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This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-
source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular
mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of
anomalous conductivity and close to the location of the source. In order to avoid the source singularity,
we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh
can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system of
finite element equations is solved using a quasi-minimum residual method with a Jacobian precondi-
tioner. We have applied the developed algorithm to compute a typical MCSEM response over a 3D model
of a hydrocarbon reservoir located in both isotropic and anisotropic mediums. The modeling results are
in a good agreement with the solutions obtained by the integral equation method.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Controlled-source electromagnetic (CSEM) method has been
widely used in geophysical exploration on land for decades (Ward
and Hohmann, 1988; Zhdanov and Keller, 1994). The marine
controlled-source electromagnetic (MCSEM) method was also
applied for the off-shore hydrocarbon (HC) exploration (Srnka
et al., 2006; Constable and Srnka, 2007; Um and Alumbaugh,
2007; Andréis and MacGregor, 2008; Zhdanov, 2010). The subsur-
face conductivity structure could be very complex due to bathy-
metry and a lateral variation of the conductivity of the sea-bottom
sediments. In this case, a full 3D modeling of diffusive electro-
magnetic data is desirable to correctly interpret the field MCSEM
data (Silva et al., 2012). The 3D electromagnetic modeling requires
solving the diffusive Maxwell's equations in a discretized form.
The most popular numerical techniques for EM forward modeling
are integral equation (IE), finite difference (FD), and finite element
(FE) methods.

Compared to the integral equation and finite difference meth-
ods, the finite element method is more suitable for modeling of
EM response in a complex geoelectrical structure. In a 3D scenario,
i),
ail.com (M. Zhdanov).
the subsurface can be discretized using either regular brick,
hexahedral, or tetrahedron elements. The electric and magnetic
fields within each element can be approximated by either linear or
higher order polynomial functions. Since the support of the finite
element basis function is small, the resulting stiffness matrix is
very sparse, which makes it easy to store. In the paper, we also
compared the sparsity pattern of the stiffness matrix created by
our finite element method and that from the finite difference
method. Although the finite element stiffness matrix is less sparse
than the finite difference stiffness matrix for the same model, the
bandwidth of finite element stiffness matrix is much narrower.

The node-based finite element method was applied in the past
to model EM data by solving the coupled equations for the vector
and scalar potentials and also by solving Maxwell's equations for
electric and magnetic fields (e.g., Zhdanov, 2009). However, for
accurate computations, the divergence free condition for the
electric and magnetic fields in the source free regions needs to
be addressed by an additional penalty term to alleviate possible
spurious solutions (e.g., Jin, 2002).

The advantage of the edge-based finite element method,
introduced by Nédélec (1980), is that the divergence free condi-
tions are satisfied automatically by an appropriate selection of the
basis functions. The basis function of the Nédélec element is a
vector function defined along the element edges and at the center
of each edge. The tangential continuity of either electric or
magnetic field is imposed automatically on the element's
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interfaces while the normal components are still can be discontin-
uous (Jin, 2002). In this paper, we present the formulation of
Maxwell's equation for the electric field directly using edge-based
finite element approach and the continuity of tangential electric
field can be imposed directly. We can also formulate Maxwell's
equation for magnetic field in the same way and the continuity of
tangential magnetic field will be imposed directly in the formula-
tion. In spite of the fact that the edge-based finite element method
was widely used in electrical engineering for over 30 years, it
started gaining the interest from the geophysical community
recently only. Mitsuhata and Uchida (2004) implemented an
edge-based finite element modeling algorithm for solving 3D
magnetotelluric problem. Schwarzbach et al. (2011) applied linear
and higher order edge element for the modeling of marine CSEM
data using tetrahedron discretization to better simulate the sea-
floor bathymetry. Silva et al. (2012) proposed a finite element
multifrontal method which is very efficient for 3D CSEM modeling
in the frequency domain. One needs to note that all these
formulations of the 3D CSEM problem assume the subsurface
conductivity to be isotropic.

In the marine environment, the subsurface conductivity is
usually characterized by strong anisotropy due to sedimentation.
Generally the subsurface is more conductive in the horizontal
direction than in the vertical direction for a horizontally stratified
medium. The anisotropy of conductive sediment can affect the
response of the electromagnetic field in a marine CSEM survey and
this effect has already been well studied (Ramananjaona et al.,
2011; Ellis et al., 2010; Brown et al., 2012; Newman et al., 2010).
Obviously, to accurately interpret the marine CSEM data, the
conductivity anisotropy needs to be considered in the forward
modeling. There are already series of papers published on 2.5D
and 3D modeling of marine CSEM data in the anisotropic medium
using node-based finite element and finite difference methods
(Kong et al., 2008; Weiss and Newman, 2002).

Meanwhile, another challenge arising in the interpretation of
MCSEM data is strong distortion of the data by the effect of
seafloor bathymetry (e.g., Sasaki, 2011). For accurate interpretation
of the subsurface structure using the MCSEM method, the bathy-
metry effect should be accurately simulated. The finite element
method is very well suited to solve this problem.

In this paper, we formulate the 3D marine CSEM problem using
the linear edge-element method in the anisotropic medium. In a
general case, we assume that the model has a triaxial conductivity
anisotropy. In order to compare the EM response with integral
equation solution (Zhdanov et al., 2006), we also consider trans-
verse anisotropy in our model study. To avoid the source singu-
larity, we solve Maxwell's equations with respect to anomalous
electric field. The background EM field for the layered background
model is computed using Hankel transforms (Anderson, 1989;
Guptasarma and Singh, 1997). For simplicity, we use a rectangular
element for the flat seafloor model. In order to simulate the
bathymetry effect, the rectangular element is transformed into
hexahedral one by shifting the vertical coordinate. The sparse
finite element system of equations is solved using a quasi-mini-
mum residual method (QMR) with a Jacobian preconditioner.

To validate our code, we first test it for a 1D model with an
analytical solution. For a full 3D anisotropic problem, we compare
the numerical results from our method and integral equation
solutions.
2. Formulation of the EM field equations with respect to
anomalous field in anisotropic medium

The low frequency electromagnetic field, considered in geo-
physical application, satisfies the following Maxwell's equations
(Zhdanov, 2009):

ωμ∇ × = iE H (1)0

σ∇ × = + ¯H J E (2)s

where we adopt the harmonic time dependence ω−e i t , ω is the
angular frequency, μ0 is the free space magnetic permeability, Js is
the distribution of source current, and the term σ̄E is the induced
current in the conductive earth, σ̄ is the conductivity tensor which
is defined as follows:
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In (3), σ σ σ, ,x y z are principle conductivities. Actually, our formula-
tion works for a general anisotropy case where the tensor has six
independent components. For simplicity, we consider that our
coordinate axes coincide with the principal axes of the conductiv-
ity tensor. In marine environment, we consider a transverse
anisotropy that

σ σ σ= ≠ . (4)x y z

In a case of a total field formulation of numerical modeling using
the finite element method, the grid needs to be refined in order to
capture the rapid change of the primary current. To overcome this
difficulty, anomalous field formulation is desirable. In the anom-
alous field formulation of diffusive EM field problem, the total field
is decomposed into background and anomalous fields (Zhdanov,
2009)

= +E E E , (5)b a

σ σσ Δ¯ = ¯ + ¯. (6)b

Based on this decomposition, one can derive the following
equation for the anomalous electric field:

σωμσ ωμΔ∇ × ∇ × − ¯ = ¯i iE E E . (7)a a b

From (7), we can see that the source term for this equation is the
primary electric field, which is much smoother than the source
current. The normal electric field can be computed analytically for
a full-space and half-space background conductivity. For a
general layered earth model, the normal field can be computed
semi-analytically by using a digital filter to calculate Hankel
transforms.

The differential equation for anomalous electric field can be
solved by using integral equation, finite difference or finite
element method. Once the anomalous electric field is solved
numerically, the anomalous magnetic field can be obtained by
using Faraday's law (Silva et al., 2012)

ωμ= ∇ ×−iH E( ) (8)a a
1

3. Edge-based finite element analysis

The edge-based finite element method uses vector basis
functions defined on the edges of the corresponding elements.
Similar to the conventional node-based finite element method,
the modeling domain can be discretized using rectangular,
tetrahedron, hexahedron or other complex elements (Jin,
2002).

For simplicity, we will discuss the rectangular grid first. Fig. 1 is
an illustration of the bricks grid that we used with node and edge



Fig. 1. An illustration of rectangular brick element. The number with circle
indicates the node index and the number without circle is the index of edges.
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indexing. Following the work by Jin (2002), we denote the edge
length in x y z, , directions as l l l, ,x

e
y
e

z
e and the center of the

element as x y z( , , )c
e

c
e

c
e . The tangential component of the electric

field is assigned to the center of each edge, the x y z, , compo-
nents of the electric field inside the rectangular prism can be
expressed as follows:
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where the edge basis functions are defined by the following
expressions (Jin, 2002):
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Eq. (9) can be written in a more compact form as
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It is easy to verify that the vector edge basis functions are

divergence free but not curl free

∇· = ∇ × ≠N N 00, . (24)i
e

i
e

The vector basis functions are also continuous at the element
boundaries. As a result, the divergence free condition of the electric
field in the source free region and the continuity conditions are
imposed directly in the edge-based finite element formulation.

By substituting (9) and (22) into (7), and using Galerkin's
method, one can find the weak form of the original differential
equation as follows:

∫ ωμσ ωμ σ= · ∇ × ∇ × − ¯ − Δ ¯
Ω

R i i dvN E E E[ ] , (25)i i s s p

where ω is the modeling domain.
After applying the first vector Green's theorem, we can find the

discretized form of (25) for each element
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where K e and Me are the local stiffness matrices defined as follows:
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and Ωe indicates the domain for one element. The integrals in (27)
and (28) can be calculated analytically for the rectangular ele-
ments (Jin, 2002).

After assembling the local element matrices in (26) into a
global system, one can obtain a sparse linear system of equations
as follows:

=Ae b. (29)

In order to get a unique solution for this equation, proper
boundary conditions need to be added. Following the work of Jin
(2002) and Silva et al. (2012), we consider the homogeneous
Dirichlet boundary conditions in the edge element formulation

| =Ω∂e 0 (30)

which holds approximately for the anomalous electric field
at a distance from the domain with the anomalous conductivity.



Fig. 2. (a) Hexahedral element in the xyz-coordinate system. (b) The same element
transformed into a cubic element in the ξηζ-coordinate system.
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For the numerical modeling, the distance, where conditions (30)
hold, can be determined based on the skin depth of the field. One
can refer to the work of Silva et al. (2012) and Puzyrev et al. (2013)
for more details.

We use the quasi-minimum residual method with the Jacobian
preconditioner to solve the linear system of (29). In order to
capture the rapid change of electromagnetic field close to the
source region and target area and to minimize the computational
cost, we use a non-uniform rectangular grid.

As a matter of fact, there exist many other choices of iterative
solvers for the large linear system of equations. The commonly
used iterative solvers include GMRES and BiCGSTAB methods
besides QMR. GMRES is an Arnoldi-based method which only
requires one matrix–vector multiplication for the every iteration.
However, this method requires large memory, because it needs all
the previously generated Arnoldi vectors to be saved (Saad, 2003;
Puzyrev et al., 2013). BiCGStab (Van der Vorst, 1992) and QMR
(Freund and Nachtigal, 1991) are both Lanczos-based approaches.
Comparing with GMRES, these two methods require two matrix–
vector multiplications in the every iteration, but the memory
requirements for these two methods are much less comparing to
the GMRES method (Puzyrev et al., 2013). In our application, the
stiffness matrix is complex symmetric, and in this case the QMR
method requires just one matrix–vector multiplication per itera-
tion (Puzyrev et al., 2013; Weiss and Newman, 2002). Therefore,
the QMR method is suitable for our application in terms of both
computation time and memory requirements.

The convergence behavior of Krylov subspace based iterative
solvers strongly depends on the conditioner number of the matrix.
The computation time for solving the linear system of equations
can be reduced by applying preconditioner to improve the condi-
tioner number of the matrix (Van der Vorst, 2003). There are also
many choices of preconditioners. Among these preconditioners,
the Jacobian preconditioner is the simplest one which does not
require extra computation (Axelsson, 1994). This type of precondi-
tioners is demonstrated to be effective for a general case and
should be used when there are no other available preconditioners
(Axelsson, 1994). More advanced preconditioners based on the
approximated inverse of the stiffness matrix can be used to speed
up the solvers. In this paper, we have adopted the Jacobian
preconditioner for simplicity and because it provided an adequate
result for demonstration of our algorithm. In future, we will
consider a more complex choice of the preconditioner.

We should note that the rectangular elements are not quite
suitable for bathymetry modeling. It is more appropriate to use the
hexahedral elements or transformed rectangular prism elements
in order to simulate the bathymetry. In order to compute the
stiffness matrix for the hexahedral element, we transform this
element into a cubic element centered at the origin. Fig. 2a shows
an arbitrary hexahedral element in the xyz-coordinate system,
while Fig. 2b shows the transformed cubic element in the ξηζ-
coordinate system.

The transformation can be described by the following formulas
(Jin, 2002):
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where the scalar node-based shape function, Ni
e, is defined as
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and i is a local node index of the element.
The vector basis functions for the edge-based elements can be

defined accordingly as follows:
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where li
e is the length of the i th edge of the element.

It was shown above that for vector finite element analysis one
needs to evaluate two volume integrals (27) and (28). For a
hexahedral element, these two volume integrals can be trans-
formed to the integral in the ξηζ-coordinate system by using the
Jacobian transform
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where ξ η ζJ ( , , ) is the Jacobian matrix and ξ η ζ| |J ( , , ) is its determi-
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The components of Jacobian matrix can be found easily by taking
derivatives of (31) (through 33) with respect to ξ, η and ζ
coordinates
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We can apply curl operator to (35). After doing some algebra, we
can find the expression for the curl of the vector finite basis
functions
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Once the vector basis functions and their curl are obtained, the
stiffness matrix in (36) and (37) can be evaluated numerically by
using the three-dimensional Gaussian integral (Jin, 2002)
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where ξ η,i j and ζk are Gaussian integral points; n1, n2 and n3 are
the number of Gaussian integral points along ξ, η and ζ axes; and
Wi, Wj and Wk are weighting factors. In our application, the
polynomial order of the integrand is less than 3, therefore, it is
sufficient to choose = = =n n n 31 2 3 for higher accuracy. As a
result, 27 Gaussian points are selected in each element to numeri-
cally compute the local stiffness matrix.
Fig. 4. A comparison between finite element result and the 1D semi-analytical
solution for the secondary electric field with a frequency of 0.5 Hz on the seafloor.
The upper panel shows a comparison for the x component of secondary electric
field at y¼0; the middle panel shows a comparison for the y component of
secondary electric field at = −y 50 m; the lower panel shows a comparison for the
z component of secondary electric field at y¼0.
4. Comparison with semi-analytical solution for a horizontally
layered geoelectrical model

In this section, we validate our algorithm by considering an
isotropic horizontally layered geoelectrical model as shown in
Fig. 3. The background is a seawater-sediment model with air–
earth interface at z¼0 and the depth of seawater is 1000 m. The
conductivities of air, seawater and sediments are − −10 Sm6 1,

−3.3 Sm 1 and −1 Sm 1, respectively. An infinite horizontal resistive
layer with a conductivity of −0.01 Sm 1 is embedded in the sedi-
ments from the depth of 1400 m to 1500 m. The electromagnetic
Fig. 3. Rectangular mesh for a horizontally layered geoelectrical model. The red
resistive layer is embedded in sediments below seawater. The red star in this figure
indicates the excitation dipole source. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
field is excited by an horizontal electric dipole oriented in the x
direction with the moment of 100 Am and located in the seawater
with the coordinates (0, 0, 950) m which is 50 m above seafloor.
The frequency of the harmonic electric source is 0.5 Hz. The
computation domain is selected based on the skin depth criteria
as Ω = − ≤ ≤ − ≤ ≤x y z{ 3 km , 3 km; 0.5 km 3 km}. We use a
nonuniform rectangular grid to discretize this domain. The grid
is refined nearby the source, target layer and the surface of
observation (see Fig. 3).

For such an isotropic model, the anomalous field caused by the
target layer can be computed semi-analytically using the Hankel
transform (Ward and Hohmann, 1988; Anderson, 1989; Zhdanov
and Keller, 1994; Guptasarma and Singh, 1997). Fig. 4 shows a
comparison of the anomalous electric field between the finite
element solution and the 1D semi-analytical solution. Fig. 5 shows
a comparison of the anomalous magnetic field between the finite
element solution and the 1D semi-analytical solution. One can see
that the finite element results are in a good agreement with the
semi-analytical solution. For this model with the specified source
configuration, the y component of secondary electric field, the x
and z components of secondary magnetic field are equal to 0 at
y¼0. As such, the finite element solution of these three compo-
nents are compared with the 1D semi-analytical solution at

= −y 50 m where their values are not 0.



Fig. 5. A comparison between the finite element result and the 1D semi-analytical
solution for the secondary magnetic field with a frequency of 0.5 Hz on the seafloor.
The upper panel shows a comparison for the x component of secondary magnetic
field at = −y 50 m; the middle panel shows a comparison for the y component of
secondary magnetic field at y¼0; the lower panel shows a comparison for the z
component of secondary magnetic field at = −y 50 m.

Fig. 6. 3D view of a model of the off-shore HC reservoir. The resistivity is shown in
logarithmic scale.

Fig. 7. Vertical section at y¼0 of the grid used for the model of the off-shore HC
reservoir. The blue area indicates the reservoir and the red star represents the
location of a dipole source. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 8. Plane view of the grid used for the model of the off-shore HC reservoir. The
blue area indicates the reservoir and the red star represents the location of a dipole
source. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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5. Model of an off-shore hydrocarbon reservoir

In this section, we consider a 3D model of a hydrocarbon (HC)
reservoir in a marine environment. We consider a three-layered
background model where the first layer is air with a conductivity
of − −10 Sm6 1, the second layer is seawater with a conductivity of

−3.3 Sm 1 and the bottom layer is sediment with a horizontal
conductivity of −1 Sm 1. The horizontal conductivity of the reservoir
is set to be −0.05 Sm 1. The seawater depth is 1000 m and it is
separated from the sediment by a horizontal flat plane. The
anomalous domain for the resistive HC reservoir is defined as
follows: Ω = − ≤ ≤ ≤ ≤x y z{ 1000 m , 1000 m; 2000 m 2100 m}a .

The transmitter is an x-oriented electric dipole source located
100 m above the seafloor at a point with the coordinates

−( 3000, 0, 900) m. The frequency of excitation current is 1 Hz,
which is a typical frequency for marine CSEM. The EM receivers
are located on the seafloor. The computation domain for finite
element analysis is selected as Ω = − ≤ ≤x{ 5 km 5 km;
− ≤ ≤ − ≤ ≤y z3.6 km 3.6 km; 1 km 3.5 km} . Fig. 6 shows a 3D
view of the horizontal conductivity for this model of the off-shore
HC reservoir.

The computation domain is discretized by a non-uniform
rectangular grid. Figs. 7 and 8 show the grid in the –X Z plane at
y¼0 and the grid in a plane view, respectively. From these figures,
one can see that the mesh is refined in the areas of the dipole
source, reservoir domain, and the seafloor, where the data are
measured by the receivers.

This mesh contains 438,216 elements, 455,994 nodes and
1,349,971 edges. Thus, the degree of freedom associated with the



Fig. 9. Sparsity patterns of the FEM and FDM stiffness matrices for the 3D reservoir
model. Panel (a) shows the sparsity pattern of edge-based finite element stiffness
matrix (with 41,412,819 nozero entries), while panel (b) presents the sparsity of
finite difference stiffness matrix (with 17,568,102 nozero entries) for the same
model.

Fig. 10. Model 1. A comparison of the x component of the anomalous electric field
computed using the finite element (red circles) and integral equation (blue line)
methods at y¼0 for a frequency of 1 Hz. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 11. Model 1. A comparison of the x component of the background and total
electric fields at y¼400 m for a frequency of 1 Hz. The solid blue line shows the
background field while the dashed red line represents the total field. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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edges is 1349.971. The resulting size of the sparse stiffness matrix
is 1,349,971�1,349,971. The memory required to store this sparse
matrix is around 1 GB. The sparsity pattern for the finite element
stiffness matrix is shown in panel (a) of Fig. 9. We also create a
stiffness matrix using the finite difference method for the same
model and the sparsity pattern is shown in panel of Fig. 9. From
this figure, one can see that the matrix is very sparse, although the
problem size is huge. The number of nonzero entries of the finite
element stiffness matrix is almost 2.3 times as that of the nonzero
entries of the finite difference stiffness matrix. However, the
nonzero entries of the finite element stiffness matrix are more
centralized which results in a narrower bandwidth of the matrix.

In this section, we will consider four sub-models with the same
geometry but with different anisotropy configurations. In the first
model, we assume that both the background and anomalous
conductivities are isotropic. In the second model, we consider an
anisotropic background conductivity and isotropic anomalous
conductivity for the reservoir. In the third model, we assume that
the background is isotropic while the reservoir is anisotropic.
Finally, we will consider a more complex case (Model 4), where
both the background and anomalous conductivities are
anisotropic.

It is known that marine CSEM data have lower sensitivity to
horizontal conductivity in comparison to the vertical conductivity
(e.g., Brown et al., 2012). In our model studies for anisotropic
reservoir, the horizontal conductivity is fixed while the vertical
conductivity changes. Tompkins (2005), Li and Dai (2011) and
Brown et al. (2012) show that the sensitivity of MCSEM data to
reservoir anisotropy is very low while the anisotropic background
conductivity can affect the anomalous fields significantly. In order
to compare the anisotropy effects from background and reservoir
conductivities, we set larger anisotropy ratio for reservoir con-
ductivity than for background conductivity.

We will compare the numerical modeling results based on the
edge element analysis which will be produced by the integral
equation method (Zhdanov et al., 2006).

5.1. Model 1: isotropic background and isotropic reservoir

Model 1 has isotropic conductivity both in the layered back-
ground and within the reservoir of −1 Sm 1 and −0.05 Sm 1, respec-
tively. The numerical result obtained by the edge-based finite
element method was compared with the integral equation solu-
tion. Fig. 10 shows, as an example, a comparison of Ex component
computed by these two methods along the profile at y¼0 with the
frequency of 1 Hz. We can see that the result obtained by the
integral equation method is practically the same as the finite
element solution. Fig. 11 shows the plots of the background and
total Ex components with the frequency of 1 Hz for the same
model. One can clearly see an anomaly around x¼2 km where the
offset is about 5 km. Within the 3 km offset, the total field is
almost the same as the background field since the anomalous field
becomes much smaller than the background field for the receivers
located closer to the source.

In order to further demonstrate our algorithm, we added the
comparison of finite element solution and integral equation
solution for another two frequencies: 0.1 Hz and 0.5 Hz. Figs. 12
and 13 show the comparison of Ex component computed by finite
element and integral equation methods along the profile at y¼0
with the frequencies of 0.1 Hz and 0.5 Hz, respectively. Due to the
page limits, we will only show the numerical modeling result for
the frequency of 1 Hz in the following sections.

Fig. 14 shows the convergence plot of QMR solver for this
model for the data with the frequency of 1 Hz. We also present the
convergence plots of the GMRES and BiCGSTAB solvers in this
figure. We can clearly see that QMR solver is more stable compar-
ing to BiCGSTAB solver and the convergence rate is faster than that
for GMRES and BiCGSTAB solvers. We obtain similar results for
other models presented in this paper. Due to the page limits, we
only show a comparison of the convergences of QMR, GMRES and
BiCGSTAB solvers for Model 1.



Fig. 12. Model 1. A comparison of the x component of the anomalous electric field
computed using the finite element (red circles) and integral equation (blue line)
methods at y¼0 for a frequency of 0.1 Hz. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 13. Model 1. A comparison of the x component of the anomalous electric field
computed using the finite element (red circles) and integral equation (blue line)
methods at y¼0 for a frequency of 0.5 Hz. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 14. Convergence plot of QMR solver for 3D reservoir Model 1 for the data with
the frequency of 1 Hz compared to the convergence plots of the GMRES and
BiCGSTAB solvers.
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The total memory required to solve this model using finite
element and integral equation methods was 1.5 GB and 215 MB,
respectively. It took about 20 min to solve this model using the
finite element method and about 3 min for the integral equation
method on a PC with 2.6 GHz CPU.

5.2. Model 2: anisotropic background with isotropic reservoir

In a marine environment, the conductivity of sediments shows
a strong transverse anisotropy due to the process of sedimentation
with the longitudinal conductivity being larger than the transverse
conductivity (Ellis et al., 2010; Ramananjaona et al., 2011). Speci-
fically, there are two major causes of such transverse conductivity:
thin layering and grain alignment (Ellis et al., 2010). The macro-
anisotropy is mainly caused by thin layering when bulk resistivity
is measured so that the electric current prefers to travel parallel to
the bedding planes (Ellis et al., 2010). The micro-anisotropy at the
grain scale results from the preferred mineral alignment, most
often due to compaction in the process of sedimentation, for
example in shale (Clavaud, 2008; Ramananjaona et al., 2011). This
transverse anisotropy could have a strong effect on the primary
field and the anomalous field could also be distorted significantly.
The effect of anisotropy on EM field has been discussed in a
number of publications (e.g., Løseth and Ursin, 2007).

In Model 2, we have selected the following horizontal and vertical
conductivities of the sea-bottom sediments: σ σ σ= = = −1 Smh x y

1,

σ = −0.8 Smz
1. At the same time, we assume that the reservoir

conductivity is isotropic, σ σ σ= = = −0.05 Smax ay az
1.

The conductivity of seawater and air stays unchanged com-
pared to the previous model. The conductivity anisotropy coeffi-
cient (λ) is defined as the square root of the ratio of the long-
itudinal conductivity σ( )h to the transverse conductivity σ( )z

(Negi and Saraf, 1989)

λ
σ
σ

= ≈ 1.12.
(44)

h

z
0

As in the previous model, we compare the finite element result
with the integral equation solution. Fig. 15 shows a comparison of
the fields computed by these two methods at y¼0 with the
frequency of 1 Hz. We can see that the result obtained by the
integral equation method is practically the same as the finite
element solution for this model. By comparing Fig. 10 with Fig. 15,
we observed a strong distortion of the anomalous field by the
anisotropy of the background conductivity.
Fig. 15. Model 2. A comparison of the x component of anomalous electric field
computed using the finite element (red circles) and integral equation (blue line)
methods at y¼0 for a frequency of 1 Hz. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)



Fig. 16. Model 2. A comparison of the x component of the background and total
electric fields at y¼400 m for a frequency of 1 Hz. The solid blue line shows the
background field while the dashed red line represents the total field. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 17. Model 3. A comparison of the x component of anomalous electric field
computed using the finite element (red circles) and integral equation (blue line)
methods at y¼0 for a frequency of 1 Hz. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 16 presents Ex component of the background and total
electric fields with the frequency of 1 Hz. A comparison between
the plots of Figs. 11 and 16 shows that the anomaly related to the
HC reservoir is shifted to the right for the anisotropic background
model.

The total memory requirement for solving this problem using
finite element and integral equation methods were the same as for
Model 1. It took about 22 min to solve this model using the finite
element method and about 3 min for the integral equation method
on a PC with 2.6 GHz CPU.
Fig. 18. Model 3. A comparison of the x component of the background and total
electric fields at y¼400 m for a frequency of 1 Hz. The solid blue line shows the
background field while the dashed red line represents the total field. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 19. Model 4. A comparison of the x component of anomalous electric field
computed using the finite element (red circles) and integral equation (blue line)
methods at y¼0 for a frequency of 1 Hz. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
5.3. Model 3: isotropic background with anisotropic reservoir

In practical applications of the MCSEM method, not only the
conductivity of the sea-bottom sediments, but also the reservoir
conductivity can be anisotropic. In this model, we will examine the
effect of anisotropy of the conductivity of the HC reservoir on the
anomalous field.

We assume first that the background conductivity is isotropic:
σ σ σ= = = −1 Smx y z

1. The reservoir anisotropy is usually weak in
comparison to the background conductivity anisotropy (Brown
et al., 2012). As we can see from the previous model with
anisotropic background conductivity, the anomalous EM field is
distorted by the background anisotropy significantly. In order to
better see the distortions of anomalous field caused by reservoir
anisotropy, we set a large anisotropy coefficient for the conductiv-
ity of reservoir in Model 3. The horizontal and vertical conductiv-
ities of the reservoir are set to the following values:
σ σ σ= = = −0.05 Smah ax ay

1 and σ = −0.005 Smaz
1, respectively. The

anisotropy coefficient is equal to

λ
σ
σ

= ≈ 3.2.
(45)

a
ah

az

Fig. 17 shows a comparison of the fields computed by the finite
element and integral equation methods at y¼0 with the frequency
of 1 Hz. We can see that the result obtained by the integral
equation method is practically the same as the finite element
solution for the anisotropic reservoir model. Fig. 18 presents Ex
components of the background and total electric field with the
frequency of 1 Hz.

The total memory requirement for solving this problem using
finite element and integral equation methods were practically the
same as for Model 1. It took about 25 min to solve this problem
using the finite element method and about 4 min for the integral
equation method on a PC with 2.6 GHz CPU.
5.4. Model 4: anisotropic background with anisotropic reservoir

Finally, we study Model 4 having transverse anisotropy of both the
background and reservoir conductivities. This model is a combination
of Model 2 and Model 3. We set the background conductivity equal to
σ σ σ σ= = = =− −1 Sm , 0.8 Smh x y z

1 1 and the reservoir conductivity

to be σ σ σ σ= = = =− −0.05 Sm , 0.005 Smah ax ay az
1 1. For this model



Fig. 20. Model 4. A comparison of the x component of the background and total
electric fields at y¼400 m for a frequency of 1 Hz. The solid blue line shows the
background field while the dashed red line represents the total field. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 22. A 3D view of a trapezoidal-type hill model of the seafloor bathymetry.
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the anisotropy coefficients for the background and reservoir con-
ductivities are equal to approximately 1.12 and 3.16, respectively.

Fig. 19 shows the plots of the x components of electric field
computed at y¼0 with the frequency of 1 Hz. The results produced
by the integral equation method coincide well with the finite
element solution. Fig. 20 presents Ex component of the background
and total field with the frequency of 1 Hz, with the anomaly
observed around a point x¼3 km, which corresponds to the 6 km
offset.

The total memory requirement of this problem for finite
element and integral equation methods are the same as Model 1.
It took about 30 min to solve this model using the finite element
method and around 5 min for the integral equation method on a
PC with 2.6 GHz CPU.

Fig. 21 presents a comparison of the amplitudes of the
anomalous electric field normalized by the background field for
Models 1, 2, 3 and 4 at y¼0 with the frequency of 1 Hz. One can
see that for these models that the anomalous field is distorted by
anisotropy of both background and reservoir conductivities. The
effect of the anisotropy of background conductivity is manifested
by shifting the anomaly to larger offset, while the increase of the
anisotropy coefficient of the reservoir increases the amplitude of
the anomaly without shifting the anomaly significantly. Thus, our
numerical modeling results confirm ones again that quantitative
interpretation of the MCSEM data requires taking into account the
effect of anisotropy on the observed data.
Fig. 21. A comparison of normalized anomalous field at y¼0 for different 3D
models for a frequency of 1 Hz.
6. Modeling the effect of the bathymetry on the EM data

One of the advantages of the edge-based finite element method
is its ability to model the bathymetry effect on the EM data. The
non-uniform rectangular elements can be applied to simulate very
simple bathymetry by using a staircase approximation in a similar
way as in the framework of finite difference or integral equation
approaches. In order to simulate more complex seafloor topogra-
phy, one needs to use more flexible hexahedral or tetrahedral
elements. There are exist well-developed software to generate
unstructured tetrahedral mesh. However, there is still no auto-
matic mesh generator available for unstructured hexahedral mesh.

As shown in Fig. 22, we consider a trapezoidal-type hill model
of the seafloor bathymetry. The domain with bathymetry varia-
tions is denoted by Ω = − ≤ ≤x y{ 500 m , 500 m}. We assume
also that, in domain Ω = − ≤ ≤x y{ 100 m , 100 m}1 , the sea floor
is flat and located at a depth of z¼900 m, which is 100 m above
the flat seafloor model considered in the previous section. Within
other area of domainΩ, the seafloor depth changes from 900 m to
1000 m linearly. Fig. 22 is an illustration of the trapezoidal hill
model. Outside domain ω, the seafloor is flat and is located at a
depth of 1 km. In order to generate the hexahedral mesh, we have
transformed the original nonuniform rectangular grid by shifting
the z-coordinate of the nodes to accommodate bathymetry.

We first consider a bathymetry model without a reservoir.
Fig. 23 shows the hexahedral grid for the bathymetry model
without a reservoir in the X–Z section at y¼0. The conductivities
of the air, seawater, and sediment are the same as we described in
the previous section. We assume for simplicity that this model is
isotropic. The anomalous field caused by the variations of bathy-
metry is computed using both the edge-based finite element and
integral equation methods. For integral equation approach, the
bathymetry is approximated using a staircase model, which
is shown in Fig. 24. We use a very fine discretization of 5 m in
the vertical direction for the staircase model. We consider an
x-oriented electric dipole source located at the point with co-
ordinates −( 1500, 0, 900) m. The frequency of excitation current
is 1 Hz.
Fig. 23. X–Z section of the hexahedral grid for bathymetry model without a
reservoir. The red star indicates the location of the dipole source oriented in the
x direction. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)



Fig. 24. A staircase approximation of the bathymetry model use in the framework
of the integral equation method.

Fig. 25. Bathymetry model without HC reservoir. A comparison of the x component
of the anomalous electric field computed using the finite element (red circles) and
integral equation (blue line) methods at y¼0 and z¼500 m for a frequency of 1 Hz.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 27. X–Z section of the hexahedral grid for bathymetry model with a reservoir.
The red star indicates the location of the dipole source oriented in the x direction.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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Since the nodes of original rectangular and new hexahedral
grids are the same at a depth of z¼500 m, we first compare the
fields at z¼500 m. Fig. 25 shows a comparison of the anomalous
field at y¼0 and z¼500 m, with the frequency of 1 Hz, computed
using edge-based finite element and integral equation methods.
Fig. 26. Bathymetry model without HC reservoir. A comparison of the x component
of the anomalous electric field computed using the finite element (red circles) and
integral equation (blue line) methods at y¼0 along the sea floor for a frequency of
1 Hz. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
We can see that the results produced by these two methods are
practically coincide. Thus, if the receivers are located away from
the bathymetry, a staircase model is a good approximation of the
bathymetry for the integral equation method.

Fig. 26 shows a comparison of the anomalous field at y¼0
along the bathymetry, with the frequency of 1 Hz, computed using
both the edge-based finite element and integral equation meth-
ods. One can see that the results of these two methods still show a
good agreement with each other. We observe some difference
between the results of these two methods at the boundary of the
bathymetry variation (x¼�500 m) only. This difference can be
attributed to the staircase approximation used in the integral
equation method.

For this bathymetry model without a reservoir, the total
memory required to solve this model using finite element and
integral equation methods are 1.8 GB and 300 MB, respectively. It
took about 25 min to solve this model using the finite element
method and around 4 min for the integral equation method on a
PC with 2.6 GHz CPU.

Finally, we consider a 3D reservoir model with bathymetry. The
bathymetry is exactly the same as in the previous model. The
anomalous domain for the resistive HC reservoir is defined as follows:
Ω = − ≤ ≤ ≤ ≤x y z{ 500 m , 500 m; 2000 m 2100 m}a . We also
Fig. 28. Bathymetry model with the HC reservoir. A comparison of the x compo-
nent of the anomalous electric field computed using the finite element (red circles)
and integral equation (blue line) methods at y¼0 along the sea floor for a
frequency of 1 Hz. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)



Fig. 29. Comparison of QMR convergence plots for different 3D reservoir models
presented in this paper.
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consider anisotropic conductivities of the sediment and the reservoir.
The horizontal and vertical conductivities of the sediment are equal to

−1 Sm 1 and −0.8 Sm 1, respectively. The horizontal and vertical con-
ductivities of the HC reservoir are selected as follows: −0.05 Sm 1 and

−0.005 Sm 1. Fig. 27 shows the hexahedral grid for the bathymetry
model with the HC reservoir in the X–Z section at y¼0. Fig. 28
presents the plots of the anomalous electric field computed using
edge-based finite element and integral equation methods at y¼0 on
the seafloor with the frequency of 1 Hz. One can see that the results
produced by these two methods show a good agreement. Some
minor difference may be related to the staircase approximation used
in the integral equation method.

For this bathymetry model with a reservoir, the total memory
required to solve this model using finite element and integral
equation methods are 1.8 GB and 300 MB, respectively. It took
about 32 min to solve this model using the finite element method
and around 5 min for the integral equation method on a PC with
2.6 GHz CPU.

At the end, we present the convergence plots of QMR solvers
for different 3D reservoir models, that we tested in this paper, in
Fig. 29. We can see that the normalized residuals decrease steadily
with the iteration number even in the presence of submarine
topography and conductivity anisotropy.
7. Conclusions

We have developed an edge-based finite element algorithm to
solve the diffusive electromagnetic problem in the 3D anisotropic
medium. This method can be specifically useful for modeling
geophysical electromagnetic data observed by marine controlled-
source electromagnetic (MCSEM) surveys in the areas with aniso-
tropic conductivity of the sea-bottom geological formations and a
complex bathymetry. We have considered a typical MCSEM survey
with an electric dipole source. In order to avoid the source
singularity, we solve Maxwell's equations with respect to the
anomalous electric field. We use the edge-based vector basis
functions, which automatically enforce the divergence free condi-
tions for electric and magnetic fields. Moreover, the continuity of
tangential electric and magnetic fields is satisfied automatically as
well. The sparse finite element system is solved using the quasi-
minimum residual method with a Jacobian preconditioner.
The developed code was tested for a number of typical
geoelectrical models of the off-shore HC reservoir. The results of
numerical study confirm the accuracy and the efficiency of a new
code. Future work will be aimed at the implementation of the high
order finite elements and at the use of the unstructured tetra-
hedral and hexahedron meshes to include seafloor bathymetry
and complex geoelectrical structures in the modeling of the
MCSEM data.
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