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ABSTRACT

One of the most important applications of gravity surveys in
regional geophysical studies is determining the depth to base-
ment. Conventional methods of solving this problem are based
on the spectrum and/or Euler deconvolution analysis of the
gravity field and on parameterization of the earth’s subsurface
into prismatic cells. We have developed a new method of solv-
ing this problem based on 3D Cauchy-type integral represen-
tation of the potential fields. Traditionally, potential fields have
been calculated using volume integrals over the domains oc-
cupied by anomalous masses subdivided into prismatic cells.
This discretization can be computationally expensive, espe-
cially in a 3D case. The technique of Cauchy-type integrals
made it possible to represent the gravity field and its gradients

as surface integrals. In this approach, only the density contrast
surface between sediment and basement needed to be discre-
tized for the calculation of gravity field. This was especially
significant in the modeling and inversion of gravity data for
determining the depth to the basement. Another important
result was developing a novel method of inversion of gravity
data to recover the depth to basement, based on the 3D
Cauchy-type integral representation. Our numerical studies de-
termined that the new method is much faster than conventional
volume discretization method to compute the gravity response.
Our synthetic model studies also showed that the developed
inversion algorithm based on Cauchy-type integral is capable
of recovering the geometry and depth of the sedimentary
basin effectively with a complex density profile in the vertical
direction.

INTRODUCTION

There is strong interest in developing effective methods of
inverting gravity data for depth-to-basement and density contrast
estimation. Many research papers have been published over the past
decade on this subject (e.g., Barbosa et al., 1997, 1999a, 1999b;
Silva et al., 2001, 2006, 2007, 2010a, 2010b; Gallardo-Delgado
et al., 2003; Martins et al., 2010, 2011a, 2011b). The conventional
approach to solving depth-to-basement gravity inverse problems is
based on parameterization of the earth’s subsurface, containing the
sedimentary pack, into prismatic cells with known horizontal di-
mensions and known density contrast, and on estimation of the
cell’s thicknesses. We present a novel approach to the solution
of this problem based on 3D analogs of Cauchy-type integrals, in-

troduced by Zhdanov (1980, 1984, 1988). These integrals extend to
the 3D case all the major properties of classical Cauchy integrals of
the theory of functions of complex variables. In a 2D case, Cauchy
integrals can be used to provide an effective representation of the
gravity field of 2D density distributions and to solve the problems of
the upward and downward analytic continuation of the potential
field data. It was demonstrated in papers by Zhdanov (1980) that
3D analogs of Cauchy-type integrals make it possible to extend
a large body of the research developed for 2D potential fields into
3D cases. For example, in the paper by Zhdanov and Liu (2013), 3D
Cauchy-type integrals are applied for solving the problem of terrain
correction for gravity and gravity gradiometry data. In the paper by
Zhdanov and Cai (2013), the authors apply 3D Cauchy-type inte-
grals to modeling and inversion of gravity fields caused by
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sediment-basement interface with constant density contrast. Cai and
Zhdanov (2015) introduce the method of inverting magnetic field
data to recover the depth to basement using Cauchy-type integrals.
In the present paper, we apply the method of 3D Cauchy-type

integrals to solving forward and inverse problems for a density con-
trast model. This type of models is used, for example, in the inver-
sion of the gravity data for the depth to basement. In our study, we
consider a model formed by two quasihorizontal layers, the upper
layer representing the sediments and the lower layer describing the
basement. We assume that the density does not vary in the horizon-
tal direction, but, in a general case, it may vary vertically, having a
discontinuity at the surface of the basement. The goal is to find the
surface of the basement, which is a density contrast surface in
this case.
We develop an inversion scheme to determine the density con-

trast surface. Gravity field and/or full-tensor gravity gradiometry
data can be used for the inversion. The inversion scheme is based
on the reweighted regularized conjugate gradient method (Zhdanov,
2002). Note that the method based on the Cauchy-type integrals
requires the discretization of the contrast surface only, which re-
duces dramatically the computing resources in comparison with
the conventional methods based on volume discretization into pris-
matic cells.
The conventional methods of solving this problem are based on

the spectrum and/or Euler deconvolution analysis of the gravity
field. However, these methods have several limitations. In the
framework of the spectrum method, the gravity field needs to be
analyzed within a moving window and the size of the window needs
to be determined based on an expected depth to the source, which is
usually either unavailable or not accurate (Chávez et al., 1999). A
complex source structure can complicate the spectrum analysis,
which may result in significant errors of the depth estimation (Ode-
gard, 2011). The conventional Euler deconvolution method can be
used for fast depth estimation, but it requires the input of the source
structure index to estimate the depth to the source, which simplifies
the source to some specific geometries, such as sphere, cylinder, etc.
(Lafehr and Nabighian, 2012). Even though an extended Euler de-
convolution method can be used to estimate the source depth and
the structure index simultaneously, it is still difficult to deal with a
complex source structure (Lafehr and Nabighian, 2012). Moreover,
the spectrum and Euler deconvolution methods do not provide a
direct comparison between the observed and predicted gravity field
data, which makes it difficult to evaluate the correctness of the sol-
ution for the depth to basement. In comparison with those methods,
our method is based on direct evaluation of the misfit between the
observed and predicted data. In addition, as we will see below, the a
priori information can also be incorporated into the inversion in the
framework of the method based on the Cauchy-type integrals.
The developed method was tested for inversion of the gravity data

computer simulated for typical contrast surface models. We also
apply this method to field gravity data in the Big Bear Lake area
in California to recover the depth to the basement.

CAUCHY-TYPE REPRESENTATION OF A
GRAVITY FIELD CAUSED BY A 3D BODY

The gravity field at location r 0 (outside the source) caused by a
3D body with constant density ρ0 can be calculated by the following
equation:

gðr 0Þ ¼ −G
Z Z Z

D
ρ0∇

1

jr − r 0j dv; (1)

where G is the universal gravitational constant, D is the domain
filled by constant density ρ0, and radius vectors r 0 and r denote
the locations of the points of observation and integration, respec-
tively.
For complex geometry, this integral needs to be evaluated nu-

merically. The common approach is to discretize the volume into
a grid of prisms. This method can be computationally expensive
for large-scale modeling and inversion.
It is shown by Zhdanov (1988) and Zhdanov and Liu (2013) that

the gravity field caused by a 3D body D with surface S and a con-
stant density can be expressed as follows:

gðr 0Þ ¼ 4πGρ0
3

½Csðr 0; rÞ − Csðr 0; r 0Þ�

¼ 4π

3
Gρ0Csðr 0; r − r 0Þ; (2)

where 3D analog of the Cauchy-type integral Cs was introduced by
Zhdanov (1988) as follows:

Csðr 0;φÞ ¼ −1
4π

Z Z
S

�
ðn × φÞ∇ 1

jr − r 0j þ ðn × φÞ

× ∇
1

jr − r 0j
�
ds: (3)

For completeness, the definition and major properties of the
Cauchy-type integral are given in Appendix A.
The previous equation can be rewritten in a matrix notation for

the scalar components of the gravity field as follows:

gα ¼ −
Gρ0
3

Z Z
S
Δαβγη

ðrβ − r 0βÞðrη − r 0ηÞ
jr − r 0j3 nγds;

α; β; γ; η ¼ x; y; z;

(4)

where the four-index Δ-symbol is expressed in terms of the sym-
metric Kronecker symbol δαβ as

Δαβγη ¼ δαβδγη þ δαηδβγ − δαγδβη; δαβ ¼¼
�
1; α ¼ β
0; α ≠ β

;

(5)

and all the notations are described in Appendix A.
We can use equation 4 to calculate the gravity gradient tensor

whose scalar components are equal to the derivatives of the corre-
sponding scalar components of the gravity field with respect to the
spatial coordinates:

gαv ¼
∂gα
∂v 0 ; α; v ¼ x; y; z: (6)

After some algebra, one can express equation 6 in a matrix no-
tation as follows:
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gαvðr 0Þ ¼ Gρ0

Z Z
S

Δαβγηrβ
jr − r 0j5 ½3ðrv − r 0vÞðrη − r 0ηÞ

− jr − r 0j2δvη�nγds: (7)

From equations 4 and 7, we can see that the gravity field caused
by a volume D filled by masses with some constant density ρ0 can
be represented as the Cauchy-type integral over the surface S of the
volume. Thus, the original formula for calculating the gravity field
as a volume integral is reduced to the surface integral.
It is also important to point out that the density distribution inside

volume D may not necessarily be a constant value. It is shown by
Zhdanov (1988) and Zhdanov and Liu (2013) that one can incor-
porate arbitrary analytic density-depth distribution within the vol-
ume in this formula. The advantage is that in applications, we can
use this method to simulate the potential field due to the sedimen-
tary basin, which is usually characterized by the density change
with depth.

CAUCHY-TYPE REPRESENTATION OF THE
GRAVITY FIELD AND ITS GRADIENT FOR A

DENSITY CONTRAST SURFACE

Let us consider a model of the sediment-basement interface with
a density contrast at some surface Γ, shown in Figure 1. We assume
that surface Γ is described by equation z ¼ hðx; yÞ −H0, and a hori-
zontal plane P is given by equation z ¼ −H0 with

H0 ≥ hðx; yÞ ≥ 0 (8)

and

hðx; yÞ −H0 → 0 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
→ ∞; (9)

whereH0 is a constant. Let us draw a sphereOR of radius Rwith the
center in the origin of the Cartesian system of coordinates. We de-

note by ΓR and PR the parts of the surfaces Γ and P, respectively,
located within the sphere OR. For the first model, we assume that
the real sediment-basement interface ΓR is located above plane P.
We also assume that the sediment layer has a constant density ρs and
the basement has a constant density ρb ðρb > ρsÞ. We also assume
that Γ and P extend infinitely in the horizontal direction and ΓR →
P at infinity. The gravity anomaly is caused by the density volume
DR, which is bounded by a closed surface, formed by ΓR and PR

and the parts of the sphereOR between these two surfaces as shown
in Figure 1.
It is demonstrated by Zhdanov (1988) that the gravity field

caused by volume DR is expressed by

gðr 0Þ ¼ 4πGρ0CΓRðr 0; ðzþH0ÞdzÞ; (10)

in the case where ΓR→∞ → P at infinity. As a result, the Cauchy-
type integral in equation 10 is calculated along an infinitely ex-
tended surface Γ.
In equation 10, ρ0 is the density contrast between the sediments

and the basement:

ρ0 ¼ ρb − ρs > 0: (11)

For the model shown in Figure 1, we always have a positive grav-
ity anomaly. Now, we consider another model presented in Figure 2,
in which the density contrast surface is below the horizontal plane
P. In this case, we have a negative density anomaly caused by the
deficit of masses located within domain DR.
Similarly, the gravity field can be expressed as

gðr 0Þ ¼ 4πGð−ρ0ÞCΓRðr 0; ðzþH0ÞdzÞ: (12)

We have the following expressions for the scalar components of
the normal vector pointing outside domainDR for a model shown in
Figure 1:

Figure 1. Density contrast model for a sediment-basement interface
with a positive anomaly. The horizontal plane P is located at the
average depth of the sediment-basement interface, and ΓR is the ac-
tual sediment-basement interface.

Figure 2. Density contrast model for a sediment-basement interface
with a negative anomaly. The horizontal plane P is located at the
average depth of the sediment-basement interface, and ΓR is the ac-
tual sediment-basement interface.
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nxds ¼ −
∂hðx; yÞ

∂x
dxdy ¼ bxðx; yÞdxdy;

nyds ¼ −
∂hðx; yÞ

∂y
dxdy ¼ byðx; yÞdxdy; and nzds

¼ dxdy ¼ bzðx; yÞdxdy; (13)

where

bxðx; yÞ ¼ −
∂hðx; yÞ

∂x
; byðx; yÞ ¼ −

∂hðx; yÞ
∂y

;

bzðx; yÞ ¼ 1; h ¼ zþH0:

(14)

Similarly, for the model shown in Figure 2, the scalar compo-
nents of the normal vector pointing outside domain DR are equal
to the following equations:

nxds ¼
∂hðx; yÞ

∂x
dxdy ¼ −bxðx; yÞdxdy;

nyds ¼
∂hðx; yÞ

∂y
dxdy ¼ −byðx; yÞdxdy; and nzds

¼ −dxdy ¼ −bzðx; yÞdxdy. (15)

It is important to note that, although for the models in Figures 1
and 2, the equations for the normal vector have a different sign, as
shown in equations 13 and 15, respectively, the final expressions for
the fields are exactly the same because the signs for the anomalous
densities for models 1 and 2 are also different. Thus, in matrix no-
tations, the gravity field caused by the density anomaly for model 1
(Figure 1) and model 2 (Figure 2) can be expressed using a unified
equation as follows:

gαðr 0Þ ¼ −Gρ0
Z Z

S
Δαzγη

hðx; yÞðrη − r 0ηÞ
jr − r 0j3 bγdxdy;

α; γ; η ¼ x; y; z:

(16)

Similarly, the gravity gradient for the models in Figures 1 and 2
can also be unified as

gαvðr 0Þ ¼ −Gρ0
Z Z

S

Δαzγηhðx; yÞ
jr − r 0j5 ½3ðrv − r 0vÞðrη − r 0ηÞ

− jr − r 0j2δvη�bγdxdy; (17)

where α; γ; η ¼ x; y; z.
As we mentioned above, in a general case, the density contrast

value is a function of depth:

Δρ ¼ fðzÞ: (18)

In this case, the representation of the gravity field caused by the
sediment-basement interface takes the following form (Zhdanov,
1988; Zhdanov and Liu, 2013):

gðr 0Þ ¼ 4πGCΓRðr 0; ½RðzÞ − Rð−H0Þ�dzÞ; (19)

where

RðzÞ ¼
Z

z

−H0

fðzÞdz: (20)

Similar equations can be derived for the gravity gradient compo-
nent by taking the spatial derivative of the forward operator for the
gravity field.
Equations 16 and 17 represent the gravity and gravity gradient

fields in the form of Cauchy-type integrals over the density contrast
surface corresponding to the sediment-basement interface. These
expressions provide an analytic basis for a fast method of numerical
modeling of gravity and gravity gradiometry data. Both of these two
equations need to be discretized to be solved numerically. In the
paper by Zhdanov and Liu (2013), rectangular and triangular dis-
cretizations of the density contrast surface are introduced. Numeri-
cally, rectangular is simpler than triangular discretization. However,
triangular discretization is demonstrated to have higher accuracy
than rectangular. In our forward modeling part, both of these
two types of discretization are implemented. In the inversion part,
only the rectangular discretization is used for simplicity.
In particular, we can approximate the density contrast surface

within each cell k by an element of the horizontal plane (Zhdanov
and Liu, 2013):

z ¼ hðx; yÞ −H0 ¼ hðkÞ − bðkÞx ðx − xkÞ − bðkÞy ðy − ykÞ −H0

(21)

and

bðkÞx ðx; yÞ ¼ 0; bðkÞy ðx; yÞ ¼ 0: (22)

In such special cases, equation 19 can be represented as follows:

gαðr 0nÞ ¼
XNm

k¼1

fðnkÞα hðkÞ; (23)

where

fðnkÞα ¼ G½RðzkÞ − Rð−H0Þ�δαη
rðkÞη − rðnÞ

0
η

jrðkÞ − r 0nj3
ΔxΔy; (24)

where Nm is the number of cells and n is the index of the point of
observation r 0n.
We can obtain a similar formula for the gravity gradient fields:

gαvðr 0nÞ ¼
XNm

k¼1

fðnkÞαv hðkÞ; (25)

where

fðnkÞαv ¼ G½RðzkÞ − Rð−H0Þ�δαη
jrðkÞ − r 0nj5

½3ðrðkÞv − rðnÞ
0

v ÞðrðkÞη − rðnÞ
0

η Þ

− jrðkÞ − r 0nj2δvη�ΔxΔy: (26)

We note that equations 23–26 may not be accurate enough for
forward modeling because the accuracy of approximation by the
piecewise horizontal surface may not be sufficient. However, these
equations are very effective for calculating the Fréchet derivative
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matrix in the inversion process because of their simplicity. More
accurate numerical forms of the Cauchy-type integrals can be found
in Zhdanov and Liu (2013).

INVERSION FOR A DENSITY CONTRAST
SURFACE BASED ON 3D CAUCHY-TYPE

INTEGRALS

In the previous sections, we discuss the forward modeling of
gravity and gravity gradient fields based on 3D analogs of
Cauchy-type integrals. In our forward modeling process, the model
parameters were the elevations hðkÞ ¼ hðxk; ykÞ of the density con-
trast surface with respect to the horizontal plane P, assuming the
value of the density contrast is given. As we can see from the
forward modeling equations, the forward operator is nonlinear. Cor-
respondingly, the inversion is also a nonlinear problem. The tradi-
tional inversion of potential field data to find the density distribution
is a linear problem, and the Fréchet derivative can be easily found
and it does not change during the iterative inversion. In our inver-
sion, the Fréchet derivative is a function of model parameters and
may change from iteration to iteration.
Fortunately, in our inversion, the Fréchet derivative has an ana-

lytic form. In Appendices B and C, we derive the explicit expres-
sions for the Fréchet derivative for the gravity and gravity
gradient data.
As usual, the inversion of gravity and gravity gradient data is an

ill-posed problem. To obtain stable and geologically reasonable re-
sult, we need to apply regularization to impose some restrictions on
our solution. The inversion is based on the minimization of the Ti-
khonov parametric functional (Tikhonov and Arsenin, 1977):

Pαðm;dÞ ¼ ðWdAðmÞ −WddÞTðWdAðmÞ −WddÞ
þ ðWmm −WmmaprÞTðWmm −WmmaprÞ; (27)

where A is the forward modeling operator,Wd is the data weighting
matrix, d is the vector of observed data,m is the vector of the model
parameters h, andWm is a diagonal matrix of the model parameters
weights based on integrated sensitivity:

Wm ¼ diagðFTFÞ1∕2; (28)

where F is the Fréchet derivative matrix.
The minimization problem 27 can be reformulated using a space

of weighted parameters:

mw ¼ Wmm: (29)

In the weighted parameter’s space, the Tikhonov parametric
functional is given as follows:

Pαðmw; dÞ ¼ ðAwðmwÞ − dÞTðAwðmwÞ − dÞ
þ αðmw −mw

aprÞTðmw −mw
aprÞ; (30)

whereAw is a new forward operator in the space of weighted param-
eters, which can be related to the forward operator A in the original
space as

Aw ¼ AW−1
m : (31)

The minimization of the Tikhonov parametric functional is based
on the reweighted regularized conjugate gradient method. With
index nþ 1 referring to the iteratively updated model n, the algo-
rithm is given as follows (Zhdanov, 2002):

rwn ¼ Awðmw
n Þ − d ¼ AðmnÞ − d; (32)

lαnwn ¼ FT
wnrwn þ αnðmwn

n −mwn
aprÞ; (33)

βαnn ¼ klαnwnk2∕klαn−1wðn−1Þk2; (34)

flαnwn ¼ lαnwn þ βαnn lαn−1wðn−1Þ;
flα0w0 ¼ lα0w0; (35)

kαnn ¼ ðflαnwnT lαnwnÞ∕½flαnwnTðFT
wnFwn þ αnIÞflαnwn�; (36)

mwn
nþ1 ¼ mwn

n − kαnn flαnwn; (37)

mnþ1 ¼ W−1
m mwn

nþ1; (38)

mwnþ1

nþ1 ¼ Wmmnþ1; (39)

swnþ1

nþ1 ¼ ðmwnþ1

nþ1 −mwnþ1
apr Þ; swn

nþ1 ¼ ðmwn
nþ1 −mwn

aprÞ; (40)

γ ¼ kswnþ1

nþ1 k2∕kswn
nþ1k2; (41)

and

αnþ1 ¼
�
αn; γ ≤ 1

αn∕γ; γ > 1
: (42)

We solve our problem in the space of the weighted model param-
eters. In the algorithm given above, rwn is a residual vector between
the predicted and observed data; lαnwn is the steepest ascend direction;
and flαnwn is the conjugate gradient direction, which is a combination
of the current steepest ascend direction and the previous conjugate
gradient direction with the coefficient βαnn . We can see from equa-
tion 35 that the conjugate gradient direction is the same as the steep-
est ascend direction at the first iteration. The step length kαnn is
obtained using a linear line search scheme. The regularization
parameter αn is selected using an adaptive method as shown in
our algorithm. Parametermwn

apr represents an a priori model, selected
based on all known information about the model parameters.
During the inversion process, the Fréchet derivative matrix

changes in every iteration. One of the most expensive parts of in-
version is the computation of the Fréchet derivative matrix. To
speed up the inversion, the Fréchet derivative can be updated not
on every iteration but after every five or 10 iterations.
We implement the developed theory and method in a computer

code that is tested on several synthetic models as discussed below.
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MODEL STUDIES

In this section, we present two model studies for the modeling
and inversion of gravity data caused by density-contrast surface
with a density contrast that is variable with the depth. In the first
study, we consider a model of a sediment-basement interface with
the density contrast varying linearly with the depth. Forward mod-
eling based on the Cauchy-type integral method is compared with
forward modeling based on the traditional method.
In the second case study, we assume a more complicated model

with the density contrast between the sediment and basement
changing exponentially with depth. We also apply the same inver-
sion to the data simulated for the second model because a similar
exponential density profile will be used for the inversion of the field
data in the following section.

Model 1: Linear density variation

We assume that the density of the basement has a constant value
of ρb ¼ 3000 kg∕m3 and the density of the sediment at the surface
is ρ0 ¼ 2000 kg∕m3 and it increases linearly with the depth accord-
ing to the following formula:

ρs ¼ ρ0 þ az; (43)

where

ρ0 ¼ 2000 kg∕m3; a ¼ 5 × 10−4 kg∕m4: (44)

We compare the forward modeling result obtained by the new
method of Cauchy-type integrals with the result based on the tradi-
tional method, using volume integrals over the domain occupied by
anomalous masses subdivided into the prismatic cells. The density
inside each prismatic cell was set to be a constant. Figure 3 shows

the representation of the density contrast distribution in model 1
using prismatic cells.
Gravity and vertical gravity gradient components were computed

using these two methods. Figure 4 shows a comparison of forward
modeling results obtained using the Cauchy-type integral and the
traditional volume integral methods. We observe a very good fit
between these results. A small difference can be attributed to the
errors of the prismatic approximation of the volume density distri-
bution in the traditional method and discretization of the surface for
Cauchy-type integral calculation, respectively. We need to note that,
for this model, the ratio of computation time required by the con-
ventional method and by the Cauchy-type integral method is almost
30 on the same desktop PC.

Model 2: Exponential density variation

Model 2 has the same geometry of the depth-to-basement inter-
face as model 1. However, the density contrast between sediment
and basement varies exponentially with the depth according to the
following expression:

Δρ ¼ ae−bz þ ce−dz; (45)

where

a ¼ 251.5 kg∕m3; b ¼ −0.007;

c ¼ 197 kg∕m3; d ¼ 5.2656 × 10−6: (46)

Figure 5 shows the representation of the density contrast distri-
bution in model 2 using prismatic cells. We present the gravity re-
sponses computed using Cauchy-type integral and the traditional
volume integral methods in Figure 6. One can see that the result

Figure 3. Model 1. Representation of the density contrast distribu-
tion using prismatic cells.

Figure 4. Model 1 — Comparison of forward modeling results
obtained using Cauchy-type integral (dotted line) and traditional
volume integral (solid line) methods.

Figure 5. A prism approximation of the density contrast surface
with the density contrast changing exponentially with depth.

Figure 6. Model 2 — Comparison of forward modeling results
obtained using Cauchy-type integral (dotted line) and traditional
volume integral (solid line) methods.
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produced by the new method practically coincides with that of the
traditional method.
We apply the inversion algorithm introduced in the previous sec-

tions to the inversion of the synthetic data simulated for the model
with exponential density variation.
Figure 7 shows the inversion result for the synthetic model with

exponential density variation with depth. One can see that the den-
sity contrast surface was recovered well by this inversion.

INVERSION OF GRAVITY DATA AT THE BIG
BEAR LAKE AREA

U.S. Geological Survey gravity survey
at the Big Bear Lake area

Gravity surveys are widely used for basin study. The depth to
basement can be well estimated based on isostatic Bouguer gravity
data because the gravity anomaly is caused primarily by the density

contrast between the sediments and the basement. Many gravity
measurements were made in the 1960s and 1970s by various groups
to produce gravity maps covering California at a scale of 1:250,000
for the California Division of Mines and Geology (Roberts et al.,
2002). The U.S. Geological Survey (USGS) also conducted a new
gravity survey in the Big Bear Lake area. The new survey data were
merged with the previous gravity survey to produce a new gravity
grid (Roberts et al., 2002). We should note that in this paper we have
gridded and used for the inversion only the data from the new USGS
survey.
USGS applied the conventional prism inversion method to the

combined new gravity data to recover the depth to basement. In
their inversion, the subsurface was discretized to a grid of prisms,
whose horizontal size was 2000 × 2000 m. The density distribution
along each column of prisms was assumed to be known from the
well-log data, and the thickness of the prisms was determined by
fitting to the isostatic Bouguer gravity anomaly. The USGS inver-
sion was well constrained by the well-log data and bedrock loca-
tions. In addition, at several locations, the thickness of the prisms
was assumed to be known and stayed unchanged during the inver-
sion (Roberts et al., 2002).
Due to a data ownership issue, USGS only released the new data

they collected and the well-log data were not made available.

Geologic background of the Big Bear Lake area

The Big Bear Lake area is located in the southeast part of Cal-
ifornia. The area is characterized by a deep sedimentary basin sur-
rounded by uplifted bedrock. USGS produced a basin model from
the surface geology, well logs, and potential field data. Figure 8
shows that the whole basin area can be divided into three parts from
the northeast to the southwest: the Deadman Lake, Surprise Spring,
and Joshua Tree basins. The average depth and density variations
between sediment and bedrock may be slightly different.
Figure 9 presents a digital elevation model (DEM) of the area.

From the surface geology, we can observe three fault belts trending
from the northwest to the southeast and one fault belt trending from

Figure 7. Inversion result for the model with the density contrast
varying exponentially with depth.

Figure 8. A USGS model of the basin for the Big Bear Lake area
(Roberts et al., 2002). The dark zones indicate the location of out-
crops. Figure 9. DEM of the Big Bear Lake area.
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the west to the east. Different basins in this area are separated by
these four main fault structures.

Processing of U.S. Geological Survey data

Figure 10 presents the released USGS data with the locations of
the gravity stations shown by the black dots. As one can see, the
original gravity data were collected in an irregular grid. It is well
known that gridded data have a significant advantage over scattered
data for inversion in terms of the robustness because having regular
gridded data helps produce a robust inversion result. There are dif-
ferent gridding methods available. The traditional mathematical
gridding approach can produce significant artifacts, especially in
areas with a few observation stations. We use a gridding approach

based on the equivalent-source concept (Cordell, 1992). According
to this concept, on the first step, we determine an equivalent layer
with some surface density distribution recovered based on the in-
version of the data collected in an irregular grid. On the next step,
we compute the gravity data at the regular grid using the equivalent
layer as the source.
Note that the gridded gravity data can be used directly for inver-

sion if we assume that the isostatic Bouguer anomaly is caused
purely by a deficiency in the density of the sediments. By making
this assumption, we assume that the density of the bedrock is the
same as in the reference density model of the earth’s crust. How-
ever, in a real case, the density of the bedrock may be different from
the reference model. Therefore, the isostatic Bouguer gravity
anomaly can be written as a sum of the bedrock component and
the sediment component as

g ¼ gb þ gs: (47)

The bedrock gravity component gb can be estimated initially
based on the gravity data observed on the bedrock (Roberts et al.,
2002). Figure 11 shows the gridded bedrock component. One can
see that in the southern part, there is a strong negative anomaly for
the bedrock gravity component. The gridded bedrock component of
the gravity anomaly was subtracted from the gravity grid in Fig-
ure 10 to obtain the gravity anomaly caused by the sediment only.
Figure 12 shows the gravity anomaly obtained after removal of the
bedrock component. This grid represents the final data that we used
for inversion.
We note that the approximation of the bedrock component of

gravity anomaly by interpolating the anomaly observed on outcrops
is not a rigorous approach due to the presence of a nearby sedimen-
tary basin with low density. We use an iterative method to remove
the bedrock gravity component. In our approach, the bedrock com-
ponent of the gravity field is initially computed by simple extrapo-
lation from the gravity observations on the bedrock outcrop. Inside
the inversion, it is corrected based on the inverted basin depth. The
corrections are terminated when there is no significant change in the
bedrock component of the gravity field (Roberts et al., 2002).

Figure 10. Gridded gravity data from the USGS survey. The black
dots are the gravity stations, and the square markers denote the sta-
tions located on the bedrock.

Figure 11. A gravity grid for the bedrock component of the isostatic
Bouguer gravity anomaly. The square markers indicate the locations
of the gravity stations on the outcrops.

Figure 12. Isostatic Bouguer gravity grid after removal of the bed-
rock component.
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Inversion of U.S. Geological Survey gravity data

One needs to know the density variation with the depth to get an
accurate model of the depth to the basement. As we mentioned
above, this information can be obtained from well-log data. The
density models of the Deadman Lake and Surprise Spring basins
are slightly different from that of the Joshua Tree basin. The USGS
report states that in the northern part, a density contrast of 400, 350,
300, 250, and 200 kg∕m3 with bottom depths of 50, 100, 150, and
300 m is a good approximation of the basin density (Roberts et al.,
2002). The USGS report also states that this model may not be suit-
able for the Deadman Lake basin well because there are very limited
well constraints in the Deadman Lake basin (Roberts et al., 2002).
In the southern part (Joshua Tree basin), a constant density contrast
value of 550 kg∕m3 is suitable (Roberts et al., 2002). The northern
part (the Deadman Lake and Surprise Spring basins) and the
southern part (Joshua Tree basin) of the survey area will be inverted
separately. To speed up the inversion and get the most reasonable
result, the well-known Bouguer slab formula (Chakravarthi and
Sundararajan, 2006) could be applied to generate an initial model:

z ¼ gBΔρ0
41.89Δρ20 þ agB

; (48)

where gB is the Bouguer gravity anomaly and Δρ0 is the density
contrast between the sediment and basement on the earth’s surface
and this density contrast decreases in the vertical direction with the
gradient a.
However, our inversion algorithm does not depend on the selec-

tion of the starting model. The selection of a flat surface as a starting
model produces almost the same result as using the Bouguer slab
formula as a starting model.
In the inversion, we used a grid size of 300 × 300 m in the x- and

y-directions, which is much finer than the USGS model grid for
prismatic inversion (2000 × 2000 m).

Inversion of gravity data in the Deadman
Lake and Surprise Spring basins

To take the variable density contrast into account, we need to use
some analytic function of depth to approximate the density contrast.
For the USGS model, we found that it was better to use equation 45
to approximate the true density contrast. The optimized values for
parameters in equation 45 are given in equation 46.
Figure 13 presents plots of the USGS staircase density variation

model and our approximation by the exponential function. The re-
sults of the inversion are shown in Figure 14 overlapped with the
DEM and the fault structure. One can see that the northwest–south-
east-trending faults correspond well to the edge of Surprise Spring
and Deadman Lake basins. The east edge of the recovered Deadman
Lake basin fits well with the mountain belt. Figure 15 shows an
overlap of the inversion result with the USGS basin and bedrock
models. In this figure, one can see that the recovered location of
the basin is similar to the USGS model.
Figure 16 shows a comparison of our inversion result with the

inversion result provided by USGS for the Deadman Lake and Sur-
prise Spring basins. One can see that the recovered basin geometry
obtained by our method correlates well with the USGS model.
However, the recovered maximum depths are slightly different
(4500 m for the USGS inversion result). The USGS report men-
tioned that the recovered depth of the basement for the Deadman

Figure 13. An approximation of the USGS staircase density varia-
tion model by the exponential function.

Figure 14. Results of the inversion of the gravity data for the Dead-
man Lake and Surprise Spring basins overlapped with the DEM
map indicated by the gray background with isolines.

Figure 15. Results of the inversion of the gravity data for the Dead-
man Lake and Surprise Spring basins overlapped with the USGS
model of the outcrops and sediment basin.
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Lake basin in their inversion may be underestimated due to the ab-
sence of the well-log data (Roberts et al., 2002).
Figure 17 shows a comparison of the observed and predicted

data. The final normalized misfit was 10%, and the convergence
became flat after 20 iterations. This tolerance was a reasonable

number considering the noise level of the real data. However,
we ran our inversion with a constant density contrast of 300,
400, and 500 kg∕m3, and all of these inversions provided much bet-
ter data fitting with the final normalized misfit being less than 5%.
Based on these results, we conclude that the USGS density model

for the Deadman Lake and Surprise Spring ba-
sins may not be optimal.

Inversion of gravity data
in the Joshua Tree basin

For the inversion of the gravity data in the
Joshua Tree basin, the USGS used several differ-
ent density models. They found that a constant
density contrast of 550 kg∕m3 is a good approxi-
mation of the true density distribution (Roberts
et al., 2002). We used the same value in our in-
version.
Figure 18 shows our inversion results over-

lapped with the DEM and fault structure. One
can see that the edges of the inverse gravity
model of the basin correspond well to the Pinto
Mountain belt. Figure 19 presents our inversion
results overlapped with the USGS density model

of the basin and bedrock models. We can see in this figure that the
recovered location of the basin is very similar to the USGS model.
The recovered depth is close to zero on the bedrock.
Figure 20 shows a comparison of our inversion results with the

inversion result provided by USGS for the Joshua Tree basin. One

Figure 16. Panel (a) shows the inverted basin depth for the Deadman Lake and Surprise
Spring basins, and panel (b) is the inversion result produced by USGS (after Roberts
et al., 2002).

Figure 18. Results of the inversion of the gravity data in the Joshua
Tree basin overlapped with the DEM map indicated by the gray
background with isolines.

Figure 19. The results of the inversion of the gravity data for the
Joshua Tree basin overlapped with the USGS model of the outcrops
and sediment basin.

Figure 17. A comparison of the (a) observed and (b) predicted data
for the inversions of the gravity data in the Deadman Lake and Sur-
prise Spring basins. Panel (c) shows the difference between the ob-
served and predicted data.
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can see that the basin geometry recovered using our method corre-
lates well with the USGS model. The maximum depth determined
by our inversion is also in a good agreement with the USGS model
(1100 m for the USGS inversion result).
Figure 21 presents a comparison between the observed and pre-

dicted data. The final normalized misfit was 5%, and it took only
five iterations to reach the given misfit level.

CONCLUSIONS

We have developed a new method for modeling gravity data
caused by a sediment-basement interface with a variable density
contrast distribution in the vertical direction. Our method is based
on the Cauchy-type integral approach, which reduces the volume
integration to the surface integration.
We validate our forward-modeling algorithm for linear and ex-

ponential density contrast distributions with depth by comparing
our result with conventional prism-based modeling. Based on the
forward modeling, we also develop an inversion algorithm to re-
cover the depth to basement for the models with variable density
contrast with depth. The inversion is tested on a synthetic model
of the basin with an exponential density contrast distribution.
We demonstrate with the synthetic models that the depth to base-
ment can be recovered well.
We also apply our method for inversion of the field data collected

by the USGS in the Big Bear Lake area. The recovered basin shape
and depth correspond well to the results produced by the USGS and
to the known geology.
In conclusion, we would like to emphasize that using surface

Cauchy-type integrals reduces the computational expenses signifi-

cantly in comparison with the conventional volume integral meth-
ods. The developed approach to interpretation of the gravity data for
the study of basins makes it practical to invert gravity data on a large
scale while using very fine discretization of the sediment-basement
interface.
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APPENDIX A

A 3D ANALOG OF THE CAUCHY-TYPE INTEGRAL
AND ITS PROPERTIES

A 3D analog of the Cauchy-type integral and its derivation is
introduced by Zhdanov (1988) as follows:

Figure 20. Panel (a) shows the inverted basin depth for the Joshua
Tree basin, and panel (b) is the inversion result produced by USGS
(after Roberts et al., 2002).

Figure 21. A comparison of the (a) observed and (b) predicted
gravity data for the inversions in the Joshua Tree basin. Panel
(c) shows the difference between the observed and predicted data.
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Csðr 0;φÞ ¼ −1
4π

Z Z
S

�
ðn × φÞ∇ 1

jr − r 0j þ ðn × φÞ

× ∇
1

jr − r 0j
�
ds; (A-1)

where S is some closed surface bounding a domain D; φ ¼ φðrÞ is
some vector function defined on the closed surface S; and n is the
normal vector to the surface S, pointing outsideD. The vector func-
tion Cs is called the vector density of the Cauchy-type integral. It is
demonstrated by Zhdanov (1988) that everywhere outside of S, the
vector function Cs represents the Laplace vector field, which sat-
isfies the following equations:

∇ · Cs ¼ 0; ∇ × Cs ¼ 0: (A-2)

Thus, the scalar components of vector function Cs are harmonic
functions. In a special case where φðrÞ stands for the boundary val-
ues on S of the gradient of a function harmonic inside domain D, a
3D Cauchy-type integral can be calculated using the following for-
mula:

Csðr 0;φÞ ¼
�
φðr 0Þ; r 0 ∈ D
0; r 0 ∈ CD

; (A-3)

where CD is a complement of the closed domain D with respect to
the whole space.
It is shown by Zhdanov (1988) that one can formulate a 3D ana-

log of the Pompei formula for the Cauchy-type integral, which is
given by the following expression:

Csðr 0; fðrÞÞ þ 1

4π

Z Z Z
D
ð∇ × fÞ∇ 1

jr − r 0j dv

¼
�
fðr 0Þ; r 0 ∈ D
0; r 0 ∈ CD

; (A-4)

where vector field f is an arbitrary potential field that satisfies the
following equations:

∇ × f ¼ q; ∇ × f ¼ 0: (A-5)

In equation A-5, we consider q as a general source, and it takes
the value of −4πGρ for the gravity problem.
In a special case where f is a Laplace field in D, equation A-4

reduces to a 3D Cauchy integral formula that is given in equa-
tion A-1.
The Cauchy-type integral formulas can be represented using ma-

trix notations. The matrix form makes them suitable for numerical
computation, which is important in practical applications. We take
the convention that the z-axis is directed upward. In a Cartesian
coordinate system fdx; dy; dzg, we can represent the vectors
Cs;φ; n, and ∇ 1

jr−r 0 j as follows:

Cs ¼ Cs
αdα; φ ¼ φβdβ; n ¼ nγdγ; (A-6)

and

∇
1

jr − r 0j ¼ −
rη − r 0η
jr − r 0j3 dη; (A-7)

where rη ¼ η; α; β; γ; η ¼ x; y; z, and we also use the convention
that the twice recurring index indicates a summation over the index.
Using these notations, we can write the scalar components of the
Cauchy-type integral as follows:

Cs
α ¼

−1
4π

Z Z
S
Δαβγηφβ

rη − r 0η
jr − r 0j3 nγds;

α; β; γ; η ¼ x; y; z;

(A-8)

where the four-index Δ-symbol is expressed in terms of the sym-
metric Kronecker symbol δαβ as

Δαβγη ¼ δαβδγη þ δαηδβγ − δαγδβη; δαβ ¼¼
�
1; α ¼ β
0; α ≠ β

:

(A-9)

APPENDIX B

FRÉCHET DERIVATIVE CALCULATION FOR A
GRAVITY ANDGRAVITY GRADIENT OPERATORS
FOR A DENSITY CONTRAST MODEL WITH CON-

STANT DENSITY CONTRAST

For simplicity, we approximate the density contrast surface with a
piecewise horizontal surface as we have shown in equations 23–26.
We will start with the vertical component of the gravity field:

gzðr 0nÞ ¼
XNm

k¼1

fðnkÞz hðkÞ; (B-1)

where

fðnkÞz ¼ −Gγρ0
zðkÞ − zðnÞ 0

jrðkÞ − r 0nj3
ΔxΔy

¼ −Gρ0
hðkÞ −H0 − zðnÞ 0

jrðkÞ − r 0nj3
ΔxΔy: (B-2)

The matrix of the Fréchet derivative can be found by direct differ-
entiation of the forward-modeling equation B-1 as follows:

Fnl ¼
∂gzðr 0nÞ
∂hðlÞ

¼ ∂
PNm

k¼1 f
ðnkÞ
z hðkÞ

∂hðlÞ

¼
XNm

k¼1

�
∂fðnkÞz

∂hðlÞ
hðkÞ þ fðnkÞz

∂hðkÞ

∂hðlÞ

�
: (B-3)

We note that

∂hðkÞ

∂hðlÞ
¼ δkl; (B-4)

and
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∂fðnkÞz

∂hðlÞ
¼−Gρ0ΔxΔy

∂
∂hðlÞ

�
hðkÞ−H0−zðnÞ

0

jrðkÞ−r0nj3
�

¼Gρ0ΔxΔy
�
3
ðhðlÞ−H0−zðnÞ

0 Þ2
jrðlÞ−r0nj5

−
1

jrðlÞ−r0nj3
�
: (B-5)

By substituting equations B-4 and B-5 into equation B-3 and ap-
plying some algebra, we finally arrive at the solution for the Fréchet
derivative matrix as follows:

Fnl ¼
Gρ0ΔxΔy
jrðlÞ − r 0nj3

�
3ðhðlÞ −H0 − zðnÞ 0 Þ2

jrðlÞ − r 0nj2
hðlÞ

− ð2hðlÞ −H0 − zðnÞ 0 Þ
�
: (B-6)

The derivation of the Fréchet derivative matrix for gravity gra-
dient data is very similar to that of vertical gravity component,
but more complicated math will be involved. Still, we use the piece-
wise horizontal surface to approximate the density contrast surface
within each cell. By taking the derivative of equation 25 with re-
spect to hðlÞ, after reduction, we arrive at the solution for the Fréchet
derivative matrix for gravity gradiometry as shown in the following
equation:

FðnlÞ
αv ¼Gρ0ΔxΔyhðlÞ

jrðlÞ−r0nj5
½3δzvðrðlÞα −rðnÞ

0
α Þþ3δzαðrðlÞv −rðnÞ

0
v Þ

þ2δvαðhðlÞ−H0−zðnÞ
0 Þ�

þGρ0ΔxΔyp
ðnlÞ
αv

jrðlÞ−r0nj5
�
1−5hðlÞ

ðhðlÞ−H0−zðnÞ
0 Þ

jrðlÞ−r0nj2
�
: (B-7)

APPENDIX C

FRÉCHET DERIVATIVE CALCULATION FOR
GRAVITY ANDGRAVITY GRADIENT OPERATORS
FOR DENSITY CONTRAST MODEL WITH VARIA-

BLE DENSITY CONTRAST

For a model with variable density contrastΔρðzÞ, the gravity field
can be written in the matrix form as follows:

gzðr 0nÞ ¼
XNm

k¼1

fðnkÞz ½Rð−H0Þ − RðzkÞ�; (C-1)

where the kernel is defined by the following equation:

fðnkÞz ¼ G
ðhðkÞ −H0 − zðnÞ 0 Þ

jrðkÞ − r 0nj3
ΔxΔy: (C-2)

In the last equation, we use the following notations:

RðzÞ ¼
Z

z

−H0

ΔρðzÞdz: (C-3)

The matrix of the Fréchet derivative can be found by direct differ-
entiation of the forward-modeling operator C-1 as follows:

Fnl ¼
∂gzðr 0nÞ
∂hðlÞ

¼ ∂
PNm

k¼1 f
ðnkÞ
z

∂hðlÞ
¼

XNm

k¼1

�
∂fðnkÞz

∂hðlÞ

�
: (C-4)

We note that

∂hðkÞ

∂hðlÞ
¼ δkl: (C-5)

After some algebra, we can find an analytic expression for the
Fréchet derivative in a discretized form as follows:

Fnl ¼
G½RðhðlÞ −H0Þ − Rð−H0Þ�

jrðlÞ − r 0nj3

×
�
3
ðhðlÞ −H0 − zðnÞ 0 Þ2

jrðlÞ − r 0nj2
− 1

�
ΔxΔy

− GΔρðhðlÞÞ ðh
ðlÞ −H0 − zðnÞ 0 Þ
jrðlÞ − r 0nj3

ΔxΔy: (C-6)

The derivation of the Fréchet derivative matrix for gravity gra-
dient data is also very similar to that of vertical gravity component,
but more complicated math will be involved. Here, we will show the
expression of the Fréchet derivative matrix for gravity gradient data
in the case of variable density distribution without the details of
derivation:

FðnlÞ
αv ¼ GΔρðhðlÞÞδαηAΔxΔy

þ G½RðhðlÞ −H0Þ − Rð−H0Þ�δαηBΔxΔy; (C-7)

where

A ¼ 3ðrðlÞv − rðnÞ
0

v ÞðrðlÞη − rðnÞ
0

η Þ − jrðlÞ − r 0nj2δvη
jrðlÞ − r 0nj5

(C-8)

and

B¼ ½5jrðlÞ − r 0nj2δvη − 15ðrðlÞv − rðnÞ
0

v ÞðrðlÞη − rðnÞ
0

η Þ�ðhðlÞ −H0 − zðnÞ0 Þ
jrðlÞ − r 0nj7

þ 3δzηδzv − 2ðhðlÞ −H0 − zðnÞ0 Þδvη
jrðlÞ − r 0nj5

. (C-9)
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