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S U M M A R Y
Fundamental to complex analysis is the Cauchy integral theorem, and the derivation of Cauchy-
type integrals. For over 40 yr, Cauchy-type integrals have been used to describe analytical
continuation, establish the location of singular points, and study non-single-valued solutions
of inverse problems in 2-D potential field theory. In this paper, we revive this interesting and
fundamental area of potential field theory to introduce Cauchy-type integrals for 3-D potential
fields. In particular, we show how one can evaluate the gravity and gravity gradiometry
responses of 3-D bodies as surface integrals over arbitrary volumes that may contain spatially
variable densities. This method of 3-D spatial-domain potential field modelling has never been
realized before, and we show how it is particularly suited to the terrain correction of airborne
gravity and gravity gradiometry data. The surface integrals are evaluated numerically on a
topographically conforming grid with a resolution equal to the digital elevation model. Thus,
our method directly avoids issues related to prismatic discretization of the digital elevation
model and their associated volume integration which may result in inappropriate discretization
of the earth model, particularly for regions of rugged topography. We demonstrate our method
with a model study for airborne gravity gradiometry data simulated for a next-generation 1
Eö/

√
Hz system over the Kauring test site in Western Australia.

Key words: Gravity anomalies and Earth structure; Geopotential theory.

1 I N T RO D U C T I O N

The Cauchy integral theorem and Cauchy-type integrals are of sig-
nificant importance to 2-D potential field theory, as they are used
to describe analytical continuation of potential fields, establish the
location of their singular points, and study non-single-valued so-
lutions of their inverse problems. It was shown in the works of
Zhdanov (1973, 1974, 1975, 1980) that logarithmic potential the-
ory can be extended to the 3-D case by constructing Cauchy-type
integral analogues for 3-D potential fields, based on ideas originally
introduced by Moisil & Theodoresco (1931) and Bitsadze (1953,
1972). This theory was consolidated and significantly expanded by
Zhdanov (1984, 1988). Unfortunately, this interesting and funda-
mental area of potential field theory has since been dormant. In this
paper, we revive the study of 3-D Cauchy-type integrals for potential
fields. This paper is very thorough in the way it introduces a rigor-
ous representation of the gravity field and its gradients in terms of
3-D Cauchy-type integrals. In particular, we realize an entirely new
method for 3-D spatial-domain modelling of gravity gradient fields
as surface integrals over arbitrary volumes that may have spatially
variable densities.

Our first application of 3-D Cauchy-type integrals is for im-
proved terrain (including bathymetry) correction of gravity and
gravity gradiometry data whereby we evaluate the gravity and grav-

ity gradient responses as surface integrals over the surface of the
elevation (bathymetry) model. This surface integration ensures ac-
curate representation of the terrain (bathymetry) response. For this
purpose we use triangular discretization of the density contrast sur-
face in computing the Cauchy-type integrals over this surface. This
triangular discretization is similar to one used by Hammer et al.
(1991), who applied the so called seminorm minimization of Parker
et al. (1987) for gravity inversion to model the density structure
of discrete bodies using the body shape and a plane of gravity
data as the only inputs. Our approach is different because it di-
rectly employs the analytical properties of the 3-D Cauchy-type
integrals resulting at surface integrals over the contrast surface only
with arbitrary spatially variable densities below the contrast sur-
face. Note also that, Hammer et al. (1991) do not use the surface
integral per se; their integral representation requires additional nu-
merical evaluation of some auxiliary elliptical integrals. At the same
time, the 3-D Cauchy-type surface integrals over the contrast sur-
face, introduced in our paper, do not require any elliptical integral
calculations.

Terrain corrections are a means of reducing the dynamic range
in gravity and gravity gradiometry data so as to reveal the more
subtle geological responses present. There are a number of fac-
tors that influence the validity of terrain corrections, including
the accuracy of the aircraft position, resolution of the digital
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Figure 1. Schematic of the 3-D terrain model D, contained within a surface � described by the function h(x, y), and a lower plane P.

Figure 2. Triangular discretization of the density contrast surface: (a) schematic view of triangular mesh grid; (b) each rectangular cell of the mesh
∑

is
divided into two triangulars, which form the elementary cells PLk (left triangular) and PLk (right triangular); (c) 3-D view of two neighboured prisms with
triangulated tops, �Lk and �Rk.

elevation model (DEM), the way the terrain is approximated, and the
methods used to filter the predicted responses to match the instru-
ment’s acquisition system and post-acquisition processing. These
factors are particularly important for terrain corrections to sub-Eö
levels, particularly as the next generation of 1 Eö/

√
Hz airborne

gravity gradiometers are now being developed and tested.
Terrain corrections are generally calculated as the response due

to the volume of earth bound by an upper surface of the digital
elevation model (DEM) and a lower surface of a plane that passes
through the lowest elevation of the survey area. For airborne gravity
gradiometry (AGG) at low survey heights and where there are large
variations in topographic relief, a high resolution DEM is required.
For existing AGG instruments, the DEM needs to be sampled at a
resolution approximately one-third to one-half of the flight height,
and have a vertical accuracy better than 1 m (Dransfield & Zeng

2009). For these accuracies, LIDAR data are routinely measured
with resolution of the order of 1 m and sub-metre vertical accuracy.
Yet, LiDAR only provides the DEM in a swathe under each flight
line. At low flight heights and with wide line spacing, gaps in the
LiDAR-based DEM may exist between the flight lines. Also, over
those areas flown at a flight height greater than the laser range
and over water surfaces with poor dispersion, there will be gaps in
the LiDAR-based DEM. Moreover, for quality terrain correction,
DEM data from beyond the survey area (typically up to 10 km) are
required. For this reason, LiDAR-based DEMs are usually merged
with other DEMs, for example, shuttle radar topography mission
(SRTM) data measured circa 90 m resolution. Although SRTM data
is inadequate for terrain corrections directly beneath the aircraft, it
is sufficiently accurate for terrain corrections at greater distance
from the aircraft, such as between lines or outside the survey area.
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3-D Cauchy-type integrals 251

Figure 3. Digital elevation model over the Kauring test site used for terrain correction using the 3-D Cauchy-type integral method. The area within the white
square was measured from a 10 m resolution LiDAR survey. The area outside the white square was obtained from the SRTM database.

Water surfaces are usually treated as flat surfaces mapped from the
traced shorelines.

It is standard practice that the volume beneath the merged DEM
is discretized into a grid of right rectangular prisms of heights repre-
sentative of the terrain. These prisms are usually assigned a constant
density of 1 g cm−3. This particular spatial domain method is quite
inefficient (e.g. Hwang et al. 2003; Jekeli & Zhu 2006). Computa-
tions can be reduced by recognizing that high resolution DEMs are
required for terrain corrections where there are large variations in
topographic relief, and this resolution can be relaxed as the distance
from the observation point is increased. It follows that most extant
workflows perform modelling with prescribed or quadtree coarsing
of the terrain as the distance from the observation point is increased
(e.g. Dransfield & Zeng 2009; Davis et al. 2011). Alternative meth-
ods of 3-D modelling are based on FFT-based wavenumber domain
methods, such as those of Parker (1973, 1995, 1996).

Measured free-air data are also filtered by the acquisition system
and during post-acquisition processing. We should note that filtering
of airborne data has a large effect on values of terrain corrections.
For example, Fugro Airborne Surveys’ fixed-wing FALCON sys-
tem’s various filtering processes have been emulated with a sixth-
or seventh-order Butterworth filter of 0.18 Hz cut-off frequency
(approximately 300 m) in the direction of the flight lines (e.g. Lane
2004; Dransfield & Zeng 2009). Bell Geospace’s method of full
tensor noise reduction (FTNR) requires a cut-off wavelength that is
usually set at the line spacing, meaning that Air-FTG data have the
appearance of being filtered where the width of the filter is purely

that of the line spacing (e.g. Murphy 2010). As the higher fre-
quencies have mostly been removed in the acquired and processed
data, the terrain correction also needs to be filtered in the same
manner to avoid adding in higher frequency terrain content (Kass
& Li 2008). The filtered 1 g cm−3 terrain corrections then allows
the use of any desired terrain density, which is usually between 2.4
and 3.1 g cm−3 and is chosen to be most representative of the host
geology. Often, the average crustal density of 2.67 g cm−3 is used.
The terrain corrected data are obtained by subtracting the product
of the terrain density and the terrain correction from the free-air
data.

We should note also that, in this paper we consider the planar ap-
proximation for terrain correction, which is usually used in geophys-
ical applications. However, the mathematical method, developed in
our paper, is general and can be used for geodetic applications with
ellipsoidal geometry of the earth, as well. However, this will be a
subject of a separate paper.

2 3 - D C AU C H Y- T Y P E I N T E G R A L S
A N D T H E I R P RO P E RT I E S

A thorough description of 3-D Cauchy-type integrals was presented
in the monographs by Zhdanov (1984, 1988). However, since those
monographs are not readily accessible to the wider geophysics
community, we commence this paper with an introduction to 3-D
Cauchy-type integrals.
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Figure 4. Digital elevation model over the Kauring test site as measured from a 10 m resolution LiDAR survey.

Following Zhdanov (1984, 1988), the 3-D Cauchy-type integral
is represented by the following expression

CS
(
r′, ϕ

) = − 1

4π

∫∫
S

[
(n · ϕ) ∇ 1

|r − r′| + (n × ϕ)

×∇ 1

|r − r′|
]

ds, (1)

where S is some closed surface, ϕ = ϕ(r) is some vector function
specified on S and continuous on S, and n is a unit vector of the
normal to S directed outside the domain D, bounded by the surface
S. Function ϕ is called a vector density of the Cauchy-type integral
CS(r′, ϕ). It was shown by Zhdanov (1984, 1988) that everywhere
outside S, the vector function CS satisfies the following equations:

∇′· CS
(
r′, ϕ

) = 0, ∇′× CS
(
r′, ϕ

) = 0, (2)

where prime denotes a differentiation with respect to vector vari-
able r′. Therefore, vector field CS(r′, ϕ) is harmonic and its scalar

components are harmonic functions everywhere outside the surface
S. In the special case where ϕ(r) represents the boundary values on
S of the gradient of a function harmonic inside domain D, we have
the following Cauchy integral equation

CS
(
r′, ϕ

) =
{

ϕ (r′) , r′ ∈ D

0, r′ ∈ CD
, (3)

where CD is an infinite domain complementing the closed domain,
D = D + S, with respect to the whole space. The remarkable prop-
erty of the 3-D Cauchy-type integral is that in 2-D case, eq. (1) is
reduced to the classical Cauchy integral from complex analysis.

One important equation from complex analysis is the Pompei
equation, which solves the boundary value problem for arbitrary
functions of the complex variable (e.g. Gakhov 1997). Following
Zhdanov (1984, 1988) and Davies et al. (1989), one can formulate
an important 3-D analog of Pompei formula for a potential field, F,

Table 1. Specifications of the synthetic targets in the Kauring synthetic model.

Target Depth to top (m) Density contrast (g cm−3) Comments

1 500 0.20 Tabular block (e.g. intrusive dike)
2 0 0.15 Dipping sheet (e.g. intrusive dyke)
3 50 0.30 Sphere (e.g. nickel sulphide)
4 150 −0.40 Truncated cone (e.g. kimberlite)
5 3 −2.70 Tabular block (e.g. tunnel)
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Figure 5. Synthetic, noise-free Gzz data calculated by RTX using ModelVision with no terrain effect. Each of the targets are identified by their corresponding
number in Table 1.

defined within a domain, D

CS
(
r′, F

) + 1

4π

∫∫∫
D

(∇ · F) ∇ 1

|r − r′|dv

=
{

F (r′) , r′ ∈ D

0, r′ ∈ CD
, (4)

where the vector field, F, satisfies the equation:

∇ × F = 0, r ∈ D. (5)

The derivation of the Pompei formula (4) is based on the Gauss the-
orem, and it is given in Appendix A. 3-D Pompei formula provides
a solution of the boundary-value problem for an arbitrary poten-
tial field. If the vector field, F, is a Laplacian field in D, that is,
∇ × F = 0, ∇ · F = 0, eq. (4) directly yields the 3-D Cauchy-type
integral eq. (3).

In this paper, we introduce the method of the Cauchy surface
integral to calculate the gravity and gravity gradient fields of 3-D
mass distributions. In subsequent sections, the equations are based
on a matrix representation of the vector eq. (4). We introduce some
Cartesian system of coordinates with the basis {dx , dy, dz}, where
the z axis is directed upward. In this case, the vector form of Cauchy-
type integral CS(r′, ϕ) can be written in matrix notation using the
scalar components of the corresponding vectors. In particular, we
represent the vectors CS, ϕ, n and ∇ 1

|r−r′ | in the Cartesian basis

{dx , dy, dz} as

CS = C S
α dα, ϕ = ϕβdβ, n = nξ dξ ,

∇ 1

|r − r′| = − r − r′

|r − r′|3 = − rη−r ′
η

|r − r′|3 dη;

rη = η; α, β, ξ, η = x, y, z, (6)

where we use an agreement on summation that the twice repeated in-
dex indicates the summation over this index. Using these notations,
eq. (1) can be written as:

C S
α

(
r′, ϕ

) = − 1

4π

∫∫
S
	αβξηϕβ

rη−r ′
η

|r − r′|3 nξ ds,

α, β, ξ, η = x, y, z, (7)

where the four-index 	-symbol is expressed in the terms of the
symmetric Kronecker symbol δαβ :

	αβξη = δαβδξη + δαηδβξ − δαξ δβη; δαβ =
{

1, α = β,

0, α �= β.
(8)

We use the term ‘matrix form’ of the Cauchy-type integral to dis-
tinguish from the ‘vector form’ given by eq. (1). The reason is that
in eq. (7), all vectors and the integral kernel are represented by the
scalar components of the corresponding matrices describing these
vectors, and all mathematical symbols with indices (e.g. 	αβξη)
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Figure 6. Synthetic free-air Gzz data calculated by RTX with terrain effect added, contaminated with noise representative of a 1 Eö/
√

Hz (at 1 Hz) instrument.

represent the elements of the corresponding matrices. For complete-
ness, a detailed derivation of the matrix form of the Cauchy-type
integral is given in Appendix B.

3 A NA LY T I C A L F O R M S O F T H E
C AU C H Y- T Y P E R E P R E S E N TAT I O N
O F T H E G R AV I T Y F I E L D A N D I T S
G R A D I E N T S

3.1 Representing the gravity field in terms of 3-D
Cauchy-type integrals

For the sake of simplicity, we begin our analysis with the case where
the masses are distributed with a constant density, ρ0, within some
3-D volume D. Later on we will consider a case of the arbitrary
density distribution.

The gravity field g(r) satisfies the equations:

∇ · g = −4πGρ0, ∇ × g = 0, (9)

where G is the universal gravitational constant. Following Zhdanov
(1988), we introduce the auxiliary vector field, F, which has the
form:

F = 4π

3
Gρ0r, and ∇ · F = 4πGρ0. (10)

Substituting expressions (10) into the 3-D Pompei eq. (4), we find:

CS

(
r′,

4π

3
Gρ0r

)
+ G

∫∫∫
D

ρ0∇ 1

|r − r′|dv

=
{

4π

3 Gρ0r′, r′ ∈ D,

0, r′ ∈ C D.
(11)

The volume integral in the left-hand part of eq. (11) is (with the
negative sign) the gravity field g(r′) of a domain, D:

g
(
r′) = −G

∫∫∫
D

ρ0∇ 1

|r − r′|dv, (12)

expressed in the well known form of a volume integral. At the same
time, it is useful to express the same gravity field in terms of a
surface integral over the same domain, D. Thus, we can arrive at
a representation of the gravity field in terms of a 3-D Cauchy-type
integral:

g
(
r′) =

{− 4π

3 Gρ0r′ + 4π

3 Gρ0CS (r′, r) , r′ ∈ D,

4π

3 Gρ0CS (r′, r) , r′ ∈ C D.
(13)

In a case where r′ ∈ C D, we have from eq. (13):

g
(
r′) = 4π

3
Gρ0CS

(
r′, r

)
. (14)
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Figure 7. 2.67 g cm−3 terrain corrected Gzz data calculated using the 3-D Cauchy-type integral method.

This last equation can be written in matrix form using matrix nota-
tions for the Cauchy integral (7):

gα

(
r′) = −1

3
Gρ0

∫∫
S
	αβγηrβ

rη−r ′
η

|r − r′|3 nγ ds,

α, β, γ, η = x, y, z. (15)

Note that, the right hand sides of eq. (13) can be unified, taking into
account that the function 4π

3 Gρ0r′ is constant under r and, according
to eq. (3):

CS
(
r′, r′) =

{
r′, r′ ∈ D,

0, r′ ∈ C D.
(16)

Therefore, we arrive at the following unified expression for gravity
field, which holds both inside and outside of masses:

g
(
r′) = 4π

3
Gρ0

[
CS

(
r′, r

)− CS
(
r′, r′)]

= 4π

3
Gρ0CS

(
r′,
(
r − r′)) . (17)

This last equation can also be represented in matrix notation as
follows:

gα

(
r′) = −1

3
Gρ0

∫∫
S
	αβγη

(
rβ−r ′

β

) (
rη−r ′

η

)
|r − r′|3 nγ ds,

α, β, γ, η = x, y, z. (18)

We should note that, when the density ρ0 is constant there is a
simple formula that could be derived from the Newton’s integral
directly using the second vector statement of the Gauss theorem
(Zhdanov 1988), namely

g
(
r′) = −Gρ0

∫∫
S

n

|r − r′|ds. (19)

However, the surface integral in eq. (19) does not have the analytical
properties of the Cauchy-type integral, and when ρ is variable, this
approach should imply differentiating ρ, which may result in rather
complicated and unstable numerical procedures. We will demon-
strate below that the properties of the Cauchy-type integrals make it
possible to derive very elegant and numerically efficient expressions
for the gravity field and its gradients, which makes this technique
attractive for applications.

3.2 Representing the gravity gradients in terms
of 3-D Cauchy-type integrals

The gravity gradients can be represented as a tensor, ĝ(r′), whose
scalar components can be expressed as the first spatial derivatives
of the gravity field

gαν = ∂gα

∂rν

, α, ν = x, y, z. (20)
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Figure 8. 2.67 g cm−3 terrain corrected Gzz data calculated using prisms (Courtesy of RTX).

Substituting eq. (15) into eq. (20), we have

gαν

(
r′) = ∂gα (r′)

∂ν ′

= −1

3
Gρ0

∫∫
S
	αβγηrβ

∂

∂r ′
ν

(
rη−r ′

η

|r − r′|3
)

ds;

α, β, γ, η = x, y, z. (21)

Taking into account:

∂

∂r ′
ν

(
rη−r ′

η

|r − r′|3
)

= 1

|r − r′|5
[
3
(
rν−r ′

ν

) (
rη−r ′

η

)− ∣∣r − r′∣∣2 δνη

]
,

we have the following matrix notation for the gravity gradients
which holds both inside and outside of masses:

gαν

(
r′) = −Gρ0

∫∫
S
	αβγη

rβ

|r − r′|5

×
[
3
(
rν−r ′

ν

) (
rη−r ′

η

)− ∣∣r − r′∣∣2 δνη

]
nγ ds. (22)

In the above equation, we have assumed that the density inside the
domain D is constant. However, as discussed by Zhdanov (1988),
the density of the domain can be any arbitrary continuous function,
ρ(r). This means we are able to modify the above (and following)
equations to incorporate any of the analytic density-depth functions
in use for describing sedimentary basins, such as linear, quadratic,
parabolic, exponential, hyperbolic and polynomial functions. Some

examples of the variable density function are considered below in
Section 4.4.

3.3 Cauchy-type representation of the gravity field
and its gradients for terrain with uniform density

Let us consider a 3-D density model with a density contrast at some
surface �, that represents the terrain. We will refer to � as the
density contrast surface. We can consider the 3-D density model to
be infinitely extended in the horizontal directions with domain D
bounded by the surface �, described by equation z = h(x, y) − H0,
and a horizontal plane P , z = −H0 (Fig. 1), where H0 ≥ h(x, y) ≥
0 and:

h (x, y) − H1 → 0 for
√

x2 + y2 → ∞,

where H1 is a constant. For terrain correction of gravity data, the
surface � represents the terrain, and the horizontal plane P intersects
mean sea level (e.g. Kirby & Featherstone 2002). In the standard
practice of terrain correction for gravity gradiometry data, the sur-
face � represents the terrain, and the horizontal plane P intersects
the lowest point in the terrain.

It was shown by Zhdanov (1988) that the gravity field, g, of
the infinitely extended domain can be represented as the following
Cauchy-type integral

g
(
r′) = 4πGρ0C�

(
r′, (z + H0) dz

)
. (23)
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Figure 9. Difference between the 2.67 g cm−3 terrain corrected Gzz data calculated using the 3-D Cauchy-type integral method and the synthetic, noise free
Gzz data calculated by RTX using ModelVision. The average difference is 0.34 Eö.

This last equation can be rewritten using matrix notations for the
Cauchy integral (7):

gα

(
r′) = −Gρ0

∫∫
S
	αzγ η (z + H0)

rη−r ′
η

|r − r′|3 nγ ds,

α, γ, η = x, y, z. (24)

In a similar way, using matrix notation, the gravity gradients can be
expressed as

gαν

(
r′) = ∂gα (r′)

∂r ′
ν

= −Gρ0

∫∫
S
	αzγ η

(z + H0)

|r − r′|5

×
[
3
(
rν−r ′

ν

) (
rη−r ′

η

)− ∣∣r − r′∣∣2 δνη

]
nγ ds. (25)

We can provide the explicit expression for the components of the
gravity field and its gradients of the density contact surface, taking
into account the following relations for the components of the unit
normal vector to the surface �

nx ds = −∂h (x, y)

∂x
dxdy = bx (x, y) dxdy,

nyds = −∂h (x, y)

∂y
dxdy = by (x, y) dxdy,

nzds = bz (x, y) dxdy, (z + H0) = 	z (x, y) , (26)

where

bx (x, y) = −∂h (x, y)

∂x
, by (x, y) = −∂h (x, y)

∂y
, bz (x, y) = 1.

Substituting eq. (26) into eqs (24) and (25), we have

gα

(
r′) = −γρ0

∫ ∞∫
−∞

	αzγ ηh (x, y)
r̃η−r ′

η

|̃r−r′|3 bγ (x, y) dxdy,

α, γ, η = x, y, z, (27)

and

gαν

(
r′) = −γρ0

∫ ∞∫
−∞

	αzγ η

h (x, y)

|̃r−r′|5
[
3
(̃
rν−r ′

ν

) (̃
rη−r ′

η

)
− ∣∣̃r−r′∣∣2 δνη

]
bγ (x, y) dxdy, (28)

where:∣∣̃r−r′∣∣ =
√

(x − x ′)2 + (y − y′)2 + (h (x, y) − H0 − z′)2,

r̃ν = x, r̃y = y, r̃z = h (x, y) − H0, (29)

We have arrived at the Cauchy-type integrals (27) and (28) in an
analytic form. In practice, these equations need to be discretized and
solved numerically. This will be discussed in a subsequent section
of this paper.
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Figure 10. Synthetic, noise-free Gxx data calculated by RTX using ModelVision with no terrain effect. Each of the targets are identified by their corresponding
number in Table 1.

3.4 Cauchy-type representation of the gravity field
and its gradients for terrain with variable density

For sedimentary basins, terrain (or bathymetry) corrections are gen-
erally calculated as the response due to the volume of earth bound
by an upper surface of the digital elevation (bathymetry) model and
a lower surface of a plane at depth (G. Jorgensen, personal commu-
nication, 2011). To simulate sediment compaction and diagenesis
causing a loss of porosity, densities are often parameterized using
empirically derived analytic density-depth functions with the terrain
(or bathymetry) forming the datum. As discussed by Zhou (2008,
2009), the variety of analytic density-depth functions in use span
linear, quadratic, parabolic, exponential, hyperbolic and polynomial
functions. Generally, we can express this variable density as:

ρ = ρ(z).

In this case, it can be shown that the gravity field, g, of an infinitely
extended domain can be represented as the following Cauchy-type
integral

g
(
r′) = 4πGρ0C�

(
r′, [R (z) − R (−H0)] dz

)
, (30)

where R(z) is any indefinite integral of the density

R(z) =
∫

ρ(z)dz. (31)

For example, for a terrain with a linear vertical variation in density:
ρ(z) = ρ0 + az, then

R(z) = ρ0z + 1

2
az2.

As another example, for a body with an exponential vertical varia-
tion in density: ρ(z) = ρ0 + a exp (kz), then

R(z) = ρ0z + a

k
exp(kz).

Eq. (30) can be rewritten using matrix notations for the Cauchy
integral (7)

gα

(
r′) = −G

∫∫
S
	αzγ η [R (z) − R (−H0)]

rη−r ′
η

|r − r′|3 nγ ds,

α, γ, η = x, y, z. (32)

In a similar way, using matrix notation, the gravity gradients can be
expressed as:

gαν

(
r′) = ∂gα (r′)

∂r ′
ν

= −G

∫∫
S
	αzγ η

R (z) − R (−H0)

|r − r′|5

×
[
3
(
rν−r ′

ν

) (
rη−r ′

η

)− ∣∣r − r′∣∣2 δνη

]
nγ ds. (33)
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Figure 11. Synthetic free-air Gxx data calculated by RTX with terrain effect added, contaminated with noise representative of a 1 Eö/
√

Hz (at 1 Hz) instrument.

We can provide the explicit expressions for the gravity field and
its gradients of the density contact surface, taking into account
relations (26) for the components of the unit normal vector to the
surface, �

gα

(
r′) = −G

∫ ∞∫
−∞

	αzγ η [R (z) − R (−H0)]

× r̃η−r ′
η

|̃r−r′|3 bγ (x, y) dxdy, α, γ, η = x, y, z, (34)

and:

gαν

(
r′) = −G

∫ ∞∫
−∞

	αzγ η

R (z) − R (−H0)

|̃r−r′|5
[
3
(̃
rν−r ′

ν

)

× (̃
rη−r ′

η

)− ∣∣̃r−r′∣∣2 δνη

]
bγ (x, y)dxdy. (35)

We also note that as discussed by Zhdanov (1988), the density
function may also vary with horizontal position as well as depth,
that is, ρ(x, y, z).

4 D I S C R E T E F O R M S O F T H E
C AU C H Y- T Y P E R E P R E S E N TAT I O N
O F T H E G R AV I T Y F I E L D A N D I T S
G R A D I E N T S

4.1 Rectangular discretization of the density contrast
surface

We can discretize the Cauchy-type integrals (27) and (28) for the
gravity field and its gradients by dividing the horizontal integration
plane XY into a rectangular grid of Nm cells with constant discretiza-
tion of 	x and 	y in the x and y directions, respectively. This is
appropriate for DEMs, as they are usually gridded to a constant
spatial discretization. We assume that within each cell, Pk (k = 1,
2, . . . Nm), the corresponding part of the density contact surface can
be represented by an element of a plane described by the equation

z = h (x, y) − H0 = h(k) − b(k)
x (x − xk) − b(k)

y (y − yk)

−H0, (x, y) ∈ Pk, (36)

where (xk, yk) denotes the centre of the cell Pk. In this case, we
have:

bx (x, y) = b(k)
x , by (x, y) = b(k)

y , bz (x, y) = b(k)
z = 1,

(x, y) ∈ Pk,
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Figure 12. 2.67 g cm−3 terrain corrected Gxx data calculated using the 3-D Cauchy-type integral method.

and eq. (27) for gravity field takes the form

gα

(
r′) = −Gρ0

Nm∑
k=1

∫∫
Pk

	αzγ ηh (x, y)
r̃η−r ′

η

|̃r−r′|3 b(k)
γ dxdy,

α, γ, η = x, y, z. (37)

Using the discrete model parameters introduced above, and discrete
gravity data, gα(r′

n), we can represent the forward modelling op-
erator for the gravity field (37) of the density contact surface �

as:

gα

(
r′

n

) =
Nm∑
k=1

f (nk)
αγ h(k)b(k)

γ , (38)

where:

f (nk)
αγ = −Gρ0	αzγ η

r̃ (k)
η −r (n)′

η∣∣̃rk−r′
n

∣∣3 	x	y, (39)

and:∣∣̃rk−r′
n

∣∣ =
√(

xk − x ′
n

)2 + (
yk − y′

n

)2 + (
h(k) − H0 − z′

n

)2
,

r̃ (k)
x = xk, r̃ (k)

y = yk, r̃ (k)
z = h(k) − H0; r̃ (n)′

x = x ′
n, r̃ (n)′

y = y′
n,

r̃ (n)′
z = z′

n . (40)

In a similar way, the discrete form of expression (28) for gravity
gradients can be written as:

gαν

(
r′) = −Gρ0

Nm∑
k=1

∫∫
Pk

	αzγ η

h (x, y)

|̃r−r′|5

×
[
3
(̃
rν−r ′

ν

) (̃
rη−r ′

η

)− ∣∣̃r−r′∣∣2 δνη

]
b(k)

γ dxdy. (41)

Using the discrete model parameters introduced above, and discrete
gravity gradient data, gαν(r′

n), we can represent the forward mod-
elling operator for the gravity gradients (41) of the density contact
surface � as

gαν

(
r′

n

) =
Nm∑
k=1

F (nk)
ανγ h(k)b(k)

γ , (42)

where:

F (nk)
ανγ = −Gρ0	αzγ η

1∣∣̃rk−r′
n

∣∣5
×
[
3
(̃
r (k)
ν −r (n)′

ν

) (̃
r (k)
η −r (n)′

η

)− ∣∣̃rk−r′
n

∣∣2 δνη

]
	x	y. (43)
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Figure 13. Difference between the 2.67 g cm−3 terrain corrected Gxx data calculated using the 3-D Cauchy-type integral method and the synthetic, noise free
Gxx data calculated by RTX using ModelVision. The average difference is 0.35 Eö.

4.2 Triangular discretization of the density
contrast surface

We assume, as above, that the function h(x, y), describing the density
contrast surface �,is given on a rectangular mesh

∑
∑

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = x ′, xI = x ′′, xi+1 = xi + 	x,

(xi , y j ) i = 1, 2, . . . , I,

y1 = y′, yJ = y′′, y j+1 = y j + 	y,

j = 1, 2, . . . , J.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
In this case, the coordinates of the points located on the surface

� ,̃rk = r̃i j ∈ �, are as follows:

r̃k = (
xk, yk, h(k) − H0

) = (
xi , y j , h(i j) − H0

) = r̃i j ,

where h(k) = h(i j) = h
(
xi , x j

)
. (44)

Note that, the nodes of the mesh are numbered consecutively
along the East and North directions. For the given numbering of
the nodes, k = 1, 2, 3, . . . , K, (K = IJ), one can establish a simple
one-to-one relationship between the index n and the double number
(i, j)

k = i + ( j − 1)K . (45)

We can divide each rectangular cell of the mesh
∑

into two tri-
angles which would form the elementary cells PLk (left triangular)

and PLk (right triangular), as shown in Fig. 2. The corresponding
equations of the plane parts, �Lk and �Rk, of the surface �, located
just above the cells PLk and PRk can be written using the equations of
the plane through the corresponding points r̃i j , r̃i+1, j ,̃ri+1, j+1 and
r̃i j , r̃i, j+1,̃ri+1, j+1, for the left and right triangulars, respectively:(

r−̃ri j

) · [(̃ri+1, j −̃ri j

)× (̃
ri+1, j+1−̃ri j

)] = 0, for �Lk, (46)

and(
r−̃ri j

) · [(̃ri, j+1−̃ri j

)× (̃
ri+1, j+1−̃ri j

)] = 0, for �Rk . (47)

We can write an equivalent form of eq. (46):

a(k)
Lx x + a(k)

Ly y + a(k)
Lz z + a(k)

L0 = 0, (48)

where:

a(k)
Lx =

∣∣∣∣∣∣∣∣
1 yi j zi j

1 yi+1, j zi+1, j

1 yi+1, j+1 zi+1, j+1

∣∣∣∣∣∣∣∣ ,

a(k)
Ly =

∣∣∣∣∣∣∣∣
xi j 1 zi j

xi+1, j 1 zi+1, j

xi+1, j+1 1 zi+1, j+1

∣∣∣∣∣∣∣∣ , (49)
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Figure 14. Synthetic, noise-free Gyy data calculated by RTX using ModelVisionwith no terrain effect. Each of the targets are identified by their corresponding
number in Table 1.

a(k)
Lx =

∣∣∣∣∣∣∣∣
xi j yi j 1

xi+1, j yi+1, j 1

xi+1, j yi+1, j+1 1

∣∣∣∣∣∣∣∣ ,

a(k)
L0 =

∣∣∣∣∣∣∣∣
xi j yi j zi j

xi+1, j yi+1, j zi+1, j

xi+1, j yi+1, j+1 zi+1, j+1

∣∣∣∣∣∣∣∣ . (50)

Similarly, we can write an equivalent form of eq. (47):

a(k)
Rx x + a(k)

Ry y + a(k)
Rz z + a(k)

R0 = 0, (51)

where:

a(k)
Rx =

∣∣∣∣∣∣∣∣
1 yi j zi j

1 yi, j+1 zi, j+1

1 yi+1, j+1 zi+1, j+1

∣∣∣∣∣∣∣∣ ,

a(k)
Ry =

∣∣∣∣∣∣∣∣
xi j 1 zi j

xi, j+1 1 zi, j+1

xi+1, j+1 1 zi+1, j+1

∣∣∣∣∣∣∣∣ , (52)

a(k)
Rx =

∣∣∣∣∣∣∣∣
xi j yi j 1

xi, j+1 yi, j+1 1

xi+1, j yi+1, j+1 1

∣∣∣∣∣∣∣∣ ,

a(k)
R0 =

∣∣∣∣∣∣∣∣
xi j yi j zi j

xi, j+1 yi, j+1 zi, j+1

xi+1, j yi+1, j+1 zi+1, j+1

∣∣∣∣∣∣∣∣ . (53)

Also, we introduce the following notations

h(k)
L = −

[
a(k)

Lx xLk + a(k)
Ly yLk + a(k)

L0

] /
a(k)

Lz , (54)

h(k)
R = −

[
a(k)

Rx xRk + a(k)
Ry yRk + a(k)

R0

] /
a(k)

Rz , (55)

where we denote (xLk, yLk) and (xRk, yRk) as the centres of the cells
PLk and PRk, respectively.

Substituting eqs (54) and (55) into eq. (26), we find

b(k)
Lx = a(k)

Lx/a(k)
Lz , b(k)

Ly = a(k)
Ly/a(k)

Lz ,

b(k)
Rx = a(k)

Rx/a(k)
Rz , b(k)

Ry = a(k)
Ry/a(k)

Rz . (56)

Using the discrete model parameters introduced earlier, and dis-
crete gravity data, gα(r′

n), we can represent the forward modelling
operator for the gravity field (37) of the density contrast surface �
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Figure 15. Synthetic free-air Gyy data calculated by RTX with terrain effect added, contaminated with noise representative of a 1 Eö/
√

Hz (at 1 Hz) instrument.

as

gα

(
r′) =

K∑
k=1

f (nk)
Lαγ h(k)

L b(k)
Lγ +

K∑
k=1

f (nk)
Rαγ h(k)

R b(k)
Rγ ; α, γ, η = x, y, z,

(57)

where:

f (nk)
Lαγ = −Gρ0	αzγ η

r̃ (k)
Lη−r (n)′

η∣∣̃rLk−r′
n

∣∣3 	x	y;

f (nk)
Rαγ = −Gρ0	αzγ η

r̃ (k)
Rη−r (n)′

η∣∣̃rRk−r′
n

∣∣3 	x	y. (58)

and:

r̃ (k)
Lx = xLk, r̃ (k)

Ly = yLk, r̃ (k)
Lz = h(k)

L − H0,

r̃ (k)
Rx = xRk, r̃ (k)

Ry = yRk, r̃ (k)
Rz = h(k)

R − H0; r̃ (n)′
x = x ′

n,

r̃ (n)′
y = y′

n, r̃ (n)′
z = z′

n .

In a similar way, using the discrete model parameters, the discrete
form of gravity gradients can be written as

gαν

(
r′

n

) =
K∑

k=1

F (nk)
Lαγ h(k)

L b(k)
Lγ +

K∑
k=1

F (nk)
Rαγ h(k)

R b(k)
Rγ ;

α, γ, η = x, y, z, (59)

where

F (nk)
Lαγ = −Gρ0	αzγ η

1

2
∣∣̃rLk−r′

n

∣∣5
×
[
3
(̃

r (k)
Lν −r (n)′

ν

) (̃
r (k)

Lη−r (n)′
η

)
− ∣∣̃rLk−r′

n

∣∣2 δνη

]
	x	y,

(60)

F (nk)
Rαγ = −Gρ0	αzγ η

1

2
∣∣̃rRk−r′

n

∣∣5
×
[
3
(̃

r (k)
Rν−r (n)′

ν

) (̃
r (k)

Rη−r (n)′
η

)
− ∣∣̃rRk−r′

n

∣∣2 δνη

]
	x	y.

(61)

The significance of this method is that we can model any 3-D
domain with the geometric resolution and accuracy of its DEM.
Moreover, the 3-D modelling of the domain is expressed as a sur-
face integral which may be rapidly and accurately evaluated. It
is important to emphasize that, the prisms with triangulated tops
(Fig. 2) provide much more accurate representation of the shape
of the terrain surface than a combination of the rectangular prisms
used by the conventional terrain correction methods.

Note also that, the standard practice of increasing discretization
as a function of distance from the observation point can be eas-
ily incorporated into the surface integration. All together, this is
particularly important for terrain correction, and represents a sig-
nificant advantage of this method over volume integration methods
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Figure 16. 2.67 g cm−3 terrain corrected Gyy data calculated using the 3-D Cauchy-type integral method.

that are fraught with issues relating to discretization and staircase
approximations of the DEM.

5 M O D E L S T U DY: K AU R I N G ,
W E S T E R N AU S T R A L I A

With funding from the Western Australian government’s 2009 Ex-
ploration Initiative Scheme and a matching contribution from Rio
Tinto Exploration (RTX), the Geological Survey of Western Aus-
tralia (GSWA) and Geoscience Australia (GA) have established the
Kauring test site for testing and calibrating airborne gravity and
gravity gradiometry systems (Howard et al. 2010). The site is ap-
proximately 100 km east of Perth in Western Australia, is free of
low level flight restrictions, has minimal human infrastructure, and
hosts gentle rolling topography of granitic terrane. The test site
allows interested individuals or organizations to compare airborne
data to detailed ground gravity data, or products derived from these
data. It also allows for direct comparison of different airborne grav-
ity and gravity gradiometry systems over the same gravity features
where all other variables, besides the measuring system are defined
and constant. DEMs have been released for 10 m LiDAR, and 80 m
SRTM. Fig. 3 shows the merged LiDAR and SRTM DEMs for the
area surrounding the Kauring test site. Fig. 4 shows the LiDAR
DEM for the Kauring test site.

To facilitate the comparison of 3-D inversion methods during
2011, RTX developed a synthetic AGG data set of 4687 stations
(Grujic 2012). The 3-D density model contained a variety of rel-

evant geological targets representative of discrete tunnels, nickel
sulfide deposits, intrusive dykes and kimberlites, embedded in a
uniform 2.67 g cm−3 terrain so that the wavelength, magnitude and
symmetry of the data were varied. The targets are summarized in
Table 1. The data were simulated along a realistic drape with a mean
terrain clearance of 80 m over the Kauring test site. The data for
the bodies were simulated using the commercial software package,
ModelVision.

As described by Grujic (2012, personal communications), the ter-
rain response was simulated using concentric square zones around
each observation. The cell size of the terrain information quadru-
pled for each consecutive zone, starting with a square of 800 m side
length and 10 m cell size in the innermost zone. The size of the
zones doubled for each consecutive zone. For example, the second
zone around each station was a 1600 m wide square with a 40 m
cell size. Six zones that follow this pattern were created around
each observation. The grids were used to triangularly facet the ter-
rain into vertical prisms with a uniform density of 2.67 g cm−3 that
extend to a zero level datum. The response of these prisms was cal-
culated at the measurement location. Outside the available terrain
information, an infinite slab with a height equal to the mean terrain
elevation was modelled and added to the responses of the prisms.
The synthetic data were not filtered with any system response. Noise
representative of a 1 Eö/

√
Hz (at 1 Hz) instrument was then added

to the simulated free-air gravity gradiometry data.
First, we consider the free-air Gzz data. Fig. 5 shows the noise-

free Gzz response due to the bodies (as calculated with ModelVision)
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Figure 17. Difference between the 2.67 g cm−3 terrain corrected Gyy data calculated using the 3-D Cauchy-type integral method and the synthetic, noise free
Gyy data calculated by RTX using ModelVision. The average difference is 0.30 Eö.

with no terrain effects. Fig. 6 shows the simulated free-air Gzz re-
sponse due to the bodies contaminated with 1 Eö/

√
Hz (at 1 Hz)

noise with terrain effect added. We applied Cauchy-type integral
method and terrain corrected the free-air Gzz data for a 2.67 g cm−3

terrain density using a 10 m cell discretization of the merged LiDAR
and SRTM DEMs to a square of 10 km side length centred about
each station (Fig. 7). This resulted in the DEM being represented
by approximately two million topographically conforming triangu-
lar cells. We observed how our result compare very well with the
terrain corrected Gzz data for a 2.67 g cm−3 terrain density also
provided by RTX (Fig. 8). Fig. 9 shows the difference between the
2.67 g cm−3 terrain corrected synthetic, contaminated with the noise
Gzz data, calculated using the 3-D Cauchy-type integral method and
the synthetic, noise free Gzz data calculated by RTX using Mod-
elVision. As one would expect, we can see just a random noise in
this data, which confirms the proper work of the developed terrain
correction method. The root mean square difference between our
3-D Cauchy-type integral terrain correction and true Gzz response
of the prisms is 0.34 Eö (Fig. 9), while the magnitude of Gzz field is
on the order of 30 Eö.

Next, we consider the free-air Gxx data. Fig. 10 shows the noise-
free Gxx response due to the bodies with no terrain effects. Fig. 11
shows the simulated free-air Gxx response due to the bodies con-
taminated with 1 Eö/

√
Hz (at 1 Hz) noise with terrain effect added.

We terrain corrected the free-air Gxx data for a 2.67 g cm−3 ter-
rain density using a 10 m cell discretization of the merged LiDAR

and SRTM DEMs as per the previous paragraph (Fig. 12). The
root mean square difference between our 3-D Cauchy-type integral
terrain correction and true Gxx response of the prisms is 0.35 Eö
(Fig. 13), while the magnitude of Gxx field is on the order of 15 Eö.

Finally, we consider the free-air Gyy data. Fig. 14 shows the
noise-free Gyy response due to the bodies with no terrain effects.
Fig. 15 shows the simulated free-air Gyy response due to the bodies
contaminated with 1 Eö/

√
Hz (at 1 Hz) noise with terrain effect

added. We terrain corrected the free-air Gyy data for a 2.67 g cm−3

terrain density using a 10 m cell discretization of the merged LiDAR
and SRTM DEMs as described earlier (Fig. 16). The root mean
square difference between our 3-D Cauchy-type integral terrain
correction and true Gyy response of the prisms is 0.30 Eö (Fig. 17),
while the magnitude of Gyy field is on the order of 15 Eö.

Differences between our terrain corrections and the true re-
sponses of the prisms can be attributed to noise and prism-based
method by which the terrain response was calculated by RTX. In
our current implementation of the software, each of the above ter-
rain corrections for all 4687 stations and approximately two million
triangular cells required 7 hr on a desktop PC running Windows
7 with a single 2.8 GHz processor with 8 GB RAM. This may be
further optimized by increasing the discretization as a function of
distance per standard practice with volume integral methods. We
also note that the 3-D Cauchy-type integrals are linear, and thus
lend themselves to large-scale parallelization. This is the subject of
our ongoing software development. We note also that in practice,
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the terrain response needs to be filtered prior to its subtraction from
the free-air data, though this processing stage was not required for
this particular model study.

6 D I S C U S S I O N A N D C O N C LU S I O N S

We have introduced a method of modelling the gravity field and
its gradients based on the theory of Cauchy integral analogues that
extends the principles of classic Cauchy integral theory to 3-D
potential fields. In particular, we have demonstrated how we are
able to calculate the gravity and gravity gradiometry responses of
3-D bodies as surface integrals over arbitrary volumes that may
have spatially (i.e. vertical and horizontal) variable densities. This
is particularly suited to the terrain (and bathymetric) correction of
gravity and gravity gradiometry data that have a very large number
of observation stations, have variable altitudes, and have DEMs
produced from merged LiDAR and SRTM data.

Practically all existing methods of terrain corrections are based on
the prismatic discretization and their associated volume integration.
As discussed by Li & Chouteau (1998), a variety of closed form
analytic forms exist for evaluating the volume integral of the gravity
field for a right-rectangular prism

gz(r
′) = −Gρ0

∫ z2

z1

∫ y2

y1

∫ x2

x1

z − z′

|r − r′|3 dxdydz. (62)

For example, Okabe (1979) derived the expression

gz(r
′) = − Gρ0 ×

2∑
i=1

2∑
j=1

2∑
k=1

μi jk xi

[
ln(y′

j + ri jk) + y′
j ln(x ′

i

+ ri jk) + 2zk arctan
x ′

i + y′
j + ri jk

z′
k

]
, (63)

where x ′
i = x − xi , y′

i = y − yi , z′
i = z − zi , ri jk =√

(x ′
i )

2 + (y′
i )

2 + (z′
i )

2 and μijk = (−1)i(−1)j(−1)k. For every
right-rectangular prism, eq. (63) requires the evaluation of 16
logarithms and 8 arctangents. For decades now, eq. (63) has been
popularized in 3-D gravity inversion software (e.g. Li & Oldenburg
1998).

For Cauchy-type representation of a right-rectangular prism, one
should calculate the surface integrals over the top of the prism
and over the vertical sides of the prism. Note, however, that, for
two neighboured prisms, the corresponding surface integrals over
the sides of the prisms attached one to another would have the
same values but opposite signs, identically cancelling each other.
Therefore, the integration is required over the top of the prism. In
the case of right-rectangular prisms, eq. (38) takes the form

gα

(
r′

n

) =
Nm∑
k=1

f (nk)
α h(k), (64)

where:

f (nk)
α = −Gρ0

r̃ (k)
α −r (n)′

α∣∣̃rk−r′
n

∣∣3 	x	y. (65)

Compared to eq. (63), eq. (65) has a significantly lower computa-
tional complexity as it directly avoids the evaluation of 24 transcen-
dental functions.

At the same time, it is well known that steep surfaces are dif-
ficult to describe by a combination of the rectangular prisms. One
would need to use a very fine prismatic discretization to properly
approximate a simple but steep surface. We avoid this limitation of

the conventional methods by introducing 3-D Cauchy-type integrals
and evaluating surface integrals numerically on a topographically
conforming grid with a resolution equal to the DEM. This method
avoids prismatic discretization of the DEMs and has lower com-
putational complexity associated with volume integration as per
standard practice. In addition, our method has a capability of includ-
ing the vertically varying density models in the same Cauchy-type
integral representations of the gravity and gravity gradient fields.

Ongoing research is focused on the use of Cauchy-type inte-
gral representations for the 3-D inversion of gravity and gravity
gradiometry data.
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A P P E N D I X A : 3 - D A NA L O G U E
O F T H E P O M P E I F O R M U L A

The Pompei formula can be derived based on Gauss theorem:∫∫∫
D

(∇ · �) dv =
∫∫

S
� · n ds, (A1)

where �(r) is a vector function continuously differentiable every-
where in the domain D; n is a unit vector of the normal to S directed
outside the domain D, bounded by the surface S.

Let us introduce a potential field, F(r), defined within a domain,
D, and satisfying the equations:

∇ × F = 0, ∇ · F = q, r ∈ D. (A2)

We also consider a fundamental Green’s function for the Laplace
equation,

P(r) = −1/4π |r − r′|. (A3)

To derive a 3-D Pompei formula, we represent the vector function
�(r) in the form

� (r) = (C · F (r)) ∇ P (r) + ∇ P (r) × [F (r) × C] , (A4)

where C is arbitrary constant vector. Straight forward calculations

show that

∇ · � = C· [∇2 P F + (∇ · F) ∇ P
]
,

� · n = C· {(n · F) ∇ P + [n × F (r)] × ∇ P} .

Applying the Gauss theorem to the vector function �(r) and
taking into consideration that the vector C is arbitrary, we arrive at
the following corollary of the Gauss theorem∫∫∫

D

[∇2 P F + (∇ · F) ∇ P
]

dv

=
∫∫

S

{(n · F) ∇ P + [n × F (r)] × ∇ P} ds. (A5)

The fundamental Green’s function satisfies to the equation:

∇2 P = δ
(
r − r′) , (A6)

where δ(r − r′) is the singular Dirac delta-function.
Substituting eqs (A3) and (A6) into expression (A5), after some

algebra, we obtain the following integral formula:

− 1

4π

∫∫
S

{
(n · F) ∇ 1

|r − r′| + [n × F (r)] × ∇ 1

|r − r′|
}

ds

+ 1

4π

∫∫∫
D

(∇ · F) ∇ 1

|r − r′| dv =
{

F (r′) , r′ ∈ D

0, r′ ∈ C D
.

(A7)

According to the definition (see eq. 1), the surface integral in eq.
(A7) is nothing else but the 3-D Cauchy-type integral CS(r′, F).

Thus, we have arrived at the 3-D analogue of the Pompei formula

CS
(
r′, F

)+ 1

4π

∫∫∫
D

(∇ · F) ∇ 1

|r − r′|dv

=
{

F (r′) , r′ ∈ D

0, r′ ∈ C D
. (A8)

A P P E N D I X B : M AT R I X F O R M O F
T H E C AU C H Y- T Y P E I N T E G R A L

It is convenient to express 3-D Cauchy integrals in matrix notations.
This matrix representation is based on the fact that many operations
of vector algebra can be written using operations on the scalar
components of the corresponding matrices, reproducing the scalar
components of the vectors in some Cartesian coordinates with the
basis {dx , dy, dz}. For example, the dot product of two vectors,

a = ax dx + aydy + azdz and b = bx dx + bydy + bzdz,

is

a · b = ax bx + ayby + azbz = aαbβδαβ, α, β = x, y, z, (B1)

where we use the symmetric Kronecker symbol, δαβ , defined by eq.
(8). Note that, in eq. (B1) and everywhere throughout this paper,
we use an agreement on summation that the twice recurring index
indicates the summation over this index, for example,

aαbβδαβ =
∑

α=x,y,z

∑
β=x,y,z

aαbβδαβ . (B2)

Similarly, the vector product of two vectors can be expressed using
the skew-symmetric Kronecker symbol, εαβξ ,
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a × b = aαbβεαβξ dξ , α, β, ξ = x, y, z, (B3)

where ε-symbol is antisymmetric with respect to any two indices,
and it is equal to 1 for noncoincident indices,

εαβξ = −εβαξ = 1, if α �= β �= ξ,

and equal to zero if any two indices happen to coincide, for example,

εxxy = 0.

We should note also that there exists a simple relationship between
the Kronecker δ- and ε-symbols

εαζη εβξζ = δαξ δβη − δαβδξη. (B4)

We can write the triple vector product of the vectors a, b and c,
using formula (B3), as follows

a× [b × c] = aα bβ cξ εαζη εβξζ dη. (B5)

We can derive now matrix form of the Cauchy-type integral using
formulas (B1), (B3) and (B5). Indeed, eq. (6) provides representa-
tions of the vectors CS, ϕ, n and ∇ 1

|r−r′ | via their scalar components
in Cartesian basis {dx , dy, dz}. Substituting eq. (6) in the integrand
of expression (1) for the 3-D Cauchy-type integral, and taking into

account formulas (B1), (B3) and (B5), we can write

(n · ϕ) ∇ 1

|r − r′| + (n × ϕ) × ∇ 1

|r − r′|

= (
δαηδβξ + εαηζ εβξζ

)
ϕβ

rη−r ′
η

|r − r′|3 nξ dα

= 	αβξηϕβ

rη−r ′
η

|r − r′|3 nξ dα, (B6)

where the four-index 	-symbol is expressed in the terms of the
Kronecker δ- and ε-symbols, or, with due account of (B4), in terms
of the symmetric δ-symbol only:

	αβξη = δαηδβξ + εαηζ εβξζ = δαβδξη + δαηδβξ − δαξ δβη. (B7)

Substituting expression (B6) into eq. (1), we arrive at the matrix
form of the Cauchy-type integral

C S
α

(
r′, ϕ

) = − 1

4π

∫∫
S
	αβξηϕβ

rη−r ′
η

|r − r′|3 nξ ds,

α, β, ξ, η = x, y, z. (B8)
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