
Massively parallel regularized 3D inversion of potential fields
on CPUs and GPUs

Martin Čuma a,b,c,n, Michael S. Zhdanov b,c

a Center for High Performance Computing, University of Utah, 155 S 1452 E Rm 405, Salt Lake City, UT 84112, USA
b Department of Geology and Geophysics, University of Utah, 155 S 1452 E Rm 405, Salt Lake City, UT 84112, USA
c TechnoImaging, 4001 South, 700 East, Suite 500, Salt Lake City, UT 84107, USA

a r t i c l e i n f o

Article history:
Received 4 May 2013
Received in revised form
7 October 2013
Accepted 8 October 2013
Available online 16 October 2013

Keywords:
3D gravity inversion
3D magnetics inversion
Parallel computing
OpenACC

a b s t r a c t

We have recently introduced a massively parallel regularized 3D inversion of potential fields data. This
program takes as an input gravity or magnetic vector, tensor and Total Magnetic Intensity (TMI)
measurements and produces 3D volume of density, susceptibility, or three dimensional magnetization
vector, the latest also including magnetic remanence information. The code uses combined MPI and
OpenMP approach that maps well onto current multiprocessor multicore clusters and exhibits nearly
linear strong and weak parallel scaling. It has been used to invert regional to continental size data sets
with up to billion cells of the 3D Earth's volume on large clusters for interpretation of large airborne
gravity and magnetics surveys. In this paper we explain the features that made this massive
parallelization feasible and extend the code to add GPU support in the form of the OpenACC directives.
This implementation resulted in up to a 22x speedup as compared to the scalar multithreaded
implementation on a 12 core Intel CPU based computer node. Furthermore, we also introduce a mixed
single–double precision approach, which allows us to perform most of the calculation at a single floating
point number precision while keeping the result as precise as if the double precision had been used. This
approach provides an additional 40% speedup on the GPUs, as compared to the pure double precision
implementation. It also has about half of the memory footprint of the fully double precision version.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Potential fields methods have become an important tool for
exploration on the large scale thanks to the emergence of reliable
airborne data collection platforms. These instruments are capable
of covering thousands of square kilometers with thousands of line
kilometers and data collected as densely as every few meters (Lee,
2001; Dransfield and Zeng, 2009). Interpretation of the data
acquired by these surveys has been limited by the huge amount
of processing required.

For large surveys, structural interpretations are usually based
on a choice or combination of Euler deconvolution (e.g.,
Thompson, 1982), eigenvector analysis (e.g., Beiki and Pedersen,
2010), wavelet analysis (e.g., Hornby et al., 2002), analytic signal
(e.g., Salem and Ravat, 2003; Beiki, 2010), or depth-from-extreme-
points (DEXP) methods (e.g., Fedi, 2007). While such methods may
provide information about the sources of the potential field, it is
not immediately obvious how that information can be quantified

in terms of the physical properties in a 3D earth model. For this
reason, inversion marks an important step in quantitative inter-
pretation—particularly at deposit scales.

Generalized inversion methods first discretize the 3D earth
models into cells of constant density, susceptibility or a variant of
the magnetization vector. As gravity and magnetic inversion is
non-unique, regularization must be introduced to recover the
most geologically plausible solutions from the infinite number of
mathematically equivalent solutions. Regularization effectively
selects the class of models fromwhich a unique solution is sought.
Over the years, a variety of methods have been developed for 3D
inversion of potential field data with both smooth (e.g., Li and
Oldenburg, 1996, 1998; Li, 2001) and focusing (e.g., Portniaguine
and Zhdanov, 1999; Zhdanov, 2002, 2009; Kirkendall et al., 2007)
regularization.

The computational resources needed for deposit-scale discre-
tization (e.g., cells smaller than 25 m3) for entire airborne surveys
easily exceed the capacity of high-end desktop computers.
Although considerable improvements have been made with the
information reduction approaches (Portniaguine and Zhdanov,
2002; Li and Oldenburg, 2003; Davis and Li, 2011), the practical
limit of inverting large scale regional surveys with sufficient
resolution remains. In practice, large airborne surveys are usually

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cageo.2013.10.004

n Corresponding author at: Center for High Performance Computing, University
of Utah, 155 S 1452 E Rm 405, Salt Lake City, UT 84112, USA. Tel.: þ1 8016523836.

E-mail address: m.cuma@utah.edu (M. Čuma).

Computers & Geosciences 62 (2014) 80–87

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2013.10.004
http://dx.doi.org/10.1016/j.cageo.2013.10.004
http://dx.doi.org/10.1016/j.cageo.2013.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.10.004&domain=pdf
mailto:m.cuma@utah.edu
http://dx.doi.org/10.1016/j.cageo.2013.10.004


divided into subsets inverted separately and resulting 3D earth
models stitched or tiled together post-inversion (e.g., Phillips et al.,
2010; Yang and Oldenburg, 2012).

Over the last decade, a large part of the computer speedup has
been achieved by hardware parallelization, incorporating more
and more processor cores into the CPU. Reports of parallel
potential field inversion, however, have been relatively limited.
Zhang et al. (2004) used genetic algorithm for 3D inversion of
gravity data, dividing the 3D volume into 20 parallel subregions,
each of which inverted gravity data up to 10 km outside of the
subregion. Tondi et al. (2012) report on parallel inversion of gravity
and seismic data using the ScaLAPACK library (Choi et al., 1996).
While using a large number of processors, their model size is still
limited by the amount of memory required to store the dense
gravity response matrix.

We have recently introduced a general method of solving truly
large-scale potential field inverse problems with massive paralle-
lization where the modeling domain is discretized into hundreds
of millions (even billions) of cells (Čuma et al., 2012). For
such models, computation of the predicted data and direction of
steepest descent at every iteration of inversion is not trivial.
We tackle this problem on several fronts detailed in this paper.
Our inversion method is designed to invert jointly any component
of the gravity or magnetic fields, including the total, vector, and
gradient components. The inversion output is a density distribu-
tion for gravity and susceptibility or magnetization vector compo-
nents for magnetics.

Within the last decade, graphical processors (GPUs) have
become attractive tools in high performance computing (HPC),
due to their massively parallel design which allows for high
computation throughput. However, their hardware design is con-
siderably different from traditional CPUs and consequently pro-
gramming on GPUs has several challenges. Firstly, since they are
very high throughput, they demand algorithms with a lot of
concurrent data processing. Second, since the GPU is a separate
device that does not share the data with the main memory, data
needs to be copied to the GPU before processing which can be a
bottleneck if the data is large. Finally and importantly for non-
experts, programming approaches for the GPUs (such as CUDA and
OpenCL) are relatively of low level and require significant efforts
both in learning and in coding. In the potential fields arena,
Moorkamp et al. (2010) and Chen et al. (2012) use CUDA to
implement gravity and gravity gradiometry forward modeling on
a single GPU.

OpenACC is a new standard, the goal of which is to simplify
programming on the accelerators and improve code portability
across different systems and accelerators. It is a directive based
approach, similar to OpenMP for multithreading, in which the
programmer adds directives to the code (most often to loops) that
tell the compiler to offload the computation within this directive
to the accelerator (not necessarily a GPU, any other accelerators,
such as the Intel Xeon Phi, can be supported). The compiler takes
care of generating the code that will run on the accelerator. Thanks
to the simplicity of the OpenACC and the portability promise,
it has a potential to become a widely accepted approach for
programming accelerators, similarly to what OpenMP has become
for multicore processors. For these reasons, we chose OpenACC to
port our massively parallel potential fields inversion code to the
GPU accelerators. We should also note that there are efforts to
extend OpenMP to support accelerators, or merge OpenACC into
OpenMP, although at the time of this writing there was only
limited accelerator support in the last OpenMP standard and no
compiler implementation.

This paper is organized as follows. In the next section we briefly
describe the theory behind the potential fields inversion. We then
detail the approach we took in our massively parallel inversion

algorithm that we published in Čuma et al. (2012), followed by a
description of the OpenACC implementation and the mixed
single–double precision approach that provides further speedup
without compromising the quality of the result. We then validate
the results obtained with the GPUs and with the mixed single–
double precision approach on a real survey dataset. Finally we
present some new results of the inversion of total magnetic
intensity (TMI) data for magnetization vector over a very large
area on only a handful of GPU equipped cluster nodes, a calcula-
tion which would require hundreds of nodes if done on CPUs only.

2. 3D potential fields modeling and inversion

Below we present a brief summary of our modeling and
inversion methodology and refer the interested reader to Čuma
et al. (2012) for details. Gravity (Ug) and magnetic (UH) potentials
are linear with respect to the 3D density (ρ) and magnetic
susceptibility (χ). When calculating the gravity or magnetic
response, the modeled domain is usually divided into rectangular
prisms with constant ρ or χ. Volume integrals over the potentials'
Greens functions that express this response can be evaluated
analytically or numerically. In our modeling, we use numerical
solution using single-point Gaussian integration with pulse basis
functions. The potentials and their first and second spatial deri-
vatives are then expressed through kernels that are numerically
evaluated for each cell–receiver pair.

Since the potentials are linear, the response can be written in
discrete forms as

dg ¼Agρ ð1Þ

dH ¼ AHχ ð2Þ
where dg and dH are Nd length vectors of the observed gravity and
magnetic data, Ag and AH are the Nd�Nm gravity and magnetic
operators, numerically expressed as the sensitivity matrix, and
ρ and χ are the Nm length vectors of gravity or magnetic
susceptibility.

In the inversion, we use the measured response data dg, dH to
recover the unknown density ρ or susceptibility χ. The inversion
process is non-unique so regularization has to be introduced, with
the goal to recover the most geologically plausible solution from
the infinite set of mathematically equivalent solutions. We mini-
mize the Tikhonov parametric functional P(m)

PαðmÞ ¼φðmÞþαsðmÞ�4 min ð3Þ
where φ(m) is the misfit functional of the measured and inversion
predicted data, s(m) is the stabilizing functional and α is the
regularization parameter that balances the misfit and the stabiliz-
ing functional. We use adaptive regularization (Zhdanov, 2002),
which decreases the stabilizer contribution as the inversion gets
closer to the converged result. Model weights are also introduced
based on the integrated sensitivity which ensures equal sensitivity
of the domain cells located at different depths and horizontal
positions from the measured data points.

The minimization of the parametric functional Pα(m) is based
on the re-weighted regularized conjugate gradient method
(Zhdanov, 2002) by iteratively updating the model parameters m
to minimize the vector of data residual errors r, such as

miþ1 ¼miþkiA
T
g;Hri ð4Þ

where ki is the step length and AT
g,H is the conjugate transpose of

the Nd�Nm matrix of the gravity or magnetic linear operators and
i is the inversion iteration index. The inversion proceeds until the
residual r reaches a given threshold or a maximum number of
iterations is reached.

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–87 81



The use of a stabilizing functional is the core of the regulariza-
tion approach. There are several choices for the stabilizing func-
tional. Smooth stabilizers, which tend to produce smooth
anomalies, seek to minimize a function of difference between
the current model and the a priori model. Focusing stabilizers aim
to produce sharper boundaries and contrasts, and are often based
on minimization of volume of nonzero departures or nonzero
gradients from the a priori model (Zhdanov, 2002). We implement
a wide choice of smooth and focusing stabilizers to allow the
interpreter the flexibility of choosing one over another for a given
interpretation scenario.

3. Implementation

The most important difference from other 3D potential fields
inversion implementations is that we compute the sensitivity
matrices Ag,H on demand rather than saving and reusing them in
each inversion iteration. For the size of problems we aim to solve,
this matrix, which is of size of number of data Nd times number of
3D volume cells Nm, is too large to keep in memory even if various
information reduction techniques are used. This is especially true
for the accelerators which have limited memory capacity and high
cost of data transfer between the host and the accelerator. Storing
the sensitivity matrix in disk files is also time prohibitive espe-
cially when hundreds of processors need to read the sensitivity
matrix at the same time.

In these situations, it is faster to recalculate the sensitivities
whenever they are needed. In our approach, each sensitivity
matrix point has to be calculated three times during every
inversion step, at calculation of the steepest descent vector lw,
the minimization step length k using the line search method, and
the predicted data dp. Product of each sensitivity matrix value
with a given property, for example, the residual r in the case of
steepest descent vector calculation, is then accumulated into the
variable of interest, e.g. cell i of lw, as

lwi ¼ ∑
Nd

j ¼ 1
ðAijrjÞ ð5Þ

That way we only store arrays of the size of Nm (steepest ascent
vector, model parameters, etc.) or of Nd (predicted and observed
data), which results in many orders of magnitude reduction in
memory needs.

The on demand sensitivity calculation dramatically increases the
computational needs. We employ numerous strategies to mitigate this.

First, for calculation of the sensitivity kernels, we use single-
point Gaussian integration with pulse basis functions which is
much faster than an exact analytic solution to the volume integrals
and has been shown to be as accurate provided the vertical
distance to the center of the cell is at least twice as large as the
dimension of the cell (Zhdanov, 2009). With airborne surveys
typically flying at 50–100 m above the surface, the vertical cell size
for the uppermost inversion domain layer has to be less than 25–
50 m.

Second, we employ the moving sensitivity domain approach
(MSDA) which, due to the attenuation of the potential fields with
distance, assumes zero contribution of 3D volume cells past certain
radius (footprint) from the data receiver. This approach is similar to
that developed for airborne electromagnetics (AEM) by Cox and
Zhdanov (2007) and Cox et al. (2010) and for magnetotellurics (MT)
by Zhdanov et al. (2011). Importantly, the sensitivity domain size is
based not on the rate of attenuation of the fields due to the distance
between the source and the receiver, but on the integrated sensitivity
in the 3D volume. Within the sensitivity domain we include volume
cells which constitute typically between 95% and 99% of the total
sensitivity for each receiver which makes the inversion results

virtually indistinguishable from those using the full 3D volume
response. The size of the sensitivity domain is typically 200 km for
gravity, 15 km for gravity tensor and TMI and 4 km for magnetic
tensor (Čuma et al., 2012).

Third, the sensitivity matrix calculation loops have been
restructured and optimized for scalar processors. We reorganized
computations involving the kernels to reuse data as much as
possible and ensure sequential access to the data in the memory
(see Fig. 1a for a code sample). It is a well-known fact that memory
performance in current computers is several orders of magnitude
slower than the CPU processing speed so efficient data layout in
the memory is critical. This resulted in a several-fold speedup as
compared to the naive implementation.

Fourth, the whole 3D inversion program is implemented as a
multilevel parallel application. The 3D earth model is divided in
a distributed fashion over the Message Passing Interface (MPI).
As the horizontal extent in the large surveys is larger than the
vertical depth of interest, we distribute the 3D domain over the
horizontal dimension in a round-robin fashion in order to achieve
better load balance in case of non-rectangular surveys. On a fine-
grained level, loops over the local domain cells, the observation
points and a few other auxiliary loops within each MPI process are
further parallelized with the shared memory OpenMP standard.
Because current revision of the OpenMP standard only supports
scalar reduction, if the accumulated value runs over data points,
the OpenMP loop goes over the domain cells, and, vice versa.
We have experimented with several scheduling schemes and
determined that dynamic scheduling provides a modest advantage
with a chunk size adjustable as an input parameter depending on
the data and model size. The two-level parallelism approach has
multiple advantages. It reduces the number of communicating
processes, greatly reducing communication stress on the network.
It also saves memory since there are data structures that do not
need to be duplicated when parallelizing over the OpenMP
threads. Locality of the processes and threads on the sockets and
cores of the cluster nodes is controlled at runtime by placing the
processes on CPU sockets and threads within each process on the
cores of the process's socket. This way the CPU L3 cache is used by
multiple threads and there is less stress on the slower main
memory. The 3D inversion is relatively light in MPI communica-
tion, largely thanks to the linearity of the forward modeling
operators, which makes all cells independent of each other. Most
MPI communication is located in accumulation of the sensitivity
products and in regularization as reduction operations. Thanks to
this, the program exhibits excellent parallel scaling.

On the CPUs, we also found that it is advantageous to pre-
compute a neighbor list of the cell–receiver pairs that are within
the footprint distance. For typical TMI or gravity gradient
survey, we achieve 40–60% speedup as compared to explicitly
evaluating each cell–receiver pair horizontal distance. The
footprint is assumed to be cylindrical; thus only neighbor list
for one horizontal layer needs to be stored. Since the domain is
MPI-distributed horizontally, in order to ensure sequential
access into the neighbor list array, we bin receivers into
horizontal cells (see array neigh_ind[Nxy][Nrfp] in Fig. 2a, Nxy
is number of horizontal cells, Nrfp is number of receivers within
footprint distance from a cell). Due to potentially large size of
the neighbor list and limited GPU memory amount, we opted for
not using it on the GPU.

Finally, we have implemented a mixed single–double preci-
sion approach, taking advantage of the fact that the values of the
sensitivities in the potential fields are well represented by single
precision floats. Moreover, thanks to the footprint approach, the
small sensitivity values below the single precision resolution are
not included in the calculation by default since they are outside
of the footprint anyway. The key to correct single precision

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–8782



implementation is to store the sensitivity matrix accumulate
products into double precision variables. For example for calcu-
lation of lw, we calculate each sensitivity kernel in single
precision, but the product of Aij� rj is accumulated into a double
precision variable. The final accumulated value is then copied
into a single precision property value, e.g. lwi. This results in
minimal difference between the double precision (DP) and mixed
single–double precision (SPDP) inversion results. Since the scalar
CPU unit achieves the same performance in single and double
precisions, SPDP performance is the same as DP on the CPUs. The
GPU's shared memory multithreading (SIMT) approach allows for

efficient vectorization of the many component's potential fields
kernels and thus also improves performance of the SPDP since DP
vectors are replaced by twice as many SP vectors. An added
benefit of the SPDP version is half the memory usage of the DP
code, which is especially useful on memory limited accelerators.
We utilize preprocessor directives to switch between the SPDP
and DP so building one or the other is as simple as changing a
compiler flag before the build.

The original MPI-OpenMP code is well suited for an accelerator
port. Its main computation kernel is massively parallel, it runs over
all domain cells times all data points within each cell's footprint,

Fig. 1. a. Simplified C code of the scalar CPU implementation of the predicted data calculation. Function get_sens contains a switch statement that selects and executes the
appropriate data component kernel. Fig. 1b. Abbreviated C code of the OpenAcc GPU implementation of the predicted data calculation. In the actual implementation the
get_sens function is manually inlined since the PGI compiler version 12.8 that we used does not support non-inlined subroutines in the accelerated kernel.

Fig. 2. Flowchart of the regularized reweighted inversion implementation using OpenACC. Program flow is shown in solid lines and data flow in dashed lines.

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–87 83



guaranteeing a very high throughput on the accelerator. The
OpenMP kernels have already been computationally optimized
therefore the multi-nested kernel loops that were present in the
OpenMP implementation were mostly kept intact, replacing the
OpenMP parallelization directive with OpenACC. The interchange
ability between the OpenMP and OpenACC also proved very useful
in debugging. In general, a well optimized OpenMP threaded loop
is an excellent candidate for OpenACC kernel. However, we did
have to do a few loop rearrangements to improve the vectorization
and also be careful about the data accumulation within these
loops. There were several further problems which related to the
limitations of the Portland Group (PGI) compiler's OpenACC
implementation at the moment, such as mapping of the nested
loops into thread blocks and threads, and support for multiple
switch statements (which we use to differentiate between many
gravity and magnetics components). Dealing with these problems,
and figuring out the optimal accelerator loop mapping took a good
part of the porting efforts. In Fig. 1, we show the simplified code
for the predicted data calculation using CPU and GPU. In the scalar
CPU code in Fig. 1 a, we loop over the model horizontal dimen-
sions first, followed by a loop over the receivers within that cell's
footprint, and then followed by the vertical model dimension and
the data components. This minimizes the amount of arithmetic
operations needed. In the GPU implementation (Fig. 1 b), the GPU
kernel loops over the all the data (receivers times the compo-
nents), eliminating the need for expensive accumulation of the
predicted data accumulate across the GPU threads. Also, the
receivers vs. components are ordered such that the receiver index
is the fastest changing, minimizing the need to calculate multiple
component branches in a single GPU warp and resulting in better
vectorization potential.

Thanks to the on-demand calculation of the sensitivity matrix,
our inversion code also does not require massive data transfers
between the main memory and the accelerator. Most of the data
needed in the kernel computation are constant (receiver and cell
positions, topography, etc.), so they can be loaded to the accel-
erator memory only once at the start of the computation. Then
there are only a handful of arrays of the size of the number of
inversion domain cells Nm, or the number of data points Nd, that
need to be communicated between the accelerator and the host,
and vice versa. This results in a negligible amount of time spent on
data transfers. One aspect that required a larger coding rewrite is
the OpenACC limitation that only contiguous arrays can be
transferred to the GPU. Since we store some of our data arrays in
structures, we had to create separate arrays for each property and
transfer it to the GPU separately rather that transferring a single
structure that holds all these arrays. Fig. 2 shows a flow chart of
the OpenACC inversion algorithm indicating parts that are exe-
cuted on the host and on the accelerator and data moves between
the host and the accelerator.

The coding effort was fairly minimal; it took us less than two
weeks to implement the OpenACC in the state of the art produc-
tion grade inversion code, which included the time to learn the
OpenACC basics and troubleshooting the compiler limitations. The
latter part involved interaction with PGI engineers who were very
responsive and helpful.

4. Results

For the validation and performance evaluation we chose a Total
Magnetic Intensity (TMI) airborne dataset collected by Fugro around
Broken Hill, NSW. Broken Hill is a historic mining district in New
South Wales (NSW), Australia, and host of the world-class Broken
Hill strataform sediment-hosted Ag–Pb–Zn deposit. The host geology
consists of the Willyama Supergroup of metamorphosed clastic and

volcanoclastic sediments, basic to acidic volcanics, and intrusions of
1715–1590 Ma age. Mineralization is sediment exhalative in origin,
and subsequently modified by metamorphism, folding and shearing.
Today, mining has virtually eliminated the magnetic response of
the Broken Hill orebody; however, there are several other magnetic
anomalies in the area. The survey covers approximately 55�60 km
and includes a bit over 1 million data points.

Here we should emphasize that in this work we only use scalar
CPU implementation. Results from a vectorized implementation
will be reported in a future contribution. The vector floating point
unit (FPU) model puts restrictions on the data locality and on the
program flow. Our potential fields inversion was designed for fast
throughput on a scalar FPU, having a branch to choose the given
potential field component kernel (one out of ca. 50) in the
innermost loop. In order to vectorize, the loop structure has to
be reorganized, by moving the loop over data components outside,
resulting in an extra calculation. Another problem with the vector
SIMD implementation in the CPUs is the treatment of program
branches. The GPUs also include vector FPUs, however, their vector
execution model (SIMT) uses more efficient logic for treatment of
program branching in the hardware by executing only those
branches that are needed in the given vector warp (subset of the
vector, commonly of size 32), resulting in a minimal overhead if
only single branch statement is executed in each warp. The SIMD
implementation on the CPU executes each branch for every vector
element, even if that branch is not being used. This results in
reduced performance when multiple data components are used
jointly in the inversion. For vectorized CPU single component (TMI
susceptibility) inversion, we achieve close to theoretical speed up
as compared to the scalar CPU, however, in the multi-component
case, e.g. the TMI magnetization vector inversion, the scalar code
performs better than the vector code. Fixing this problem would
require writing unique loops for each of the (ca. 50) data
components, which we have not done yet as the GPU performance
is satisfactory for our current needs.

For initial evaluation, we used coarser domain with 200�200�
50m cells, resulting in about 3.9 million cells and just under 35,000
data points. The data were inverted for susceptibility only. Table 1
summarizes the timings on a single dual socket Intel Westmere EP six
core 2.8 GHz CPU (Xeon X5660) node (12 cores total) with two NVidia
Tesla M2090 accelerators. On this node we ran two MPI processes,
each process using six OpenMP threads. For the GPU runs, we also ran
twoMPI processes each also using one Tesla card. We ran 10 iterations
for each inversion.

Notice first that the mixed single–double precision CPU code
runs almost as fast as the double precision. This is because the
kernel loops are scalar and as such the single and double preci-
sions have about the same instructional requirements when run
on the scalar floating point CPU unit. The Tesla card shows about
13� speedup for the DP code and 19� speedup for the SPDP
code, as compared to the 12 cores of the Westmere EP. The
theoretical speedup of the GPU vs. CPU is 5� for DP, so, we are
achieving roughly twice that. This is due to the lack of vectoriza-
tion on the CPU. The SSE4 unit on the Westmere EP processors is
capable of processing DP vectors of size two (128 bits), thus
vectorization doubles the CPU speed that we achieve with the
scalar kernel. Vectorizability of codes on CPUs is becoming

Table 1
Single node CPU and GPU inversion performance on a small model with double
precision (DP) and mixed single–double precision (SPDP).

CPU DP CPU SPDP GPU DP GPU SPDP

Runtime (s) 1760 1741 134 92
Speedup w.r.t. CPU DP 1.00x 1.01x 13.1x 19.2x

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–8784



increasingly important since the current Intel Xeon CPUs have
4 DP wide (256 bytes) vector unit and the Intel Phi accelerator
8 DP wide (512 bytes). Also note that we compare parallel single
CPU performance to parallel single GPU performance, since cur-
rent CPUs have multiple processing units (cores).

The benchmarking model presented in Table 1 is relatively
small, especially when accounting for a limited number of recei-
vers in each cell's footprint, and as such does not provide nearly as
much parallelism for the GPU as more realistic finer model
discretizations. For a more detailed study we used 50 m3 cell size
in the inversion domain and inverted to depth of 4800 m, resulting
in 1094�1190�96 grid with just under 125 million cells. We ran
10 inversion iterations.

Table 2 shows the timing of mixed single–double and double
precision OpenACC implementation on two cluster nodes with
two Intel Westmere EP six core CPUs at 2.8 GHz per node
equipped with two NVidia Tesla M2090 cards per node, as
compared to 48 cluster nodes (576 cores) with the same CPUs.
All inversions ran two MPI processes and six OpenMP threads per
node. The GPU inversion utilized one Tesla card per process for the
kernel calculations and six OpenMP cores for non-accelerated
auxiliary calculations. The 10 inversion iterations using CPUs took
6 305 s on 48 CPU nodes, while the same calculation on 2 GPU
nodes took 6 737 s. The SPDP implementation reduces the runtime
by a further 40%. Since we have determined earlier (Čuma et al.,
2012) that our CPU inversion code scaling is nearly linear, the GPU
implementation improves the speed ca. 22� for the double
precision and ca. 32� for the mixed single–double precision.

In Table 3, we present weak MPI scaling for the GPU implementa-
tion. In weak scaling, we increase the problem size proportionally to
the number of processes, so, ideally, the runtimes stay the same for
different number of nodes and the runtime ratios stay at 1. We kept
the number of data points the same (131,072) and doubled the
number of cells with each doubling of number of nodes, thus having
31,244,640 cells for one node calculation up to 124,978,560 cells for
4 nodes. The memory usage per process on the host (running two
processes per node) in the double precision case was about 13 GB,
mainly storing the large model parameters arrays. The GPU memory
usage was just 500 MB, well below the 6 GB capacity of the Tesla
M2090 card, since only limited number of arrays needs to be
duplicated on the GPU. In the mixed single–double precision case,
the memory usage was about half. The parallel scaling is nearly linear;
although there seems to be about 1% performance deterioration with
doubling the node count, the variation is too small not to rule out the
computation noise. We note that CHPC only has six GPU nodes so four
nodes (8 processes) was the maximum we could scale this test to.

However, since all we did as compared to the original MPI/OpenMP
code is to replace the non-communicating sensitivity calculation
kernels that are now offloaded to the GPU, we expect the code to
scale well to hundreds of GPU nodes.

Next we compared the mixed single–double and double preci-
sion results of inversion for the magnetization vector inversion,
a procedure that can be useful in detecting attributes of remanent
magnetization Zhdanov et. al. (2012). Due to three times larger
computational requirements, we evaluate the difference using the
coarser domain and data grid. In Fig. 3 we look at the magnetiza-
tion vector absolute value obtained with DP and the difference
between DP and SP-DP values after 100 inversion iterations. The

Table 2
Runtime and speedup of CPU and GPU inversion on a large model. The speedup is
scaled to provide value per one CPU or one GPU.

Runtime (s) Speedup per one
process wrt. CPU implementation

48 CPU nodes DP 6305 1x
2 GPUs DP 6831 22.2x
2 GPUs SPDP 4653 32.5x

Table 3
Weak scaling of GPU accelerated inversion.

DP runtime
(sec)

Parallel
scaling

SPDP runtime
(sec)

Parallel
scaling

1 node 6737 1.00 4617 1.00
2 nodes 6832 1.01 4654 1.01
4 nodes 6896 1.02 4703 1.02

Fig. 3. a Magnetization vector absolute value of the Broken Hill survey area 125 m
below sea level obtained with double precision inversion. Fig. 3 b Difference
between magnetization vector absolute value of the Broken Hill survey area 125 m
below sea level obtained with double precision and mixed single–double precision
inversion.

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–87 85



differences are minimal, with the recovered model magnetization
vector root mean square difference (RMSD) of 1.63�10�6. The
misfits for the DP and SPDP are the same to the fifth significant
digit. The predicted data values have RMSD 1.66�10�4, which
brings assurance that the DP and SPDP results are almost identical

Finally, we take advantage of the speedup provided by the
OpenACC mixed single–double precision implementation to invert
the Broken Hill dataset for the magnetization vector on the fine
50 m3 grid. The 70 inversion iterations took 14.6 h to complete
on four cluster nodes with two Tesla M2090 accelerators each,
a similar CPU only inversion would require hundreds of nodes to
be done in the same time.

In Fig. 4 we present the induced and remanent components of the
magnetization. The induced part is caused by the present Earth's

magnetic field, and is aligned parallel to this field. The remanent
component is plotted as a projection of the recovered magnetization
vector perpendicular to the Earth's magnetic field. Most of the
anomalies in this survey area show both induced and remanent
component which suggests demagnetization effects rather than pure
remanence. Strong magnetic anomaly tends to shift the direction of
the magnetization vector away from the inducing field. Inversion for
magnetization vector is capable of recovering anomalies with both
remanence and demagnetization while inversion for scalar suscept-
ibility in these cases is problematic.

5. Conclusions

Thanks to the code structure that was developed for the OpenMP
multithreading, the OpenACC implementation was straightforward
and resulted in up to 22� double precision speedup on a node
equipped with two NVidia Tesla M2090 cards as compared to a
2.8 GHz dual CPU 12 core Intel Westmere EP cluster node. Mixed
single–double precision increases this speedup to up to 32� , as the
scalar CPU implementation does not benefit from this approach. From
this experience we believe that directive based approaches such as
OpenACC, or future OpenMP for accelerators, can be a good choice for
scientists since they require significantly less coding efforts than the
alternatives (CUDA or OpenCL). A well designed threaded OpenMP
code should be fairly straightforward to port to OpenACC and run on a
GPU, and other future accelerators.

The magnetization vector inversion of the Broken Hill area
survey demonstrates the capability of the accelerated inversion
code and offers a more concise interpretation of the magnetic
features in the area. Our massively parallel inversion method
coupled with the OpenACC implementation enables geologists to
get a complete 3D picture of density, susceptibility or magnetiza-
tion vector covering very large areas.

Acknowledgments

We acknowledge support of the University of Utah's Center for
High Performance Computing (CHPC). the Consortium for Electro-
magnetic Modeling and Inversion (CEMI), and TechnoImaging.
We furthermore thank Mat Colgrove from PGI for help and useful
comments, and Brian Haymore from CHPC for comments on the
manuscript. Finally, we are grateful to the editor and two anon-
ymous reviewers for comments that helped to improve the
manuscript.

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2013.10.004.

References

Beiki, M., 2010. Analytic signals of gravity gradient tensor and their application to
estimate source location. Geophysics 75, I59–I74, http://dx.doi.org/10.1190/
1.3493639.

Beiki, M., Pedersen, L.B., 2010. Eigenvector analysis of gravity gradient tensor to
locate geologic bodies. Geophysics 75, I37–I49, http://dx.doi.org/10.1190/
1.3484098.

Chen, Z., Meng, X., Guo, L., Liu, G., 2012. GICUDA: a parallel program for 3D
correlation imaging of large scale gravity and gravity gradiometry data on
graphics processing units with CUDA. Comput. Geosci. 46, 119–128.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K.,
Walker, D., Whaley, R.C., 1996. ScaLAPACK: a portable linear algebra library for
distributed memory computers—design issues and performance. Comput. Phys.
Commun. 97, 1–15.

Fig. 4. a Induced part of the magnetization vector from the fine grid inversion of
the Broken Hill area survey at 125 m below sea level. Fig. 4 b Remanent part of the
magnetization vector from the fine grid inversion of the Broken Hill area survey at
125 m below sea level.

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–8786

http://dx.doi.org/10.1016/j.cageo.2013.10.004
http://dx.doi.org/10.1190/1.3493639
http://dx.doi.org/10.1190/1.3493639
http://dx.doi.org/10.1190/1.3493639
http://dx.doi.org/10.1190/1.3493639
http://dx.doi.org/10.1190/1.3484098
http://dx.doi.org/10.1190/1.3484098
http://dx.doi.org/10.1190/1.3484098
http://dx.doi.org/10.1190/1.3484098
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref3
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref3
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref3
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref4
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref4
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref4
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref4


Cox, L.H., Zhdanov, M.S., 2007. Large-scale 3D inversion of HEM data using a moving
footprint. Presented at 77th Annual Meeting, SEG, Expanded Abstracts, San
Antonio, Texas.

Cox, L.H., Wilson, G.A., Zhdanov, M.S., 2010. 3D inversion of airborne electromag-
netic data using a moving footprint. Explor. Geophys. 41, 250–259, http://dx.
doi.org/10.1071/EG10003.

Čuma, M., Wilson, G.A., Zhdanov, M.S., 2012. Large-scale 3D inversion of potential
field data. Geophys Prospect. 60, 1186–1199, http://dx.doi.org/10.1111/j.1365-
2478.2011.01052.x.

Davis, K., Li, Y., 2011. Fast solution of geophysical inversion using adaptive mesh,
space-filling curves and wavelet compression. Geophys. J. Int. 185, 157–166,
http://dx.doi.org/10.1111/j.1365-246X.2011.04929.x.

Dransfield, M., Zeng, Y., 2009. Airborne gravity gradiometry: terrain corrections and
elevation error. Geophysics 74, I37–I42, http://dx.doi.org/10.1190/1.3170688.

Fedi, M., 2007. DEXP: A fast method to determine the depth to the sources of
potential fields. Geophysics 72, L1–L11, http://dx.doi.org/10.1190/1.239945215.

Hornby, P., Boschetti, F., Horowitz, F.G., 2002. Analysis of potential field data in the
wavelet domain. Geophys. J. Int. 137, 175–196, http://dx.doi.org/10.1046/j.1365-
246x.1999.00788.x.

Kirkendall, B., Li, Y., Oldenburg, D., 2007. Imaging cargo containers using gravity
gradiometry. IEEE Trans. Geosci. Remote Sens. 45, 1786–1797.

Lee, J.B., 2001. FALCON gravity gradiometer technology. Explor. Geophys. 32,
247–250, http://dx.doi.org/10.1071/EG01247.

Li, Y., 2001. 3-D inversion of gravity gradiometry data. Proceedings of the 71st
Annual Meeting, SEG, Expanded Abstracts, pp. 1470–1473. doi: 10.1190/1.
1816383.

Li, Y., Oldenburg, D.W., 1996. 3-D inversion of magnetic data. Geophysics 61,
394–408, http://dx.doi.org/10.1190/1.1443968.

Li, Y., Oldenburg, D.W., 1998. 3-D inversion of gravity data. Geophysics 63, 109–119,
http://dx.doi.org/10.1190/1.1444302.

Li, Y., Oldenburg, D.W., 2003. Fast inversion of large-scale magnetic data using
wavelet transforms and a logarithmic barrier method. Geophys. J. Int. 152,
251–265, http://dx.doi.org/10.1046/j.1365-246X.2003.01766.

Moorkamp, M., Jegen, M., Roberts, A., Hobbs, R., 2010. Massively parallel forward
modeling of scalar and tensor gravimetry data. Comput. Geosci. 36, 680–686.

Phillips, N., Nguyen, T.H., Thomson, V., Oldenburg, D. and Kowalczyk, P., 2010. 3D
inversion modeling, integration, and visualization of airborne gravity, magnetic,
and electromagnetic data—the QUEST Project. Presented at the International
Workshop on Electrical, Gravity and Magnetic Methods, Capri.

Portniaguine, O., Zhdanov, M.S., 1999. Focusing geophysical inversion images.
Geophysics 64, 874–887, http://dx.doi.org/10.1190/ 1.1444596.

Portniaguine, O., Zhdanov, M.S., 2002. 3-D magnetic inversion with data compres-
sion and image focusing. Geophysics 67, 1532–1541, http://dx.doi.org/10.1190/
1.1512749.

Salem, A., Ravat, D., 2003. A combined analytic signal and Euler method (AN-EUL)
for automatic interpretation of magnetic data. Geophysics 68, 1952–1961, http:
//dx.doi.org/
10.1190/1.1635049.

Thompson, D.T., 1982. EULDPH: a new technique for making computer assisted
depth estimates from magnetic data. Geophysics 47, 31–37, http://dx.doi.org/
10.1190/1.1441278.

Tondi, R., Cavazzoni, C., Danecek, P., Morelli, A., 2012. Parallel, ‘large’, dense matrix
problems: application to 3D sequential integrated inversion of seismological
and gravity data. Comput. Geosci. 48, 143–156.

Yang, D., Oldenburg, D.W., 2012. Practical 3D inversion of large airborne time
domain electromagnetic data sets. Presented at ASEG 22nd Geophysical
Conference and Exhibition, Brisbane.

Zhang, J., Wang, C.-Y., Shi, Y., Cai, Y., Chi, W.-C., Dreger, D., Cheng, W.-B., Yuan, Y.-H.,
2004. Three-dimensional crustal structure in central Taiwan from gravity
inversion with a parallel genetic algorithm. Geophysics 69, 917–924.

Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems.
Elsevier Elsevier Science B.V., Amsterdam, The Netherlands.

Zhdanov, M.S., 2009. New advances in 3D regularized inversion of gravity and
electromagnetic data. Geophys. Prospect. 57 (4), 463–478, http://dx.doi.org/
10.1111/j.1365-2478.2008.00763.x.

Zhdanov, M.S., Wan, L., Gribenko, A., Čuma, M., Key, K., Constable, S., 2011. Large-
scale 3D inversion of marine magnetotelluric data: Case study from the Gemini
prospect, Gulf of Mexico. Geophysics 76, 77–87.

Zhdanov, M.S., Čuma, M., Wilson, G.A., Polomé, L., 2012. 3D magnetization vector
inversion for SQUID-based full tensor magnetic gradiometry. In: Proceedings of the
82nd Annual Meeting, SEG, Expanded Abstracts. doi: 10.1190/segam2012-0740.

M. Čuma, M.S. Zhdanov / Computers & Geosciences 62 (2014) 80–87 87

http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0005
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0005
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0005
http://dx.doi.org/10.1071/EG10003
http://dx.doi.org/10.1071/EG10003
http://dx.doi.org/10.1071/EG10003
http://dx.doi.org/10.1071/EG10003
http://dx.doi.org/10.1111/j.1365-2478.2011.01052.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01052.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01052.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01052.x
http://dx.doi.org/10.1111/j.1365-246X.2011.04929.x
http://dx.doi.org/10.1111/j.1365-246X.2011.04929.x
http://dx.doi.org/10.1111/j.1365-246X.2011.04929.x
http://dx.doi.org/10.1190/1.3170688
http://dx.doi.org/10.1190/1.3170688
http://dx.doi.org/10.1190/1.3170688
http://dx.doi.org/10.1190/1.239945215
http://dx.doi.org/10.1190/1.239945215
http://dx.doi.org/10.1190/1.239945215
http://dx.doi.org/10.1046/j.1365-246x.1999.00788.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00788.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00788.x
http://dx.doi.org/10.1046/j.1365-246x.1999.00788.x
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref11
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref11
http://dx.doi.org/10.1071/EG01247
http://dx.doi.org/10.1071/EG01247
http://dx.doi.org/10.1071/EG01247
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0010
doi: 10.1190/1.1816383
doi: 10.1190/1.1816383
http://dx.doi.org/10.1190/1.1443968
http://dx.doi.org/10.1190/1.1443968
http://dx.doi.org/10.1190/1.1443968
http://dx.doi.org/10.1190/1.1444302
http://dx.doi.org/10.1190/1.1444302
http://dx.doi.org/10.1190/1.1444302
http://dx.doi.org/10.1046/j.1365-246X.2003.01766
http://dx.doi.org/10.1046/j.1365-246X.2003.01766
http://dx.doi.org/10.1046/j.1365-246X.2003.01766
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref16
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref16
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0015
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0015
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0015
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0015
http://dx.doi.org/10.1190/ 1.1444596
http://dx.doi.org/10.1190/ 1.1444596
http://dx.doi.org/10.1190/ 1.1444596
http://dx.doi.org/10.1190/1.1512749
http://dx.doi.org/10.1190/1.1512749
http://dx.doi.org/10.1190/1.1512749
http://dx.doi.org/10.1190/1.1512749
http://dx.doi.org/10.1190/1.1635049
http://dx.doi.org/10.1190/1.1635049
http://dx.doi.org/10.1190/1.1635049
http://dx.doi.org/10.1190/1.1635049
http://dx.doi.org/10.1190/1.1635049
http://dx.doi.org/10.1190/1.1441278
http://dx.doi.org/10.1190/1.1441278
http://dx.doi.org/10.1190/1.1441278
http://dx.doi.org/10.1190/1.1441278
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref21
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref21
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref21
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0020
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0020
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0020
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref22
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref22
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref22
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref23
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref23
http://dx.doi.org/10.1111/j.1365-2478.2008.00763.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00763.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00763.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00763.x
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref25
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref25
http://refhub.elsevier.com/S0098-3004(13)00268-9/sbref25
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0025
http://refhub.elsevier.com/S0098-3004(13)00268-9/othref0025
doi: 10.1190/segam2012-0740

	Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs
	Introduction
	3D potential fields modeling and inversion
	Implementation
	Results
	Conclusions
	Acknowledgments
	Supporting information
	References




