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[1] We introduce a new approach to the joint inversion of
multimodal geophysical data using Gramian spaces of model
parameters and Gramian constraints, computed as determi-
nants of the corresponding Gram matrices of the multimodal
model parameters and/or their attributes. We demonstrate
that this new approach is a generalized technique that can
be applied to the simultaneous joint inversion of any number
and combination of geophysical datasets. Our approach
includes as special cases those extant methods based on cor-
relations and/or structural constraints of the multimodal
model parameters. As an illustration of this new approach,
we present a model study relevant to exploration under
cover for iron oxide copper-gold (IOCG) deposits, and
demonstrate how joint inversion of gravity and magnetic
data is able to recover alteration associated with IOCG
mineralization. Citation: Zhdanov, M. S., A. Gribenko, and
G. Wilson (2012), Generalized joint inversion of multimodal
geophysical data using Gramian constraints, Geophys. Res. Lett.,
39, L09301, doi:10.1029/2012GL051233.

1. Introduction

[2] Different geophysical fields provide information about
different physical properties of the earth. Multiple geo-
physical surveys spanning gravity, magnetic, electromag-
netic, and seismic methods are often interpreted to infer
geology from models of different physical properties. In
many cases, the various geophysical data are complimentary,
making it natural to consider a formal mathematical frame-
work for their joint inversion to a shared earth model. There
are different approaches to joint inversion. The simplest case
of joint inversion is where the physical properties are iden-
tical between different geophysical methods [Jupp and
Vozoff, 1975].

[3] In other cases, joint inversion may infer theoretical,
empirical or statistical correlations between different phys-
ical properties [Chen et al., 2007]. In cases where the
physical properties are not correlated but nevertheless have
similar structural constraints, joint inversion can be formu-
lated as a minimization of the cross-gradients between dif-
ferent physical properties [Haber and Oldenburg, 1997;
Gallardo and Meju, 2003, 2007, 2011].

[4] Note that, in practical applications, the empirical or
statistical correlations between different physical properties
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may exist, but their specific form may be unknown. In
addition, there could be both analytical and structural cor-
relations between different attributes of the model param-
eters. There remains a need to develop a method of joint
inversion which would not require a priori knowledge about
specific empirical or statistical relationships between the
different model parameters and/or their attributes.

[5] In this letter, we address this problem by introducing
a unified approach to joint inversion using Gramian con-
straints, which are based on the minimization of the deter-
minant of the Gram matrix of a system of different model
parameters (a Gramian). The basic underlying idea of this
approach is that the Gramian provides a measure of correla-
tion between the model parameters. By imposing an addi-
tional requirement of the minimum of the Gramian, we arrive
at the solution of the joint multimodal inverse problem
with the enhanced correlation between the different model
parameters and/or their attributes. This unified approach is
general, as it can be shown that extant methods based on
correlations and/or structural constraints are special case
reductions.

2. Gramian Spaces of Model Parameters

[6] In general, we can consider the modeling of multiple
geophysical data as the operator relationships:

40 (mm) =d", i=1,2,...n, (1)

where, in a general case, A9 is a nonlinear operator,
m® @i=1,2,3, ..., n) are the unknown model parameters
which form a complex Hilbert space of model parameters,
M, with an L, norm defined by the corresponding inner
product:

(m(i)7m(j)>M = /l/m(i)(r)m<j)*(r)dv, ||m(i)}|12\4 = (m(i>,m(i)>M.

(2)

In equation (2), r is a radius vector defined within a
volume, V; asterisk * denotes the complex conjugate. Note
that d” are different data that belong to a complex Hilbert
space of data, D, with an L, norm defined by the corre-
sponding inner product:

(a9,a7) = / dOw)d (r)ds, [|a?|;, = (a9.a?) |
S

(3)
where S is an observation surface. Let us consider two

arbitrary functions from the model space, p(r), ¢(r) € M. We
introduce a new inner product operation, (p, ¢)w, between
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two functions, p and ¢, as the determinant of the following
matrix:

(P-,q)(;m =

(m®,m(M) (m®,m@) (m<2>:m<n—1>)M m?.q),,
(mw—li;m D), (mD,m®), (m(n—1)7';,'1<n—1> m(";{).?q)M
(p,m),, (p.m?),, (p,m=1) ®,9)
(4)
where all properties of the inner product hold:
(p7 q)G(") = (q7p)*(;(u)7 (5)

<(¥1P<1) + 042P(2>7 q)(;(ﬂ) = <p(l>7 fI)G(,,) + o (P(2>7 q)G(”)’ (6)

®,p)gm = 0. (7)

The last property (7) follows from the fact that the norm
square of a function, ||p||/&», is equal to the determinant,

Gm'"", m®, ..., m"V, p), of the Gram matrix of a set

of functions, (m(l), m®, .., m"Y, p), which is called a

Gramian:
HPHE(GJ = (p’p)Gw,) = G(m(l)7m<2)~, .m,m(n—l)’p)
D m0), O m®), (DO () p)
M@ m0), (@, m®), (@ w0y (@, p),,
= (mwlj;'mU))M (m(n—l;;.’n(Z))M (m<n71>;;,',(n71>)M (m(n;].).’p)M
(pom ™), (P m®),, (P D), M
(8)
The Gramian satisfies Gram’s inequality:
Gm",m® | ... m"Y p)>0. (9)

Note that equality holds in (9) if the system of functions
mV, m@, ..., m" Y, p) is lincarly dependent.

[7] We introduce a Gramian space of the model param-
eters, G™, as the Hilbert space formed by the integrable
functions, defined within a volume, ¥, with the inner product
operation defined by equation (4). The main property of the
Gramian space is that the norm of a function, p, in the
Gramian space provides a measure of correlation between
the function and the model parameters, mY, m®, . om Y,

[8] In a similar way, one can introduce a Gramian space
GY where inner product is defined in a similar manner to
equation (4), with the only difference that functions p and ¢
are located within the row and column with number j,
respectively:

(pa q)G(/) =
(m“),m(l))M (m(1)7m(2))M (m(l>’q)M (m(1)7m(n))M
(p7m<]))M <p7m<2)>M (p7q)M (p7m(n))
(m(’1>,m(l))M (m(”),m(z))M (m(n)7q)M (m(” 7m(ﬂ))M
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In the Gramian space G, the norm square of a function,
|Ipll», is equal to the Gramian of a set of functions,

mP, m@, ... mY™Y, p, mYDm™):

Hszg(/) = (pvp)GU) = G(m(1)7m(2)7 ""m(jil)7p7m(j+l)u (RS}

Therefore, the norm of the function in the Gramian space,
GV, provides a measure of correlation between this function
and all other model parameters, with the exception of
parameter m”. Note that this Gramian norm has the fol-

lowing property:

Hm(t)Hsz = Hm</)||2c<m (12)
fori=1,2,...,n;j=1, 2, ..., n. The relationship stated in
equation (12) follows directly from the definition of the
Gramian norm, equation (11). Equation (12) demonstrates
that all functions have the same norm in the corresponding
Gramian spaces, GU),j =1,2,...,n

3. Gramian Spaces of Model Parameter
Transforms

[9] The use of Gramian constraints can be generalized to
make it possible to introduce any function of the model
parameters. We do this by introducing a transform operator,
T, of the model parameters from model space, M, to the
transformed model space, M7:

f=1Tp, (13)

g =1y, (14)
where p, ¢ € M, f, g € M. The transform operator, 7, can be
chosen as a differential operator (e.g., gradient or Laplacian),
an absolute value of the model parameters or their deriva-
tives, a Fourier transform, a logarithm, an exponential, or any
other transform which emphasizes specific properties of the
models. We consider all transformations as attributes of the
model parameters, because they are defined as some func-
tions of the model parameters. Let us consider two arbitrary
functions from the transformed model space with a given
inner product operation:

(.8, = / (g (F)dv. (15)

We can introduce an inner product operation, (f, g)ce,
between the two functions as the matrix determinant:

(f7g)G(T”) =
(Tm(l),Tm“))MT (Tm“),Tm(z))Mr (Tm(l),g)MT
(Tm(z)7 Tmm)MT (Tm(z),Tmm)MT (Tm(z),g)MT
(Tm(”*l),Tm(l))MT (Tm(”*l),Tm(z))MT (Tm(”*]>7g)MT
(.fa Tm(l))M, (fa Tm(z))Ml (f?g)MT
(16)
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[10] The norm square of a transformed function, |7p|&.
is equal to the Gramian of a system of transforms,

(ITm®, Tm®, ...., Tm"~V, Tp):

= G(Tm(l), Tm®, ..., Tm" Y, Tp).

(17)

Therefore, the norm of the transformed function p in the
Gramian space provides a measure of correlation between the
transform of this function and similar transforms of the model
parameters, 7 m(]), T m(z), ooy T m” Y. Minimization of the
norm, ||7p||Ge, will result in multi-attributed models with
correlated transforms of the model parameters.

4. Gramian Spaces of Model Parameter Gradients

[11] As an example of one class of model parameter
transforms, we can consider the gradients of the model
parameters. While there may not be any correlations between
different model parameters, there may be structural correla-
tions of their distributions, which can be related in a Gramian
space of model parameter gradients. This is equivalent to the
now widely used approach of minimizing the cross-gradients
between different model parameters [Gallardo and Meju,
2003]. For example, we can select the operator, 7, as the
gradient operator, V. We can determine the inner product of
two arbitrary gradient functions from the model space of
gradients, Vp(r), Vq(r) € My, as:

amwmzﬂmeme (18)

Accordmg to equations (16) and (17), the norm square,
IVpll& w, of a gradlent of a function in the corresponding

Gramian space, G, is equal to the Gramian of the system
of gradients, Vi, Vm'®, ..., Vm"™ Y, Vp:

HVpHZG(Vn) =G(Vm, vm? ... vm"V Vp). (19)

Therefore, the norm of the gradient of a function, p, in the
Gramian space provides a measure of correlation between
the gradient of this function and the gradients of the model
parameters, Vm(l), Vm(z), cen Vm” V. Minimization of
this norm, ||Vpl|ge, will result in multi-attributed models
with correlated gradients, similar to minimization of the
cross-gradients of the model parameters.

5. Regularized Joint Inversion of Multimodal
Data With the Gramian Stabilizers

[12] For regularized joint inversion, we minimize a para-
metric functional with the Gramian stabilizers:

P (m), m®

— Z HAm(m(
i=1

+ acSg, — min

NTE no
)) — d(’)HD + acy ; N
(20)
where 4% (m')) are the predicted data, « is the regularization

parameter, S’ are smoothing or focusing stabilizing func-
tionals of the corresponding model parameters [Zhdanov,
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2002], Sg, is the Gramian stabilizing functional for trans-
formed model parameters:
SGT = HTm(n)HzG(u) B G(Tm“),Tm(z),

, Tm"=1), (21)

It is implied that the transform operator, 7, may be the
identity operator, and c¢; and c, are the weighting coeffi-
cients determining the weights of the different stabilizers in
the parametric functional. At the initial stage of the inver-
sion, coefficients ¢; and ¢, can be selected as unities. After
calculating both the stabilizing and Gramian stabilizing
functionals and comparing their magnitudes, it could be
determined if an additional scaling is necessary. The coef-
ficients ¢; and ¢, can be adjusted to bias either stabilizer.
Note that, according to the properties of the norm, ||...|| G

in the Gramian space, G5, minimization of this norm results
in enforcing the correlation between different transforms
(attributes) of the model parameters.

[13] To minimize parametric functional (20), we can
construct the regularized conjugate gradient (RCG) method
[Zhdanov, 2002], which for the kth iteration can be sum-
marized as:

r = A(my) —d, (22a)
1= 1°(my), (22b)
B = 1/ P, (22¢)
A (22d)
7 = (1) A Fus I+ o W), (20
my = my; — §¢ l” (22f) (22)

where d = (dV),d?,...,d") is the vector of observed
data m 0w

(mk Sy )
parameters, 4(my) is the vector of predicted data, F), is the
linear operator of the Fréchet derivative of A(my), W is a
la(n)
k

m= is the vector of model

model weighting matrix, and 1} = (l,fm, l,(:(z), ey ) is
the vector of the direction of steepest ascent. Coefficients 33
and s} are scalars used to determine the conjugate direction
and step lengths, respectively.

[14] Following Zhdanov [2002], expressions for the
direction of steepest ascent, /¢, can be found from the first
variation of the parametric functlonal (20):

AD Dy — d<f>) +

5P =2 ; G N

+2a (Cl i 68 4 Cz&SGT> = i ((Sm(i)7 1[?’(/')).

i=1 i=1

(23)

where F is the linear operator of the Fréchet derivative of
AP We now find the first variation of the Gramian stabi-
lizing functional:

856:= 3 b [T = |7 s
_ZZ<6WI GT>7

(24)
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Table 1. Physical Properties of Minerals That Form the Ternary
System of the Synthetic IOCG Deposits

Rock Type Density (g/cc) Susceptibility (SI)
Magnetite 5.00 5.0
Hematite & sulfides 5.00 0.0
Host 2.65 0.0

where we take into account property (12) of the Gramian

norm, and the first variation of the norm, ||77 m(i)”sz, is cal-
g
culated as:

n
Om) HTm(i) HZG(T‘) =2 (5m(i), 21: (—l)iHGi?mF;Tm(j))
=
i)
Gr

~

2(6m(i)7 ) (25)

In this last equation, G,]T»”’ is the corresponding minor of the
Gram matrix G(77 mD, Tm®, .., T m(”)) formed by eliminat-
ing column i and row j, F7 is the adjoint derivative of the
transform operator, 7, and vectors 183 are the directions of
steepest ascent for the Gramian stabilizing functionals,
formed by the Gramian of the transformed model parameter:

n
15 =23 (-1)YGI"F;Tm!. (26)
=1

Substituting equation (26) into equation (23), we find the
directions of steepest ascent of the parametric functional P*:

o) = i (A<") (') d(’)> +afel? + czzgj_), (27)

where [ are the directions of steepest ascent of the
smoothing or focusing stabilizing functionals, which are
explicitly defined in Zhdanov [2009].

[15] As per Zhdanov [2002], adaptive regularization is
implemented to decrease the regularization parameter as the
iterative process (22) proceeds until it is either terminated
when the misfit reaches a desired level, or a maximum
number of predetermined iterations is reached, or the misfit
fails to decrease by a predetermined threshold between
iterations. The interested reader can find a detailed expla-
nation of the theory of the regularized conjugate gradient
(RCG) method in Zhdanov [2002, 2009].

6. Model Study

[16] Mineral exploration has been driven towards covered
terrains with little or no basement outcrop where the strategy
is to obtain maximum value from pre-competitive public
data and high resolution proprietary surveys. For example,
the surface geology of the Gawler Craton in South Australia
is characterized by an almost complete absence of basement
outcrop, with variable mesoproterozoic-cretaceous cover to
nearly 1300 m depth. Yet, the province is host to the world-
class Olympic Dam iron oxide copper-gold (IOCG) deposit,
and remains highly prospective [e.g., Bastrakov et al., 2007].
For mineral explorers, the challenge is in discriminating
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between major mineralized IOCG systems and sub-economic
or minor systems concealed by deep cover where minimal
geologic and geochemical data are available.

[17] Hanneson [2003] described a simple method by
which density and susceptibility could be used to infer the
distribution, intensity, and proportions of hematite and mag-
netite alteration associated with IOCG mineralization. As per
Williams et al. [2004], we assume that the primary controls on
the physical properties are the three end-members: magnetite,
hematite/sulfides, and barren host rock (Table 1); and that
significant alteration will have a stronger effect on the physical
properties than differences in the host lithology. We also
assume that the magnetite component will include all sus-
ceptible minerals as their magnetite equivalents. Similarly,
the hematite and sulfide component includes contributions
from other dense non- or weakly-magnetic minerals. The
inversion of total magnetic intensity (TMI) data assumes that
the anomalous TMI is solely due to induced magnetization,
and that the susceptibility must always be positive.

[18] Surface gravity and airborne TMI data were simulated
for a synthetic earth model that contained two IOCG min-
eralization systems; one which would be considered of
economic interest as contains magnetite alteration, and the
other which would be considered uneconomic as it contains
no magnetite alteration (Figure 1). Gravimeters were located
on the surface every 200 m on a regular grid spanning
5000 m in the Easting, and 3000 m in the Northing. Total
magnetic intensity (TMI) magnetometers were located on
the same horizontal grid but at an elevation of 30 m above
the ground. These survey designs simulate ground gravity
and airborne magnetic surveys (Figure 2). For the purpose of
this study, no noise was added to the data. However, we
conducted other modeling and inversion studies which have
confirmed the robustness of this approach to noisy data. The
above described joint inversion methodology was applied
with focusing regularization [Zhdanov, 2002], and Gramian
constraints on the density and susceptibility with no other a
priori information or constraints enforced. Initially, coeffi-
cients ¢; and ¢, were selected as unities. After scaling each
of the model parameters m™ by their corresponding maxi-
mum absolute values, both the stabilizing and Gramian sta-
bilizing functionals displayed comparable magnitudes, and
no additional scaling was necessary. An adaptive regulari-
zation parameter scheme was used with initial regularization
parameter as a ratio of the norm of the residual functional
to the norm of the stabilizing functions, and relaxation
ratio of 0.9. Our choice of Gramian constraints on the density
and susceptibility rather than their transforms (e.g., cross-
gradients) is entirely appropriate given the known relations
between the physical properties of the ternary system
[Hanneson, 2003]. Note that, the advantage of the Gramian
approach to the joint inversion is that it does not require a
priori knowledge about specific empirical or statistical rela-
tionships between the different model parameters. In fact, we
recover these relationships based on the results of the joint
inversion, which will be illustrated below.

[19] From joint inversion, we estimate the density (p) and
susceptibility () of each cell in the earth model. However,
in mineral exploration, we are particularly interested in tar-
geting potential mineralization systems. In the IOCG model
study we have considered, we want to recover the fraction
volumes of magnetite, hematite, and host rock. As described
by Hanneson [2003], we have the weakly nonlinear relations
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Figure 1. Vertical cross sections of the (a) magnetite, (b) hematite, and (c) host rock fraction volumes for the two synthetic
IOCG mineralization systems for which gravity and magnetic data were simulated. Corresponding vertical cross sections of
the (d) magnetite, (¢) hematite, and (f) host rock fraction volumes of the I[OCG mineralization systems as recovered from the
joint inversion of synthetic gravity and magnetic data with focusing regularization and Gramian constraints on the density
and susceptibility.
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Figure 2. (left) Observed and (right) predicted (top) gravity and (bottom) total magnetic intensity data.

between the physical properties and fraction volumes (f) of
the ternary system:

X = Xinagnetite fmagnetite + Xnematite.frematite + Xnost Jhost  (28)
pP=p o ite T P ite Jhematite T Phost Jhosts (29)
1 :fmagnetite +ﬁlematite +ﬁtosta (30)

where ¢ accommodates the nonlinear dependence of the
susceptibility on the proportion of magnetite, and varies
from 1.00 to 1.35. As per Williams et al. [2004], we can
assume ¢ = 1.00 so equation (29) reduces to a linear system
of three equations with three unknown fraction volumes
which can be solved analytically. Applying this to our joint
inversion results, we obtain 3D mineral models (Figure 1)
for which we observe a magnetite and hematite/sulfide dis-
crimination in the left target, and no such discrimination in
the right target.

[20] Further, we can cross-plot the recovered densities and
susceptibilities by a joint inversion for all cells in the earth
model with the original physical properties (Figure 3a). We
have also cross-plotted the densities and susceptibilities for
all cells in the earth model as recovered from independent
inversions of the gravity and magnetic data (Figure 3b). As
expected, there is a continuum of the recovered physical
properties. However, we note that, the physical properties
recovered from joint inversion are characterized by clearly
observed strong joint dependence (Figure 3a) with the trend,
which follows the trend of the actual physical properties (red
circles). At the same time, the physical properties recovered
from independent inversions produce a “cloud” of points in
the cross-correlation plot and practically have no trend with

the actual physical properties (red circles). These plots
clearly demonstrate a significant improvement in the corre-
lation between the model parameters recovered by the joint
inversion with the Gramian constraints in comparison with
those obtained by the independent inversions.

[21] We note that additional minerals can also be added
to equation (29) to make it an under-determined system
[Williams and Dipple, 2007]. Further, equation (29) can be
generalized to also include an effective medium model for
the conductivity [e.g., Zhdanov, 2008] as would be recovered
from the joint inversion of gravity, magnetic, and electro-
magnetic data. The resulting nonlinear system of equations
for the fraction volumes is then solved via a nonlinear
inversion.

7. Conclusions

[22] We have developed a generalized method for the joint
inversion of multimodal geophysical data based on intro-
duction of Gramian spaces of model parameters and Gra-
mian constraints. The new method provides a unified
approach to data fusion by considering the strength of the
correlation between two or more sets of model parameters
and/or their different attributes. This generalized method
includes as special cases the existing methods based on
structural constraints of the multimodal model parameters.
Our model study relevant to IOCG exploration in the Gawler
Craton of South Australia demonstrated how joint inversion
of gravity and magnetic data could recover alteration asso-
ciated with IOCG mineralization. Although we have dem-
onstrated our method only for the joint inversion of gravity
and magnetic data in this letter, we note that it can be
extended to the simultaneous joint inversion of the results of
any number or combination of other geophysical methods.
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Figure 3. (a) Cross-plot of density and susceptibility,
recovered from joint inversion with ternary mineralization
of the synthetic IOCG systems superimposed. As expected
given the ill-posedness of the joint inversion, there is a con-
tinuum of the recovered physical properties that trend with
the actual physical properties (red circles). (b) Cross-plot
of density and susceptibility recovered from independent
inversions with ternary mineralization of the synthetic [OCG
systems superimposed. Note that the continuum of the
recovered physical properties do not trend with the actual
physical properties (red circles).
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