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S U M M A R Y
We introduce a new method of rapid interpretation of magnetic vector and tensor field data,
based on ideas of potential field migration which extends the general principles of seismic
and electromagnetic migration to potential fields. 2-D potential field migration represents a
direct integral transformation of the observed magnetic fields into a subsurface susceptibility
distribution, which can be used for interpretation or as an a priori model for subsequent
regularized inversion. Potential field migration is very stable with respect to noise in the
observed data because the transform is reduced to the downward continuation of a well-
behaved analytical function. We present case studies for imaging of SQUID-based magnetic
tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from
magnetic tensor field migration agree very well with both Euler deconvolution and the known
geology.

Key words: Numerical solutions; Inverse theory; Magnetic and electrical properties;
Australia.

1 I N T RO D U C T I O N

Magnetic vector data measured from orthogonal fluxgate magne-
tometers are dominated by the earth’s background magnetic field,
and are thus very sensitive to instrument orientation. Since their
development in the 1960s, optically pumped magnetometers have
been preferred for geophysical surveying as they directly measure
the total magnetic intensity (TMI) and are insensitive to instrument
orientation. Recently, SQUID-based sensors have been developed
for directly measuring magnetic tensors (e.g. Schmidt et al. 2004;
Stolz et al. 2006; Rompel 2009) which are advantageous for a num-
ber of reasons (Schmidt & Clark 2006). First, magnetic tensors
are relatively insensitive to instrument orientation since magnetic
gradients arise largely from localized sources and not the Earth’s
background field or regional trends. Secondly, magnetic tensor data
obviate the need for base stations and diurnal corrections. Thirdly,
the five independent components of the magnetic gradient tensor
provide additional information regarding source location and mag-
netization directions, which is advantageous for the interpretation
of under-samples surveys. Finally, remanent magnetization, includ-
ing the Köenigsberger ratio, can be recovered from magnetic tensor
data.

Given prior applications of SQUID-based systems for the real-
time tracking of objects, magnetic tensor data have historically been
interpreted by inversion for isolated sources (e.g. Wynn et al. 1975).
While these methods may provide information about the sources, it

is not immediately obvious how that information can be prepared
as an a priori susceptibility model for quantitative interpretation or
a subsequent 3-D regularized inversion. In this paper, we present
an alternative approach to rapid imaging of magnetic vector and
tensor field data, one which is based on and extends the ideas of
2-D potential field migration as originally introduced by Zhdanov
(2002), and gravity gradiometry migration, developed in Zhdanov
et al. (2011).

Mathematically, migration is described by an action of the adjoint
operator on the observed data. This concept has been long developed
for seismic and electromagnetic wavefields (e.g. Schneider 1978;
Berkhout 1980; Claerbout 1985; Zhdanov 1981, 1988, 2002) where
the adjoint operators manifest themselves as the (back) propagation
of seismic or electromagnetic fields in reverse time. When applied
to potential fields, migration manifests itself as a special form of
downward continuation of the potential field and/or its gradients
(Zhdanov et al. 2011). A downward continuation is applied to the
migration field which is obtained by relocating the sources of
the observed field into the upper half-space as mirror images of
the true sources. Contrary to conventional downward continuation
of the potential field, downward continuation of the migration field
is away from the mirror images of the sources. Therefore, migration
is a stable transform, similar to upward continuation. At the same
time, the migration field does contain remnant information about
the original source distribution, which is why it can be used for
subsurface imaging.
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The advantage of potential field migration for geophysical ap-
plications is that it does not require any a priori information or
assumptions about the type of the sources. In this paper, we provide
a detailed exposition of potential field migration theory as applied to
magnetic vectors and tensors in 2-D case, and demonstrate its appli-
cation to GETMAG magnetic tensor data acquired over a magnetite
skarn at Tallawang, Australia.

2 C O M P L E X I N T E N S I T Y O F 2 - D
M A G N E T I C V E C T O R F I E L D S

Consider a model with a 2-D distribution of magnetized regions
with intensity of magnetization, I(x, z) = (Ix (x, z), Iz(x, z)), within
a domain, � (Fig. 1). As per Zhdanov (1988), the magnetic field can
be expressed as:

H(x ′, z′) = 2∇̃′
∫ ∫

�

I(x, z) · (x − x ′)dx + (z − z′)dz

(x − x ′)2 + (z − z′)2
ds, (1)

where ∇̃′ denotes a 2-D differential operator, ∇̃′ = (∂/∂x ′, ∂/∂z′),
and dx and dz are the unit basis vectors of the Cartesian system of
coordinates. We can define the complex intensity of magnetization
as:

I (ζ ) = Ix (x, z) + i Iz(x, z). (2)

It follows that the complex intensity of the magnetic field can be
defined as:

H (ζ ′) = −Hx (x ′, z′) + i Hz(x
′, z′)

= AH (I ) = −2
∫ ∫

�

1

(ζ − ζ ′)2
I (ζ )ds, (3)

where ζ = x + iz, and AH denotes the modelling operator of the
magnetic field in terms of the complex intensity of magnetization.
As described by Zhdanov (1988), the complex intensity of the mag-
netic field satisfies the following equation:

∂

∂ζ ∗ H (ζ ) = 2I (ζ ). (4)

Figure 1. A complex plane describing the 2-D magnetic problem.

In what follows, we adopt the common assumption that there is
no remanent magnetization, that self-demagnetization effects are
negligible, and that the magnetic susceptibility is isotropic. Under
this assumption, the intensity of magnetization is given as a product
of the magnetic susceptibility χ (x, z), the strength of the inducing
magnetic field, Ho, and a unit vector l; i.e. defining the direction
of the inducing magnetic field. The intensity of magnetization can
be expressed via the 2-D distribution of magnetic susceptibility,
χ (x, z), as:

Ix (x, z) = Hoχ (x, z) cos θ ; Iz(x, z) = Hoχ (x, z) sin θ, (5)

where Ho is magnetic induction and θ is the angle of magnetization
which is the angle between the vector l and horizontal axis x.

Now, consider that ζ = x + iz and ζ ′ = x′ + iz′. The magnetic
field along the horizontal axis z′ = 0, according to eqs (3) and (5),
can be written as:

H (ζ ′) = −2
∫ ∫

�

1

(ζ − ζ ′)2
I (ζ )ds

= −2
∫ ∫

�

(cos θ + i sin θ )Hoχ

(x − x ′ + i z)2
ds ′. (6)

Eq. (6) can be used for modelling magnetic field data.

3 C O M P L E X I N T E N S I T Y O F 2 - D
M A G N E T I C T E N S O R F I E L D S

The second spatial derivatives of the magnetic potential form a
symmetric magnetic tensor:

Ĥ =
[

Hxx Hxz

Hzx Hzz

]
,

with zero trace, where:

Hαβ = ∂ Hα

∂β
, α, β = x, z. (7)

We define the complex intensity of the magnetic tensor field, HT (ζ ),
as a complex derivative of the complex intensity of the magnetic
field, H(ζ ):

HT (ζ ) = ∂ H (ζ )

∂ζ
= 1

2

(
∂

∂x
− i

∂

∂z

)
H (ζ ). (8)

Substituting eq. (3) into (8), we find that:

HT (ζ ) = Hzz(x, z) + i Hzx (x, z), (9)

which takes into account the symmetry of the magnetic tensor, i.e.
Hzx = Hxz, and the fact that magnetic potential outside the sources
should satisfy Laplace’s equation:

Hxx (x, z) + Hzz(x, z) = 0. (10)

According to eqs (6) and (8), we have the following expression
for the complex intensity of the magnetic tensor field:

HT (ζ ′) = AT (I ) = −4
∫ ∫

�

1

(ζ − ζ ′)3
I (ζ ) ds, ζ ′ /∈ �, (11)

where AT (I) denotes the modelling operator of the magnetic ten-
sor field in terms of the complex intensity of magnetization. As
for the magnetic vector field, we can express the magnetic tensor
field in terms of magnetic susceptibility, χ (x, z), and the angle of
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magnetization, θ :

HT (ζ ′) = −4
∫ ∫

�

1

(ζ − ζ ′)3
I (ζ )ds

= − 4
∫ ∫

�

(cos θ + i sin θ )Hoχ

(x − x ′ + i z)3
ds

= Hzz(x, z) + i Hzx (x, z). (12)

Eq. (12) can be used for modelling magnetic tensor data.
Note that both the complex intensities of the magnetic field H(ζ ′)

and the magnetic tensor field HT (ζ ′) are described by analytical
functions outside the masses, i.e. ζ ′ �∈ �. As will become apparent
in subsequent sections of this paper, the analytical representations
for the magnetic vector and tensor fields will serve a useful purpose
for the solution of their corresponding inverse problems.

4 A D J O I N T O P E R AT O R S O F C O M P L E X
M A G N E T I C V E C T O R A N D T E N S O R
F I E L D S

Mathematically, migration is the action of the adjoint operator upon
the observed data. The closed form of the adjoint operator for a
complex 2-D magnetic potential was first developed by Zhdanov
(2002). We will extend this derivation to 2-D magnetic vector and
tensor fields.

Let us assume that we have observed magnetic field, H(ζ ′), along
a line of observations, L. The domain, �, which is filled with the
masses generating the observed field, is located in the lower half-
plane. We introduce a complex Hilbert space, D, of magnetic data
with the metric:

(H, f )D =
∫

L
H (ζ ′) f ∗(ζ ′) dζ ′; H, f ∈ D, (13)

and a real Hilbert space, M , of models (i.e. magnetic susceptibility,
χ (ζ )) with the metric:

(η, χ )M =
∫ ∫

�

η(ζ )χ (ζ ) ds; J, χ ∈ M. (14)

We will derive an explicit form of the adjoint operator, AH
, for the
magnetic field such that for any function, f (x′):(

AH (χ ) , f
)

D
= (

χ, AH
 ( f )
)

M
. (15)

Using the definitions (13) and (14) of the inner products, and eq.
(6) for the modelling operator of the magnetic field, we can rewrite
eq. (15) as:(

AH (χ ) , f
)

D
=

∫ ∞

−∞
AH (χ ) f ∗dx ′

= −(χ, 2
∫ ∞

−∞

(cos θ + i sin θ )Ho f ∗(x ′)
(ζ − x ′)2

dx ′)M = (
χ, AH
 ( f )

)
M

,

(16)

where the asterisk, ∗, denotes the complex conjugate.
From eq. (16), we can find the following identity:(

χ, AH
 ( f ) + 2
∫ ∞

−∞

(cos θ + i sin θ )Ho f ∗(x ′)
(ζ − x ′)2

dx ′
)

M

= 0.
(17)

Since identity (17) holds for any χ (ζ ), we find that the adjoint
magnetic operator, AH
, applied to any function f (x′) is given by:

AH
 ( f ) = −2
∫ ∞

−∞

(cos θ + i sin θ )Ho f ∗(x ′)
(ζ − x ′)2

dx ′. (18)

From a derivation similar to the one given above, we can find that
the adjoint magnetic tensor operator, AT 
, applied to any function
f (x′), is given by:

AT 
 ( f ) = −4
∫ ∞

−∞

(cos θ + i sin θ )Ho f ∗(x ′)
(ζ − x ′)3

dx ′. (19)

Note that both the adjoint operators for magnetic vector and
tensor fields generate analytical functions. As will become apparent
in subsequent sections of this paper, these analytical representations
will serve a useful purpose for the solution of their corresponding
inverse problems.

5 A D J O I N T F I E L D S A N D T H E I R
R E L AT I O N S H I P W I T H T H E M A G N E T I C
A N D T E N S O R F I E L D M I G R AT I O N S

Let us analyze the result of applying the adjoint magnetic operator
to a magnetic field, H� , observed on the x axis::

AH
 H� = −2
∫ ∞

−∞

(cos θ + i sin θ )Ho H ∗
� (x ′)

(ζ − x ′)2
dx ′. (20)

Let us study the physical meaning of this last equation. First, we
examine the expression for H ∗

� (x ′) . According to eq. (6), we can
see that:

H ∗
� (x ′) = −2

∫ ∫
�

1

(ζ ∗ − x ′)2
I ∗(ζ )ds

= −2
∫ ∫

�∗

1

(ζ − x ′)2
I ∗(ζ ∗)ds = H�∗ (x ′), (21)

where H�∗ (x ′) can be treated as the magnetic field of the magnetic
sources located in domain �∗, which is a mirror image of domain �

with respect to the x axis (Fig. 2). We call H�∗ the adjoint magnetic
field. The complex intensity of magnetization Ĩ (ζ ) within �∗ is a
complex conjugate mirror image of the intensity of magnetization
distribution I(ζ ) in �, i.e. Ĩ (ζ ) = I ∗(ζ ∗). Obviously, the adjoint
magnetic field, H�∗, is an analytical function everywhere in the
lower half-plane, and can be expressed as:

H�∗ (ζ ) = −2
∫ ∫

�∗

1(̃
ζ − ζ

)2
Ĩ (̃ζ )d s̃, ζ /∈ �∗, z < 0, (22)

where ζ̃ = x̃ + ĩ z ∈ �∗ is a variable of integration, and d s̃ = d x̃d z̃.

Figure 2. Definition of the adjoint magnetic vector, H�∗ . The field H�∗
is generated by the sources located in �∗.The magnetic susceptibility dis-
tribution χ̃(ζ ) within �∗ is a mirror image of the magnetic susceptibility
distribution χ (ζ ) in � : χ̃(ζ ) = χ (ζ ∗).
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Now, let us consider Fig. 2. Let P+ stand for the upper half-
plane of a complex plane ζ , bounded by the real axis x, and P−

for the lower half-plane. We consider an arbitrary point ζ ∈ � and
draw therefrom a circle of radius, R. That part of the real axis
X that happens to lie inside the circle will be represented by bR,

while that part of the circle found inside P− will be denoted by CR.
According to the Cauchy integral formula, we have the following
relationship:

H�∗ (ζ ) = 1

2π i

∫
bR

H�∗ (ζ ′)
ζ ′ − ζ

dζ ′ + 1

2π i

∫
C R

H�∗ (ζ ′)
ζ ′ − ζ

dζ ′, ζ ∈ P−,

(23)

where the integration over the closed contour bR ∪ CR is taken in
the counter-clockwise direction. In particular, the integration over
the segment bR of the real axis is from right to left. Now, let radius
R go to infinity. The integral over semicircle CR would become zero
as R → ∞, because the function H�∗ (ζ ), being analytical, tends
uniformly to zero at infinity. Therefore, eq. (23) takes the form:

H�∗ (ζ ) = − 1

2π i

∫ ∞

−∞

H�∗ (x ′)
x ′ − ζ

dx ′, ζ ∈ P−, (24)

where H�∗ (x ′) is the magnetic field generated along the x axis by
the magnetic sources located in domain �∗, and the minus sign
arises because we have changed the direction of integration; it is
now conducted from the left (-∞) to the right (+∞).

According to eq. (21), we have the following relationship:

H�∗ (x ′) = H ∗
� (x ′). (25)

As a result, eq. (24) can be rewritten as follows:

H�∗ (ζ ) = − 1

2π i

∫ ∞

−∞

H ∗
� (x ′)

x ′ − ζ
dx ′, ζ ∈ P−. (26)

Note that, there is a close resemblance between eq. (26) and the
definition of the Hilbert transform of a real function of a real vari-
able [although eq. (26) involves complex variables]. In the case of
the conventional Hilbert transform, the observation point ζ usually
belongs to the line of integration, which results in the singularity of
the kernel 1/(x′ − ζ ) at this point. In our case, we assume that point
ζ is located inside P−, thus avoiding any singularity.

Taking into account eq. (26), we can represent eq. (20) in the
following form:

AH
 H� = −4π i(cos θ + i sin θ )Ho
∂

∂ζ
H�∗ (ζ ). (27)

Thus, we see that the application of the adjoint magnetic operator
to an observed magnetic field is equivalent to taking a derivative of
the analytical continuation of the adjoint magnetic field in the lower
half-plane. Following Zhdanov (2002), we will call this transforma-
tion a magnetic vector migration, and use the notation:

H m
� (ζ ) = AH
 H�, (28)

where H m
� is called the migration magnetic field.

In a similar way, the migration magnetic tensor field, H m
T (ζ ), is

introduced as a result of application of the adjoint operator, A

T , to

the complex intensity, HT (ζ ), of the observed magnetic tensor field:

H m
T (ζ ) = A


T HT . (29)

Note that, the complex conjugate of the complex intensity of the
magnetic tensor, H ∗

T , satisfies equations similar to eqs (25) and (26),
i.e.:

HT ∗ (x ′) = H ∗
T (x ′), (30)

HT ∗ (ζ ) = − 1

2π i

∫ ∞

−∞

H ∗
T (x ′)

x ′ − ζ
dx ′, ζ ∈ P−, (31)

where HT ∗ (ζ ) is the adjoint magnetic tensor field generated by the
magnetic sources located in domain �∗.

Taking into account eqs (29) and (19), we can write:

H m
T (ζ ) = 2π i(cos θ + i sin θ )Ho

∂2

∂ζ 2
HT ∗ (ζ ) . (32)

Thus, we see that the migration of the observed magnetic tensor
field, HT , is equivalent to taking the second derivative of the an-
alytical continuation of the adjoint magnetic tensor field, HT ∗ , in
the lower half-plane. Physically, this indicates that magnetic tensors
have a higher sensitivity to magnetization than magnetic vectors.

6 M I G R AT I O N I M A G I N G O F
M A G N E T I C F I E L D DATA

It is very well known that the adjoint operator plays an impor-
tant role in imaging and the solution of inverse problems (Zhdanov
2002). However, direct application of the adjoint operators to ob-
served data does not produce an adequate image of the subsurface.
It was shown by Zhdanov (2002) that, in order to image sources
at their correct locations, one should apply an appropriate spatial
weighting operator to the migration field. This weighting operator
is constructed based on the integrated sensitivity of the data to the
model parameters.

For example, the weighting operator W H for the magnetic inverse
problem is the linear operator of multiplication by functions wH

that are equal to the square root of the integrated sensitivity of the
complex intensity of the magnetic field, SH :

wH =
√

SH , (33)

where the integrated sensitivity of the magnetic vector field is cal-
culated by the following formula:

SH = Ho

√
2π

|z|3 , z < 0. (34)

Using the same approach as one discussed in Zhdanov (2002) and
Zhdanov et al. (2011) for gravity field, we can find the first approx-
imation for the distribution of magnetic susceptibility, described by
the following expression:

χ H (ζ ) = w−1
H (z) χw

1
= kH w−1

H (z) ReAH

w (H�)

= kH w−2
H (z) ReAH
(H�) = kH w−2

H (z) ReH m
� (ζ ),

(35)

where

kH =
∥∥AH


w H�

∥∥2

M∥∥AH
w AH


w H�

∥∥2

D

. (36)

The magnetic susceptibility defined by eq. (35) is called a migration
susceptibility and it is denoted as χ H

m (ζ ) :

χ H
m (ζ ) = χ H (ζ ) = kH w−2

H (z) ReH m
� (ζ ), (37)

where ζ ′ = x′ + iz′. It is proportional to the weighted real part of
the migration magnetic field, H m

� .

Thus, migration with spatial weighting provides a stable al-
gorithm for calculating the migration susceptibility. Substituting
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eq. (20 ) into (28) and (37), after some algebra, we finally find:

χm (x, z)

= 2kw
0 w−2

H (z)
∫ ∞

−∞

(cos θ Hx − sin θ Hz)[(x − x ′)2 − z2]

[(x − x ′)2 + z2]2
Hodx ′

+ 4kw
0 w−2

H (z)
∫ ∞

−∞

(sin θ Hx + cos θ Hz)(x − x ′)z
[(x − x ′)2 + z2]2

Hodx ′.
(38)

7 M I G R AT I O N I M A G I N G O F
M A G N E T I C T E N S O R F I E L D

The migration magnetic tensor field, H m
T (ζ ), was introduced above

as a result of application of the adjoint operator, A

T , to the complex

intensity, HT (ζ ), of the observed tensor field:

H m
T (ζ ) = A


T HT , (39)

where according to eq. (19)

A

T HT = −4

∫ ∞

−∞

(cos θ + i sin θ )Ho H ∗
T (x ′)

(ζ − x ′)3
dx ′. (40)

As for magnetic field, we can introduce a migration magnetic sus-
ceptibility based on the magnetic tensor migration:

χ T
m (ζ ) = kT 0w

−2
T (z) A


T HT = kT 0w
−2
T (z) H m

T (ζ ), (41)

where:

kT =
∥∥Aw


T HT

∥∥2

M∥∥Aw
T Aw


T HT

∥∥2

D

, (42)

Aw
T =AT W −1

T . (43)

As usual, the weighting function wT is selected to be equal to the
square root of the integrated sensitivity of the magnetic tensor field,
ST :

wT =
√

ST , (44)

where the integrated sensitivity of the magnetic tensor field is cal-
culated by the following equation:

ST = Ho

√
6π

|z|5 , z < 0. (45)

Finally, for the magnetic tensor fields, we can find the expression
of the migration magnetic susceptibility as:

χ T
m = −4kw

0 w−2
T (z)

×
∫ ∞

−∞

(cos θ Hzz + sin θ Hzx )[(x − x ′)3 − 3(x − x ′)z2]

[(x − x ′)2 + z2]3
Hodx ′,

− 4kw
0 w−2

T (z)
∫ ∞

−∞

(sin θ Hzz − cos θ Hzx )[3(x − x ′)2z − z3]

[(x − x ′)2 + z2]3
Hodx ′.

(46)

8 M O D E L S T U D I E S

To demonstrate the effectiveness of 2-D potential field migration for
both magnetic vector and tensor data, we first consider two synthetic
2-D models. The first synthetic model consists of a rectangular body
of 100 m width and 300 m depth, buried 400 m below the surface.
The susceptibility of the body is 0.4 SI and it is embedded in
an otherwise homogeneous and non-magnetic host. The inducing
magnetic field has an inclination of 45 degrees, and we contaminated
both vector and tensor data with random Gaussian noise equal to

Figure 3. (a) Synthetic magnetic vector (Hx and Hz) data with 30 per cent
noise for single body with 0.4 susceptibility. (b) Magnetic vector migration
image. (c) Synthetic magnetic tensor (Hzz and Hzx) data with 30 per cent
noise for single body with 0.4 susceptibility. (d) Magnetic tensor migration
image.

30 per cent of the signal of each component. The results are shown
in Fig. 3. As can be seen, the body is recovered from both vector and
tensor migrations; as expected, the latter provides a more compact
image of the body.

The second synthetic model consists of two square bodies of
200 m dimension; one at 300 m depth, and the other at 400 m depth.
The susceptibility of both bodies is 0.4 SI. They are embedded in
an otherwise homogeneous and non-magnetic host. The inducing
magnetic field has an inclination of 45 degrees, and we contami-
nated both vector and tensor data with 30 per cent random noise.
The results are shown in Fig. 4. Again, both bodies are recovered
from both vector and tensor migrations; and as expected, the latter
provides a more compact image of the bodies.

It is important to emphasize that migration suppresses the effect
of the noise on the data and provides a correct image of the target
even in a case of 30 per cent random noise. These examples illustrate
the fact that migration is indeed a very stable transformation.

9 C A S E S T U DY

The most appropriate sensors for measuring magnetic tensors are
superconducting quantum interference devices (SQUIDs), which
detect minute changes of flux threading a superconducting loop.
They are therefore variometers rather than magnetometers, but they
are vector sensors since only changes perpendicular to the loop are
detected (Foley & Leslie 1998; Foley et al. 1999; Lee et al. 2001).
Based on Tilbrook (2004), a manually rotated prototype of CSIRO’s
GETMAG magnetic gradiometer (Schmidt et al. 2004) is an

C© 2012 The Authors, GJI, 189, 1361–1368
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Figure 4. (a) Synthetic magnetic vector (Hx and Hz) data with 30 per cent
noise for two bodies with 0.4 susceptibility. (b) Magnetic vector migration
image. (c) Synthetic magnetic tensor (Hzz and Hzx) data with 30 per cent
noise for two bodies with 0.4 susceptibility. (d) Magnetic tensor migration
image.

Figure 5. Schematic of CSIRO’s GETMAG sensor configuration with the
three rotating SQUID sensors in an umbrella configuration (from Schmidt
et al. 2004).

integrated package of three rotating single-axial gradiometer sen-
sors in an umbrella arrangement, as shown in Fig. 5. This configu-
ration has several distinct advantages. First, it reduces the required
number of sensors and electronics. Secondly, the amount of cross-
talk between sensors is reduced by employing different rotation
frequencies. This shifts the measurement (rotation) frequency from
quasi-DC to tens or hundreds of hertz, leading to a reduced intrinsic
sensor noise and a reduced influence of low frequency mechani-
cal vibrations; thus, the requirements for a suspension system for
airborne deployment are significantly reduced. Thirdly, by imple-
menting data extraction through Fourier analysis, magnetic vectors

can be separated from magnetic tensors as the signals are centered
at the fundamental and at twice the rotation frequency, respectively.
Thus, with only three single-axial sensors, all vector and tensor
components can be recovered.

Schmidt et al.(2004) demonstrated CSIRO’s GETMAG system
with a field trial of three profiles (50, 60 and 120 mN) over a
magnetite skarn deposit at Tallawang, near Gulgong in New South
Wales, Australia. The deposit is roughly tabular, striking north-
north-west and dipping steeply to the west. The survey was approx-
imately perpendicular to strike, minimizing aliasing and effectively
making the surveys 2-D. The Tallawang magnetite skarn is located
along the western margin of the Gulgong Granite, which was in-
truded during the Kanimblan Orogeny in the Late Carboniferous.
In detail, the magnetite occurs in lenses thought to reflect replace-
ment of a tightly folded host rock sequence (Tucklan Beds), and is
additionally complicated by transverse faulting, causing east-west
displacement of the magnetite zones. The magnetite body is well
delineated by numerous drill holes and the rock magnetic properties
of the magnetite have been well characterized. The strongest sam-
ples possessed susceptibility of 3.8 SI (0.3 cgs) and remanence of
40 Am−1, yielding Köenigsberger ratios between 0.2 and 0.5. The
mean direction of the remanence is west-north-west and steeply up.
This direction may be the result of a dominant viscous remanent
magnetization in the direction of the recent geomagnetic field, and
a reversed mid-Carboniferous component, dating from the time that
the Gulgong Granite was intruded. The effective magnetization,
projected onto a vertical plane perpendicular to strike, is directed
steeply upwards.

We have applied magnetic tensor migration to the three profiles
of GETMAG Hzz and Hzx data to obtain 2-D susceptibility images.
Figs 6, 7 and 8 show the observed data and migration images for each
of the GETMAG profiles. In each of the figures, the background is

Figure 6. Magnetic tensor migration for GETMAG components Hzz and
Hzx measured on line 50 mN over the Tallawang magnetite skarn.
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Figure 7. Magnetic tensor migration for GETMAG components Hzz and
Hzx measured on line 60 mN over the Tallawang magnetite skarn. The
anomaly at 40 m E corresponds to a steel drill collar at the surface.

Figure 8. Magnetic tensor migration for GETMAG components Hzz and
Hzx measured on line 120 mN over the Tallawang magnetite skarn.

Figure 9. Inferred geology of the Tallawang magnetite skarn superimposed
on the magnetic tensor migration image for GETMAG components Hzz and
Hzx measured on line 50 mN.

dominated by uniformly magnetized strata (i.e. no external magnetic
expression). The magnetite skarn deposit is recovered as a dike-like
body whose top is about 10 m deep, with a maximum susceptibility
at approximately 30 m depth; most probably fresh, unweathered
magnetite with significant magnetization in contrast to the mantle
of the weathered skarn. These results are in very good agreement
with those obtained from Euler deconvolution (Schmidt et al. 2004)
and the known geology (Fig. 9). We note that our migration result
is inherently 2-D, meaning that local (e.g. 3-D) strike could not be
recovered; thus the fault between profiles 60 and 120 mN is not
identified. However local strike information is readily derived from
eigenvector analysis of the gradient tensor (Schmidt et al. 2004).

1 0 C O N C LU S I O N S

We have introduced the theory of 2-D potential field migration and
demonstrated its application to the imaging of magnetic vector and
tensor data. We have shown that magnetic migration is equivalent to
a special form of downward continuation for the complex conjugate
of the observed magnetic fields. The sources of the migration field
are a mirror image (with respect to the observational profile, fol-
lowed by downward continuation of the complex conjugate of the
observed magnetic field data) of the true sources. Physically, the mi-
gration field can be obtained by moving the sources of the observed
magnetic fields above the observational profile, and by then down-
ward continuation the complex conjugate of the observed magnetic
field data. The migration field contains remnant information about
the original sources so it can be used for imaging the susceptibility
distribution in the subsurface. The remarkable feature of poten-
tial field migration is that, contrary to the conventional transforms
such as downward continuation or the calculation of higher order
derivatives, the method is very stable and produces robust images of
subsurface structures. In addition, the method does not require any
a priori information about the type of the source of the magnetic
field. Note that, in both theoretical and field examples we observe
the broadening of the high susceptibility zone/region with depth in
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the migration images. This property is consistent with the known
decrease of the resolution from potential field data.

We have applied our migration to GETMAG magnetic tensor data
over a magnetite skarn at Tallawang in New South Wales, Australia;
the results of which agree very well with both Euler deconvolution
and the known geology. Similar to Zhdanov et al. (2011), magnetic
migration can be extended to the 3-D case, and this will be the
subject of a subsequent paper.

We note in the conclusion that the developed method is also
applicable to the vast amounts of high quality conventional magnetic
survey data that have been acquired over the last few decades, if
those data are processed to calculate vector and tensor data by
Fourier processing of TMI measurements.
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