T gT

∥∥2
D

, (22)

and where the function wT is equal to the square root of the
integrated sensitivity of the complex intensity of the gravity
gradients, ST :

wT =
√

ST. (23)
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The integrated sensitivity of the gravity gradient field is calcu-
lated by equation (B6) of Appendix B. Substituting this equa-
tion into equation (23), we have:

wT =

√√√√γ

√
2π

|z|3 , z < 0. (24)

Equation (21) for a gravity gradient migration density can be
written as follows:

ρT
m (ζ ) = kTw−2

T (z) ReAw

T gT = −4πγ kTw−2

T (z) Re
[
igm

T (ζ )
]
.

(25)

It is proportional to the magnitude of the weighted gradient
migration field, gm

T . Migration is a stable algorithm for cal-
culating the migration density. Substituting equation (24) for
the weighting function, wT , back into equation (25), we find:

ρT
m (ζ ) = − 4πγ kT

(
γ

√
2π

|z|3
)−1

Re
[
igm

T (ζ )
]

= − 2
√

2π |z|3kTRe
[
igm

T (ζ )
]
. (26)

Let us examine the basic properties of the migration density
distribution ρT

m(ζ ). Using representation (14) of the migration
field generated by sources shifted to the upper half-plane (see
Appendix A) and taking into account equation (65), we com-
pute the real part of igm

T :

Re
[
igm

T

] = −2γ Re
[
i

∂

∂ζ

∫∫
�∗

1

(̃ζ − ζ )2
ρ̃ (̃ζ ) d̃s

]

= 4γ

∫∫
�∗

3(̃x−x)2(̃z − z) − (̃z − z)3

[(̃x − x)2 + (̃z − z)2]3
ρ̃ (̃ζ )d̃s, z < 0.

(27)

Substituting equation (27) into equation (26), we obtain:

ρT
m (ζ ) = −2

√
2π |z|3kTRe

[
igm

T (ζ )
]

= −8γ kT

√
2π |z|3

∫∫
�∗

3(̃x−x)2(̃z − z) − (̃z − z)3

[(̃x − x)2 + (̃z − z)2]2
ρ̃ (̃ζ ) d̃s.

(28)

For example, if the real density distribution is given by a
delta function, ρ(ζ ) = ρ0δ(ζ − ζ 0), ζ 0 = x0 − iz0 ∈ �, then
the density ρ̃ (̃ζ ) = ρ0δ

(̃
ζ − ζ ∗

0

)
, and ζ ∗

0 = x0 + iz0 ∈ �∗. This
means that the source of the observed field is a material point
located at a depth of −z0 , while the source of the migration
field is a material point located at a height of +z0 (Fig. 1). In
this case we have:∫∫

�∗

3(̃x−x)2(̃z − z) − (̃z − z)3

[(̃x − x)2 + (̃z − z)2]3
ρ̃ (̃ζ ) d̃s

= 3(̃x−x)2(̃z − z) − (̃z − z)3

[(x0−x)2 + (z0 − z)2]3
ρ0. (29)

Substituting equation (29) into equation (28), we find:

ρT
m (x, z)

= − 8γ kT

√
2π |z|3 3(x0−x)2(z0 − z) − (z0 − z)3

[(x0−x)2 + (z0 − z)2]3
ρ0, z < 0.

(30)

Differentiation of the function ρT
m(x, z) shows an extremum

at the location of the point source (x0, z0). The proof of this
statement is left to the reader.

Figure 2 presents images of the gravity migration and grav-
ity gradient migration density distributions. For both cases,
one can see that the distributions have a local maximum at

Figure 2 Following Zhdanov (2002), maps are shown of a) the gravity
migration density and b) the gravity gradiometry migration density.
The actual density function has a local maximum at the position of
the point source (2,-2).
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Figure 3 gzx and gxx data with no noise. b) A vertical cross-section of the true model beneath a profile of two parallelepipeds with a 1 g/cm3

density contrast. c) A gravity gradient migration density image for gzx and gxx data with no noise. (d) gzx and gxx data with 50% random
Gaussian noise. (c) A gravity gradient migration density image for gzx and gxx data with 50% random Gaussian noise.

the position of the point source (x0, z0). However, one can
see that the migration of the gradient fields produces a much
more focused image than the migration of the gravity field
itself.

MODEL S TUDY: 2D M I GR A T I ON OF
G R A V I T Y G R A D I O M E T R Y D A T A

In this section, we consider several synthetic examples of grav-
ity gradiometry migration. First, we consider a model formed
by two rectangular parallelepipeds with a density of 1 g/cm3,

located at the same depth of 100 m below the observation
profile (Fig .3b). The profile of observations coincides with
the x axis of the Cartesian coordinates and is perpendicu-
lar to the strike of the parallelepipeds. The long side of each
parallelepiped has a strike length of 1 km along the y axis,
while the vertical cross-section has an area of 100 m × 100
m. This model can be approximated by a 2D field and a com-
plex intensity of the gravity gradients, gT(ζ ), is provided by
the following expression:

gT(ζ ) = gzz(x, z) + igzx(x, z). (31)
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Figure 4 Gravity gradient migration density images for gzx and gxx data with no noise for two parallelepipeds with a 1 g/cm3 density contrast
separated by a) 100 m, b) 200 m, c) 300 m and d) 400 m.

We begin our study with a case where the separation between
the two parallelepipeds along the x axis is equal to 400 m.
Figure 3(a) shows plots of the gravity gradient components
gzz(x, 0) and gzx(x, 0) along the profile of observation. We
have assumed that the data were observed at 21 points with
the distance, �x, between the observation points equal to
20 m. These gravity gradiometry data were numerically mi-
grated into the lower half-plane using a discrete form of the
gravity gradient migration operator (14):

gm
T (ζ ) = i

4πγ
Ag
gT ≈ − i

2π

N∑
n=−N

g∗
T (n�x)

(ζ−n�x)2 �x

= �x
2π

N∑
n=−N

gzx(x, z) − igzz(x, z)

(ζ−n�x)2 , where ζ = x + i z.

(32)

The gravity gradient migration density, ρT
m(ζ ), was calcu-

lated from the gravity gradient migration field, gm
T (ζ ), accord-

ing to equation (26). Figure 3(c) shows a map of the gravity
gradient migration density, ρT

m(ζ ) in the vertical plane (x, z).
The correct locations of the two bodies can be clearly recov-
ered. In order to check the sensitivity of the potential field
migration against noise in the data, we have contaminated
the observed data by 50% random Gaussian noise, as shown
in Fig. 3(d). Figure 3(e) shows the results of the migration
of noisy data. Surprisingly, migration produces a very robust
image of the density distribution.

Next, we investigated the spatial resolution of migra-
tion imaging. Figure 4 shows the results of gravity gradi-
ent migration for two bodies located at different separations:
100 m, 200 m, 300 m and 400 m. Up to the point where the
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Figure 5 3D migration for a cube with a density of 1 g/cm3 located at a depth of 100 m below the observation surface (top right). Vertical
cross-sections of the density models through the centre of the body as recovered from 3D migration of different gravity gradients (gxx, gzx, g�

and gzz) as well as joint migration of all gravity gradients (gxx, gzx, g� and gzz). In all cross-sections, the body’s actual outline is shown in white.

distance between the bodies is equal to their depth, migration
can resolve the discrete bodies. This is an inherent limitation
of the gravity method due to equivalent sources and not our
migration imaging.

3 D G R A V I T Y A N D G R A V I T Y G R A D I E N T
FIELDS A ND THEIR ADJOINT OPERATORS

Following our discussion on 2D gravity and gravity gradient
fields, we now consider the general case of transforming 3D
gravity and gravity gradiometry data to a 3D density distri-
bution. In a general 3D case the gravity field is given by the
following equation:

g(r) = γ

∫∫∫
D

ρ(r′)
r′ − r

|r′ − r|3 dv′
, (33)

where integration is conducted over the variable r′. The second
spatial derivatives of the gravity potential form a symmetric
gravity tensor:

ĝ =

⎡⎢⎣ gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

⎤⎥⎦ ,

where:

gαβ = ∂gα

∂β
, α, β = x, y, z. (34)

According to equation (33), we have the following expression
for the gravity field components:

gα(r) = Ag
α (ρ) = γ

∫∫∫
D

ρ(r′)
|r′ − r|3 Kα(r′ − r) dv′, r /∈ D, (35)

where Ag
α(ρ), α = x, y, z, denotes the forward modelling op-

erator for different gravity field components and the kernel
Kα(r′ − r) is equal to:

Kα(r′ − r) = α′ − α, α = x, y, z. (36)

The expressions for the gravity tensor components can be
calculated based on equations (34) and (35):

gαβ (r) = Aαβ (ρ) = γ

∫∫∫
D

ρ(r′)
|r′ − r|3 Kαβ (r′ − r) dv′, (37)

where Ag
α(ρ), α, β = x, y, z, denotes the forward modelling

operator for different gravity tensor field components and the
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Figure 6 Vertical cross-sections of gravity
gradient migration density from 3D migra-
tion of a gzz and g� data with no noise above
a single body with a 1 g/cm3 density contrast
buried at a) 50 m depth, b) 100 m depth, c)
150 m depth, d) 300 m depth and e) 400 m
depth.

kernels, Kαβ , are equal to the following:

Kαβ (r′ − r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3

(α − α′)(β − β ′)
|r′ − r|2 , α �= β

3
(α − α′)2

|r′ − r|2 − 1, α = β

, α, β = x, y, z.

(38)

In addition to the gravity tensor components described by
equations (37) and (38), the gravity gradiometers also measure

the difference between the gradients:

g� = 1
2

(gxx − gyy), (39)

which can be expressed as

g� = γ

∫∫∫
D

ρ(r′)
|r′ − r|3 K�(r′ − r) dv′, (40)
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Figure 7 Geology of the Broken Hill area, prepared from the Broken Hill and Menindee 1:250 000 geological maps (available from Geoscience
Australia).

Figure 8 Topography of the Broken Hill
FALCON survey area. Profile A–B extends
across the Broken Hill deposit and will be
referred to in subsequent figures.
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where

K�(r′ − r) = 3
2

(x′ − x)2 − (y′ − y)2

|r′ − r|2 . (41)

Using the technique described in Zhdanov (2002), it can be
demonstrated that the adjoint operator Agα
 for the gravity
problem is equal to:

A

α ( f ) = γ

∫∫
S

f (r)
|r′ − r|3 Kα(r′ − r) ds. (42)

The adjoint operator for gravity gradients is given by the fol-
lowing equations:

A

αβ ( f ) =

∫∫
S

f (r)
|r′ − r|3 Kαβ (r′ − r) ds, (43)

A

� ( f ) =

∫∫
S

f (r)
|r′ − r|3 K�(r′ − r) ds. (44)

We will use equations (42)–(44) for introducing the 3D
gravity and gravity gradiometry migration fields.

MIGRATION OF 3D GR A V I T Y A N D
G R A V I T Y G R A D I O M E T R Y F I E L D S

As in the 2D case, the migration gravity field, gm
α (r), is in-

troduced as a result of the application of the adjoint gravity
operator, A


α, to the observed component of the gravity field:

gm
α (r) = A


αgα, (45)

where the adjoint operator Agα
 for the gravity problem is
given by equation (42). From a physical point of view, the mi-
gration field is obtained by moving the sources of the observed
gravity field above the observational surface. Nevertheless, the
migration field contains some remnant information about the
original sources of the gravity anomaly. This is why it can be
used in imaging the sources of the gravity field.

In a similar way, we can introduce a migration gravity ten-

sor field gm
αβ (r) and use the following notations for the com-

ponents of this tensor field:

gm
αβ (r) = A


αβgαβ, (46)

gm
�(r) = A


�g�, (47)

where the adjoint operators, A

αβ and A


�(f ), applied to some
function f (r), are given by formulas (43) and (44). We should
note, however, that the direct migration of the observed grav-
ity and/or gravity tensor fields does not produce an adequate
image of the subsurface density distribution because the mi-
gration fields rapidly attenuate with the depth, as one can see
from expressions (42)–(44). In order to image the sources of

Figure 9 gzz data from the Broken Hill FALCON survey processed
by a) Fourier domain, b) equivalent source and c) spatial convolution
methods.
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Figure 10 gxy data from the Broken Hill FALCON survey processed
by a) Fourier-domain and b) equivalent source methods.

the gravity fields at their correct locations, one should apply
an appropriate spatial weighting operator to the migration
fields. This weighting operator is constructed based on the
integrated sensitivity of the data to the density.

As for the 2D case (Zhdanov 2002), one can find a distri-
bution of the density of the gravity field sources, described by
the following expression:

ρm
α (r) = λ−1

(
W


mWm
)−1

A

αgα = kαw

−2
α (z) gm

α (r), (48)

where the unknown coefficient kα = λ−1 can be determined by
a linear line search (Zhdanov 2002) and the linear weighting
operator Wm = Wα is selected as a linear operator of the mul-
tiplication of density ρ by a function, wα, equal to the square
root of the integrated sensitivity of the complex intensity of

Figure 11 g� data from the Broken Hill FALCON survey processed
by a) Fourier-domain and b) equivalent source methods.

the gravity field, Sα:

wα =
√

Sα. (49)

Using a technique similar to one described in Appendix B
for the 2D case, one can find that Sα is computed from the
following:

Sα = cα

1
|z| , z < 0, α = x, y, z, (50)

where cα are the corresponding constants for different com-
ponents equal to:

cx = cy = γ

√
π

2
, cz = γ

√
π.
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Equation (48) is called a migration density ρ
g
m(ζ ):

ρm
α (r) = kαw

−2
αg (z) gm

α (r), (51)

and it is proportional to the weighted migration field, gm
α :

ρm
α (r) = kα

cα

|z| gm
α (r), (52)

where

gm
α (r) =

∫∫
S

gα(r′)
|r − r′|3 Kα(r − r′) ds ′. (53)

Thus, the migration transform with spatial weighting provides
a stable algorithm for calculating the migration density.

In a similar way, we can introduce a migration density based
on the gravity tensor migration:

ρm
αβ (r) = kαβw−2

αβ (z) gm
αβ (r), ρm

� (r) = γ k�w−2
� (z) gm

�(r), (54)

where unknown coefficients kαβ are determined by the cor-
responding linear line search and functions wαβ and w� are
equal to the square root of the integrated sensitivity of the
gravity tensor fields, Sαβ and S�, respectively:

wαβ = √Sαβ, w� =
√

S�. (55)

It can be demonstrated that the integrated sensitivity of the
gravity tensor field is calculated from the following expres-
sions:

Sαβ = cαβ

1
z2

, S� = c�

1
z2

, (56)

where cαβ are the corresponding constants for different tensor
field components:

czz = czx = czy = γ

√
3π

2
, cxx = cyy = γ

3
√

π

4
.

Expression (54) is called a tensor field migration density. It
is proportional to the magnitude of the weighted tensor mi-
gration field gm

αβ . Substituting equation (56) for the weighting
function wT in equations (55) and (54), we find that:

ρm
αβ (r) = kαβ

cαβ

z2gm
αβ (r), ρm

� (r) = k�

c�

z2gm
�(r), (57)

where:

gm
αβ (r) =

∫∫
S

gαβ (r′)
|r − r′|3 Kαβ (r − r′) ds ′, (58)

gm
�(r) =

∫∫
S

g�(r′)
|r − r′|3 K�(r − r′) ds ′. (59)

Finally, we can consider joint migration of several com-
ponents of the gravity tensor. For example, we can jointly

migrate gzz, gxx, gzx and the g� components and find the cor-
responding migration density as per the following:

ρm
αβ (r) = z2

[
kzz

czz
gm

zz(r) + kxx

cxx
gm

xx(r) + kzx

czx
gm

zx(r) + k�

c�

gm
�(r)

]
.

(60)

Note that equation (60) can be simplified to:

ρm
αβ (r) = z2

[
azzgm

zz(r) + axxgm
xx(r) + azxgm

zx(r) + a�gm
�(r)

]
,

(61)

where azz, axx, azx, and a� can be treated as the weights of the
corresponding migration fields in the density model, which
can be empirically determined from model studies.

MODEL S TUDY: 3D M IGRATION OF
G R A V I T Y G R A D I O M E T R Y D A T A

In this section we present two examples of 3D migration for
gravity tensor field data. In the first example, we consider a
model formed by a single cube of 100 m dimension with a
density of 1 g/cm3, located at a depth of 100 m below the
surface. Data for gxx, gzx, g� and gzz were simulated on the
horizontal plane, z = 0. First, we applied 3D migration to
each of the gravity gradients and then joint 3D migration
to all of the gravity gradients with equal weights. From Fig.
5, one can see that migration of each component recovered
the correct location of the body. However, the images are
slightly different for the different components. For example,
the gzz migration image has a sharper maximum in the location
of the cubic body but the isolines of the migration image
expand conically with the depth. The g� migration image has
a slightly less sharp maximum in the location of the cubic
body than the gzz migration image, while the isolines of the
g� migration image are more concentric around the cubic
body. For joint migration, one can see that the image has as
a sharp maximum at the location of the cubic body as a gzz

image, while the isolines of the combined image are distributed
relatively concentrically around the target.

Next, we considered the vertical resolution for a single cube
of 100 m dimension and a density contrast of 1 g/cm3. The
cube was buried with depths ranging from 50–400 m. The
results of the 3D migration of gzz and g� data with equal
weights and no noise are shown in Fig. 6. Note that in each
case, migration is able to recover a migration density that has
a maximum at the centre of the actual target.
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Figure 12 a) gxy, g�, gzz, and gz data processed using the Fourier-domain method across profile A–B. b) Vertical cross-section along profile A–B
from 3D migration of gxy, g� and gzz data processed using the Fourier-domain method. c) gxy, g�, gzz and gz data processed using the equivalent
source method across profile A–B. d) Vertical cross-section along profile A–B from 3D migration of gxy, g� and gzz data processed using the
equivalent source method. e) gzz data processed using the spatial convolution method across profile A–B. f) Vertical cross-section along profile
A–B from 3D migration of gzz data processed using the spatial convolution method.
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Figure 13 Vertical cross-sections along profile A–B from a) 3D migration of gxy, g�, gzz data processed using the Fourier domain method,
b) 3D migration of gzz data processed using the Fourier domain method and c) 3D inversion of gzz data processed using the Fourier domain
method.

CASE S TUDY–BROKEN HILL FALCON
S U R V E Y

Broken Hill is a historic mining district in New South Wales
(NSW), Australia and host of the world-class Broken Hill
stratiform sediment-hosted Ag-Pb-Zn deposit. The host geol-
ogy consists of the Willyama Supergroup of metamorphosed
clastic and volcanoclastic sediments, basic to acid volcanics
and intrusions of 171–1590 Ma age (Fig. 7). Mineralization
is sediment exhalative in origin and subsequently modified by
metamorphism, folding and shearing (e.g., Parr et al. 2004).
Given the significant density contrast between the dense
amphibolite- and garnet-altered lithologies and the metamor-
phosed sedimentary host rocks, gravity methods have been
essential in the exploration of Broken Hill-type deposits (e.g.,
Isles 1979). Today, mining has virtually eliminated the gravity
response of the Broken Hill ore body. Simulations have esti-
mated the maximum gzz response at 80 m ground clearance
to be in the range of 10–50 Eo over the central lode, similar
to the responses of amphibolite units (Lane and Peljo 2004).
The following table lists rock types and their corresponding
densities as detailed by Ruszkowski (1998).

The FALCON airborne gravity gradiometry (AGG) system
measured the horizontal curvature components of the grav-
ity gradient, i.e., gxy and g� = gxx−gyy

2 . Other tensor compo-

Rock type Density (g/cm3)

Potosi Gneiss 2.79
Sillimanite Gneiss 2.85
Quartzite 2.65
Granite Gneiss 2.75
Amphibolite 3.20

nents were then derived from these measured components
(Lee 2001). In 2003, a 5600 line km FALCON airborne grav-
ity gradiometry survey was flown in the Broken Hill district to
stimulate exploration interest for base metal, Fe-Cu-Au and
Ni-Cu-Pt-Pd deposits (Lane, Milligan and Robson 2003; Lane
2006). The 44.6 km × 22.5 km survey area was flown at 200
m line spacings approximately parallel to a geological strike
at 036 degrees (to ensure a maximum sampling rate), with
tie lines flown every 2 km. The ground clearance was nomi-
nally 80 m flown in a drape over the topographic relief which
varied from 174–421 m above sea level (Fig. 8). Hills trend ap-
proximately parallel to the flight lines. Several small pits and
larger waste dumps of the Broken Hill workings are evident
in the digital elevation model. All data were terrain-corrected
using a density of 2.75 g/cm3. This results in a slight positive
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Figure 14 Horizontal cross-sections at - 125 m above sea level (∼500
m below the topographic peak) from a) 3D migration of gzz data
processed using the Fourier domain method and b) 3D inversion of
gzz data processed using the Fourier-domain method.

correlation between the gravity gradients and the topography,
which is inferred to be acceptable on the grounds that much
of the positive topographic relief is comprised of amphibolite-
and garnet-altered lithologies that are relatively dense com-
pared to the metamorphosed sediment host rocks that make
up the bulk of the survey area (Hensley 2003). The mea-
sured gradients were processed with three processing meth-
ods: Fourier domain, equivalent source and spatial convolu-
tion. All three processing methods treat noise differently and

Figure 15 Horizontal cross-sections at - 625 m above sea level (∼1000
m below the topographic peak) from a) 3D migration of gzz data
processed using the Fourier-domain method and b) 3D inversion of
gzz data processed using the Fourier domain method.

as shown in Figs 9–11, their data range and mean variations
can be quite significant.

With independent results (e.g., 3D inversion), we were able
to scale the density contrasts in our 3D migration results.
However, for the purpose of rapid 3D imaging, in the follow-
ing we select our 3D migration images to vary between density
limits of −0.5 and +0.5 g/cm3.

In Fig. 8, we show the location of profile A–B, which crosses
the Broken Hill deposit. In Fig. 12, we show vertical cross-
sections beneath profile A–B from the 3D density models
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obtained from 3D migration of data processed by Fourier-
domain, equivalent source and spatial convolution methods.
We have also shown the data along the profile A–B. Note that
there is significant variation in the amplitude of data produced
from each method. This said, we note that the 3D migration
model for all components of the Fourier-domain and equiv-
alent source data show similar features, whereas there are
differences from 3D migration of gzz for the spatial convolu-
tion data. We were unable to perform 3D migration on any
additional components of the spatial convolution data, as they
were not available.

We ran our 3D migration jointly for gxy, g� and gzz, as
well as singly for gzz only. For this, we considered only the
data processed by the Fourier-domain method. For further
comparison, we inverted gzz data using 3D regularized inver-
sion (Zhdanov et al. 2004). The 3D inversion had no a priori
model and used smooth regularization. In Fig. 13, we show

the vertical cross-sections beneath profile A–B for the 3D den-
sity models obtained from joint 3D migration, 3D migration
and 3D inversion. We note the similarity between the two 3D
migration models and that they are both similar to the 3D reg-
ularized inversion results. As mentioned earlier, the amplitude
of the migration results are slightly different from the inver-
sion results because we scaled our migration results to vary
between −0.5 and +0.5 g/cm3. For further comparison of 3D
migration and 3D inversion for the gzz data, Figures 14 and
15 show horizontal cross-sections at 500 m and 1000 m depth
below topographic peak. Structurally, we observe very good
agreement between the models. This agreement is reinforced
when we overlay the regional geology, as shown in Figure 16.
In particular, high density contrasts are well associated with
amphibolites. Moreover, we can image subtle 3D structures,
such as the Goldfinger prospect in the southern corner of the
survey area.

Figure 16 Horizontal cross-section at - 625 m above sea level (∼500 m below the topographic peak) from 3D migration of gzz data processed
using the Fourier-domain method overlain with the Broken Hill area 1:250 000 geological sheets.
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CONCLUSIONS

We have introduced 2D and 3D potential field migration as
a new method for rapidly imaging entire surveys of gravity
and gravity gradiometry data. For gravity fields and their gra-
dients, we have shown that potential field migration is an
integral transformation of the gravity field and/or gradients
into 2D or 3D density distributions. As we will show in a sub-
sequent paper, potential field migration can also be extended
to magnetic fields and/or their gradients. Potential field mi-
gration is very fast and stable and the results are fairly similar
to those obtained from regularized inversion with smooth sta-
bilizers. The migration density models can also be used as a
priori models for subsequent regularized inversion with fo-
cusing stabilizers. As an analogue of iterative electromagnetic
migration (e.g., Zhdanov et al. 2011), we note that the adjoint
operators can be applied iteratively such that iterative poten-
tial field migration is comparable to regularized inversion.
This is the subject of our on-going work.

We have demonstrated the practicality of imaging entire
gravity gradiometry surveys with an example from a 5600
line km FALCON airborne gravity gradiometry survey over
the historic Broken Hill mining district in Australia. We com-
pared our 3D migration results with those obtained from 3D
regularized inversion. We observed very good agreement be-
tween those results produced by migration and those produced
by 3D regularized inversion.
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APPENDIX A: PHYSICAL INTERPRETATION
OF THE A DJOIN T GR A V I T Y GR A DI E NT
OPERATOR

Let us analyse the result of the adjoint gravity gradient op-
erator applied to the observed gravity gradient field, A


TgT .
According to equation (12), we have:

A

TgT = −2γ

∫
L

g∗
T (ζ ′)

(ζ − ζ ′)2 dζ ′. (A1)

In particular, if the data are collected on the horizontal axis,
z′ = 0, equation (A1) takes the following form:

A

TgT = −2γ

∫
L

g∗
T (ζ ′)

(ζ − x′)2 dx′. (A2)

We shall analyse more carefully the physical meaning of this
equation. First of all, let us examine the expression for g∗

T(ζ ′).
According to equation (10), we can write:

g∗
T(x′) = −2γ

∫∫
�

1

(ζ ∗−x′)2 ρ(ζ ) ds

= −2γ

∫∫
�∗

1

(ζ − x′)2 ρ(ζ ∗) ds = gT∗ (x′),
(A3)

where gT∗ (x′) can be treated as the gravity field of the masses
located in domain �∗, which is a mirror image of domain �

with respect to the real axis x (see Fig. A1).

Figure A1 Definition of the adjoint gravity gradient field gT∗ . The
field gT∗ is generated by the sources located in �∗. The density dis-
tribution ρ̃(ζ ) within �∗ is a mirror image of the density distribution
ρ(ζ ) in � : ρ̃(ζ ) = ρ(ζ ∗).

We will call this field, gT∗ , an adjoint gravity gradient field.
The density distribution ρ̃(ζ ) within �∗ is a mirror image of the
density distribution ρ(ζ ) in � : ρ̃(ζ ) = ρ(ζ ∗). Obviously, the
field gT∗ of the sources located above the line of observation
b (coinciding with the real axis x) is an analytical function
everywhere in the lower half-plane. It can be expressed in
equivalent form as:

gT∗ (ζ ) = −2γ

∫∫
�∗

1

(̃ζ − ζ )2
ρ̃ (̃ζ )d̃s, ζ /∈ �∗, z < 0,

(A4)

where ζ̃ = x̃ + ĩ z ∈ �∗ is a variable of integration, and d̃s =
dx̃d̃z.

Now we examine the expression A

TgT in equation (A2).

Let P+ stand for the upper half-plane of a complex plane ζ ,
bounded by the real axis x and P− for the lower half-plane.
We consider an arbitrary point ζ ∈ � and draw therefrom a
circle of radius R. This part of the real axis x that happens to
lie inside the circle will be represented by bR , while the part of
the circle found inside P− will be denoted by CR (see Fig. A1).
By virtue of the Cauchy integral formula (Zhdanov 1988):

gT∗ (ζ ) = 1
2π i

∫
bR

gT∗ (̃ζ )

ζ̃−ζ
dζ̃ + 1

2π i

∫
CR

gT∗ (̃ζ )

ζ̃−ζ
dζ̃ , (A5)

where the integration over the closed contour bR∪CR is
taken in the counter-clockwise direction. In particular, the
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integration over the segment bR of the real axis is from right
to left. Let us now proceed to the limit as R → ∞. The in-
tegral taken over the part of the circle CR is written, upon
substitution of the variable ζ̃ = ζ + Reiθ , in the form:

1
2π i

∫
CR

gT∗ (̃ζ )

ζ̃−ζ
dζ̃ = 1

2π

∫
CR

gT∗ (ζ + Reiθ ) dθ. (A6)

Being analytic, the function gT∗ (ζ ) tends uniformly over θ to
zero at infinity, hence the limit of integral (A6) is zero. The
integral along bR as R → ∞ tends to the integral taken over
the entire real axis x. Thus, in the limit, equation (A5) takes
the form:

gT∗ (ζ ) = − 1
2π i

∫ ∞

−∞

gT∗ (̃x)
x̃−ζ

dx̃, ζ ∈ P−, (A7)

where the minus sign arises because we have changed the
direction of the integration; it is now conducted from the left
(−∞) to the right (+∞). Note that from equation (A3), it
follows that, on the real axis, x:

g∗
T (̃x) = gT∗ (̃x). (A8)

Substituting equation (A8) into equation (A7), we find:

gT∗ (ζ ) = − 1
2π i

∫ ∞

−∞

g∗
T (̃x)

x̃−ζ
dx̃, ζ ∈ P−. (A9)

Taking into account equation (A9), we can rewrite equation
(A2) as follows:

A

TgT = −2γ

∫ ∞

−∞

g∗
T (ζ ′)

(ζ − x′)2 dx′ = 2γ
∂

∂ζ

∫ ∞

−∞

g∗
T (ζ ′)

(ζ − x′)
dx′

= 2γ
2π i
2π i

∂

∂ζ

∫ ∞

−∞

g∗
T (x′)

(ζ − x′)
dx′ = −4πγ i

∂

∂ζ
gT∗ (ζ ).

(A10)

Thus, we see that the application of the adjoint operator to the
observed gravity gradient field, gT , is equivalent to taking a
derivative of the downward continuation of the adjoint gravity
gradient field, gT∗ . Taking into account that, on the real axis
x, the complex conjugate of the observed field is equal to the
adjoint field (equation (A8)), we conclude that the adjoint
gravity gradient operator is equivalent to the derivative of
the downward continuation of the complex conjugate of the
observed gravity gradient field.

APPENDIX B: INTEGRATED S ENSITIV ITY
OF THE C OMPLEX INTENSITY OF T HE
GRAVITY GRADIENT FIELD

The integrated sensitivity of the complex intensity gravity gra-
dient field is calculated by the following formula (Zhdanov
2002):

ST = ‖δgT‖D

δρ
, (B1)

where δgT is the perturbation of the gravity gradient field
resulting from a local perturbation of the density, δρ(ζ ) =
ρ(ζ )ds, within a differential element of area ds, located at the
point ξ = x + iz of the lower half-plane (z < 0):

δgT = δgT(ζ ′) = −2γ
ρ (ζ ) ds

(ζ − ζ ′)2 . (B2)

Substituting equation (B2) into equation (B1), we find:

ST = 1
ρ (ζ ) ds

√∫
L
δg�(ζ ′)δg∗

�(ζ ′)dζ ′

= 2γ

√∫
L

1

|ζ − ζ ′|4 dζ ′,

(B3)

where L is some line of observations of the gravity gradients.
In particular, if the profile of observations coincides with the
horizontal axes x, z′ = 0, the definite integral in equation (B3)
can be calculated as:

ST = 2γ

√∫ ∞

−∞

1

[(x − x′)2 + z2]2
dx′

= 2γ

√
− 1

z3

∫ ∞

−∞

1
[η2 + 1]2

dη,

(B4)

where the tabulated integral is given by:∫ ∞

−∞

1
[η2 + 1]2

dη = π

2
. (B5)

Thus, we have:

ST = 2γ

√
1

−z3

π

2
= γ

√
2π

|z|3 , z < 0. (B6)

Equation (B6) can be treated as the integrated sensitivity of
the gravity gradient data to the local density anomaly located
at the depth |z| in the lower half-plane (z < 0). We can see
that the sensitivity is inversely proportional to the square root
of the cube of the depth of the density anomaly.
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