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Large-scale 3D inversion of potential field data
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ABSTRACT
Inversion of gravity and/or magnetic data attempts to recover the density and/or
magnetic susceptibility distribution in a 3D earth model for subsequent geological
interpretation. This is a challenging problem for a number of reasons. First, airborne
gravity and magnetic surveys are characterized by very large data volumes. Second,
the 3D modelling of data from large-scale surveys is a computationally challenging
problem. Third, gravity and magnetic data are finite and noisy and their inversion is ill
posed so regularization must be introduced for the recovery of the most geologically
plausible solutions from an infinite number of mathematically equivalent solutions.
These difficulties and how they can be addressed in terms of large-scale 3D potential
field inversion are discussed in this paper. Since potential fields are linear, they lend
themselves to full parallelization with near-linear scaling on modern parallel com-
puters. Moreover, we exploit the fact that an instrument’s sensitivity (or footprint) is
considerably smaller than the survey area. As multiple footprints superimpose them-
selves over the same 3D earth model, the sensitivity matrix for the entire earth model
is constructed. We use the re-weighted regularized conjugate gradient method for
minimizing the objective functional and incorporate a wide variety of regularization
options. We demonstrate our approach with the 3D inversion of 1743 line km of
FALCON gravity gradiometry and magnetic data acquired over the Timmins district
in Ontario, Canada. Our results are shown to be in good agreement with independent
interpretations of the same data.
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1 INTRODUCT I ON

Reliance on desktop computing has limited the use of 3D
potential field inversion, making it impractical to achieve an
appropriate level of resolution and detail for geological in-
terpretation of entire airborne surveys that are characterized
by very large data volumes. Such surveys typically contain
hundreds to thousands of line kilometres of data with mea-
surement locations every few metres, covering thousands of
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square kilometres in an area. Regional surveys may be even
larger and denser as the result of merging multiple and/or
historic surveys. For large surveys, structural interpretations
are usually based on a choice or combination of Euler decon-
volution (e.g., Thompson 1982), eigenvector analysis (e.g.,
Beiki and Pedersen 2010), wavelet analysis (e.g., Hornby,
Boschetti and Horowitz 1999), analytic signal (e.g., Salem
and Ravat 2003; Beiki 2010), or depth-from-extreme-points
(DEXP) methods (e.g., Fedi 2007). While such methods may
provide information about the sources of the potential field,
it is not immediately obvious how this information can be
quantified in terms of the physical properties in a 3D earth
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model. For this reason, inversion marks an important step in
quantitative interpretation - particularly at deposit scales.

Generalized inversion methods first discretize the 3D earth
models into cells of constant density and/or susceptibility. As
gravity and magnetic inversion is ill posed, regularization must
be introduced so as to recover the most geologically plausible
solutions from the infinite number of mathematically equiv-
alent solutions. Regularization effectively selects the class of
models from which a unique solution is sought. Over the
years, a variety of methods have been developed for 3D in-
version of potential field data with both smooth (e.g., Li and
Oldenburg 1996, 1998; Li 2001) and focusing (e.g., Portni-
aguine and Zhdanov 2002; Zhdanov 2002, 2009; Zhdanov,
Ellis and Mukherjee 2004) regularization. The computational
resources needed for deposit-scale discretization (e.g., <25 m
cells) for entire airborne surveys easily exceeds the capac-
ity of high-end desktop computers. From recent case studies,
the term large-scale can been read to mean 3D earth models
with about 3 million cells. This reflects the limited capacity
of existing 3D inversion algorithms on desktop computers.
In practice, large airborne surveys are usually divided into
subsets (circa 1 - 3 million cells each) of reasonably coarse
discretization (e.g., 250 m cells) and each of those inverted
with the resulting 3D earth models stitched or tiled together
post-inversion (e.g., Phillips et al. 2010).

In the present paper, we consider a general method of solv-
ing truly large-scale potential field inverse problems with mas-
sive parallelization where the modelling domain is discretized
into hundreds of millions (even billions) of cells. For such
models, computation of the predicted data and direction of
steepest descent at every iteration of the inversion is not triv-
ial. We solve these by exploiting the limited sensitivity of the
instrument and introducing a moving footprint approach simi-
lar to that developed for airborne electromagnetics (AEM) by
Cox, Wilson and Zhdanov (2010) and for magnetotellurics
(MT) by Zhdanov et al. (2011). Our inversion method is de-
signed to invert any component of the gravity and magnetic
fields, including the total, vector, and gradient components.
For magnetics, we assume in this paper that the magnetic fields
are caused by induced magnetization only. A subsequent pa-
per shall address remanent magnetization. We have developed
this as a fully parallelized software that exhibits near-linear
scaling, meaning that it can be scaled to thousands of cores.

2 3D M ODELING

Gravity (Ug) and magnetic (UH) potentials are linear with
respect to the 3D density (ρ) and magnetic susceptibility (χ )

distributions as per the first-kind Fredholm equations:

Ug(r′) =
∫∫∫

V
ψg(r′, r)ρ(r)dv, (1)

UH(r′) =
∫∫∫

V
ψM(r′, r)χ (r)dv, (2)

where the volume integration is over the variable, r and where
the kernel functions ψg and ψH are the respective gravity and
magnetic potential Green’s functions. All components of the
gravity and magnetic fields can be derived from spatial differ-
entiation of ψg,H in equations (1) and (2), respectively. If the
density and susceptibility are constant in each cell, Poisson’s
relation can be used to transform gravity data and 3D density
models to magnetic data and 3D susceptibility models and
vice versa (e.g., Li and Oldenburg 1998). Closed-form solu-
tions for the volume integrals in equations (1) and (2) over
right rectangular prisms of constant density and/or suscepti-
bility were derived for both gravity (e.g., Okabe 1979) and
magnetic (e.g., Bhattacharyya 1980) fields. While exact, these
analytic solutions are inefficient to implement. For example,
the gravity response due to a right rectangular prism of con-
stant density contains 16 logarithms and 8 arctangents (Li
and Chouteau 1998, p. 344). However, the volume integrals
in equations (1) and (2) can be evaluated numerically:

Ug(r′) =
Nm∑
i=1

ψg(r′, ri )ρi�xi�yi�zi , (3)

UH(r′) =
Nm∑
i=1

ψH(r′, ri )χi�xi�yi�zi , (4)

where Nm is the total number of cells in the earth model
and ri = xi , yi , zi , ; i = 1, . . . , Nm. Zhdanov (2009) showed
that for gravity gradiometry, single-point Gaussian integra-
tion with pulse basis functions was as accurate as the analytic
solution provided the depth to the centre of the cell exceeded
twice the dimension of the cell; i.e., the 3D earth model can
be discretized to cubic cells of 40 m dimension or less for
an airborne gravity gradiometry survey with 80 m nominal
ground clearance. Moreover, numerical integration decreases
the run time by more than an order of magnitude compared
to the analytic solution. For land or borehole surveys where
instruments are located close to or within the cells, higher or-
der Gaussian integration and basis functions can be used to
attain the desired level of accuracy.

Since equations (1) and (2) are linear, they can be written
in discrete form as the operator equations:

dg = Agρ, (5)
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dH = AHχ, (6)

where dg and dH are the Nd length vectors of observed gravity
and magnetic data, Ag and AH are the Nd × Nm gravity and
magnetic operators and ρ and χ are the Nm length vectors of
density and susceptibility. Equations (5) and (6) are general
in that the data dg and dH, and operators Ag and AH can be
partitioned to contain multiple components. In the following
sections we present the explicit forms of the corresponding
forward modelling operators.

2.1 Gravity and gravity gradiometry

The gravity field, g(r), satisfies the following:

∇ · g(r) = −4πγρ(r),∇ × g(r) = 0, (7)

where γ is the universal gravitational constant and ρ(r) is the
3D density distribution within a domain, D. The gravity field
can also be expressed by the gravity potential Ug(r):

g(r) = ∇Ug(r). (8)

The gravity potential has the following solution:

Ug(r′) = γ

∫∫∫
V

1
|r − r′|ρ(r′)dv. (9)

As the first spatial derivatives of the gravity potential, the
gravity field can be expressed as:

g(r′) = γ

∫∫∫
V

r − r′

|r − r′|3 ρ(r)dv, (10)

for which the components can be written as

gα(r′) = γ

∫∫∫
V

Kα(r − r′)
1

|r − r′|3 ρ(r)dv, (11)

where the kernel Kα(r − r′) is equal to:

Kα(r − r′) = α − α′, α = x, y, z. (12)

The second spatial derivatives of the gravity potential,

gαβ (r) = ∂2

∂α∂β
Ug(r), α, β = x, y, z, (13)

form a symmetric gravity tensor:

ĝ =

⎡
⎢⎣

gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

⎤
⎥⎦ , (14)

with zero trace and where:

gαβ = ∂gα

∂β
, α, β = x, y, z. (15)

The gravity tensor components can be calculated from equa-
tion (12):

gαβ (r′) = γ

∫∫∫
V

Kαβ (r − r′)
1

|r − r′|3 ρ(r)d3r, (16)

where the kernels Kαβ are equal to:

Kαβ (r − r′) =
⎧⎨
⎩

3 (α′−α)(β ′−β)
|r−r′ |2 , α �= β,

3 (α′−α)2

|r−r′ |2 − 1, α = β,

α, β = x, y, z. (17)

A combination of the gravity gradients,

g� = 1
2

(
gxx − gyy

)
, (18)

is measured directly by the FALCON airborne gravity gra-
diometer, and it can be calculated from the following:

g�(r′) = γ

∫∫∫
V

K�(r − r′)
1

|r − r′|3 ρ(r)dv, (19)

where the kernel K� is given by:

K�(r − r′) = 3
2

(x − x′)2 − (y − y′)2

|r − r′|2 . (20)

Kernels for other combinations of gravity gradients such
as those measured by Rio Tinto’s VK1 airborne gravity gra-
diometer can be easily derived. Equations (11), (16) and (19)
can be evaluated numerically as per equation (3).

In practice, gravity and gravity gradiometry data require
terrain corrections prior to 3D inversion. The terrain correc-
tion is generally calculated as the response due to the volume
bound by an upper surface of the digital elevation model and
a lower surface of a plane that passes through the lowest el-
evation of the survey area. This volume is discretized into
prisms of constant density, for which the responses (11), (16)
and (19) are subtracted from the respective free-air data (e.g.,
Dransfield and Zeng 2009). For mineral exploration, a uni-
form terrain density between 2.6–3.1 g/cm3 is usually applied,
depending on the host geology. For sedimentary basins, the
lower surface is generally deeper and the terrain density in-
creases as a function of depth to simulate compaction (G.
Jorgensen 2011, pers. comm.).

2.2 Magnetics and magnetic gradiometry

In what follows, we adopt the common assumption that there
is no remanent magnetization, that the self-demagnetization
effect is negligible and that the magnetic susceptibility is
isotropic. Under such assumption, the intensity of magneti-
zation I(r) is linearly related to the inducing magnetic field,
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H0(r), through the magnetic susceptibility χ (r):

I(r) = χ (r)H0(r). (21)

For any magnetic survey, the inclination (I), declination (D)
and azimuth (A) of the inducing magnetic field (in degrees) can
be predicted from the International Geomagnetic Reference
Field (IGRF) model. It is not the intent of this paper to discuss
how the IGRF (or equivalent) is calculated. We do note how-
ever that various online calculators exist to compute different
generations of the IGRF models (e.g., NOAA) or localized
models, such as the Australian Geomagnetic Reference Field
(AGRF) model (e.g., Geoscience Australia). Often, airborne
contractors provide IGRF reduced magnetic data as a stan-
dard deliverable. We assume the inclination is positive below
the horizontal, the declination is positive east of true north
and the azimuth is positive east of north, so the directional
cosines of the inducing magnetic field are as follows:

lx = cos(I) cos(D− A), (22)

ly = cos(I) sin(D− A), (23)

lz = sin(I). (24)

The magnetic field, H(r), has the solution (Zhdanov 1988):

H(r′) = ∇′
∫∫∫

V
∇ 1

|r − r′| · H0χ (r)dv. (25)

It is well-known that the last formula can be rewritten as
follows:

H(r′) = H0
∫∫∫

V

∂

∂l ′
r − r′

|r − r′|3 χ (r)dv, (26)

where H0 is the magnitude of the inducing field and ∂/∂l′

is a directional derivative in the direction of magnetization,
I, where I is a unit vector, i.e., H0 = H0I. These directional
derivatives are the directional cosines of equations (22) – (24).
Note that

∂

∂l ′
r − r′

|r − r′|3 = −1

|r − r′|3
[
l − 3 (l· (r − r′)) (r − r′)

|r − r′|2
]

. (27)

Substituting equation (27) into equation (26), we obtain:

H(r′) = −H0
∫∫∫

V

1

|r − r′|3
[
l − 3 (l· (r − r′)) (r − r′)

|r − r′|2
]

dv.(28)

Now, each component of the magnetic field can be written
as

Hα(r′) = H0
∫∫∫

V
Kα(r − r′)

1
|r − r′|3 χ (r)dv, (29)

where the kernel Kα(r − r′) is equal to

Kα(r − r′) = 3
[
lx(x − x′) + ly(y − y′) + lz(z − z′)

]
(α − α′)

|r − r′|2
−lα, α = x, y, z. (30)

The amplitude of the magnetic field (or total magnetic in-
tensity) has the following form:

Hα(r′) = H0
∫∫∫

V
KTMI (r − r′)

1
|r − r′|3 χ (r)dv, (31)

where the kernel KTMI (r − r′) is equal to

KTMI (r − r′) = 3
[
lx(x − x′) + ly(y − y′) + lz(z − z′)

]2

|r − r′|2 − 1.

(32)

Equations (29) and (31) can be evaluated numerically as
per equation (4). Derivatives of equation (29) and their re-
spective kernels that form the symmetric magnetic tensor will
be detailed in a subsequent paper.

3 3D INVERSION

Potential field data are finite and noisy and their inversion
is inherently non-unique, meaning that there is an infinite
number of source distributions that can equally satisfy the
observed data. In order to solve this inverse problem, regular-
ization must be introduced. The goal of regularization is to
recover the most geologically plausible solutions from the infi-
nite number of mathematically equivalent solutions. We note
that our term ‘geologically plausible’ is a subjective one and
based entirely upon the interpreter’s prejudice. As we have
generalized our inversion methodology for both gravity and
magnetic data, we describe our model parameters by vector m,
of length Nm, whether they be values of density or susceptibil-
ity. Regardless of the iterative scheme used, most regularized
inversions seek to minimize the Tikhonov parametric func-
tional, Pα(m):

Pα(m) = φ(m) + αs(m) → min, (33)

where φ(m) is a misfit functional of the observed and pre-
dicted potential field data, s(m) is a stabilizing functional. α

is the regularization parameter that balances the trade-off be-
tween the misfit and stabilizing functionals and is decreased
as the inversion progresses (Zhdanov 2002). Data and model
weights can be introduced to equation (33) through data and
model weighting matrices. We can also re-weight the inverse
problem in logarithmic space in order to reduce the dynamic
range of both the data and model parameters. For magnetic
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inversion, positivity is enforced upon the susceptibility so as
to obtain physically meaningful solutions.

In our implementation, all weighting functions are selected
based upon their integrated sensitivity (Zhdanov 2002). Our
weighting functions provide equal sensitivity of the observed
data to cells located at different depths and at different hori-
zontal positions. Thus, our weighting functions automatically
introduce appropriate corrections for the vertical and hori-
zontal distribution of the density or susceptibility. This is one
of the main differences between our approach and the geo-
metric weighting functions developed by Li and Oldenburg
(1996, 1998).

We base our minimization of equation (33) on the re-
weighted regularized conjugate gradient method (RRCG). The
specifics of this method have been published previously (e.g.,
Zhdanov 2002) and are not repeated here. This method it-
eratively updates the vector of model parameters m so as to
minimize the vector of residual errors, r, akin to:

mi+1 = mi + ki AT
g,H ri subject to ri → min, (34)

where ki is a step length and AT
g,H is the conjugate transpose

of the Nd × Nm matrix of the gravity or magnetic linear oper-
ator. The inversion proceeds to iterate in a manner similar to
equation (34) until the residual error reaches a preset thresh-
old, the decrease in error between multiple iterations is less
than the preset threshold, or a maximum number of iterations
is reached. Upon completion, the quality of the inversion is ap-
praised by the data misfit and visual inspection of the model.
Results are also available from any prior iteration, enabling
the user to investigate the evolution of the 3D model during
inversion, and to re-start the inversion from a prior iteration
if necessary.

3.1 Focusing regularization

All geological constraints manifest themselves as regulariza-
tion that can be quantified through a choice of data weights,
model upper and lower bounds, model weights, an a priori
model and the type of stabilizing functional. The latter in-
corporates information about the class of models used in the
inversion. The choice of stabilizing functional should be based
on the user’s geological knowledge and prejudice. In what fol-
lows, we will briefly describe different smooth and focusing
stabilizers in order to demonstrate the results from the 3D
inversion of potential field data produced by each.

A minimum norm (MN) stabilizer will seek to minimize the
norm of the difference between the current model and an a
priori model:

sMN(m) =
∫∫∫

V
(m − mapr )2dv (35)

and usually produces a relatively smooth model. Gradient
(G) stabilizers implicitly introduce smoothness with the first
derivatives of the model parameters:

sG(m) =
∫∫∫

V
(∇m − ∇mapr )2dv, (36)

and can result in spurious oscillations and artefacts when the
model parameters are discontinuous. In practice, a combina-
tion of stabilizers (35) and (36) is often used (e.g., Li and
Oldenburg 1996, 1998). However, very little geology exhibits
smooth density or susceptibility distributions. Geology is usu-
ally characterized by sharp boundaries of contrasting density
and/or susceptibility, for example, between an ore deposit and
host rock, or across a discontinuity. As such, stabilizers (35)
and (36) or their combinations produce results that bear little
or no relevance to the actual geology.

Portniaguine and Zhdanov (1999) introduced focusing sta-
bilizers that make it possible to recover models with sharper
boundaries and contrasts. We briefly describe these stabiliz-
ers here and refer the reader to Zhdanov (2002) for further
details. First, we present the minimum support (MS) stabilizer:

sMS(m) =
∫∫∫

V

(m − mapr )2

(m − mapr )2 + e2
dv, (37)

where e is a focusing parameter introduced to avoid singularity
when m = mapr . The minimum support stabilizer minimizes
the volume with non-zero departures from the a priori model,
effectively recovering compact bodies. Thus, a smooth distri-
bution of all model parameters with a small deviation from
the a priori model is penalized. A focused distribution of the
model parameters is penalized less. The focusing parameter
effectively tunes the degree of focusing. Similarly, we present
the minimum gradient support (MGS) stabilizer:

sMGS(m) =
∫∫∫

V

∇(m − mapr ) · ∇(m − mapr )
∇(m − mapr ) · ∇(m − mapr ) + e2

dv, (38)

which minimizes the volume with non-zero gradients, i.e.,
sharp transitions in the model parameters are penalized less
than smooth transitions.

As an example of the difference between smooth (e.g., mini-
mum norm) and focusing (e.g., minimum support) stabilizers,
we used both to invert GETMAG full tensor magnetic gra-
diometry from a magnetite skarn near Tallawang, New South
Wales, Australia (Schmidt et al. 2004). The results are shown
in Fig. 1, and clearly demonstrate how the focusing inversion
result is more geologically reasonable than the smooth inver-
sion result.
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Figure 1 Comparison of focusing (minimum support; panels a-c) and smooth (minimum norm; panels d-f) regularization for 3D inversion of
GETMAG full tensor magnetic gradiometry data from Tallawang, New South Wales, Australia (Schmidt et al. 2004). The vertical cross-sections
correspond to profile 60 m N. The geology inferred from drilling has been superimposed for further comparison.

3.2 Moving footprint approach

In principle, the regularized inversion methods outlined above
can be applied to large-scale problems. Numerically, however,
the computational complexity increases linearly with the size
of the problem, meaning 3D inversion faces two major obsta-
cles. First is the large amount of computer memory required
for storing the kernels of the forward modelling operators,
which double as sensitivities for linear problems. Even a small-
sized 3D inversion of thousands of data to 3D earth models of
hundreds of thousands of cells can exceed memory available
for desktop computers. The second obstacle is the amount of
CPU time required for the application of the dense matrix of
the forward modelling operators to data and model vectors.

To minimize these problems, an alternative formulation has
been to exploit the translational invariance of the kernels so
as to reduce the matrices to a Toeplitz block structure and use
FFTs for matrix-vector multiplication (e.g., Pilkington 1997;
Zhdanov et al. 2004). Such strategies minimize memory limi-
tations and reduce the CPU time dramatically. However, these

methods require the data to lie over a regular grid on a flat sur-
face above the topography. This is applicable in some special
cases, such as marine gravity. However, for airborne surveys,
the data must be upward continued to a flat surface. This is
not ideal, particularly for surveys incorporating very rugged
terrain.

Other strategies for large-scale 3D inversion involve some
form of compression (e.g., Portniaguine and Zhdanov 2002;
Li and Oldenburg 2003; Davis and Li 2011). However, the
linear operators Ag and AH can still be too large to store and
manipulate on desktop computers for 3D inversion of tens of
thousands of data to models with millions of cells. In practice,
large surveys are usually divided into subsets and each of these
is inverted with the resulting 3D earth models stitched together
post-inversion (e.g., Phillips et al. 2010).

In potential fields, sensitivity of the data to the variations
of the density or magnetic susceptibility is expressed via the
appropriate kernel functions of the forward modelling op-
erators, i.e., via the corresponding Green’s functions. For
example, Dransfield (2010) used these Green’s functions to
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Figure 2 Percent of total response of the integrated sensitivity for
the vertical gravity component, various gravity gradients and total
magnetic intensity as a function of footprint radius. Note that as the
footprint is symmetric in the x and y directions, some gravity gradients
(e.g., gxx and gyy) overlap.

investigate airborne gravity gradiometry instrument sensitiv-
ity. He demonstrated that at some limited distance, which we
call the footprint, the receiver is no longer sensitive to the 3D
earth model. Typically, the size of the footprint is much less
than the size of an airborne survey. The footprint size for grav-
ity fields is proportional to 1/r2, and for gravity gradiometry
and magnetic fields it is proportional to 1/r3.

Cox et al. (2010) introduced the concept of a moving foot-
print for the 3D inversion of AEM data. They showed that,
for a single transmitter-receiver pair, there was no need to
calculate the responses or sensitivities beyond the AEM sys-
tem’s footprint. The sensitivity matrix for the entire 3D earth
model could be constructed as the superposition of footprints
from all transmitter-receiver pairs. Zhdanov et al. (2011) also
introduced a footprint approach for the large-scale 3D inver-
sion of MT data. The framework of this approach can be
described as follows: for a given receiver, compute and store
the sensitivities for those cells within the receiver’s footprint.
The size of the footprint is based on the sensitivity.

As an analogue of this, we introduce a moving footprint for
3D potential field inversion. First, we provide an example. We
can assume we have an instrument 60 m above a homogeneous
half-space. Figure 2 shows the integrated sensitivities for each
of the gravity fields and gravity gradients. The figure shows
that the gravity gradients have approximately 95% of the
sensitivity within a 15 km footprint. In the same figure, we
also show integrated sensitivity for the total magnetic intensity

(TMI). The sensitivity of the TMI with respect to the footprint
radius behaves similarly to the gravity gradients with ∼95%
of the sensitivity being within the 15 km footprint. This is fully
expected since kernels ( 17), (20) and (32) have similar spatial
dependencies. Past a 15 km radius, the sensitivity decays very
slowly, though increasing the footprint radius beyond 15 km
is not practical. Therefore, we conclude that 15 km is an
optimal footprint radius for gravity gradiometry and TMI.

With a moving footprint, the linear operators Ag and AM

operate as sparse matrices with reduced memory and com-
putational requirements and minimal loss of accuracy. The
number of non-zero elements in each row of the linear op-
erators is just the number of elements within each footprint
rather than the total number of elements in the model. In
practice, we avoid direct storage of the linear operators by
re-computing them as required. On one hand, this adds ex-
tra computational burden to each iteration, even though these
computations are of simple geometric functions and quickly
evaluated. On the other hand, by not explicitly constructing
the linear operators, our memory requirements are extremely
small, meaning we are effectively unlimited in the size of the
inverse problem that we can consider.

In our implementation, we note that the linear operators
Ag and AM can be partitioned to contain an arbitrary com-
bination of components of the gravity or magnetic fields, re-
spectively. As such, we can jointly invert any combination of
gravity or magnetic data but not joint gravity and magnetic
data. Note also that our implementation of the linear opera-
tors Ag and AH includes both topography and variable flight
height, obviating the need at least for upward continuation
of data. For improved inversion results, terrain corrections to
gravity data are still required though, particularly in regions
of rough topography. Opportunity does exist however, to per-
form terrain corrections as part of the inversion process and
this is a subject of on-going research.

3.3 Parallel implementation

Our 3D inversion software is implemented as a multilevel
parallel application. The 3D earth model is divided in a dis-
tributed fashion over the Message Passing Interface (MPI).
On a fine-grained level, loops over the observation points
(i.e., data points) and a few other auxiliary loops within each
MPI process are further parallelized with a shared memory
OpenMP standard. This two-level approach has multiple ad-
vantages. First, it reduces the number of MPI communicat-
ing processes, greatly reducing communication stress on the
network. It also tends to save memory since there are data
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structures needing to be replicated by each process and most
of the data are shared by the OpenMP threads. Finally, it al-
lows for better locality of the processes/threads on the node’s
boards and sockets, which improves data transfers to/from
the main memory. This data locality is critical on current
non-uniform memory architecture (NUMA) computers with
a growing number of CPU cores.

In a typical cluster configuration, we run one or two MPI
processes per cluster node and each of these processes launches
a number of OpenMP threads - one thread per processor core.
The current generation of clusters ships with two hexa-core
CPUs (i.e., 12 cores) per node. We found that it is optimal to
run one MPI process per socket (i.e., two per node), with six
OpenMP threads per MPI process. This has the advantage of
pinning the process to the CPU socket so that it does not move
from one socket to another, which improves the memory per-
formance. We found that without pinning, the performance
can degrade by up to 20%.

Another important aspect of the program is file manage-
ment. We need to load the inputs for the inversion (i.e., ob-
served data and a priori model) and save the outputs from
3D inversion (i.e., predicted field data and final model). For
large-scale inversion, the sheer size of these data sets requires
an intelligent file management design. We implemented sev-
eral I/O options. Plain text and/or binary I/O is very slow for
3D models with hundreds of millions to billions of cells. For
improved I/O performance, we incorporated on-the-fly zip file
compression and both serial and parallel HDF5 support. Both
the zip files and serial HDF5 files are compressed, but we end
up with one file per MPI process (i.e., potentially hundreds of
files per 3D model). Parallel HDF5 enables us to write a single
file from all MPI processes. However, parallel HDF5 does not
support compression. In our tests, we found that the com-
pression is critical for good I/O performance. Furthermore,
the zip compression is slightly faster than HDF5, so we used
zip compression for all I/O presented in this paper.

In order to be able to invert millions of data to 3D earth
models with hundreds of millions to billions of cells, we eval-
uate the footprint radii and linear operators within each foot-
print as needed. For large-scale models, even just storing the
footprint cell indices for each datum would exceed available
system memory. We optimized computations involving the
kernels, re-using as many of the variables as possible and re-
ordering the loops in order to exploit the vectorization instruc-
tions of modern CPUs. This resulted in a several-fold speedup
as compared to unoptimized versions. Our 3D inversion is
relatively light in MPI communication, largely thanks to the
linearity of the forward modelling operators, which makes all

Figure 3 Parallel scaling efficiency for 3D inversion of the Vredefort
FALCON airborne gravity gradiometry case study of Wilson et al.
(2011). Strong scaling is shown in blue and weak scaling is shown in
red.

cells independent of each other. Most MPI communication
is located in accumulation of the sensitivities and in regular-
ization as reduction operations. Thanks to this, the program
exhibits excellent parallel scaling.

Parallel scaling is usually evaluated with two different met-
rics. The first one is called strong scaling, which measures
performance of a fixed problem size with an increasing num-
ber of processing elements. If the amount of time to finish the
work on one processing element is t1 and the time to finish
work on N processing elements is tN, then the strong scaling
efficiency is expressed as:

N
t1
tN

∗ 100%. (39)

Another parallel scaling evaluation metric is weak scaling,
which relates the time to complete one unit of work on one
processing element, t1, to the time to perform N units of work
on N processing elements, tN, as:

t1
tN

∗ 100%. (40)

In both cases, ideal (linear) scaling is 100%. Any scaling
below 100% is sublinear. Any scaling above 100% is super-
linear. We note that it is possible to achieve superlinear scal-
ing due to hardware architectural features that multiprocessor
programs can exploit.

We evaluated the parallel efficiency of our software using
the University of Utah Center for High Performance Com-
puting’s Ember cluster, which has 260 nodes, each equipped
with two hexa-core Intel Xeon CPUs (12 cores/node) running
at 2.8 GHz with 24 GB of RAM and a QDR InfiniBand inter-
connect. Figure 3 shows the parallel scaling efficiency with
the Vredefort FALCON case study by Wilson, Cuma and
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Zhdanov (2011). In the case of strong scaling, as depicted
by the blue line in Fig. 3, we chose a 3D model with ∼11
million cells and ∼600000 data. The scaling efficiency is ex-
cellent from 18–288 cores. We see a drop at 576 cores. This
is due to running 12 rather than 6 threads per process. The
memory load is much more uneven for the single MPI process
sharing threads on both CPU sockets within the node, which
decreases the efficiency by 15%. The weak scaling, depicted
by the red line in Fig. 3, varied the number of inversion cells
from ∼11 million cells on 18 cores to ∼350 million cells on
576 cores. Again, the scaling is nearly linear with a 1-2 % dif-
ference, which can be attributed to system noise. The outcome
from the scaling analysis is several-fold. First, our 3D inver-
sion software shows near-linear scaling and it is expected to
scale well to massively parallel computers with thousands of
cores. Second, we identified how process and thread locality is
critical in achieving optimal performance, with MPI processes
bound one per socket being the best choice.

4 C A S E S T U D Y - T I M M I N S , O N T A R I O

We independently applied our large-scale 3D potential field
inversion with a moving footprint to FALCON airborne grav-
ity gradiometry (AGG) and TMI data acquired over the Tim-
mins district in Ontario, Canada. Timmins is representative
of Archean terranes and is located in the Abitibi Subprovince,
including east of the Mattagami River Fault. The area is under-
lain by Archean (∼2.7 b.y.) mafic intrusives and metavolcanic
rocks in the east and felsic to intermediate metavolcanic rocks
in the west. NNW-striking Proterozoic diabase dykes are evi-
dent in the TMI data. Copper and lead-zinc vein/replacement
and stratabound, volcanogenic massive sulphide (VMS) min-
eralization occur in the immediate vicinity (Snyder et al. 2008).
For example, the Kidd Creek VMS deposit occurs within the
survey area.

4.0.1 Survey description

The FALCON AGG system is designed to measure horizontal
curvature components of the gravity gradient, i.e., gxy and
g� = gxx−gyy

2 . The full gravity tensor is then derived from these
measured components (Lee 2001). In October 2009, Fugro
Airborne Surveys flew a FALCON survey of 1743 line km over
the Timmins area. The survey was flown east-west with a line
spacing of 500 m and with two north-south tie-lines spaced at
5 km, over an area 36 km east-west by 22.5 km north-south.
The ground clearance was nominally 140 m flown in a drape
over the terrain. The measured gradients were processed by
the usual multistep FALCON processing procedures. After the

initial reduction of error due to the residual effects of aircraft
motion, the data were demodulated and low-pass filtered with
a 6th order Butterworth low-pass filter at a cut-off frequency
of 0.18 Hz. The demodulated data were corrected for the self-
gradient effects of the aircraft and the tie-lines were levelled.
These differential curvature gravity gradient data were further
processed to produce terrain-corrected data using a density of
2.67 g/cm3 and thence the full gravity gradient tensor. In the
processing, a low-pass filter with a cut-off wavelength of 750
m was applied to the data. TMI data were also acquired and
we inverted upon the anomalous TMI; i.e., the IGRF was
removed from the observed TMI.

4.0.2 3D inversion

For both FALCON and TMI data, the 37.8 km × 61.9 km ×
2.4 km inversion domain was discretized to more than
128 million 25 m cubic cells. The inversion domain conformed
to topography and contained no a priori density or suscepti-
bility models. Inversion was run for 127 733 AGG stations,
each containing all seven gravity gradients (gzz, gxx, gxy, gxz,
gyy, gyz, g�), giving a total of 894 131 data. Though some of
the gravity gradients are redundant, we found that their joint
inversion effectively suppresses noise across all channels. In-
version was also run for 596 092 TMI stations. Our previous
experience with moving footprint inversion (e.g., Cox et al.
2010) indicated that inversion of redundant data does not aid
model recovery.

From an initial weighted misfit of 100% for all FALCON
data, the 3D inversion converged to a final weighted misfit
of 19% after 50 iterations. Comparisons of the observed and
predicted data for all gravity gradient components are shown
in Fig. 4, and as one can see, the fit between observed and
predicted data is excellent. The 3D FALCON inversion re-
quired approximately 29 hours to complete, running on 12
nodes, each equipped with two dual-core (i.e., 8) Intel Xeon
CPUs running at 2.4 GHz with 24 GB of RAM and a QDR
InfiniBand interconnect.

Similarly, from an initial weighted misfit of 100% for the
TMI data, the 3D inversion converged to a final misfit of 10%
after 90 iterations. Comparisons of the observed and predicted
TMI data are shown in Fig. 5. The 3D FALCON inversion
required approximately 39 hours to complete, running on 12
nodes, each equipped with two dual-core (i.e., 8) Intel Xeon
CPUs running at 2.4 GHz with 24 GB of RAM and a QDR
InfiniBand interconnect.

In Fig. 6, we compare horizontal cross-sections of our
3D FALCON and TMI inversion results with the published
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Figure 4 Observed (left) and predicted
(right) FALCON data from Timmins.
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Figure 5 Observed (left) and predicted (right) anomalous TMI data for Timmins.

Figure 6 Comparison of (a) geology of the Timmins survey area; (b) a horizontal cross-section through the 3D density model obtained from
joint inversion of all FALCON gravity gradiometry data at -1213 m ASL, i.e., ∼1500 m depth from the topographic peak; (c) structural
interpretation (courtesy of Fugro Airborne Surveys) superimposed on the same horizontal cross-section through the 3D density model; (d) a
horizontal cross-section through the 3D susceptibility model obtained from inversion of TMI data at -63 m ASL, i.e., ∼300 m depth from the
topographic peak; and (e) structural interpretation (courtesy of Fugro Airborne Surveys) superimposed on the same horizontal cross-section
through the 3D susceptibility model.
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1:250 000 geological map for the Timmins district and with
structural interpretations made by Fugro Airborne Surveys.
We can observe very good agreement between our inversion
results and the inferred geology. In Fig. 7, we present 3D
perspectives of the density and susceptibility models. We note
that while the diabase dikes are expected to continue to depth,
their low amplitudes (circa 250 nT) are sensitive to only sev-
eral hundred metres depth. Two major intrusive units with
high amplitudes (circa 2000 nT) are shown to extend to depth.
We note that the FALCON and TMI inversions are recover-
ing different geological structures and this is to be expected.
The TMI data are dominated by major instrusives and N-
S trending diabase dikes. The FALCON data are dominated
by regional tectonics such as high density mafic instrusives
and metavolanics and low density felsic metavolcanics. To-
gether, their interpretations are complimentary of the actual
geology.

While the optimal footprint size can be estimated analyti-
cally for any desired level of accuracy (e.g., system noise), we
practically demonstrate the effectiveness of using a moving
footprint with the following table summarizing 3D inversion
performance for TMI. We note that all inversions ran to a
common misfit. The maximum susceptibility difference is rel-
ative to the 3D inversion with no footprint. Use of a footprint
that is too small introduces errors in the model while still sat-
isfying the data. We conclude that for 3D inversion with a
15 km footprint, there is negligible difference in the recovered
3D model.

Footprint size (km) Maximum susceptibility difference (%)

5 30
10 2
15 0.6
20 0.14

5 C ONCLUSIONS

We developed a methodology for practical yet truly large-
scale 3D regularized inversion of gravity and magnetic data,
whether these data be any combination of total field, vector, or
gradient components. We implemented a variety of regulariza-
tion options, including both smooth and focusing stabilizers.
We introduced a moving footprint approach, which allows
us to reduce memory requirements significantly, as well as
operation counts for matrix-vector multiplications. Our par-
allelization was implemented in such a manner that we have

Figure 7 3D perspective view of the Timmins (a) density model ob-
tained from 3D inversion of the FALCON gravity gradiometry data
and (b) susceptibility model obtained from 3D inversion of the TMI
data.

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14



Large-scale 3D inversion of potential field data 13

near-linear scaling. This means we can confidently implement
our software on massively parallel architectures and are effec-
tively unlimited in the size of inversion problem we can con-
sider. This has significant implications for airborne surveys,
as we are now able to invert large surveys to deposit-scale
model discretization. We demonstrated this with an example
for both FALCON and TMI from the Timmins district in
Ontario, Canada.

In terms of further developments, we implemented 3D mag-
netic inversion for remanent magnetization and applied this
to full tensor magnetic gradiometry (FTMG) data. The theory
and related case study will be the subject of a separate publi-
cation. We have presently optimized our software to the point
that nearly all runtime is dedicated to kernel computations.
As these are simple geometric functions, they lend themselves
to massive parallelization via GPUs, and this is a subject of
on-going development.
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